Stavins, Robert N.; Wagner, Alexander F.; Wagner, Gernot

Working Paper
Interpreting sustainability in economic terms: Dynamic efficiency plus intergenerational equity

Nota di Lavoro, No. 61.2002

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Stavins, Robert N.; Wagner, Alexander F.; Wagner, Gernot (2002) : Interpreting sustainability in economic terms: Dynamic efficiency plus intergenerational equity, Nota di Lavoro, No. 61.2002, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/119677

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.ECONSTOR.eu
Interpreting Sustainability in Economic Terms: Dynamic Efficiency Plus Intergenerational Equity

Robert N. Stavins, Alexander F. Wagner and Gernot Wagner
NOTA DI LAVORO 61.2002

SEPTEMBER 2002
ETA – Economic Theory and Applications

Robert N. Stavins, Alexander F. Wagner and Gernot Wagner, Harvard University

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/web/activ/_activ.html

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Interpreting Sustainability in Economic Terms: Dynamic Efficiency Plus Intergenerational Equity

Summary

Economists have expended considerable effort to develop economically meaningful definitions of the somewhat elusive concept of “sustainability.” We relate such a definition of sustainability to well known concepts from neoclassical economics, in particular, potential Pareto improvements (in the Kaldor-Hicks sense) and inter-personal compensation. In the inter-temporal realm, we find that dynamic efficiency is a necessary but not sufficient condition for a notion of sustainability that has normative standing as a goal for public policy. We define sustainability as dynamic efficiency plus intergenerational equity. Further, we argue that it is not unreasonable for economists to focus on the efficiency element, leaving equity considerations to the political process. The analogy to the relationship between potential Pareto improvements and (intragenerational) transfers can facilitate discussions about sustainability, both within the economics community and as part of an interdisciplinary discourse, and makes the basic concepts easier to operationalize.

Keywords: Sustainability, dynamic efficiency, intergenerational equity

JEL: Q2, Q3

Address for correspondence:

Robert N. Stavins
John F. Kennedy School of Government
Harvard University
Cambridge, MA 02138
Phone: (617) 495-1820
E-mail: robert_stavins@harvard.edu, awagner@fas.harvard.edu
gwagner@post.harvard.edu

The authors thank Geir Asheim, Partha Dasgupta, John Hartwick, John Pezzey and Martin Weitzman for helpful comments on an earlier draft. The authors are responsible for any remaining errors.
1. Introduction

There has been much debate among economists, and between economists and nearly everyone else regarding the meaning of the frequently employed concept of “sustainability.” In this note, we suggest that a broadly-accepted and normatively useful notion of sustainability can be better understood by breaking it into two components, both of which are well defined in economics: dynamic efficiency and intergenerational equity. Within this realm, there are sound reasons for economists to focus on policy criteria associated with the dynamic efficiency element of sustainability.

In 1987, the Brundtland Commission placed sustainability on international political and scientific agendas with its report, “Our Common Future” (World Commission on Environment and Development 1987). The Commission proposed the widely embraced definition that

* Stavins is the Albert Pratt Professor of Business and Government, John F. Kennedy School of Government, Harvard University, and a University Fellow of Resources for the Future; Alexander Wagner is a Ph.D. student in Political Economy and Government at Harvard University; and Gernot Wagner is a B.A. student at Harvard College. We thank Geir Asheim, Partha Dasgupta, John Hartwick, John Pezzey and Martin Weitzman for helpful comments on an earlier draft. The authors are responsible for any remaining errors.
“development is sustainable when it meets the needs of the present without compromising the ability of future generations to meet theirs” (WCED 1987). This is the definition we use as our starting point. We find that – contrary to some claims – sustainability is not only about intergenerational equity; rather, widely-held views of sustainability encompass elements of both efficiency and distributional equity. Furthermore, much as economists have long focused on potential rather than actual Pareto improvements, they need not be apologetic for focusing on dynamic efficiency, leaving (admittedly important) equity considerations to the political process.

2. Dynamic Efficiency

The definition of sustainability offered by the World Commission on Environment and Development (WCED) is broadly accepted and seems to have intuitive appeal: meeting the needs of the present without compromising the ability of future generations to meet their needs. In the absence of efficiency, constant consumption at no more than a subsistence level could satisfy this requirement, yet it would surely not be accepted as a reasonable social goal or target for public policy. Any appealing normative criterion for public policy in this domain ought to include some notion of “non-wastefulness.” That is, a meaningful definition of sustainability which has normative standing as a social goal ought to include dynamic efficiency, expressed formally as the maximization of

\[
W(t) = \int U(c(\tau)) e^{-(t-\tau)} d\tau,
\]

over all feasible alternative consumption paths \(c(\tau)\), where \(U(c(\tau))\) denotes the most general, idealized utility function comprising both direct consumption as well as the enjoyment of non-
market goods and services, and ρ is the social rate of time preference.\footnote{This formulation as well as the notation used in equation (2) are consistent with Arrow \textit{et al}. (2002), which calls the solution of this problem the “present value of felicities.” Weitzman (2002) refers to it as a measure of “welfare-equivalent sustainability.”} If it is desirable to avoid unnecessarily degrading resources, and if sustainability has normative standing as a policy goal, then dynamic efficiency is a necessary condition for a normatively meaningful interpretation of this concept.

The important point here is that $W(t)$ must capture total welfare. Anything else can be misleading. Omitting contributions to welfare of any kind of capital will lead to an underestimate of the total value of $W(t)$, and omitting any form of capital depreciation will lead to an overestimate. The theoretical implications of technological and population change have been examined in this context, and the theory regarding ideal measures of $W(t)$ has been explored extensively.\footnote{Pezzey and Toman (2001) provide a survey of these issues. Heal (1998, 2001), Solow (1991), and Weitzman (2002) also give reasons why narrow definitions of “economic” capital should be expanded to include, for example, human and natural capital.}

3. Intergenerational Equity

Although we have argued that dynamic efficiency is necessary for a normatively useful definition of sustainability, we do not believe that dynamic efficiency is a sufficient condition for sustainability.\footnote{In fact, sustainability has frequently been defined as being exclusively about intergenerational equity. Most recently, Arrow \textit{et al}. (2002) make a clear distinction between optimality as the “discounted present value of future well being” as presented in equation (1) and sustainability, defined as “the maintenance or improvement of well being over time,” formally presented in equation (2). One exception in the current literature is Asheim, Buchholz and Tungodden (2001), who impose so-called efficiency and equity axioms and show that if social preferences fulfill these two axioms, any optimal path will lead to an efficient and non-decreasing path, thus implicitly including dynamic efficiency in the definition of sustainability. For an earlier discussion of sustainability and optimality, see Pezzey (1992).} It is also essential for consistency with widely embraced definitions of this concept that the maximized total welfare function not decrease over time. Formally, an optimized consumption path fulfills the condition of intergenerational equity if

\begin{align*}
\frac{dW(t)}{dt} &> 0 \\
\frac{dW(t)}{dW(t-1)} &> 0
\end{align*}
(2) \[\frac{dW(t)}{dt} \geq 0, \]

where \(W(t) \) represents the maximized total welfare function from equation (1).

This brings us to an economic definition of sustainability: an economy is sustainable if and only if it is dynamically efficient and the resulting stream of maximized total welfare functions is non-declining over time.

4. Sustainability

We acknowledge that the above definition provides a demanding pair of decision criteria that cannot be considered to be very useful as a guide for public policy. The same is true, however, of the benchmark of a Pareto-improving policy — one which makes some members of society better off, but makes no one worse off (1896). Actual Pareto improvements are exceptionally rare, of course, perhaps even non-existent. Hence, the strict Pareto criterion is virtually never taken as a guide for public policy, despite its considerable normative appeal. Economists resort instead to seeking “potential Pareto improvements” in the Kaldor-Hicks sense — the world is viewed as being made better off if the magnitude of gains and the magnitude of losses are such that the gainers can fully compensate the losers for their loses and still be better off themselves.\(^4\) Note that under the Kaldor-Hicks criterion, the change is considered to be an improvement whether or not the compensation actually takes place. Actual compensation of losers by winners is essentially left to the political process.

What is key is that the Kaldor-Hicks criterion is a necessary condition for satisfying the strict Pareto criterion. If a policy proposal fails the Kaldor-Hicks test, it cannot pass the Pareto test. If a proposed change is not a potential Pareto improvement, it cannot be a Pareto

\(^4\) The notion that a welfare improving change ought to be associated with a “potential Pareto improvement” was introduced by Kaldor (1939) and Hicks (1940).
improvement. This is the fundamental theoretical foundation — the normative justification — for employing benefit-cost analysis, that is, for searching for policies that maximize the positive difference between benefits and costs.

Similarly, we can think of an economy as having the potential to become sustainable if it fulfills the criterion of dynamic efficiency. It can then, in principle, be made sustainable by appropriate intergenerational transfers to achieve a non-declining total welfare path. One such economy that can be made sustainable has been formalized by Hartwick (1977), in which there exists the possibility of turning exhaustible resources into capital stock, a particular type of intergenerational transfer. If the Hartwick rule of investing all rents from exhaustible resources in reproducible capital is followed, then the economy can be made sustainable.\(^5\)

Much as economists have long focused on potential rather than actual Pareto improvements, leaving the allocation of net gains among individuals (and, hence, the resolution of debates regarding distributional equity) to the political process, similar reasoning leads to an analogous approach to the sustainability debate. In theory, it may be argued that sustainability is ultimately the most desirable policy goal, but in practice it is more reasonable to aim for potential sustainability in the form of dynamic efficiency (of an all-encompassing societal welfare function).\(^6\)

\(^5\) The conditions under which the Hartwick rule holds, however, are restrictive. Asheim and Buchholz (2000) further explore the assumptions under which the Hartwick rule holds.

\(^6\) Except for the elusive case of the Hartwick economy, utility transfers between generations are difficult to operationalize. Their abstractness provide a further reason why we can make more useful policy statements by being satisfied with potential transfers.
We recognize that this opens an avenue for criticism of economics as being excessively focused on efficiency rather than equity, but the efficiency criterion and related analytical methods are — ultimately — where the greatest strengths of economics lie.

5. Conclusion

Sustainability is a broad concept, but it does not need to be “vague,” as Solow (1991) has argued. Interpretations that are acceptable both to natural scientists and economists should be possible. We find that sustainability can be conceptualized simply and clearly by employing a conventional economics framework, based on discounted utilitarianism. In short, a sustainable growth path is one which is both dynamically efficient and which is non-decreasing over time. Much as a potential Pareto improvement in the Kaldor-Hicks sense can yield Pareto optimality when combined with appropriate compensation of losers by winners, so too can dynamic efficiency lead to the more ambitious goal of sustainability when it is combined with appropriate intergenerational transfers. And much as economics often resorts to seeking potential Pareto improvements, leaving the final allocation to the political process, so too may it focus on dynamic efficiency, leading to the possibility, at least, of actual sustainability.

7 One of the most prominent critiques of this focus of economics on efficiency has been offered by Sen (1970). He points out that a society may be efficient “even when some people are rolling in luxury and others are near starvation, as long as the starvers cannot be made better off without cutting into the pleasures of the rich. In short, a society can be Pareto optimal and still be perfectly disgusting.” Our definition of sustainability does involve notion of distributional equity by including both dynamic efficiency and intergenerational equity. We argue only that the comparative advantage of economics lies in its focus on the first element, whereas the comparative advantage of politics lies in focusing on distributional considerations.
REFERENCES

Arrow, Kenneth; Daily, Gretchen; Dasgupta, Partha; Ehrlich, Paul; Goulder, Lawrence; Heal, Geoffrey; Levin, Simon; Mäler, Karl-Göran; Schneider, Stephen; Starrett, David and Walker, Brian. “Are We Consuming Too Much?” Discussion Paper, Beijer International Institute of Ecological Economics, Stockholm (February 2002).

Heal, Geoffrey. “Optimality or Sustainability.” Plenary address to the annual conference of the European Association of Environmental and Resource Economists, Southampton (June 2001).

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Papers Series
Our working papers are available on the Internet at the following addresses:

Server WWW: WWW.FEEM.IT
Anonymous FTP: FTP.FEEM.IT
http://papers.ssrn.com/abstract_id=XXXXXX

SUST 1.2001 Inge MAYERES and Stef PROOST: Should Diesel Cars in Europe be Discouraged?
SUST 2.2001 Paola DORIA and Davide PETTENELLA: The Decision Making Process in Defining and Protecting Critical Natural Capital
CLIM 3.2001 Alberto PENCH: Green Tax Reforms in a Computable General Equilibrium Model for Italy
CLIM 4.2001 Maurizio BUSSOLO and Dino PINELLI: Green Taxes: Environment, Employment and Growth
CLIM 5.2001 Marco STAMPINI: Tax Reforms and Environmental Policies for Italy
ETA 6.2001 Walid OUESLATI: Environmental Fiscal Policy in an Endogenous Growth Model with Human Capital
CLIM 7.2001 Umberto CIORBA, Alessandro LANZA and Francesco PAULI: Kyoto Commitment and Emission Trading: a European Union Perspective
MGMT 8.2001 Brian SLACK (xlv): Globalisation in Maritime Transportation: Competition, uncertainty and implications for port development strategy
VOL 9.2001 Giulia PESARO: Environmental Voluntary Agreements: A New Model of Co-operation Between Public and Economic Actors
VOL 10.2001 Cathrine HAGEM: Climate Policy, Asymmetric Information and Firm Survival
ETA 11.2001 Sergio CIRRARINI and Marco MARINI: A Sequential Approach to the Characteristic Function and the Core in Games with Externalities
ETA 12.2001 Gaetano BLOISE, Sergio CIRRARINI and Nicholas KIKIDIS: Inflation and Welfare in an OLG Economy with a Privately Provided Public Good
ETA 14.2001 Valentina BOSETTI and Vincenzo MESSINA: Quasi Option Value and Irreversible Choices
CLIM 15.2001 Guy ENGELEN (xlii): Desertification and Land Degradation in Mediterranean Areas: from Science to Integrated Policy Making
SUST 16.2001 Julie Catherine SORS: Measuring Progress Towards Sustainable Development in Venice: A Comparative Assessment of Methods and Approaches
SUST 17.2001 Julie Catherine SORS: Public Participation in Local Agenda 21: A Review of Traditional and Innovative Tools
CLIM 18.2001 Johan ALBRECHT and Niko GOBBIN: Schumpeter and the Rise of Modern Environmentalism
VOL 19.2001 Rinaldo BRAU, Carlo CARRARO and Giulio GOLFETTO (xliii): Participation Incentives and the Design of Voluntary Agreements
ETA 20.2001 Paola ROTA: Dynamic Labour Demand with Lumpy and Kinked Adjustment Costs
ETA 21.2001 Paola ROTA: Empirical Representation of Firms’ Employment Decisions by an (S,s) Rule
ETA 22.2001 Paola ROTA: What Do We Gain by Being Discrete? An Introduction to the Econometrics of Discrete Decision Processes
PRIV 23.2001 Stefano BOSI, Guillaume GIRMANS and Michel GUILLARD: Optimal Privatisation Design and Financial Markets
KNOW 24.2001 Giorgio BRUNELLO, Claudio LUPI, Patrizia ORDINE, and Maria Luisa PARISI: Beyond National Institutions: Labour Taxes and Regional Unemployment in Italy
ETA 25.2001 Klaus CONRAD: Locational Competition under Environmental Regulation when Input Prices and Productivity Differ
CLIM 27.2001 Frédéric BROCHIER and Emiliano RAMIERI: Climate Change Impacts on the Mediterranean Coastal Zones
ETA 28.2001 Nunzio CAPPUCCIO and Michele MORETTO: Comments on the Investment-Uncertainty Relationship in a Real Option Model
KNOW 29.2001 Giorgio BRUNELLO: Absolute Risk Aversion and the Returns to Education
CLIM 30.2001 ZhongXiang ZHANG: Meeting the Kyoto Targets: The Importance of Developing Country Participation
ETA 31.2001 Jonathan D. KAPLAN, Richard E. HOWITT and Y. Hossein FARZIN: An Information-Theoretical Analysis of Budget-Constrained Nonpoint Source Pollution Control
Theory Network 33.2001 Shlomo WEBER and Hans WIESMETH: From Autarky to Free Trade: The Impact on Environment
ETA 34.2001 Margarita GENIUS and Elisabetta STRAZZERA: Model Selection and Tests for Non Nested Contingent Valuation Models: An Assessment of Methods
Carlo GIUPPONI: The Substitution of Hazardous Molecules in Production Processes: The Atrazine Case Study in Italian Agriculture

Raffaele PACI and Francesco PIGLIARU: Technological Diffusion, Spatial Spillovers and Regional Convergence in Europe

Bernardo BORTOLOTTI: Privatisation, Large Shareholders, and Sequential Auctions of Shares

Giacomo CALZOLARI and Carlo SCARPA: Regulation at Home, Competition Abroad: A Theoretical Framework

Giorgio BRUNELLO: On the Complementarity between Education and Training in Europe

Alain DESDOIGTS and Fabien MOIZEAU: Technological Diffusion, Spatial Spillovers and Regional Convergence in Italy

Wietze LISE and Richard S.J. TOL: Impact of Climate on Tourist Demand

Francesco BOSELLO, Barbara BUCHNER, Carlo CARRARO and Davide RAGGI: Can Equity Enhance Efficiency? Lessons from the Kyoto Protocol

M. Ozgur KAYALICA and Sajal LAHIRI: Embodied Pollution in Trade: Lessons from the Human Genome Project

Richard N. COOPER: The Kyoto Protocol: A Flawed Concept

Kari KANGAS: Strategic Environmental Policies in the Presence of Foreign Direct Investment

Matthew R. AUER and Rafael REUVENY: Estimating the "Environmental Load Displacement" of Industrialised Countries

Onno J. KUIK and Frans H. OOSTERHUIS: Foreign Aid and Direct Investment: Key Players in the Environmental Restoration of Central and Eastern Europe

Giuseppe ALPAY: Can Environmental Regulations be Compatible with Higher International Competitiveness? Some New Theoretical Insights

Roldan MURADIAN, Martin O’CONNOR, Joan MARTINEZ-ALER: Embodied Pollution in Trade: Estimating the "Environmental Load Displacement" of Industrialised Countries

Onno J. KUIK and Frans H. OOSTERHUIS: Lessons from the Southern Enlargement of the EU for the Environmental Dimensions of Eastern Enlargement, in particular for Poland

Carlo CARRARO, Alessandro POME and Domenico SINiscalco (xxi): Science vs. Profit in Research: Lessons from the Human Genome Project

Efrem CASTELNUOVO, Michele MORETTO and Sergio VERGALLI: Global Warming, Uncertainty and Endogenous Technical Change: Implications for Kyoto

Gian Luigi ALBANO, Fabrizio GERMANO and Stefano LOVO: On Some Collusive and Signaling Equilibria in Ascending Auctions for Multiple Objects

Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH: A Note on Testing for Environmental Kuznets Curves with Panel Data

Paolo BUONANNO, Carlo CARRARO and Marzio GALEOTTI: Endogenous Induced Technical Change and the Costs of Kyoto

Guido CAZZÁVILLAN and Ignazio MUSU: Global Warming, Uncertainty and Endogenous Technical Change: Implications for Kyoto

Giovanni BAIoCCHI and Salvatore DI FALCO: Investigating the Shape of the EKC: A Nonparametric Approach

Marzio GALEOTTI, Alessandro LANZA and Francesco PAULI: Desperately Seeking (Environmental) Kuznets: A New Look at the Evidence

Alexey VIKHLYAEV (xlviii): The Use of Trade Measures for Environmental Purposes – Globally and in the EU Context

Gary D. LIBECAP and Zeynep K. HANSEN (li): U.S. Land Policy, Property Rights, and the Dust Bowl of the 1930s
NRM 70.2001 Lee J. ALSTON, Gary D. LIBECAP and Bernardo MUELLER: (ii): Land Reform Policies, The Sources of Violent Conflict and Implications for Deforestation in the Brazilian Amazon

SUST 73.2001 Paulo A.L.D. NUNES and Erik SCHOKKAERT (ii): Warm Glow and Embedding in Contingent Valuation

SUST 74.2001 Paulo A.L.D. NUNES, Jeroen C.J.M. van den BERGH and Peter NIJKAMP (iii): Ecological-Economic Analysis and Valuation of Biodiversity

VOL 75.2001 Johan EYCKMANS and Henry TULKENS (ii): Simulating Coalitionably Stable Burden Sharing Agreements for the Climate Change Problem

PRIV 77.2001 Bernardo BORTOLOTTI, Marcella FANTINI and Domenico SINISCALCO: Privatisation around the World: New Evidence from Panel Data

ETA 78.2001 Toke S. AIDT and Jayasri DUTTA (i): Transitional Politics, Emerging Incentive-based Instruments in Environmental Regulation

ETA 79.2001 Alberto PETRUCCI: Consumption Taxation and Endogenous Growth in a Model with New Generations

ETA 80.2001 Pierre LASSERRE and Antoine SOUBEYRAN (ii): A Ricardian Model of the Tragedy of the Commons

ETA 81.2001 Pierre COURTOIS, Jean Christophe PÉREAU and Tarik TAZDAIT: An Evolutionary Approach to the Climate Change Negotiation Game

NRM 82.2001 Christophe BONTEMPS, Stéphane COUTURE and Pascal FAVARD: Is the Irrigation Water Demand Really Convex?

NRM 83.2001 Uni PASCUAL and Edward BARBOUR: A Model of Optimal Labour and Soil Use with Shifting Cultivation

CLIM 84.2001 Jesper JENSEN and Martin Hvidt THELLE: What are the Gains from a Multi-Gas Strategy?

CLIM 85.2001 Maurizio MICHELINI (iii): IPCC “Summary for Policymakers” in TAR. Do its results give a scientific support adequate to the urgencies of Kyoto negotiations?

CLIM 86.2001 Claudia KEMFERT (iii): Economic Impact Assessment of Alternative Climate Policy Strategies

CLIM 87.2001 Cesare DOSI and Michele MORETTI: Global Warming and Financial Umbrellas

ETA 88.2001 Elena BONTEMPI, Alessandra DEL BOCA, Alessandra FRANZOSI, Marzio GALEOTTI and Paola ROTA: Capital Heterogeneity: Does it Matter? Fundamental Q and Investment on a Panel of Italian Firms

ETA 89.2001 Efrom CASTELNUOVO and Paolo SURICO: Model Uncertainty, Optimal Monetary Policy and the Preferences of the Fed

CLIM 90.2001 Umberto CIORBA, Alessandro LANZA and Francesco PAULI: Kyoto Protocol and Emission Trading: Does the US Make a Difference?

CLIM 91.2001 ZhongXiang ZHANG and Lucas ASSUNCAO: Domestic Climate Policies and the WTO

SUST 92.2001 Anna ALBERINI, Alan KRUPNICK, Maureen CROPPER, Nathalie SIMON and Joseph COOK (ii): The Willingness to Pay for Mortality Risk Reductions: A Comparison of the United States and Canada

CLIM 94.2001 Ming CHEN and Larry KARP: Environmental Indices for the Chinese Grain Sector

CLIM 95.2001 Larry KARP and Jiangfeng ZHANG: Controlling a Stock Pollutant with Endogenous Investment and Asymmetric Information

ETA 96.2001 Michele MORETTI and Gianpaolo ROSSINI: On the Opportunity Cost of Nontradable Stock Options

SUST 97.2001 Elisabetta STRAZZERA, Margarita GENIUS, Riccardo SCARPA and George HUTCHINSON: The Effect of Protest Votes on the Estimates of Willingness to Pay for Use Values of Recreational Sites

NRM 98.2001 Frédéric BROCHIER, Carlo GIUPPONI and Alberto LONGO: Integrated Coastal Zone Management in the Venice Area – Perspectives of Development for the Rural Island of Sant’Erasmo

NRM 99.2001 Frédéric BROCHIER, Carlo GIUPPONI and Julie SORS: Integrated Coastal Management in the Venice Area – Potentials of the Integrated Participatory Management Approach

NRM 100.2001 Frédéric BROCHIER and Carlo GIUPPONI: Integrated Coastal Zone Management in the Venice Area – A Methodological Framework

PRIV 101.2001 Enrico C. PEROTTI and Luc LAEVEN: Confidence Building in Emerging Stock Markets

CLIM 102.2001 Barbara BUCHNER, Carlo CARRARO and Igor CERSOSIMO: On the Consequences of the U.S. Withdrawal from the Kyoto/Bonn Protocol

SUST 105.2001 Clemens B.A. WOLNY: The Need to Conserve Farm Animal Genetic Resources Through Community-Based Management in Africa: Should Policy Makers be Concerned?

<table>
<thead>
<tr>
<th>Volume</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUST</td>
<td>108</td>
<td>2001</td>
<td>Valuing Farm Animal Genetic Resources by Means of Contingent Valuation and a Bio-Economic Model: The Case of the Pentro Horse</td>
</tr>
<tr>
<td>SUST</td>
<td>110</td>
<td>2001</td>
<td>Does Breed Matter to Cattle Farmers and Buyers? Evidence from West Africa</td>
</tr>
<tr>
<td>ETA</td>
<td>2.2001</td>
<td>2002</td>
<td>Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa</td>
</tr>
<tr>
<td>CLIM</td>
<td>4.2002</td>
<td>2002</td>
<td>Technological Change in Economic Models of Environmental Policy: A Survey</td>
</tr>
<tr>
<td>VOL</td>
<td>5.2002</td>
<td>2002</td>
<td>Stable Coalitions</td>
</tr>
<tr>
<td>KNOW</td>
<td>10.2002</td>
<td>2002</td>
<td>Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries</td>
</tr>
<tr>
<td>ETA</td>
<td>11.2002</td>
<td>2002</td>
<td>Endogenous Fluctuations and the Role of Monetary Policy</td>
</tr>
<tr>
<td>CLIM</td>
<td>16.2002</td>
<td>2002</td>
<td>Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity</td>
</tr>
<tr>
<td>ETA</td>
<td>17.2002</td>
<td>2002</td>
<td>Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy</td>
</tr>
<tr>
<td>KNOW</td>
<td>18.2002</td>
<td>2002</td>
<td>The Core in the Presence of Externalities</td>
</tr>
<tr>
<td>CLIM</td>
<td>22.2002</td>
<td>2002</td>
<td>Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation</td>
</tr>
<tr>
<td>CLIM</td>
<td>23.2002</td>
<td>2002</td>
<td>The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech</td>
</tr>
<tr>
<td>ETA</td>
<td>24.2002</td>
<td>2002</td>
<td>Inventories, Employment and Hours</td>
</tr>
<tr>
<td>SUST</td>
<td>27.2002</td>
<td>2002</td>
<td>Farmer Premiums for the Voluntary Adoption of Conservation Plans</td>
</tr>
<tr>
<td>KNOW</td>
<td>29.2002</td>
<td>2002</td>
<td>Geographic Concentration and Increasing Returns: a Survey of Evidence</td>
</tr>
<tr>
<td>ETA</td>
<td>30.2002</td>
<td>2002</td>
<td>Lessons from the American Experiment with Market-Based Environmental Policies</td>
</tr>
<tr>
<td>NRM</td>
<td>31.2002</td>
<td>2002</td>
<td>Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon</td>
</tr>
<tr>
<td>NRM</td>
<td>32.2002</td>
<td>2002</td>
<td>National Environmental Policy During the Clinton Years</td>
</tr>
<tr>
<td>KNOW</td>
<td>33.2002</td>
<td>2002</td>
<td>Do Investments in Specialized Knowledge Lead to Composite Good Industries?</td>
</tr>
<tr>
<td>KNOW</td>
<td>34.2002</td>
<td>2002</td>
<td>Labor Taxes, Wage Setting and the Relative Wage Effect</td>
</tr>
</tbody>
</table>
(xlii) This paper was presented at the International Workshop on “Climate Change and Mediterranean Coastal Systems: Regional Scenarios and Vulnerability Assessment” organised by the Fondazione Eni Enrico Mattei in co-operation with the Istituto Veneto di Scienze, Lettere ed Arti, Venice, December 9-10, 1999.

(xliii) This paper was presented at the International Workshop on “Voluntary Approaches, Competition and Competitiveness” organised by the Fondazione Eni Enrico Mattei within the research activities of the CAVA Network, Milan, May 25-26, 2000.

(xliv) This paper was presented at the International Workshop on “Green National Accounting in Europe: Comparison of Methods and Experiences” organised by the Fondazione Eni Enrico Mattei within the Concerted Action of Environmental Valuation in Europe (EVE), Milan, March 4-7, 2000

(xlv) This paper was presented at the International Workshop on “New Ports and Urban and Regional Development. The Dynamics of Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, May 5-6, 2000.

(xlvi) This paper was presented at the Sixth Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, January 26-27, 2001

(xlvii) This paper was presented at the RICAMARE Workshop “Socioeconomic Assessments of Climate Change in the Mediterranean: Impact, Adaptation and Mitigation Co-benefits”, organised by the Fondazione Eni Enrico Mattei, Milan, February 9-10, 2001

(xlviii) This paper was presented at the International Workshop “Trade and the Environment in the Perspective of the EU Enlargement”, organised by the Fondazione Eni Enrico Mattei, Milan, May 17-18, 2001

(xlix) This paper was presented at the International Conference “Knowledge as an Economic Good”, organised by Fondazione Eni Enrico Mattei and The Beijer International Institute of Environmental Economics, Palermo, April 20-21, 2001

(li) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001

(lii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001

(liii) This paper was circulated at the International Conference on “Climate Policy – Do We Need a New Approach?”, jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001

(liiv) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Venice, Italy, January 11-12, 2002

(li) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001

(lvi) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy “The International Dimension of Environmental Policy”, organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafredda di Maratea, October 6-11, 2001

(lvii) This paper was presented at the First Workshop of “CFEWE – Carbon Flows between Eastern and Western Europe”, organised by the Fondazione Eni Enrico Mattei and Zentrum fur Europäische Integrationsforschung (ZEI), Milan, July 5-6, 2001
<table>
<thead>
<tr>
<th>Code</th>
<th>Series</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>NRM</td>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>SUST</td>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Evaluation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>KNOW</td>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>PRIV</td>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>MGMT</td>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>ETA</td>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>