Stavins, Robert N.; Wagner, Alexander F.; Wagner, Gernot

Working Paper
Interpreting sustainability in economic terms: Dynamic efficiency plus intergenerational equity

Nota di Lavoro, No. 61.2002

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Stavins, Robert N.; Wagner, Alexander F.; Wagner, Gernot (2002) : Interpreting sustainability in economic terms: Dynamic efficiency plus intergenerational equity, Nota di Lavoro, No. 61.2002, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/119677

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Interpreting Sustainability in Economic Terms: Dynamic Efficiency Plus Intergenerational Equity
Robert N. Stavins, Alexander F. Wagner and Gernot Wagner
NOTA DI LAVORO 61.2002

SEPTEMBER 2002
ETA – Economic Theory and Applications

Robert N. Stavins, Alexander F. Wagner and Gernot Wagner, Harvard University

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/web/activ/_activ.html

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Interpreting Sustainability in Economic Terms: Dynamic Efficiency Plus Intergenerational Equity

Summary

Economists have expended considerable effort to develop economically meaningful definitions of the somewhat elusive concept of “sustainability.” We relate such a definition of sustainability to well known concepts from neoclassical economics, in particular, potential Pareto improvements (in the Kaldor-Hicks sense) and inter-personal compensation. In the inter-temporal realm, we find that dynamic efficiency is a necessary but not sufficient condition for a notion of sustainability that has normative standing as a goal for public policy. We define sustainability as dynamic efficiency plus intergenerational equity. Further, we argue that it is not unreasonable for economists to focus on the efficiency element, leaving equity considerations to the political process. The analogy to the relationship between potential Pareto improvements and (intragenerational) transfers can facilitate discussions about sustainability, both within the economics community and as part of an interdisciplinary discourse, and makes the basic concepts easier to operationalize.

Keywords: Sustainability, dynamic efficiency, intergenerational equity

JEL: Q2, Q3

Address for correspondence:

Robert N. Stavins
John F. Kennedy School of Government
Harvard University
Cambridge, MA 02138
Phone: (617) 495-1820
E-mail: robert_stavins@harvard.edu, awagner@fas.harvard.edu
gwagner@post.harvard.edu

The authors thank Geir Asheim, Partha Dasgupta, John Hartwick, John Pezzey and Martin Weitzman for helpful comments on an earlier draft. The authors are responsible for any remaining errors.
1. Introduction

There has been much debate among economists, and between economists and nearly everyone else regarding the meaning of the frequently employed concept of “sustainability.” In this note, we suggest that a broadly-accepted and normatively useful notion of sustainability can be better understood by breaking it into two components, both of which are well defined in economics: dynamic efficiency and intergenerational equity. Within this realm, there are sound reasons for economists to focus on policy criteria associated with the dynamic efficiency element of sustainability.

In 1987, the Brundtland Commission placed sustainability on international political and scientific agendas with its report, “Our Common Future” (World Commission on Environment and Development 1987). The Commission proposed the widely embraced definition that

* Stavins is the Albert Pratt Professor of Business and Government, John F. Kennedy School of Government, Harvard University, and a University Fellow of Resources for the Future; Alexander Wagner is a Ph.D. student in Political Economy and Government at Harvard University; and Gernot Wagner is a B.A. student at Harvard College. We thank Geir Asheim, Partha Dasgupta, John Hartwick, John Pezzey and Martin Weitzman for helpful comments on an earlier draft. The authors are responsible for any remaining errors.
“development is sustainable when it meets the needs of the present without compromising the ability of future generations to meet theirs” (WCED 1987). This is the definition we use as our starting point. We find that – contrary to some claims – sustainability is not only about intergenerational equity; rather, widely-held views of sustainability encompass elements of both efficiency and distributional equity. Furthermore, much as economists have long focused on potential rather than actual Pareto improvements, they need not be apologetic for focusing on dynamic efficiency, leaving (admittedly important) equity considerations to the political process.

2. Dynamic Efficiency

The definition of sustainability offered by the World Commission on Environment and Development (WCED) is broadly accepted and seems to have intuitive appeal: meeting the needs of the present without compromising the ability of future generations to meet their needs. In the absence of efficiency, constant consumption at no more than a subsistence level could satisfy this requirement, yet it would surely not be accepted as a reasonable social goal or target for public policy. Any appealing normative criterion for public policy in this domain ought to include some notion of “non-wastefulness.” That is, a meaningful definition of sustainability which has normative standing as a social goal ought to include dynamic efficiency, expressed formally as the maximization of

\[
W(t) \equiv \int_t^\infty U(c(\tau)) e^{-r(\tau-t)} d\tau,
\]

over all feasible alternative consumption paths \(c(\tau) \), where \(U(c(\tau)) \) denotes the most general, idealized utility function comprising both direct consumption as well as the enjoyment of non-
market goods and services, and ρ is the social rate of time preference.\footnote{This formulation as well as the notation used in equation (2) are consistent with Arrow \textit{et al.} (2002), which calls the solution of this problem the “present value of felicities.” Weitzman (2002) refers to it as a measure of “welfare-equivalent sustainability.”} If it is desirable to avoid unnecessarily degrading resources, and if sustainability has normative standing as a policy goal, then dynamic efficiency is a necessary condition for a normatively meaningful interpretation of this concept.

The important point here is that $W(t)$ must capture total welfare. Anything else can be misleading. Omitting contributions to welfare of any kind of capital will lead to an underestimate of the total value of $W(t)$, and omitting any form of capital depreciation will lead to an overestimate. The theoretical implications of technological and population change have been examined in this context, and the theory regarding ideal measures of $W(t)$ has been explored extensively.\footnote{Pezzey and Toman (2001) provide a survey of these issues. Heal (1998, 2001), Solow (1991), and Weitzman (2002) also give reasons why narrow definitions of “economic” capital should be expanded to include, for example, human and natural capital.}

3. Intergenerational Equity

Although we have argued that dynamic efficiency is necessary for a normatively useful definition of sustainability, we do not believe that dynamic efficiency is a sufficient condition for sustainability.\footnote{In fact, sustainability has frequently been defined as being exclusively about intergenerational equity. Most recently, Arrow \textit{et al.} (2002) make a clear distinction between optimality as the “discounted present value of future well being” as presented in equation (1) and sustainability, defined as “the maintenance or improvement of well being over time,” formally presented in equation (2). One exception in the current literature is Asheim, Buchholz and Tungodden (2001), who impose so-called efficiency and equity axioms and show that if social preferences fulfill these two axioms, any optimal path will lead to an efficient and non-decreasing path, thus implicitly including dynamic efficiency in the definition of sustainability. For an earlier discussion of sustainability and optimality, see Pezzey (1992).} It is also essential for consistency with widely embraced definitions of this concept that the maximized total welfare function not decrease over time. Formally, an optimized consumption path fulfills the condition of intergenerational equity if
where $W(t)$ represents the maximized total welfare function from equation (1).

This brings us to an economic definition of sustainability: an economy is sustainable if and only if it is dynamically efficient and the resulting stream of maximized total welfare functions is non-declining over time.

4. Sustainability

We acknowledge that the above definition provides a demanding pair of decision criteria that cannot be considered to be very useful as a guide for public policy. The same is true, however, of the benchmark of a Pareto-improving policy — one which makes some members of society better off, but makes no one worse off (1896). Actual Pareto improvements are exceptionally rare, of course, perhaps even non-existent. Hence, the strict Pareto criterion is virtually never taken as a guide for public policy, despite its considerable normative appeal. Economists resort instead to seeking “potential Pareto improvements” in the Kaldor-Hicks sense — the world is viewed as being made better off if the magnitude of gains and the magnitude of losses are such that the gainers can fully compensate the losers for their loses and still be better off themselves. Note that under the Kaldor-Hicks criterion, the change is considered to be an improvement whether or not the compensation actually takes place. Actual compensation of losers by winners is essentially left to the political process.

What is key is that the Kaldor-Hicks criterion is a necessary condition for satisfying the strict Pareto criterion. If a policy proposal fails the Kaldor-Hicks test, it cannot pass the Pareto test. If a proposed change is not a potential Pareto improvement, it cannot be a Pareto

4 The notion that a welfare improving change ought to be associated with a “potential Pareto improvement” was introduced by Kaldor (1939) and Hicks (1940).
improvement. This is the fundamental theoretical foundation — the normative justification — for employing benefit-cost analysis, that is, for searching for policies that maximize the positive difference between benefits and costs.

Similarly, we can think of an economy as having the potential to become sustainable if it fulfills the criterion of dynamic efficiency. It can then, in principle, be made sustainable by appropriate intergenerational transfers to achieve a non-declining total welfare path. One such economy that can be made sustainable has been formalized by Hartwick (1977), in which there exists the possibility of turning exhaustible resources into capital stock, a particular type of intergenerational transfer. If the Hartwick rule of investing all rents from exhaustible resources in reproducible capital is followed, then the economy can be made sustainable.5

Much as economists have long focused on potential rather than actual Pareto improvements, leaving the allocation of net gains among individuals (and, hence, the resolution of debates regarding distributional equity) to the political process, similar reasoning leads to an analogous approach to the sustainability debate. In theory, it may be argued that sustainability is ultimately the most desirable policy goal, but in practice it is more reasonable to aim for potential sustainability in the form of dynamic efficiency (of an all-encompassing societal welfare function).6

5 The conditions under which the Hartwick rule holds, however, are restrictive. Asheim and Buchholz (2000) further explore the assumptions under which the Hartwick rule holds.

6 Except for the elusive case of the Hartwick economy, utility transfers between generations are difficult to operationalize. Their abstractness provide a further reason why we can make more useful policy statements by being satisfied with potential transfers.
We recognize that this opens an avenue for criticism of economics as being excessively focused on efficiency rather than equity, but the efficiency criterion and related analytical methods are — ultimately — where the greatest strengths of economics lie.\footnote{One of the most prominent critiques of this focus of economics on efficiency has been offered by Sen (1970). He points out that a society may be efficient “even when some people are rolling in luxury and others are near starvation, as long as the starvers cannot be made better off without cutting into the pleasures of the rich. In short, a society can be Pareto optimal and still be perfectly disgusting.” Our definition of sustainability does involve notion of distributional equity by including both dynamic efficiency and intergenerational equity. We argue only that the comparative advantage of economics lies in its focus on the first element, whereas the comparative advantage of politics lies in focusing on distributional considerations.}

5. Conclusion

Sustainability is a broad concept, but it does not need to be “vague,” as Solow (1991) has argued. Interpretations that are acceptable both to natural scientists and economists should be possible. We find that sustainability can be conceptualized simply and clearly by employing a conventional economics framework, based on discounted utilitarianism. In short, a sustainable growth path is one which is both dynamically efficient and which is non-decreasing over time. Much as a potential Pareto improvement in the Kaldor-Hicks sense can yield Pareto optimality when combined with appropriate compensation of losers by winners, so too can dynamic efficiency lead to the more ambitious goal of sustainability when it is combined with appropriate intergenerational transfers. And much as economics often resorts to seeking potential Pareto improvements, leaving the final allocation to the political process, so too may it focus on dynamic efficiency, leading to the possibility, at least, of actual sustainability.
REFERENCES

Arrow, Kenneth; Daily, Gretchen; Dasgupta, Partha; Ehrlich, Paul; Goulder, Lawrence; Heal, Geoffrey; Levin, Simon; Mäler, Karl-Göran; Schneider, Stephen; Starrett, David and Walker, Brian. “Are We Consuming Too Much?” Discussion Paper, Beijer International Institute of Ecological Economics, Stockholm (February 2002).

Heal, Geoffrey. “Optimality or Sustainability.” Plenary address to the annual conference of the European Association of Environmental and Resource Economists, Southampton (June 2001).

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Papers Series
Our working papers are available on the Internet at the following addresses:

Server WWW: WWW.FEEM.IT
Anonymous FTP: FTP.FEEM.IT
http://papers.ssrn.com/abstract_id=XXXXXX

SUST 1.2001 Inge MAYERES and Stef PROOST: Should Diesel Cars in Europe be Discouraged?
SUST 2.2001 Paola DORIA and Davide PETTENELLA: The Decision Making Process in Defining and Protecting Critical Natural Capital
CLIM 3.2001 Alberto PENCH: Green Tax Reforms in a Computable General Equilibrium Model for Italy
CLIM 4.2001 Maurizio BUSSOLO and Dino PINELLI: Green Taxes: Environment, Employment and Growth
CLIM 5.2001 Marco STAMPINI: Tax Reforms and Environmental Policies for Italy
ETA 6.2001 Walid OUESLATI: Environmental Fiscal Policy in an Endogenous Growth Model with Human Capital
CLIM 7.2001 Umberto CIORBA, Alessandro LANZA and Francesco PAULI: Kyoto Commitment and Emission Trading: a European Union Perspective
MGMT 8.2001 Brian SLACK (xlv): Globalisation in Maritime Transportation: Competition, uncertainty and implications for port development strategy
VOL 10.2001 Cathrine HAGEM: Climate Policy, Asymmetric Information and Firm Survival
ETA 11.2001 Sergio CURRARINI and Marco MARINI: A Sequential Approach to the Characteristic Function and the Core in Games with Externalities
ETA 12.2001 Gaetano BLOISE, Sergio CURRARINI and Nicholas KIKIDIS: Inflation and Welfare in an OLG Economy with a Privately Provided Public Good
ETA 14.2001 Valentina BOSETTI and Vincenzina MESSINA: Quasi Option Value and Irreversible Choices
CLIM 15.2001 Guy ENGELEN (xlii): Desertification and Land Degradation in Mediterranean Areas: from Science to Integrated Policy Making
SUST 16.2001 Julie Catherine SORS: Measuring Progress Towards Sustainable Development in Venice: A Comparative Assessment of Methods and Approaches
SUST 17.2001 Julie Catherine SORS: Public Participation in Local Agenda 21: A Review of Traditional and Innovative Tools
CLIM 18.2001 Johan ALBRECHT and Niko GOBRIN: Schumpeter and the Rise of Modern Environmentalism
VOL 19.2001 Rinaldo BRAU, Carlo CARRARO and Giulio GOLFETTO (xliii): Participation Incentives and the Design of Voluntary Agreements
ETA 20.2001 Paola ROTA: Dynamic Labour Demand with Lumpy and Kinked Adjustment Costs
ETA 21.2001 Paola ROTA: Empirical Representation of Firms’ Employment Decisions by an (S,s) Rule
ETA 22.2001 Paola ROTA: What Do We Gain by Being Discrete? An Introduction to the Econometrics of Discrete Decision Processes
PRIV 23.2001 Stefano BOSI, Guillaume GIRMANS and Michel GUILLARD: Optimal Privatisation Design and Financial Markets
KNOW 24.2001 Giorgio BRUNELLO, Claudio LUPI, Patrizia ORDINE, and Maria Luisa CARISI: Beyond National Institutions: Labour Taxes and Regional Unemployment in Italy
ETA 25.2001 Klaus CONRAD: Locational Competition under Environmental Regulation when Input Prices and Productivity Differ
CLIM 27.2001 Frédéric BROCHIER and Emiliano RAMIERI: Climate Change Impacts on the Mediterranean Coastal Zones
ETA 28.2001 Nunzio CAPPUCCIO and Michele MORETTO: Comments on the Investment-Uncertainty Relationship in a Real Option Model
KNOW 29.2001 Giorgio BRUNELLO: Absolute Risk Aversion and the Returns to Education
CLIM 30.2001 ZhongXiang ZHANG: Meeting the Kyoto Targets: The Importance of Developing Country Participation
ETA 31.2001 Jonathan D. KAPLAN, Richard E. HOWITT and Y. Hossein FARZIN: An Information-Theoretical Analysis of Budget-Constrained Nonpoint Source Pollution Control
Coalition Theory Network 33.2001 Shlomo WEBER and Hans WIESMETH: From Autarky to Free Trade: The Impact on Environment
ETA 34.2001 Margarita GENIUS and Elisabetta STRAZZERA: Model Selection and Tests for Non Nested Contingent Valuation Models: An Assessment of Methods
NRM 35.2001 Carlo GIUPPONI: The Substitution of Hazardous Molecules in Production Processes: The Atrazine Case Study in Italian Agriculture

KNOW 36.2001 Raffaele PACI and Francesco PIGLIARU: Technological Diffusion, Spatial Spillovers and Regional Convergence in Europe

PRIV 37.2001 Bernardo BORTOLOTTI: Privatisation, Large Shareholders, and Sequential Auctions of Shares

PRIV 39.2001 Giacomo CALZOLARI and Carlo SCARPA: Regulation at Home, Competition Abroad: A Theoretical Framework

KNOW 40.2001 Giorgio BRUNELLO: On the Complementarity between Education and Training in Europe

Coalition Theory Network 41.2001 Alain DESDOIGTS and Fabien MOIZEAU: Multiple Politico-Economic Regimes, Inequality and Growth

Network Theory Coalition 42.2001 Parkash CHANDER and Henry TULKENS (xlvi): Limits to Climate Change

Theory Network Coalition 43.2001 Michael FINUS and Bianca RUNDSHAGEN (xlvi): Endogenous Coalition Formation in Global Pollution Control

Theory Network Coalition 44.2001 Wietze LISE, Richard S.J. TOL and Bob van der ZWAAN (xlvi): Negotiating Climate Change as a Social Situation

NRM 45.2001 Mohammad R. KHAWLIE (xlvi): The Impacts of Climate Change on Water Resources of Lebanon- Eastern Mediterranean

NRM 46.2001 Musaem EL-FADEL and E. BOU-ZEID (xlvi): Climate Change and Water Resources in the Middle East: Vulnerability, Socio-Economic Impacts and Adaptation

NRM 47.2001 Eva IGLESIAS, Alberto GARRIDO and Almudena GOMEZ (xlvi): An Economic Drought Management Index to Evaluate Water Institutions’ Performance Under Uncertainty and Climate Change

CLIM 48.2001 Wietze LISE and Richard S.J. TOL (xlvi): Impact of Climate on Tourist Demand

CLIM 49.2001 Francesco BOSELLO, Barbara BUCHNER, Carlo CARRARO and Davide RAGGI: Can Equity Enhance Efficiency? Lessons from the Kyoto Protocol

SUST 50.2001 Roberto ROSON (xlvi): Carbon Leakage in a Small Open Economy with Capital Mobility

SUST 52.2001 Richard N. COOPER (xlviii): The Kyoto Protocol: A Flawed Concept

SUST 53.2001 Kari KANGAS (xlviii): Trade Liberalisation, Changing Forest Management and Roundwood Trade in Europe

SUST 54.2001 Xueqin ZHU and Ekko VAN IERLAND (xlviii): Effects of the Enlargement of EU on Trade and the Environment

SUST 55.2001 M. Ozgur KAYALICA and Sajal LAHIRI (xlviii): Strategic Environmental Policies in the Presence of Foreign Direct Investment

SUST 57.2001 Roldan MURADIAN, Martin O’CONNOR, Joan MARTINEZ-ALER (xlviii): Embodied Pollution in Trade: Estimating the “Environmental Load Displacement” of Industrialised Countries

SUST 58.2001 Matthew R. AUER and Rafael REUVENY (xlviii): Foreign Aid and Direct Investment: Key Players in the Environmental Restoration of Central and Eastern Europe

SUST 59.2001 Onno J. KUIK and Frans H. OOSTERHUIS (xlviii): Lessons from the Southern Enlargement of the EU for the Environmental Dimensions of Eastern Enlargement, in particular for Poland

ETA 60.2001 Carlo CARRARO, Alessandra POME and Domenico SINISCALCO (xlxi): Science vs. Profit in Research: Lessons from the Human Genome Project

CLIM 61.2001 Efrem CASTELNUOVO, Michele MORETTO and Sergio VERGALLI: Global Warming, Uncertainty and Endogenous Technical Change: Implications for Kyoto

PRIV 62.2001 Gian Luigi ALBANO, Fabrizio GERMANO and Stefano LOVO: On Some Collusive and Signaling Equilibria in Ascending Auctions for Multiple Objects

CLIM 63.2001 Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH: A Note on Testing for Environmental Kuznets Curves with Panel Data

CLIM 64.2001 Paolo BUONANNO, Carlo CARRARO and Marzio GALEOTTI: Endogenous Induced Technical Change and the Costs of Kyoto

CLIM 65.2001 Guido CAZZÁVILLAN and Ignazio MUSU (l): Transitional Dynamics and Uniqueness of the Balanced-Growth Path in a Simple Model of Endogenous Growth with an Environmental Asset

CLIM 66.2001 Giovanni BAIIOCCHI and Salvatore DI FALCO (l): Investigating the Shape of the EKC: A Nonparametric Approach

CLIM 68.2001 Alexey VIKHLYAEV (xlviii): The Use of Trade Measures for Environmental Purposes – Globally and in the EU Context

<table>
<thead>
<tr>
<th>Journal</th>
<th>Volume</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>25.2002</td>
<td>Giannt CICIA, Elisabetta D’ERCOLE and Davide MARINO: Valuing Farm Animal Genetic Resources by Means of Contingent Valuation and a Bio-Economic Model: The Case of the Pentro Horse</td>
</tr>
<tr>
<td>CLIM</td>
<td>23.2002</td>
<td>K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa</td>
</tr>
<tr>
<td>ETA</td>
<td>2.2002</td>
<td>Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?</td>
</tr>
<tr>
<td>CLIM</td>
<td>4.2002</td>
<td>Andreas LÖSCHEL: Technological Change in Economic Models of Environmental Policy: A Survey</td>
</tr>
<tr>
<td>VOL</td>
<td>5.2002</td>
<td>Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions</td>
</tr>
<tr>
<td>KNOW</td>
<td>8.2002</td>
<td>Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus</td>
</tr>
<tr>
<td>NRM</td>
<td>9.2002</td>
<td>Giuseppe DI VITA: Renewable Resources and Waste Recycling</td>
</tr>
<tr>
<td>KNOW</td>
<td>10.2002</td>
<td>Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries</td>
</tr>
<tr>
<td>ETA</td>
<td>11.2002</td>
<td>Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE: Endogenous Fluctuations and the Role of Monetary Policy</td>
</tr>
<tr>
<td>KNOW</td>
<td>12.2002</td>
<td>Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?</td>
</tr>
<tr>
<td>NRM</td>
<td>13.2002</td>
<td>Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model</td>
</tr>
<tr>
<td>CLIM</td>
<td>14.2002</td>
<td>Philippe QUIRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector</td>
</tr>
<tr>
<td>CLIM</td>
<td>16.2002</td>
<td>Francesco RICCI: Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity</td>
</tr>
<tr>
<td>ETA</td>
<td>17.2002</td>
<td>Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy</td>
</tr>
<tr>
<td>KNOW</td>
<td>18.2002</td>
<td>László A. KÓCZY (liv): The Core in the Presence of Externalities</td>
</tr>
<tr>
<td>CLIM</td>
<td>21.2002</td>
<td>Fausto CAVALLARO and Luigi CIRAOLO: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems</td>
</tr>
<tr>
<td>CLIM</td>
<td>22.2002</td>
<td>Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation</td>
</tr>
<tr>
<td>CLIM</td>
<td>23.2002</td>
<td>Andreas LÖSCHEL and ZhongXIAN ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech</td>
</tr>
<tr>
<td>ETA</td>
<td>24.2002</td>
<td>Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours</td>
</tr>
<tr>
<td>ETA</td>
<td>26.2002</td>
<td>Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change</td>
</tr>
<tr>
<td>SUST</td>
<td>27.2002</td>
<td>Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans</td>
</tr>
<tr>
<td>SUST</td>
<td>28.2002</td>
<td>The ANSEA Network: Towards An Analytical Strategic Environmental Assessment</td>
</tr>
<tr>
<td>KNOW</td>
<td>29.2002</td>
<td>Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence</td>
</tr>
<tr>
<td>ETA</td>
<td>30.2002</td>
<td>Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies</td>
</tr>
<tr>
<td>NRM</td>
<td>31.2002</td>
<td>Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon</td>
</tr>
<tr>
<td>NRM</td>
<td>32.2002</td>
<td>Robert N. STAVINS: National Environmental Policy During the Clinton Years</td>
</tr>
<tr>
<td>KNOW</td>
<td>33.2002</td>
<td>A. SOUBEYRAN and H. STAHN: Do Investments in Specialized Knowledge Lead to Composite Good Industries?</td>
</tr>
<tr>
<td>KNOW</td>
<td>34.2002</td>
<td>G. BRUNELLO, M.L. PARISI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect</td>
</tr>
</tbody>
</table>
T. TIETENBERG (lv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

C. FISCHER (lv): Multinational Taxation and International Emissions Trading

S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices

A. J. PLANTINGA, R. N. LUBOWSKI and R. N. STAVINS: The Effects of Potential Land Development on Agricultural Land Prices

C. OHL (lvi): Inducing Environmental Co-operation by the Design of Emission Permits

J. EYCKMANS, D. VAN REGEMORTER and V. VAN STEENBERGHE (lvi): Is Kyoto Fatally Flawed? An Analysis with MacGEM

A. ANTOCI and S. BORGHESI (lvi): Working Too Much in a Polluted World: A North-South Evolutionary Model

P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (lvi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

Z. YU (lvi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect

Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?

Y. H. FARZIN: Sustainability and Hamiltonian Value

C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

M. SERTEL and A. SLINKO (lvi): Ranking Committees, Words or Multisets

Sergio CURRARINI (liv): Stable Organizations with Externalities

Robert N. STAVINS: Experience with Market-Based Policy Instruments

Scott BARRETT (liii): Towards a Better Climate Treaty

Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

Vladimir ROSATO and Edi DEFRANCESCO: Individual Travel Cost Method and Flow Fixed Costs

Vladimir KOTOV and Elena NIKITINA (lvii): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

Vladimir KOTOV (lvi): Policy in Transition: New Framework for Russia’s Climate Policy

Fanny MISSFELDT and Arturo VILLAVICENCIO (lvi): How Can Economics in Transition Pursue Emissions Trading or Joint Implementation?

Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

<table>
<thead>
<tr>
<th>2002 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
</tr>
<tr>
<td>NRM</td>
</tr>
<tr>
<td>SUST</td>
</tr>
<tr>
<td>KNOW</td>
</tr>
<tr>
<td>PRIV</td>
</tr>
<tr>
<td>MGMT</td>
</tr>
<tr>
<td>ETA</td>
</tr>
</tbody>
</table>