Petrucci, Alberto

Working Paper

Devaluation (levels versus rates) and balance of payments in a cash-in-advance economy

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 17.2002

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Petrucci, Alberto (2002) : Devaluation (levels versus rates) and balance of payments in a cash-in-advance economy, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 17.2002, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/119628

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

Alberto Petrucci

NOTA DI LAVORO 17.2002

JANUARY 2002

ETA – Economic Theory and Applications

Alberto Petrucci Università del Molise and LUISS G. Carli

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/web/activ/_activ.html

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

Summary

This paper investigates the consequences of the currency devaluation, both in levels and rates, on the balance of payments in a cash-in-advance economy with finite horizons, endogenous capital accumulation and international capital immobility. In this context, a once and for all currency devaluation induces a balance of payments surplus, whereas a sustained increase in the rate of devaluation produces, in principle, an ambiguous effect on the balance of payments. If however non-restrictive assumptions on some structural parameters are made, an increase in the devaluation rate leads to a balance of payments surplus, the exact opposite of Calvo’s result (1981).

JEL: E21, E62

Keywords: Devaluation, balance of payments, cash-in-advance constraint, overlapping generations

Address for correspondence:
Alberto Petrucci
Department of Economics
LUISS G. Carli
Via O. Tomassini, 1
00162 Rome
Italy
Phone: +39 06 85-22-5770
Fax: +39 06 86-50-6513
E-mail: alpetru@luiss.it

This paper was written while the author was visiting Columbia University and revised during his visit to Stanford University. The author would like to thank Richard Clarida, Ned Phelps and Nate Rosenberg for the hospitality, and, without implicating them for errors and omissions, Giancarlo Marini, Ned Phelps, Lucio Sarno and an anonymous referee for helpful comments and suggestions on an earlier version of the paper. Financial support was provided by CNR.
1. Introduction

In a monetary small open economy operating under international capital immobility and a predetermined exchange rate regime, a once and for all currency devaluation leads to a balance of payments surplus while a sustained increase in the rate of devaluation induces a balance of payments deficit. These results have been demonstrated by Calvo (1981) in a very simple macroeconomic setup, characterized by an immortal representative agent with a fixed endowment, real money balances—the only asset of the system that varies according to current account imbalances—inserted into the utility function, consumers that receive lump-sum compensation for the inflation tax and purchasing power parity.

The effect of the simple exchange rate devaluation on the balance of payments relies upon the "monetary approach" mechanism, while the effect of the increase in the devaluation rate depends on the current account determination of the money supply and the long-run reduction of money holdings determined by higher inflation.

Despite the simplified framework considered, Calvo’s findings are very general and robust, in the sense that they are not qualitatively affected by other ways of introducing money into the economy and/or by the consideration of an endogenous capital stock, as an alternative asset to real money balances (see, for example, Dornbusch-Giovannini, 1990, Obstfeld-Rogoff, 1996, and Turnovsky, 1997).¹

This paper investigates the consequences of the currency devaluation, both in levels and rates, on the balance of payments in a cash-in-advance economy with

¹Neither is the introduction of an endogenous labor-leisure choice capable of altering these results, as can be easily deduced from the dual characterization of the present economic context represented by monetary growth models (see Wang-Yip, 1992).
finite horizons and endogenous capital accumulation. We focus on the case of a Clower constraint imposed on consumption spending alone.

We discover that, for the simple devaluation, the effect shown by Calvo is confirmed, whereas for a sustained increase in the rate of devaluation the effect on the balance of payments is, in principle, ambiguous, reflecting a possible departure from Calvo’s findings. However, if non-restrictive assumptions on some structural parameters of the model are made and/or the role of government money transfers in financing consumption expenditure is relatively modest, an increase in the rate of devaluation induces a balance of payments improvement, the exact opposite of Calvo’s result.

The rationale for the consequence of the rate of devaluation on the balance of payments obtained in our model is due to the endogeneity of capital stock and the OLG demographics without intergenerational altruism, on the one side, and to the cash-in-advance constraint on consumption spending, on the other. In fact, the first two assumptions assure that an increase in the rate of devaluation -equivalent to a rise in inflation since purchasing power parity holds- augments long-run capital stock and consumption because the lump-sum distribution of seignorage increases saving through intergenerational redistribution of income. The latter assumption -ensuring that money demand is a quasi-fixed proportion of consumption as the money-consumption ratio can solely respond to long-run inflation- may imply, as a consequence of the Tobin effect on capital stock, a steady-state increase in real money holdings, namely money balances accumulation along the transition path through a balance of payments surplus.
2. The model

Consider a small open economy operating under a predetermined exchange rate regime and international capital immobility. There are only two assets in the economy, money and real capital, which cannot be traded at world level.

Domestic output is perfectly substitutable with foreign output, i.e. purchasing power parity holds. The monetary authority depreciates the nominal exchange rate at a constant rate. Therefore, the currency devaluation rate coincides with domestic inflation assuming foreign inflation as being zero. Money supply is determined by the balance of payments, since it adjusts to balance the supply of and the demand for foreign exchange. Money is inserted into the economy through a cash-in-advance constraint imposed on consumption spending. The model is specified in continuous time and perfect foresight is assumed throughout.

The demand-side of the economy is based on the uncertain lifetimes approach of Blanchard-Yaari (see Yaari, 1965, and Blanchard, 1985) with no intergenerational bequest motive extended to a cash-in-advance monetary economy.

Identical individuals face uncertainty about the duration of their lives, since they face a constant probability of death, \(\lambda \geq 0 \), when they are alive. In every instant of time, a large new cohort is born. The size of each cohort is normalized to one. The population, composed of the cohorts of all ages, remains constant over time, since the birth rate is assumed to equal the death rate.\(^2\)

A logarithmic instantaneous utility function is assumed. The consumer seeks to maximize the following time-separable intertemporal utility function

\(^2\)The same results can be obtained when overlapping infinitely-lived families, which are not altruistically linked to older cohorts, enter the economy continuously (see Weil, 1991).
\[\int_t^\infty \ln \tilde{c}(s,v)e^{(\theta+\lambda)(t-v)}dv \] (1)

subject to the instantaneous budget constraint

\[\tilde{c}(s,t) + \frac{d\tilde{a}(s,t)}{dt} = [r(t) + \lambda] \tilde{a}(s,t) + w(t) + \tilde{q}(s,t) - [r(t) + \varepsilon] \tilde{m}(s,t) \] (2)

the cash-in-advance constraint on consumption spending

\[\tilde{c}(s,t) \leq \gamma \tilde{m}(s,t) + \sigma \tilde{q}(s,t), \quad 0 < \sigma \leq \gamma \] (3)

and the condition precluding "Ponzi games"

\[\lim_{v \to -\infty} \tilde{a}(s,v)e^{-\int_v^t[r(u)+\lambda]du} = 0 \] (4)

where \(\tilde{c}(s,t), \tilde{a}(s,t), \tilde{q}(s,t), \tilde{m}(s,t) \) denote at time \(t \) consumption of goods, non-human wealth, lump-sum cash transfers and real money balances of a consumer born at time \(s \leq t \), respectively; \(r(t) \) and \(w(t) \) denote the interest rate and non-interest income at time \(t \), respectively; \(\theta, \varepsilon, \gamma \) and \(\sigma \) are the exogenous rate of time preference, the constant rate of currency depreciation and two positive parameters of the cash-in-advance constraint, respectively. Labor supply is exogenous and hence normalized to one.

The budget constraint (2) asserts that savings, i.e. non-human wealth accumulation, plus consumption of goods must be equal to the disposable income. The disposable income incorporates the hypothesis that consumers receive an actuarially fair premium \(\lambda \tilde{a}(s,t) \) from the competitive life insurance company and give all their wealth to the life insurance company contingent on their death.
In addition, income available for consumption and savings includes government lump-sum transfers and takes into account the inflation tax (due to the sustained currency devaluation) on money holdings.

Equation (3) represents the cash-in-advance constraint according to which private money holdings and government lump-sum cash transfers are jointly used to purchase consumption goods.\(^3\) The case \(\sigma < \gamma\) is aimed at capturing the circumstance in which the role of government money transfers in financing consumption is relatively modest.\(^4\)

As long as the cost of holding money, i.e. the nominal interest rate, is positive, the cash-in-advance constraint (3) binds since people will not hold money in excess of the amount required for consumption.

In order to simplify the derivation of the optimal conditions for the individual maximization problem, define total or comprehensive consumption, \(\tilde{x} (s, t)\), as consumption of goods plus the implicit consumption of money services (given by the nominal interest foregone by holding real balances and spending government cash transfers instead of investing them in other assets)

\[
\tilde{x} (s, t) = \tilde{c} (s, t) + [r(t) + \varepsilon] \left[\tilde{m} (s, t) + \frac{\sigma}{\gamma} \tilde{q} (s, t) \right]
\]

\(^3\)See, for a similar formulation of the cash-in-advance constraint, Stockman (1981), Gomme (1993) and Walsh (1998). The insertion of money balances into the economy through equation (3) is qualitatively similar to the “money in the utility function” approach when instantaneous preferences are of the type \(\ln U \left[\tilde{c} (s, t), \tilde{m} (s, t) \right]\), where \(U\) is homothetic. See Feenstra (1986) and Marini-Van der Ploeg (1988).

\(^4\)The extreme case \(\sigma = 0\) -i.e. a cash-in-advance constraint formulated as in Lucas (1981), Feenstra (1984) and Calvo (1991)- is ruled out, since in such a circumstance, due to the economic environment considered, the aggregate dynamic setup exhibits analytical problems.
Hence by using the cash-in-advance constraint (3) along with the definition of \(\tilde{x}(s,t) \) in equation (5a), we can express physical consumption as a function of comprehensive consumption

\[
\tilde{c}(s,t) = \frac{\gamma \tilde{x}(s,t)}{\gamma + r(t) + \varepsilon}
\]

Equation (5b) can be used to re-formulate the optimal program (1)-(4) in terms of \(\tilde{x}(s,t) \) instead of \(\tilde{c}(s,t) \). By substituting out individual consumption of physical goods from the instantaneous utility function and the flow budget constraint through equation (5b), we can express the present value Hamiltonian for the individual optimization problem as

\[
H(s,t) = \ln \left[\frac{\gamma \tilde{x}(s,t)}{\gamma + r(t) + \varepsilon} \right] + \tilde{\eta}(s,t) \{ [r(t) + \lambda] \tilde{a}(s,t) + w(t) + \\
+ \tilde{q}(s,t) + \frac{\sigma [r(t) + \varepsilon]}{\gamma} \tilde{q}(s,t) - \tilde{x}(s,t) \}
\]

where \(\tilde{\eta}(s,t) \) is the marginal utility of non-human wealth at time \(t \) of an individual born at time \(s \).

The optimal choice over total consumption yields the usual Euler equation

\[
\frac{d \tilde{x}(s,t)}{dt} = [r(t) - \theta] \tilde{x}(s,t)
\]

whereas money demand expressed in terms of total consumption is given by the cash-in-advance constraint combined with equation (5b)

\[
\tilde{m}(s,t) = \frac{\tilde{x}(s,t)}{\gamma + r(t) + \varepsilon} - \frac{\sigma}{\gamma} \tilde{q}(s,t)
\]
By integrating the budget constraint (2) forward, using definition (5a) and the condition precluding "Ponzi games", we obtain the consumer’s intertemporal budget constraint

\[\int_{\tilde{t}}^{\infty} \tilde{x}(s,v) e^{-\int_{\tilde{t}}^{r} \{r(u)+\lambda \} du} dv = \tilde{a}(s,t) + \tilde{h}(s,t) \]

(7)

where \(\tilde{h}(s,t) \) represents consumer’s human wealth.\(^5\)

The integration of equation (6a) along with the intertemporal budget constraint yields the following total consumption function

\[\tilde{x}(s,t) = (\theta + \lambda) [\tilde{a}(s,t) + \tilde{h}(s,t)] \]

(8)

As the instantaneous utility function is logarithmic, comprehensive consumption is a linear function of both non-human and human wealth.

After having aggregated the solution of the individual maximization program over all the consumers’cohorts,\(^6\) omitting the time index and substituting out the stock of human wealth, the demand-side of the economy can be described by the following equations

\[\dot{x} = (r - \theta)x - \lambda(\lambda + \theta)a \]

(9a)

\(^5\)Human wealth is the present discounted value of expected future labour income gross of lump-sum transfers, whose discount rate equals the real interest rate plus the probability of death.

\(^6\)Aggregate variables are defined as

\[p(t) = \int_{-\infty}^{t} \tilde{p}(s,t) \lambda e^{(s-t)} ds \]

where \(\tilde{p}(s,t) \) indicates the corresponding individual variable.
\[
c = \frac{\gamma x}{\gamma + r + \varepsilon} \quad (9b)
\]
\[
m = \frac{c}{\gamma} - \frac{\sigma}{\gamma}q \quad (9c)
\]
\[
\dot{a} = ra + w + \left[\frac{\gamma + \sigma(r + \varepsilon)}{\gamma}\right]q - x \quad (9d)
\]

Non-human wealth of the consumers consists of aggregate physical capital, \(k\), and aggregate real money balances:

\[
a = k + m \quad (10)
\]

On the production side perfect competition is assumed. The representative firm employs capital and labor, \(l\), to produce output, \(y\), using a neoclassical production function - \(y = F(k, l)\) - having the conventional neoclassical properties of positive, but diminishing, marginal physical products and constant returns to scale. The first order conditions for the optimum of the firm are

\[
F_k(k, l) = r \quad (11a)
\]
\[
F_l(k, l) = w \quad (11b)
\]

The monetary authority pursues a policy of leaving the nominal exchange rate to depreciate at a constant rate, given by \(\varepsilon\). In addition, the government returns the inflation tax to the public as a lump-sum transfer.
Finally, we have the balance of payments equation

\[q = \varepsilon m \]

(12)

Equation (13) states that changes in official reserves are equal to the balance of payments, namely domestic output less absorption (consumption plus investment).\(^7\)

The complete macroeconomic equilibrium for the economy is obtained by combining the optimal conditions for households and firms, together with the relevant accumulation equations and the equilibrium condition on the labor market (\(l=1\)).

The full short-run model can be expressed in compact form as:

\[\dot{x} = [F_k(k) - \theta]x - \lambda(\lambda + \theta)(k + m) \]

(14a)

\[c = \frac{\gamma x}{\gamma + F_k(k) + \varepsilon} \]

(14b)

\[m = \frac{c}{\gamma + \sigma \varepsilon} \]

(14c)

\[\dot{m} = F(k) - c - \dot{k} \]

(14d)

Seignorage, \(q\), and the wage rate, \(w\), are solved residually. Equation (14c) represents the aggregate demand for money, which states that planned money holdings depend positively on consumption and negatively on the long-run inflation.

\(^7\)We assume there is no banking sector and that no sterilization policies are implemented by the monetary authority.
rate. The rationale for this latter influence is as follows. A higher devaluation rate, by increasing the amount of seignorage transferred from the government to the public, requires lower private money holdings to finance a given level of consumption.

Equations (14b) and (14c) may be solved for c and k in terms of the endogenous dynamic variables (x and m) as follows:

\[
\begin{align*}
\bar{c} &= c(m, \varepsilon), \quad \bar{c}_m = \gamma + \sigma \varepsilon > 0; \quad \bar{c}_\varepsilon = m \varepsilon > 0; \\
\bar{k} &= k(x, m, \varepsilon), \quad \bar{k}_x = \frac{\gamma}{\bar{c} F_{kk}} < 0; \quad \bar{k}_m = -\frac{(\gamma + \sigma \varepsilon)(\gamma + F_k + \varepsilon)}{\bar{c} F_{kk}} > 0; \\
\bar{k}_\varepsilon &= -\left[\frac{\bar{c} + m \sigma (\gamma + F_k + \varepsilon)}{\bar{c} F_{kk}}\right] > 0;
\end{align*}
\]

where overbar variables denote long-run equilibrium values.

By using the above short-run solutions for c and k, the model can be easily reduced to the following pair of differential equations linearized around the steady state:

\[
\begin{bmatrix}
\dot{x} \\
\dot{m}
\end{bmatrix} =
\begin{bmatrix}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{bmatrix}
\begin{bmatrix}
x - \bar{x} \\
m - \bar{m}
\end{bmatrix}
\]

where

\[
\omega_{11} = \frac{\bar{c} F_{kk}(F_k - \theta) + \gamma \left[\bar{x} F_{kk} - \lambda (\theta + \lambda)\right]}{\bar{c} F_{kk}} > 0;
\]

8 In the "money in the utility function" approach, when the intratemporal elasticity of substitution between money and consumption is positive, the demand for real balances would depend on consumption and the nominal interest rate.

9 Equation (15b) is employed, once linearized, to eliminate both \dot{k} and \dot{k} from equations (14a) and (14d).
The sign of the determinant of the coefficient matrix in \(16\) can be shown to depend on the sign of the following expression

\[
\omega_{12} = -\left\{ \lambda(\theta + \lambda) \bar{c} F_{kk} + (\gamma + F_k + \bar{c})(\gamma + \sigma \bar{c})(\bar{x} F_{kk} - \lambda(\theta + \lambda)) \right\} < 0; \\
\omega_{21} = \frac{\gamma \bar{m}(F_k - \omega_{11})}{(\bar{m} \bar{c} F_{kk} - \gamma \bar{x})} \geq 0; \\
\omega_{22} = -\frac{[\gamma \bar{x} F_k + \bar{c} F_{kk} + \gamma \bar{m} \omega_{12}]}{(\bar{m} \bar{c} F_{kk} - \gamma \bar{x})} \geq 0.
\]

The sign of the determinant of the coefficient matrix in \(16\) can be shown to

\[
\Delta = \bar{c} (\bar{k} + \bar{m})[\gamma \bar{x} + (F_k - \theta) \bar{c}]F_{kk} - \gamma \bar{x} (F_k - \theta)(\bar{c} - F_k \bar{k}) < 0 \quad (17)
\]

Since inequality (17) is always satisfied as \(\bar{c} - \bar{k} F_k = \bar{y} - \bar{k} \bar{F}_k = \bar{w} > 0\) (by the assumption of linear homogeneity of the production function) and \(F_k > \theta\) (as the economy is dynamically efficient), the long-run equilibrium is a saddle-point stable, since \(m\) evolves continuously -i.e. \(m(0) = m_0\), while \(x\) is a jump variable -i.e. \(x(0)\) is free.\(^{10}\)

The stable solution to the system \(16\) is given by

\[
m = \bar{m} + (m_0 - \bar{m})e^{\eta_1 t} \quad (18a)
\]

\[
x = \bar{x} + \frac{\omega_{12}}{(\eta_1 - \omega_{11})(m - \bar{m})} (m - \bar{m}) \quad (18b)
\]

\(^{10}\text{If a simple cash-in-advance constraint was considered, i.e. } \sigma = 0 \text{ in equation (3) and hence } \bar{c} \leq \gamma m, \text{ it would imply the restrictive feature that consumption only evolves continuously as real money balances are a state variable; this is a clear analytical inconsistency of the setup. Therefore the assumption } \sigma > 0 \text{ is necessary to guarantee that consumption, which is a jump variable, is separated from money balances, which are a predetermined variable.}\)
where $\eta_1<0$ denotes the stable eigenvalue of the coefficient matrix in (16). The saddle-path (18b) is positively-sloped in the m-x space.

The long-run equilibrium model, obtained when $\dot{x}=\dot{m}=$, is

$$[F_k(\bar{k}) - \theta] \ddot{x} = \lambda(\theta + \lambda)(\bar{k} + \bar{m}) \quad (19a)$$

$$\bar{c} = \frac{\gamma \ddot{x}}{[\gamma + F_k(\bar{k}) + \varepsilon]} \quad (19b)$$

$$\bar{m} = \frac{\bar{c}}{(\gamma + \sigma \varepsilon)} \quad (19c)$$

$$F(\bar{k}) = \bar{c} \quad (19d)$$

3. Devaluations and balance of payments

Firstly, consider a once and for all devaluation. Since the level of the nominal exchange rate does not appear in the long-run equilibrium model (19), a currency devaluation exerts no effects on the steady-state endogenous variables. Therefore, long-run real money balances, i.e. $m = \frac{\bar{M}}{E}$ -where \bar{M} is the stock of the nominal money supply and E represents the nominal exchange rate-, remain unaffected by a parametric change in E. However, an unexpected permanent devaluation reduces real money holdings on impact -as M is a predetermined variable that

11 The solution for capital stock is

$$k = -k + \left[\frac{\gamma \omega_2 (\eta_1 - \omega_1)}{\bar{c} F_{kk}} - (\gamma + \sigma \varepsilon)(\gamma + F_k + \varepsilon) \right] \frac{(m_0 - \bar{m}) e^{\eta_1 t}}{m \eta_1} \quad (18c)$$
evolves gradually- and consumption, tied to money balances. Comprehensive consumption is reduced as well. Since output does not change, the reduction of consumption implies that a short-run balance of payments surplus occurs since the trade balance improves. The current account surplus is matched, for the whole convergence along the transition path, by an increase of \(m \) aimed at restoring the initial level of real money holdings accompanied by an increase in consumption along the transition path that brings the system back to the ante-shock equilibrium.

Secondly, consider a sustained increase in the rate of devaluation. The comparative statics effects of this shock are given by the following multipliers

\[
\frac{d\bar{k}}{d\varepsilon} = -\frac{\bar{m}\bar{c} (F_k - \theta)}{\Delta} \left[(\bar{k} + \bar{m})(\gamma + \sigma \varepsilon) + \sigma \bar{m} (\gamma + F_k + \varepsilon) \right] > 0 \quad (20a)
\]

\[
\frac{d \bar{x}}{d\varepsilon} = \frac{\bar{m} [\lambda(\theta + \lambda)(\gamma + F_k) - \gamma \bar{x} F_{kk}]}{\Delta} > 0 \quad (20b)
\]

\[
\frac{d \bar{c}}{d\varepsilon} = F_k \frac{d \bar{k}}{d\varepsilon} > 0 \quad (20c)
\]

\[
\frac{d \bar{m}}{d\varepsilon} = -\frac{\bar{m} (F_k - \theta)}{\Delta} \left[\bar{c} (\bar{k} + \bar{m})(F_k + \sigma \bar{m} F_{kk}) + \sigma \bar{m} (\gamma + F_k + \varepsilon)(F_k \bar{m} - F_l) \right] +
\]

\[-\sigma \bar{c} (\bar{k} + \bar{m}) F_{kk} \gamma \bar{x} \leq 0 \quad (20d)
\]

where \(\Delta < 0 \) has been defined in (17).

In the long-run, an increase in the rate of devaluation raises capital stock and therefore physical as well as comprehensive consumption. The Tobin effect on
capital stock derives from the fact that a higher devaluation rate, which corresponds to greater long-run inflation, implies greater lump-sum transfers, namely seignorage, distributed by the government to consumers. A redistribution of income from those who consume more and save less (the "older", in the sense that they were born earlier) to those who consume less and save more (the "younger", in the sense that they are born later) occurs, leading to higher aggregate saving and therefore spurring capital formation.

The overall consequence of the higher rate of devaluation on money demand is, in principle, ambiguous, since the positive effect of the increased consumption may be outweighed by the negative effect of the higher inflation rate on the money-consumption ratio. Therefore, the final sign of the money demand multiplier (20d) depends on which of the two contrasting effects prevails.

However, if non-restrictive assumptions on some structural parameters of the model are made, the positive effect of the higher consumption on the volume of transactions that people want to make unambiguously outweighs the negative effect of the higher devaluation rate on the money-consumption ratio. These non-restrictive assumptions are: i) a money demand that is a quasi-fixed proportion of consumption, i.e. \(\sigma < \gamma \) (in this case government lump-sum cash transfers play a minor role in acquiring consumption goods); and /or ii) a production function that is moderately concave in capital stock, i.e. \(-F_{kk} < \frac{F_k(\gamma + \sigma \bar{c})}{\sigma \bar{c}}\); and/or iii) a highly liquid economy, i.e. \(F_k \bar{m} > F_L \).

Both steady state nonhuman wealth and long-run real interest rate are increased by the higher steady state inflation. Moreover, as the higher rate of devaluation involves greater consumption, more inflation is welfare-improving.\(^\text{12}\)

\(^\text{12}\)This result is also obtained in the monetary growth analysis with an OLG demographics
In the short-run, soon after the unexpected and permanent increase in the rate of devaluation takes place, the positively-sloped saddle-path defined in the $x-m$ space shifts upward13 and comprehensive consumption rises on impact (for a given level of money balances) to bring the economy onto the new saddle-path, undershooting its new long-run equilibrium value if money holdings are increased in the long-run.

The undershooting of comprehensive consumption causes a balance of payments surplus after the shock, since real money balances and capital stock, being constrained to adjust continuously, are fixed at their initial values. This is the exact opposite of Calvo’s finding. Soon after the impact adjustment, real money balances and capital stock begin to accumulate. Consumption, money holdings and physical capital increase monotonically along the transition path towards the final equilibrium.14

In the case of the devaluation rate, we may depart from Calvo’s result (1981) because the Tobin effect (due to the OLG demographics) is combined with a

13The vertical shift of the saddle-path is given by

\[
\frac{dx(0)}{de} = \frac{d \bar{x}}{de} - \frac{\omega_{12}}{(\eta_1 - \omega_{11})} \frac{d \bar{m}}{de}
\]

This expression is always positive either if $\sigma < \gamma$ and $\frac{d \bar{m}}{de} > 0$ or if $\frac{d \bar{m}}{de} < 0$.

14In the less likely case of a steady state reduction of money balances (i.e. when the non-restrictive assumptions mentioned above are not considered and the negative effect of long-run inflation on money holdings prevails over the Tobin effect), consumption overshoots its new long-run equilibrium value on impact; the overadjustment of consumption induces a balance of payments deficit after the shock has occurred. After the system has been placed on the new stable arm, money balances decumulate, while capital formation is deepened along the convergent path.
sort of "quantity theory" money demand, i.e. a money demand dependent on consumption and a money-consumption ratio independent of the nominal interest rate but moderately dependent on long-run inflation (due to the cash-in-advance constraint).
References

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Papers Series
Our working papers are available on the Internet at the following addresses:

Server WWW: WWW.FEEM.IT
Anonymous FTP: FTP.FEEM.IT

To order any of these papers, please fill out the form at the end of the list.

SUST 1.2001 Inge MAYERES and Stef PROOST: Should Diesel Cars in Europe be Discouraged?
SUST 2.2001 Paola DORIA and Davide PETTENELLA: The Decision Making Process in Defining and Protecting Critical Natural Capital
CLIM 3.2001 Alberto PENCH: Green Tax Reforms in a Computable General Equilibrium Model for Italy
CLIM 4.2001 Maurizio BUSSOLO and Dino PINELLI: Green Taxes: Environment, Employment and Growth
CLIM 5.2001 Marco STAMPINI: Tax Reforms and Environmental Policies for Italy
ETA 6.2001 Walid OUESLATI: Environmental Fiscal Policy in an Endogenous Growth Model with Human Capital
CLIM 7.2001 Umberto CIORBA, Alessandro LANZA and Francesco PAULI: Kyoto Commitment and Emission Trading: a European Union Perspective
MGMT 8.2001 Brian SLACK (xliv): Globalisation in Maritime Transportation: Competition, uncertainty and implications for port development strategy
VOL 9.2001 Giulia PESARO: Environmental Voluntary Agreements: A New Model of Co-operation Between Public and Economic Actors
VOL 10.2001 Cathrine HAGEM: Climate Policy, Asymmetric Information and Firm Survival
ETA 11.2001 Sergio CURRARINI and Marco MARINI: A Sequential Approach to the Characteristic Function and the Core in Games with Externalities
ETA 12.2001 Gaetano BLOISE, Sergio CURRARINI and Nicholas KIKIDIS: Inflation and Welfare in an OLG Economy with a Privately Provided Public Good
KNOW 13.2001 Paolo SURICO: Globalisation and Trade: A "New Economic Geography" Perspective
ETA 14.2001 Valentina BOSETTI and Vincenzina MESSINA: Quasi Option Value and Irreversible Choices
CLIM 15.2001 Guy ENGELEN (xlii): Desertification and Land Degradation in Mediterranean Areas: from Science to Integrated Policy Making
SUST 16.2001 Julie Catherine SORS: Measuring Progress Towards Sustainable Development in Venice: A Comparative Assessment of Methods and Approaches
SUST 17.2001 Julie Catherine SORS: Public Participation in Local Agenda 21: A Review of Traditional and Innovative Tools
CLIM 18.2001 Johan ALBRECHT and Niko GOBBIN: Schumpeter and the Rise of Modern Environmentalism
VOL 19.2001 Rinaldo BRAU, Carlo CARRARO and Giulio GOLFETTO (xliii): Participation Incentives and the Design of Voluntary Agreements
ETA 20.2001 Paola ROTA: Dynamic Labour Demand with Lumpy and Kinked Adjustment Costs
ETA 21.2001 Paola ROTA: Empirical Representation of Firms' Employment Decisions by an (S,s) Rule
ETA 22.2001 Paola ROTA: What Do We Gain by Being Discrete? An Introduction to the Econometrics of Discrete Decision Processes
PRIV 23.2001 Stefano BOSI, Guillaume GIRMANS and Michel GUILLARD: Optimal Privatisation Design and Financial Markets
KNOW 24.2001 Giorgio BRUNELLO, Claudio LUPI, Patrizia ORDINE, and Maria Luisa PARISI: Beyond National Institutions: Labour Taxes and Regional Unemployment in Italy
ETA 25.2001 Klaus CONRAD: Locational Competition under Environmental Regulation when Input Prices and Productivity Differ
CLIM 27.2001 Frédéric BROCHIER and Emiliano RAMIERI: Climate Change Impacts on the Mediterranean Coastal Zones
ETA 28.2001 Nunzio CAPPUCCIO and Michele MORETTO: Comments on the Investment-Uncertainty Relationship in a Real Option Model
KNOW 29.2001 Giorgio BRUNELLO: Absolute Risk Aversion and the Returns to Education
CLIM 30.2001 ZhongXiang ZHANG: Meeting the Kyoto Targets: The Importance of Developing Country Participation
ETA 31.2001 Jonathan D. KAPLAN, Richard E. HOWITT and Y. Hossein FARZIN: An Information-Theoretical Analysis of Budget-Constrained Nonpoint Source Pollution Control
<table>
<thead>
<tr>
<th>Volume</th>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>64.2001</td>
<td>Paolo BUONANNO, Carlo CARRARO and Marzio GALEOTTI</td>
<td>Endogenous Induced Technical Change and the Costs of Kyoto</td>
</tr>
<tr>
<td>CLIM</td>
<td>65.2001</td>
<td>Guido CAZZAVILLAN and Ignazio MUSLI (I)</td>
<td>Transitional Dynamics and Uniqueness of the Balanced-Growth Path in a Simple Model of Endogenous Growth with an Environmental Asset</td>
</tr>
<tr>
<td>CLIM</td>
<td>66.2001</td>
<td>Giovanni BAIOCCHI and Salvatore DI FALCO (I)</td>
<td>Investigating the Shape of the EKC: A Nonparametric Approach</td>
</tr>
<tr>
<td>CLIM</td>
<td>67.2001</td>
<td>Marzio GALEOTTI, Alessandro LANZA and Francesco PAULI (I)</td>
<td>Desperately Seeking (Environmental) Kuznets: A New Look at the Evidence</td>
</tr>
<tr>
<td>CLIM</td>
<td>68.2001</td>
<td>Alexey VIKHLYAEV (xlviii)</td>
<td>The Use of Trade Measures for Environmental Purposes – Globally and in the EU Context</td>
</tr>
<tr>
<td>NRM</td>
<td>69.2001</td>
<td>Gary D. LIBECAP and Zeynep K. HANSEN (I)</td>
<td>U.S. Land Policy, Property Rights, and the Dust Bowl of the 1930s</td>
</tr>
<tr>
<td>NRM</td>
<td>70.2001</td>
<td>Lee J. ALSTON, Gary D. LIBECAP and Bernardo MUELLER (II)</td>
<td>Land Reform Policies, The Sources of Violent Conflict and Implications for Deforestation in the Brazilian Amazon</td>
</tr>
<tr>
<td>CLIM</td>
<td>71.2001</td>
<td>Claudia KEMFERT</td>
<td>Economy-Energy-Climate Interaction - The Model WIAGEM -</td>
</tr>
<tr>
<td>SUST</td>
<td>72.2001</td>
<td>Paolo A.L.D. NUNES and Yohanes E. RYANTO</td>
<td>Policy Instruments for Creating Markets for Biodiversity: Certification and Ecolabeling</td>
</tr>
<tr>
<td>SUST</td>
<td>73.2001</td>
<td>Paolo A.L.D. NUNES and Erik SCHOKKAERT (III)</td>
<td>Warm Glow and Embedding in Contingent Valuation</td>
</tr>
<tr>
<td>SUST</td>
<td>74.2001</td>
<td>Paolo A.L.D. NUNES, Jeroen C.J.M. van den BERGH and Peter NIJKAMP (III)</td>
<td>Ecological-Economic Analysis and Valuation of Biodiversity</td>
</tr>
<tr>
<td>VOL</td>
<td>75.2001</td>
<td>Johan EYCKMANS and Henry TULKENS (II)</td>
<td>Simulating Coalitionally Stable Burden Sharing Agreements for the Climate Change Problem</td>
</tr>
<tr>
<td>PRIV</td>
<td>76.2001</td>
<td>Axel GAUTIER and Florian HEIDER</td>
<td>What Do Internal Capital Markets Do? Redistribution vs. Incentives</td>
</tr>
<tr>
<td>PRIV</td>
<td>77.2001</td>
<td>Bernardo BORTOLOTTI, Marcella FANTINI and Domenico SINISCALCO</td>
<td>Privatisation around the World: New Evidence from Panel Data</td>
</tr>
<tr>
<td>ETA</td>
<td>78.2001</td>
<td>Toke S. AIDT and Jayarsi DUTTA (II)</td>
<td>Transitional Politics. Emerging Incentive-based Instruments in Environmental Regulation</td>
</tr>
<tr>
<td>ETA</td>
<td>79.2001</td>
<td>Alberto PETRUCCI</td>
<td>Consumption Taxation and Endogenous Growth in a Model with New Generations</td>
</tr>
<tr>
<td>ETA</td>
<td>80.2001</td>
<td>Pierre LASSEUR and Antoine SOUBEYRAN (II)</td>
<td>A Ricardian Model of the Tragedy of the Commons</td>
</tr>
<tr>
<td>ETA</td>
<td>81.2001</td>
<td>Pierre COURTOIS, Jean Christophe PEREAU and Tarik TAZDAIT</td>
<td>An Evolutionary Approach to the Climate Change Negotiation Game</td>
</tr>
<tr>
<td>NRM</td>
<td>82.2001</td>
<td>Christophe BONTEMPS, Stéphane COUTURE and Pascal FAVARD</td>
<td>Is the Irrigation Water Demand Really Convex?</td>
</tr>
<tr>
<td>NRM</td>
<td>83.2001</td>
<td>Unai PASCIAL and Edward BARBIER</td>
<td>A Model of Optimal Labour and Soil Use with Shifting Cultivation</td>
</tr>
<tr>
<td>CLIM</td>
<td>84.2001</td>
<td>Jesper JENSEN and Martin Hvitt THELLE</td>
<td>What are the Gains from a Multi-Gas Strategy?</td>
</tr>
<tr>
<td>CLIM</td>
<td>85.2001</td>
<td>Maurizio MICHELINI (IIIi)</td>
<td>IPPC “Summary for Policymakers” in TAR. Do its results give a scientific support always adequate to the urgencies of Kyoto negotiations?</td>
</tr>
<tr>
<td>CLIM</td>
<td>86.2001</td>
<td>Claudia KEMFERT (IIIi)</td>
<td>Economic Impact Assessment of Alternative Climate Policy Strategies</td>
</tr>
<tr>
<td>CLIM</td>
<td>87.2001</td>
<td>Cesare DOSI and Michele MORETTO (II)</td>
<td>Global Warming and Financial Umbrellas</td>
</tr>
<tr>
<td>ETA</td>
<td>88.2001</td>
<td>Elena BONTEMPI, Alessandra DEL BOCA, Alessandra FRANZOSI, Marzio GALEOTTI and Paola ROTA</td>
<td>Capital Heterogeneity: Does it Matter? Fundamental Q and Investment on a Panel of Italian Firms</td>
</tr>
<tr>
<td>ETA</td>
<td>89.2001</td>
<td>Efrim CASTELNUOVO and Paolo SURICO</td>
<td>Model Uncertainty, Optimal Monetary Policy and the Preferences of the Fed</td>
</tr>
<tr>
<td>CLIM</td>
<td>90.2001</td>
<td>Umberto CIORBA, Alessandro LANZA and Francesco PAULI</td>
<td>Kyoto Protocol and Emission Trading: Does the US Make a Difference?</td>
</tr>
<tr>
<td>CLIM</td>
<td>91.2001</td>
<td>ZhongXiang ZHANG and Lucas ASSUNCAO</td>
<td>Domestic Climate Policies and the WTO</td>
</tr>
<tr>
<td>SUST</td>
<td>92.2001</td>
<td>Anna ALBERINI, Alan KRUPNICK, Maureen CROPPER, Nathalie SIMON and Joseph COOK (IIi)</td>
<td>The Willingness to Pay for Mortality Risk Reductions: A Comparison of the United States and Canada</td>
</tr>
<tr>
<td>ETA</td>
<td>94.2001</td>
<td>Ming CHEN and Larry KARP</td>
<td>Environmental Indices for the Chinese Grain Sector</td>
</tr>
<tr>
<td>ETA</td>
<td>95.2001</td>
<td>Larry KARP and jiangfeng ZHANG</td>
<td>Controlling a Stock Pollutant with Endogenous Investment and Asymmetric Information</td>
</tr>
<tr>
<td>ETA</td>
<td>96.2001</td>
<td>Michele MORETTO and Gianpaulo ROSSINI</td>
<td>On the Opportunity Cost of Nontradable Stock Options</td>
</tr>
<tr>
<td>SUST</td>
<td>97.2001</td>
<td>Elisabetta STRAZZERA, Margarita GENIUS, Riccardo SCARPA and George HUTCHINSON</td>
<td>The Effect of Protest Votes on the Estimates of Willingness to Pay for Use Values of Recreational Sites</td>
</tr>
<tr>
<td>NRM</td>
<td>98.2001</td>
<td>Frédéric BROCHIER, Carlo GIUPPONI and Alberto LONGO</td>
<td>Integrated Coastal Zone Management in the Venice Area – Perspectives of Development for the Rural Island of Sant Erasmo</td>
</tr>
</tbody>
</table>
(xlii) This paper was presented at the International Workshop on "Climate Change and Mediterranean Coastal Systems: Regional Scenarios and Vulnerability Assessment" organised by the Fondazione Eni Enrico Mattei in co-operation with the Istituto Veneto di Scienze, Lettere ed Arti, Venice, December 9-10, 1999.

(xliii) This paper was presented at the International Workshop on “Voluntary Approaches, Competition and Competitiveness” organised by the Fondazione Eni Enrico Mattei within the research activities of the CAVA Network, Milan, May 25-26, 2000.

(xliv) This paper was presented at the International Workshop on “Green National Accounting in Europe: Comparison of Methods and Experiences” organised by the Fondazione Eni Enrico Mattei within the Concerted Action of Environmental Valuation in Europe (EVE), Milan, March 4-7, 2000.

(xlv) This paper was presented at the International Workshop on “New Ports and Urban and Regional Development. The Dynamics of Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, May 5-6, 2000.

(xlvi) This paper was presented at the Sixth Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, January 26-27, 2001.

(xlvii) This paper was presented at the RICAMARE Workshop “Socioeconomic Assessments of Climate Change in the Mediterranean: Impact, Adaptation and Mitigation Co-benefits”, organised by the Fondazione Eni Enrico Mattei, Milan, February 9-10, 2001.

(xlviii) This paper was presented at the International Workshop “Trade and the Environment in the Perspective of the EU Enlargement”, organised by the Fondazione Eni Enrico Mattei, Milan, May 17-18, 2001.

(xlix) This paper was presented at the International Conference “Knowledge as an Economic Good”, organised by Fondazione Eni Enrico Mattei and The Beijer International Institute of Environmental Economics, Palermo, April 20-21, 2001.

(l) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001.

(ii) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001.

(iii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001.

(iii) This paper was circulated at the International Conference on “Climate Policy – Do We Need a New Approach?”, jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Antitrust, Regulation</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Evaluation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>