DiVita, Giuseppe

Working Paper
Renewable resources and waste recycling

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 9.2002

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: DiVita, Giuseppe (2002) : Renewable resources and waste recycling, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 9.2002, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/119618

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Renewable Resources and Waste Recycling

Giuseppe Di Vita*

NOTA DI LAVORO 9.2002

JANUARY 2002

NRM – Natural Resources Management

*Faculty of Law, University of Catania

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/web/activ/_activ.html

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract=XXXXXX
SUMMARY

In this paper we consider an endogenous growth model in which, among other inputs, we consider a renewable resource and secondary materials. Using this analytical framework we explain the effects of waste recycling on the growth rate of the economy, that we take into account. The effects of secondary materials production on the utility and dynamics of renewable resources are also studied. Furthermore, we consider how the tax and subsidy, levied on natural resource and secondary materials respectively, influence the dynamics of economy during the transitional phase and the stationary growth path. Finally, the validity of Hotelling’s rule and the effects of waste recycling on labor productivity are the conclusive topics of our research.

Keywords: Endogenous growth, renewable resources, secondary materials, waste recycling

JEL: O41, Q20
CONTENTS

1. Introduction .. 2
2. The model ... 3
3. Model results 5
4. Final remarks 10
 Appendix ... 11
 References ... 16
1 Introduction

In the last decade there has been a widespread opinion that waste management is one of the main problems of environmental economics (Faucheux and O’Connor 1998, Huhtala, 1999). At the beginning the latter issue was studied jointly with behavior of consumers, firms and local public authorities. It was seen like a spatial circumscribed problem of limited relevance, with no consequences for the economy as a whole. The abundance of natural resources for productive aims, and landfill areas for waste disposal purposes, reinforced this wisdom. These considerations can be justified because the first papers regarding this issue consider it from a microeconomic point of view (Hoel, 1978, Keeler et al., 1971, Lusky, 1976, Smith, 1972). More in general we can say that in the seventies there was the general belief that waste management should be considered with a disaggregated approach. Recently, two facts have been observed with regard to the problem that we are handling. Waste production is increasing in the world as a whole. Recycling may influence the macroeconomic figures of the economy. Those arguments could explain why some economic institutions begin to consider this topic in the perspective of the economic system (EPA, 1998, OCDE, 1995, WTO, 1999). The recent interest that economic literature has devoted to the aggregate effects of waste recycling may be justified with several considerations. The increasing needs of the world population raises, at the same time, the demand for natural resources and the quantity of waste produced, suggesting the opportunity to use more renewable inputs and secondary materials, to move towards more sustainable environmental behavior, through the saving of exhaustible resources. On the other hand, the use of waste recycling as a pollution abatement technology allows us to alleviate the pressure on natural resources and, more in general, on the environment. Finally, waste recycling can help us to reduce the damage caused by the harvest and extraction of inputs from the earth’s crust, diminishing the quantity of waste discharged into the environment and saving energy (Huhtala, 1999).

In literature there are many articles that study the environment using an endogenous growth framework, but there are just a few that consider natural resource and waste recycling together (Di Vita, 2001a, 2001b). In particular, they consider just the exhaustible resources, but not the replenishable ones. Huhtala (1999) studies a similar problem, in a dynamic framework, but in her paper there are no implications about the growth path of economy and other macroeconomic figures.

To investigate the long-run links between renewable resources and waste recycling we built an endogenous growth model. The latter consists of three sectors. The first is devoted to producing final output, the second regards the
accumulation of human capital and the last is the waste recycling industry. A
standard Cobb-Douglas production function is considered, with constant returns
to scale, in which five inputs are taken into account. The law motion of capital
depends on the difference between total output and consumption, while the hu-
man capital accumulation is similar to that in Lucas (1988). The dynamics of
renewable resource is given by a natural reproductive function, less harvest flow.
The sector of secondary material production depends on the quantity of labor
allotted to this aim, and the amount of flow and stock of waste. The renewable
resource and secondary materials are considered as perfect substitutes of each
other, but the case in which they are imperfect could also be considered (for
a similar problem, regarding exhaustible resources, see Di Vita, 2001b). The
fixed labor time, not employed in human capital accumulation, is allocated be-
tween total output and secondary materials production. The utility function is
additively separable in consumption and waste stock, as in Keeler et al. (1971).

Using the welfare function that we want to maximize, under the constraints
considered, we obtain our Hamiltonian and thus derive the first order conditions.

Our theoretical framework allows us to consider the effects of waste recycling
on the growth rate of economy and the impact of secondary materials produc-
tion on utility. Under the assumption that renewable resource and secondary
materials are perfect substitutes in the production function, we will show what
happens if waste recycling or the price of secondary materials changes. The pa-
per continues considering the effects of tax and subsidy on the prices of natural
resources and secondary materials respectively, on the utility function, dur-
ing transitional dynamics and in the stationary growth path. The validity of
Hotelling’s rule, with regard to the renewable resource and recycled waste, is
then examined. Finally, we take a look at the relationship existing between the
marginal productivity of labor and secondary material production. We conclude
our work with summary remarks.

The remainder of the paper is as follows. After the description of the model,
we derive the first order conditions. Section 3 is devoted to showing the main
results of our study. Conclusive remarks and implications for environmental
political economy are the contents of last section.

We confine the mathematical details and some proofs of propositions to the
appendix.

2 The model

The final output Y is a function of five inputs: physical capital K, human
capital h, total workers L (in our model it is constant), renewable resource E,
and flow of recycled waste M ('secondary materials').

The assumptions regarding human capital accumulation are like in Lucas
(1988, p. 17). Here we also suppose that L and h have elasticity of substitu-
tion equal to unity. v is the labor time not destined to human capital forma-
tion.

In the specification of the production function, we assume that renewable
resource and secondary materials are perfect substitutes.
\[Y = f(K, h, L, E, M) = K^\alpha_1 (hL\omega_1 v)^\alpha_2 (E + M)^\alpha_3, \quad \sum_{i=1}^{3} \alpha_i = 1.\]

where \(0 < \omega_1 \leq 1 \), is the amount of \(v \) devoted to total output production.

The investment in physical capital is like in

\[K = Y - C, \text{ where } K(0) = K_0 \text{ and } K(t) \geq 0. \]

We assume that there is no depreciation in physical capital. Aggregate consumption is denoted by \(C = xY \), with \(0 < x < 1 \). Per capita consumption is represented by \(\bar{C} = sY = \bar{K} \), where \(0 \leq s < 1 \), and \(s = (1 - x) \).

\[h = B (1 - v) h; \text{ where } B > 0, \, h(0) = h_0, \text{ and } h(t) \geq 0. \]

\[\text{is the law of motion of the per capita human capital stock (it is like equation (13) in Lucas, 1988).} \]

\[\dot{R} = f(R) - rR = \sigma \left(1 - \frac{R}{\tau} \right) R - E, \text{ where } R(0) = R_0, \, R(t) \geq 0. \]

Equation [4] expresses the dynamics of renewable resource stock. We assume that \(f(R) \) is the growth function, with properties \(f(R) \geq 0, \) for \(0 \leq R \leq \tau, \) \(f'(R) > 0 \) for \(0 \leq R \leq \bar{R}, \) \(f'(R) = 0 \) and \(f'(R) < 0 \) for \(\bar{R} \leq R \leq \tau, \) where \(\bar{R} \) is the maximum sustainable yield stock level of our renewable resource, and \(\tau \) is the ecological carrying capacity (Hanley et al., 1997, Li and Löfgren, 2000). We denote with \(\sigma \) the intrinsic growth rate of renewable resource, while \(E, \) equal to \(rR, \) is the harvest flow of renewable resource, \(r \) being the renewable resource rate of use (where \(0 \leq r \leq 1 \)). The assumption with regard to the first derivative of the natural production function \(f'(R) \), is justified by the fact that this kind of resource has some maximum and then decreases to zero. Thus there is a maximum sustainable yield, that in equilibrium should be equal to the highest possible harvest rate (Clark, 1999).

\[\dot{J} = \gamma D - M, \, J(0) = J_0, \, J(t) \geq 0 \text{ and } 0 \leq \gamma < 1. \]

The waste stock \(J \) moves during time according to [5]. It depends on the waste flow \(D, \) secondary material production and the assimilative capacity of waste of the environment, denoted by \(\gamma > 0. \) We assume that the waste flow \(D = zY \) \((0 < z \leq 1) \), is a constant fraction of total output (see Cassing and Kuhn, 2001, and Conrad, 1999).

\[M = n\omega_2 v(D + J), \text{ and } M \leq D. \]

The secondary materials production function is expressed by [6] in which we consider that the amount of \(M \) produced depends on \(0 < \omega_2 \leq 1, \) the fraction of \(v \) used in this activity. We suppose that \(\omega_1 + \omega_2 = 1, \) i.e. the labor time not utilized in human capital formation is allocated between total output and secondary materials production. \(n \) is a strictly positive parameter of productivity. The inputs to the waste recycling industry could be the flow
of waste D as well the stock J. This functional form for secondary materials production allows us to reduce the waste stock of economy, if during transitional dynamics it is greater than its optimal value.

The utility depends on the flow of consumption c and the stock of waste J. The utility function is

$$u = u(c, J),$$

it is additively separable, such that $u_{cJ} = 0$, and has continuous first and second partial derivatives, with $u_c > 0$, $u_J < 0$, $u_{cc} < 0$, $u_{JJ} < 0$. It is assumed that for $c \to 0$, $u_c \to +\infty$, and $u_J = 0$ (Keeler et al., 1971). \(^2\)

The total welfare W associated with any particular time path for c and J comes from summing the discounted flow, at rate $\delta > 0$. The social welfare is

$$W = \int_0^\infty u(c, J) Le^{-\delta t} dt,$$

we assume that live agents in our economy consider, in their decisions of consumption and production, the welfare and resources availability of their present or prospective descendants.

In formal terms we want to maximize $[8]$, subject to $[1]$ - $[5]$. The current-value Hamiltonian for the problem is

$$H = u(c, J) L + \lambda_1 \left[(K^{\alpha_1} (hL\omega_1 v)^{\alpha_2} (E + M)^{\alpha_3}) - C \right] + \lambda_2 \left[B (1 - v) h \right] + \lambda_3 \left[\sigma \left(1 - \frac{R}{\tau} \right) R - E \right] + \lambda_4 (\gamma D - M).$$

Where λ_i, $i = 1, 2, 3, 4$, are the current-value Lagrange multipliers.

We report the first order and transversality conditions in appendix A. They are necessary and sufficient for the optimal control problem. The proof that the model describes a stable saddle point equilibrium path is given in appendix B.

3 Model Results

The first order conditions that we derived allow us to highlight a lot of theoretical issues. For example the effects of waste recycling on the growth rate of economy and utility. Moreover, we can study how the dynamics of natural resources change if secondary materials, and the effects of taxation on natural resources, are taken into account. Finally, we show how the labor productivity and Hotelling’s rule are influenced by the waste recycling process.

Further, we follow the same order.

The main question is if the growth rate of economy that we depicted in our model is greater in the case in which waste recycling is considered or not. In this case the first derivative will be zero, because there is no possibility to increase the welfare, by means of a change in J.

\(^2\)Here J is the value that waste stock assumes in the optimal stationary growth path. In this case the first derivative will be zero, because there is no possibility to increase the welfare, by means of a change in J.

5
labor time that we use in the waste recycling industry and not in the total output sector.

PROPOSITION 1: Given the values of parameters, assuming \(g_M \neq 0 \), the growth rate of total output is greater in cases in which secondary materials are considered.

PROOF. See Appendix C.

Therefore, if we have two economies with the same parameters, including labor time devoted to human capital accumulation, then in cases in which waste recycling is taken into account, the growth rate of economy will be greater than in the other.

There are several reasons for this. Essentially, we should consider that there is a positive macroeconomic externality that emerges from the waste recycling process. To understand this, consider that without this activity there is some positive fraction of total labor, not devoted to human capital accumulation of final output production, that we use to collect and discharge waste. If we now imagine that we use the same amount of labor time to get the same result, but besides we also obtain secondary materials, that increase the output availability of our economy, then this result holds (for similar outcomes, in a static environment, see Beukering and Randall, 1998, Di Vita, 1997, Rich et al., 1999).

This positive macroeconomic externality is alone good enough to justify our result, but we can make some further considerations. If we recycle more waste, we diminish the risk of overexploiting the natural resources, bringing the system towards a sustainable path.

In the model we made some assumptions with regard to the effects of waste stock on the utility function, but it is not immediately clear how the marginal disutility of waste stock changes, as a consequence of secondary material production.

PROPOSITION 2: The marginal disutility of waste stock \(u_J \) falls as a consequence of secondary materials production.

PROOF. Using equations \([A8]\) and \([A4]\), and differentiating \(u_J \) with respect to \(M \), it follows directly that \(\frac{\partial u_J}{\partial M} = -\lambda_1 \alpha_2 Y / (E + M)^2 L < 0. \)

The intuition behind this outcome is simple. An increase in the quantity of secondary materials produced reduces the stock of waste in the economy that we are considering, such that the marginal disutility of \(J \) decreases. The latter is a direct effect, but there is also an indirect one. Whenever we use more secondary materials to produce the goods consumed, this implies a reduction of the negative externality on the environment associated with products that are natural resource intensive, in terms of derivative demand for environmental services, like natural resources and landfill areas to discharge the waste.

Another issue that is worth considering, is the effect of waste recycling on the dynamics of renewable natural resource.

PROPOSITION 3: An increase of secondary materials production raises the accumulation of renewable resources stock, while a growth in the shadow price of secondary materials reduces the accrue of renewable resources stock.
PROOF. Putting in evidence E in equation [A4] and substituting in [4], we can calculate the partial derivative of \dot{R} with respect to M and λ_4, to get $\partial \dot{R} / \partial M = 1 > 0$ and $\partial \dot{R} / \partial \lambda_4 = -\lambda_1 \alpha_3 Y / \lambda_4^2 < 0$, such that our result holds.

The first result is intuitive. If we can use more secondary materials, this allows us to reduce the harvest of natural resource. In particular, we can note that $\partial \dot{R} / \partial M = 1$, this means that for an additional unit of secondary materials produced, this allows us to raise the stock of renewable resource by the same amount. It is evident that this result comes only in cases where first and secondary inputs are perfect substitutes for each other, as we assume in our model. On the other hand, a change in the price of secondary materials causes income and substitution effects, that work in the same direction (inferior inputs are not considered here). This way if the price of secondary materials increases, those two effects work to reduce the demand for this input, and vice versa if λ_4 decreases.

We can reproduce the equilibrium path of natural renewable resources and its shadow price in a phase diagram. To this aim we use the equations

\[[4] \quad \dot{R} = \sigma \left(1 - \frac{R}{\tau} \right) R - rR, \]

and

\[[A7] \quad \dot{\lambda}_3 = \delta \lambda_3 - \lambda_3 \left[\sigma \left(1 - \frac{2R}{\tau} \right) - r \right]. \]

The phase diagram path is drawn below in figure 1, in a (R, λ_3) space.

Figure 1 about here

Letting $\dot{R} = 0$ and $\dot{\lambda}_3 = 0$, we have a system of two equations in two unknown (R, λ_3), that we can solve mathematically. Doing this we get two couples of equilibrium values for natural renewable resource stock and its shadow price, namely $(R^* = \lambda_3^* = 0)$ and $(R^* = \tau - r\tau / \sigma; \lambda_3^* = (\delta - 1) [\sigma (\tau - 2) + r (1 - \tau)] / \tau)$. In the first case, if the stock of natural resource that we are considering is zero, its price will be the same. In the other case, for a positive stock of natural resource, $R = \tau - r\tau / \sigma$, the shadow price will be greater than zero, for a social discount rate higher than 1.

We can form the Jacobian matrix to find that the eigenvalues of determinant have opposite signs and the trace of determinant is positive; this implies that we have a locally stable saddle point equilibrium (more analytical details are given in Appendix D).

The phase diagram confirms the analytical findings because we have a saddle path equilibrium. There are two regions in which the system does not converge to its equilibrium (or is unstable). This happens when a low level of resource stock is associated with a shadow price of renewable resource higher than its equilibrium value. In this case too much resource will be harvested such that it will be overexploited, until it is exhausted. Another region in which the system

7
shows unstable dynamics is that in which the stock of natural resource is higher than its optimal value and the shadow price is lower than its equilibrium. This means that the demand for natural resource is too low and the system does not converge to its stationary growth path.

To analyze how the equilibrium changes as a consequence of waste recycling, we can use equation \([A4]\) and substitute in \([4]\) for \(E\), such that we can write

\[
\hat{R} = \sigma \left(1 - \frac{R}{\tau} \right) R - \frac{\lambda_3 \alpha_3 Y}{\lambda_4} + M.
\]

In this way it is clear that there is a positive correlation between secondary materials production and the change, during time, of natural resource stock; in our diagram we therefore obtain a more concave curve for locus \(\hat{R} = 0\), such that the price of natural resources will be lower than without secondary materials production and the optimal stock of natural resource will be higher.

One aspect that has been neglected in previous literature on endogenous growth models with renewable natural resources, is to how the results of the model change if the policy maker levies a tax on virgin ores or subsidizes secondary materials production. We can analyze this kind of problem in two different environments, in transitional dynamics or in the stationary growth path. It is more interesting to consider what happens in the first case, because during transitional dynamics there is no reason why the first and secondary inputs should have the same price. To this aim, we can use the first order conditions reported in appendix A; in particular, considering the equations \([A3]\) and \([A1]\), deriving \(u_c\) with respect to the total output, we get

\[
\frac{\partial u_c}{\partial Y} = \frac{\lambda_3 (E + M)}{\alpha_3 Y^2},
\]

such that we can say, in the case of a tax on a renewable natural resource (that increases \(\lambda_3\)), the marginal utility of consumption will be lower than without taxation. If however we consider equations \([A4]\) and \([A1]\) and take the partial derivative of \(u_c\) with respect to \(Y\), the result is

\[
\frac{\partial u_c}{\partial Y} = \frac{\lambda_4 (E + M)}{\alpha_3 Y^2},
\]

for which if we are given a subsidy on secondary materials price (such that \(\lambda_4\) decreases), this implies that the marginal utility of consumption will be higher than without subsidy. These two simple observations allow us to say that, during transitional dynamics, the effects of taxes and subsidy imposed on renewable natural resource and secondary materials respectively, will have asymmetric effects on the marginal utility of consumption. These two measures have the same direct effect to push the firms to use more secondary materials and less natural resources, but the indirect effects are radically different, because in the first case we reduce the marginal utility of consumption and in the second case we raise it.\(^3\)

\(^3\)Huthala (1999) considers the same problem in a different theoretical framework, concluding that the subsidy and taxes have asymmetric effects.
We can also consider the effects of a subsidy on secondary materials, on the natural resource stock, during transitional dynamics, using equations [A11] and [A12], such that putting in evidence R, and taking the partial derivative with respect to the price of M, we obtain

$$\frac{\partial R}{\partial \lambda_1} = \frac{u_J L \tau}{\lambda_2^2 2\tau}. \tag{12}$$

To interpret this result it is worth remembering that $u_J < 0$. In this way it is evident that a subsidy given on secondary materials raises the renewable natural resource stock.

In the stationary growth path we know that, under the hypothesis of perfect substitutability between natural resource and secondary materials, the two shadow prices should converge to an identical value, such that the effects of one measure or another will be the same, because taxes and subsidy levied on renewable resources and secondary materials respectively increase or reduce both prices by the same amount. There is thus no sense in further considering the effects of tax and subsidy in the long-run equilibrium.

There is another interesting issue that we can also investigate, namely the validity of Hotelling’s rule for renewable natural resource and secondary materials, along the stationary growth path of economy that we are considering.

Proposition 4: Along the optimal stationary growth path, the growth rate of shadow prices of renewable resources and secondary materials are both equal to the social discount rate.

Proof. Using [A11] we can say that $g_{\lambda_3} = \delta$, if and only if $\sigma = r$. Substituting in [A11] to R, its possible equilibrium values $(0; \tau - r\tau/\sigma)$ this result holds. From equation [A12] it is immediately possible to conclude, if $u_J = 0$, that $g_{\lambda_4} = \delta$. This means that Hotelling’s rule is satisfied for both inputs considered here (for a discussion of this issue with regard to renewable resources, see Neher, 1990, p. 178).

The result that $g_{\lambda_3} = \delta$ means that, in the long-run equilibrium, the growth rate of renewable natural resource stock, given by $\sigma(1 - 2R/\tau)$, should be equal to the renewable resource rate of use r. This implies that in the stationary growth path the renewable resource achieves its maximum sustainable level, because the same amount of resources produced will be harvested. The outcome for which $g_{\lambda_4} = \delta$ confirms that in the steady state, the waste stock is at its optimal level, such that it is not possible to increase secondary materials production.

In economic literature there is a considerable line of thought that points out the effects of environmental quality on labor productivity (see, recently, Williams, 2000). From this point of view, it could be interesting to consider how a pollution abatement technology, in the form of secondary materials production, influences labor productivity. To this aim we can use [1], to get

$$\frac{\partial Y}{\partial \omega_1} = \alpha_2 \frac{Y}{\omega_1}. \tag{13}$$
Using [A4] we can substitute in [13], the equilibrium value of total output, to obtain

\[\frac{\partial Y}{\partial \omega_1} = \frac{\lambda_4 (E + M)}{\alpha_3 \lambda_1 \omega_1}, \]

thus we can derive [14] with respect to \(M \), getting

\[\frac{\partial Y}{\partial \omega_1 \partial M} = \alpha_2 \frac{\lambda_4}{\alpha_3 \lambda_1 \omega_1} > 0. \]

This result implies two things: i) that from a production function point of view the two inputs are complementary (Mosak, 1938); ii) that a reduction of waste discharged into the environment, by means of secondary materials production, increases the marginal productivity of labor.

4 Final Remarks

What can we say about waste recycling, from a macroeconomic point of view? There are a lot of positive effects that this process has on the economy as a whole. In particular, we have shown that the growth rate of total output will be higher in countries that recycle waste than in others. The marginal utility of consumption increases if we produce more secondary materials. The latter production allows us to reduce the harvest of renewable natural resources, driving the economic system towards more sustainable paths. Tax or subsidy, levied on renewable natural resource and secondary materials respectively, will have an asymmetric effect on the marginal utility of consumption, pushing to recycle more waste. Finally, labor productivity increases as a consequence of a more clean environment.

Our findings are not fully known in economic literature. There is just a little stream of economic theory that considers the effects of waste recycling on the growth rate of total output (see, for example, Di Vita, 2001a, 2001b, 1997, Rich et al., 1999), but many problems considered here have been neglected in previous studies. The clear implication for the policy maker is the opportunity to support the waste recycling process, to bring the economic system towards a higher welfare level.

Now the question is: Are the real economies as effective as we have supposed in our model? To answer this question we need more statistical information than is available at the moment. Empirical studies are necessary to verify the ability of our model to give a good representation of the real world and for prediction purposes. We think that this could be an argument for further interesting research.
Appendix

A. First Order and Transversality Conditions

The first order conditions are

\[A_1 \frac{\partial R}{\partial c} = u_c L - \lambda_1 L = 0, \text{ or } \lambda_1 = u_c, \]

\[A_2 \frac{\partial R}{\partial v} = \lambda_1 \alpha_2 \frac{Y}{v} - \lambda_2 B h = 0, \text{ or } \lambda_2 = \frac{\lambda_1 \alpha_2 Y}{v B h}, \]

\[A_3 \frac{\partial R}{\partial E} = \lambda_1 \alpha_3 \frac{Y}{E + M} - \lambda_3 = 0, \lambda_3 = \lambda_1 \alpha_3 \frac{Y}{E + M}, \]

\[A_4 \frac{\partial R}{\partial M} = \lambda_1 \alpha_4 \frac{Y}{E + M} - \lambda_4 = 0, \lambda_4 = \lambda_1 \alpha_4 \frac{Y}{E + M}, \]

\[A_5 \dot{\lambda}_1 = \delta \lambda_1 - \frac{\partial R}{\partial K} = \delta \lambda_1 - \lambda_1 \alpha_1 \frac{Y}{K}, \]

\[A_6 \dot{\lambda}_2 = \delta \lambda_2 - \frac{\partial R}{\partial h} = \delta \lambda_2 - \lambda_1 \alpha_2 \frac{Y}{h} - \lambda_2 \left[B (1 - v) \right], \]

\[A_7 \dot{\lambda}_3 = \delta \lambda_3 - \frac{\partial R}{\partial R} = \delta \lambda_3 - \lambda_3 \left[\sigma \left(1 - \frac{2 R}{\tau} \right) - r \right], \]

\[A_8 \dot{\lambda}_4 = \delta \lambda_4 - \frac{\partial R}{\partial J} = \delta \lambda_4 - u_f L. \]

The growth rates of dynamic multiplier are

\[A_9 \quad g_{\lambda_1} = \frac{\dot{\lambda}_1}{\lambda_1} = \delta - \alpha_1 \frac{Y}{K}, \]

\[A_{10} \quad g_{\lambda_2} = \frac{\dot{\lambda}_2}{\lambda_2} = \delta - \alpha_2 \frac{\lambda_1 Y}{\lambda_2 h} - B (1 - v), \]

\[A_{11} \quad g_{\lambda_3} = \frac{\dot{\lambda}_3}{\lambda_3} = \delta - \left[\sigma \left(1 - \frac{2 R}{\tau} \right) - r \right], \]

\[A_{12} \quad g_{\lambda_4} = \frac{\dot{\lambda}_4}{\lambda_4} = \delta - \frac{u_f L}{\lambda_4}. \]

Differentiating the equations [A1] – [A4] logarithmically, the result will be

\[A_{13} \quad g_{\lambda_1} = g_{z_c}, \]

\[A_{14} \quad g_{\lambda_2} = g_{\lambda_1} + g_Y - g_h, \]

\[A_{15} \quad g_{\lambda_3} = g_{\lambda_1} + g_Y - g_{E + M}, \]
The transversality conditions are

\[A_{16} \quad g_{\lambda_1} = g_Y + g_E - g_M. \]

\[A_{17} \quad \lim_{t \to \infty} e^{-\delta t} R(t) = 0, \]
\[A_{18} \quad \lim_{t \to \infty} e^{-\delta t} \lambda_1(t) K(t) = 0, \]
\[A_{19} \quad \lim_{t \to \infty} e^{-\delta t} \lambda_2(t) h(t) = 0, \]
\[A_{20} \quad \lim_{t \to \infty} e^{-\delta t} \lambda_3(t) R(t) = 0, \]
\[A_{21} \quad \lim_{t \to \infty} e^{-\delta t} \lambda_4(t) J(t) = 0. \]

B. Proof that the Optimal Growth Path is Locally a Stable Saddle Point

We define the endogenous stationary growth path equilibrium that in which the growth rates of \(Y/K = \beta \), and \(C/K = \beta \chi \), will be equal. This implies that the growth rates of total output, capital and consumption will be the same in the optimum (Barbier, 1996, Schou, 2000, Stiglitz, 1974).

To demonstrate that we have a locally stable saddle path, we define the variables that will be constant in the long run equilibrium.

\[B_1 \quad \beta = \frac{Y}{K}, \]
\[B_2 \quad \beta \chi = \frac{C}{K}, \]
\[B_3 \quad \theta = \frac{E}{R}, \]
\[B_4 \quad \varphi = \frac{M}{J}. \]

Then

\[B_5 \quad g_K = \beta - \beta \chi, \]
\[B_6 \quad g_\beta = g_Y - \beta + \beta \chi, \]
\[B_7 \quad g_{\beta \chi} = g_C - \beta + \beta \chi, \]
\[B_8 \quad g_\theta = g_E - \theta, \]
\[B_9 \quad g_\varphi = g_M - g_J. \]

Using the first order conditions, and after a little algebra, we can define the dynamic system \((\beta, \beta \chi, \theta, \varphi)\) in terms of the following equations.

\[B_{10} \quad g_\beta = B (1 - v) - \left(1 + \frac{\alpha_1 \alpha_3}{\alpha_2} \right) \beta + \beta \chi, \]
In the stationary growth path we assume that $g = g' = g\bar{\beta} = g\bar{\mu} = 0$; such that $\bar{\beta} = \bar{\beta}$ (where the bar denotes the optimal value of variable), etc. Thus we can write the Jacobian that we evaluate at the steady state.

\[
Jac = \begin{bmatrix}
\frac{\partial g_{Y}}{\partial \beta} & \frac{\partial g_{Y}}{\partial \bar{\beta}} & \frac{\partial g_{Y}}{\partial \mu} & \frac{\partial g_{Y}}{\partial \bar{\mu}} \\
\frac{\partial g_{K}}{\partial \beta} & \frac{\partial g_{K}}{\partial \bar{\beta}} & \frac{\partial g_{K}}{\partial \mu} & \frac{\partial g_{K}}{\partial \bar{\mu}} \\
\frac{\partial g_{h}}{\partial \beta} & \frac{\partial g_{h}}{\partial \bar{\beta}} & \frac{\partial g_{h}}{\partial \mu} & \frac{\partial g_{h}}{\partial \bar{\mu}} \\
\frac{\partial g_{E}}{\partial \beta} & \frac{\partial g_{E}}{\partial \bar{\beta}} & \frac{\partial g_{E}}{\partial \mu} & \frac{\partial g_{E}}{\partial \bar{\mu}} \\
\frac{\partial g_{M}}{\partial \beta} & \frac{\partial g_{M}}{\partial \bar{\beta}} & \frac{\partial g_{M}}{\partial \mu} & \frac{\partial g_{M}}{\partial \bar{\mu}}
\end{bmatrix}
\]

To simplify the symbology of the above Jacobian we put: $B (1 - v) = \pi$, \((1 + \frac{\alpha_1}{\alpha_2}) = \eta \quad \text{and} \quad (1 + \frac{\alpha_3}{\alpha_2}) = \mu \). After some little algebra, we may check that the determinant of the Jacobian Matrix is negative, and that

\[
TrJac = -\pi - \bar{\beta} + \bar{\mu} - \pi + \mu \bar{\beta} - \pi + \gamma > 0,
\]

this implies that we have a locally stable saddle point equilibrium.\(^4\)

C. Proof of Proposition 1

To check the result shown in Proposition 1, we use the assumptions made in Appendix B. If v is held constant, it immediately follows that its growth rate will be equal to zero (see Schou (2000) among others for the same assumption).

Differentiating equation [1] logarithmically we obtain

\[
\begin{align*}
[C1] & \quad \gamma = \alpha_1 g_K + \alpha_2 g_h + \alpha_3 g_{E+M} \\
[C2] & \quad \gamma = \alpha_1 g_Y + \alpha_2 g_h + \alpha_3 g_E + \alpha_3 g_M.
\end{align*}
\]

Where $g_{E+M} = g_E + g_M$, such that we can rewrite the equation [C1] as

\[
\text{remember that in the optimal stationary equilibrium path } g_Y = g_K = g_{C} \text{.}
\]

From [4] we know that $g_E = \sigma (1 - R/\tau) - r$, substituting in this equation the optimal values of renewable natural resources stock $(0; \tau - r/\sigma)$, we will find

\[^4\text{For a similar explanation of saddle point existence see Schou, 2000.}\]

13
that in the optimal stationary growth path \(g_E = 0 \). From [3], it follows that \(g_h = B (1 - v) \), such that

\[
[C3] \quad g_Y = \frac{\alpha_2 [B (1 - v)] + \alpha_3 g_M}{1 - \alpha_1}.
\]

Equation [C3] represents the growth rate of the economy in cases where the waste recycling process is considered.

To derive the growth rate of total output in cases where we do not take into account waste recycling, we just set up the relative production function, that will be

\[
[C4] \quad Y = f(K, h, L, v, E) = K^{\alpha_1} (hL\omega_1 v)^{\alpha_2} E^{\alpha_3}, \quad \sum_{i=1}^{3} \alpha_i = 1.
\]

Differentiating [4] logarithmically the result is

\[
[C5] \quad g_Y = \alpha_1 g_K + \alpha_2 g_h + \alpha_3 g_E.
\]

After some little algebra we obtain that

\[
[C6] \quad g_{Y^*} = \frac{\alpha_2 [B (1 - v)]}{1 - \alpha_1},
\]

such that for the same values of parameters and of \(v \), with \(g_M \neq 0 \), the result in Proposition 1 claims.

D. Proof that we have a locally stable saddle point equilibrium in an \(R, \lambda_3 \) space

Using equations [4] and [A7] and setting \(\dot{R} = 0 \) and \(\dot{\lambda}_3 = 0 \), we obtain these two equations

\[
[D1] \quad \sigma \left(1 - \frac{R}{\tau} \right) R - rR = 0,
\]

and

\[
[D2] \quad \delta \lambda_3 - \lambda_3 \left[\sigma \left(1 - \frac{2R}{\tau} \right) - r \right] = 0.
\]

Such that we can form the Jacobian matrix

\[
Jac = \begin{bmatrix}
\frac{\partial R}{\partial R} & \frac{\partial R}{\partial \lambda_3} \\
\frac{\partial \lambda_3}{\partial R} & \frac{\partial \lambda_3}{\partial \lambda_3}
\end{bmatrix} = \begin{bmatrix}
\sigma \left(1 - \frac{2R}{\tau} \right) - r & 0 \\
2\sigma \lambda_3 & \delta - \left[\sigma \left(1 - \frac{2R}{\tau} \right) - r \right]
\end{bmatrix}.
\]

The determinant of the Jacobian matrix is

\[
det = \sigma \left(1 - \frac{2R}{\tau} \right) \delta - \left[\sigma \left(1 - \frac{2R}{\tau} \right) \right]^2 - r \delta - r^2,
\]

such that our second order equation is
\[- \left[\sigma \left(1 - \frac{2R}{\tau} \right) + r \right]^2 - \delta \left[\sigma \left(1 - \frac{2R}{\tau} \right) \delta + r \right] = 0.\]

The two rows (\(\delta/2; -\delta^3/2\)) have opposite signs, this implies that we have a saddle path equilibrium.

We can also calculate the trace of determinants

\[
\text{TrJac} = \sigma \left(1 - \frac{2R}{\tau} \right) - r + \delta - \sigma \left(1 - \frac{2R}{\tau} \right) + r = \delta > 0.
\]

These results mean that we have a locally stable saddle point equilibrium.

Acknowledgments

Part of this paper was written while the author was visiting the Interdisciplinary Institute for Environmental Economics, University of Heidelberg. This research has been partially financed by the University of Catania.
References

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Papers Series
Our working papers are available on the Internet at the following addresses:
Server WWW: WWW.FEEM.IT
Anonymous FTP: FTP.FEEM.IT
To order any of these papers, please fill out the form at the end of the list.

SUST 1.2001 Inge MAYERES and Stef PROOST: Should Diesel Cars in Europe be Discouraged?
SUST 2.2001 Paola DORIA and Davide PETTENELLA: The Decision Making Process in Defining and Protecting Critical Natural Capital
CLIM 3.2001 Alberto PENCH: Green Tax Reforms in a Computable General Equilibrium Model for Italy
CLIM 4.2001 Maurizio BUSSOLO and Dino PINELLI: Green Taxes: Environment, Employment and Growth
CLIM 5.2001 Marco STAMPINI: Tax Reforms and Environmental Policies for Italy
ETA 6.2001 Walid OUESLATI: Environmental Fiscal Policy in an Endogenous Growth Model with Human Capital
CLIM 7.2001 Umberto CIORBA, Alessandro LANZA and Francesco PAULI: Kyoto Commitment and Emission Trading: a European Union Perspective
MGMT 8.2001 Brian SLACK (xlv): Globalisation in Maritime Transportation: Competition, uncertainty and implications for port development strategy
VOL 9.2001 Giulia PESARO: Environmental Voluntary Agreements: A New Model of Co-operation Between Public and Economic Actors
VOL 10.2001 Cathrine HAGEM: Climate Policy, Asymmetric Information and Firm Survival
ETA 11.2001 Sergio CURRARINI and Marco MARINI: A Sequential Approach to the Characteristic Function and the Core in Games with Externalities
ETA 12.2001 Gaetano BLOISE, Sergio CURRARINI and Nicholas KIKIDIS: Inflation and Welfare in an OLG Economy with a Privately Provided Public Good
ETA 14.2001 Valentina BOSETTI and Vincenzina MESSINA: Quasi Option Value and Irreversible Choices
CLIM 15.2001 Guy ENGELEN (xlii): Desertification and Land Degradation in Mediterranean Areas: from Science to Integrated Policy Making
SUST 16.2001 Julie Catherine SORS: Measuring Progress Towards Sustainable Development in Venice: A Comparative Assessment of Methods and Approaches
SUST 17.2001 Julie Catherine SORS: Public Participation in Local Agenda 21: A Review of Traditional and Innovative Tools
CLIM 18.2001 Johan ALBRECHT and Niko GOBBIN: Schumpeter and the Rise of Modern Environmentalism
VOL 19.2001 Rinaldo BRAU, Carlo CARRARO and Giulio GOLFETTO (xliii): Participation Incentives and the Design of Voluntary Agreements
ETA 20.2001 Paola ROTA: Dynamic Labour Demand with Lumpy and Kinked Adjustment Costs
ETA 21.2001 Paola ROTA: Empirical Representation of Firms’ Employment Decisions by an (S,s) Rule
ETA 22.2001 Paola ROTA: What Do We Gain by Being Discrete? An Introduction to the Econometrics of Discrete Decision Processes
PRIV 23.2001 Stefano BOSI, Guillaume GIRMANS and Michel GUILLARD: Optimal Privatisation Design and Financial Markets
KNOW 24.2001 Giorgio BRUNELLO, Claudio LUPI, Patrizia ORDINE, and Maria Luisa PARISI: Beyond National Institutions: Labour Taxes and Regional Unemployment in Italy
ETA 25.2001 Klaus CONRAD: Locational Competition under Environmental Regulation when Input Prices and Productivity Differ
CLIM 27.2001 Frédéric BROCHIER and Emiliano RAMIERI: Climate Change Impacts on the Mediterranean Coastal Zones
ETA 28.2001 Nunzio CAPPuccio and Michele MORETTO: Comments on the Investment-Uncertainty Relationship in a Real Option Model
KNOW 29.2001 Giorgio BRUNELLO: Absolute Risk Aversion and the Returns to Education
CLIM 30.2001 ZhongXiang ZHANG: Meeting the Kyoto Targets: The Importance of Developing Country Participation
ETA 31.2001 Jonathan D. KAPLAN, Richard E. HOWITT and Y. Hossein FARZIN: An Information-Theoretical Analysis of Budget-Constrained Nonpoint Source Pollution Control
<table>
<thead>
<tr>
<th>Journal</th>
<th>Volume</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalition Theory Network ETA</td>
<td>33.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network NRM</td>
<td>34.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network KNOW</td>
<td>35.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network PRIV</td>
<td>36.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network CLIM</td>
<td>37.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network PRIV</td>
<td>38.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network PRIV</td>
<td>40.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network CLIM</td>
<td>41.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network NRM</td>
<td>42.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network NRM</td>
<td>43.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network NRM</td>
<td>44.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network NRM</td>
<td>45.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network NRM</td>
<td>46.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network NRM</td>
<td>47.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network CLIM</td>
<td>48.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network CLIM</td>
<td>49.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>50.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>51.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>52.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>53.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>54.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>55.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>56.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>57.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>58.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network SUST</td>
<td>59.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network ETA</td>
<td>60.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network CLIM</td>
<td>61.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network PRIV</td>
<td>62.2001</td>
<td>2001</td>
</tr>
<tr>
<td>Coalition Theory Network CLIM</td>
<td>63.2001</td>
<td>2001</td>
</tr>
</tbody>
</table>

Journal Articles

- **Shlomo WEBER and Hans WIESMETH**: From Autarky to Free Trade: The Impact on Environment
- **Margarita GENIUS and Elisabetta STRAZZERA**: Model Selection and Tests for Non Nested Contingent Valuation Models: An Assessment of Methods
- **Carlo GIUPPONI**: The Substitution of Hazardous Molecules in Production Processes: The Atrazine Case Study in Italian Agriculture
- **Raffaele PACI and Francesco PIGLIARI**: Technological Diffusion, Spatial Spillovers and Regional Convergence in Europe
- **Bernardo BORTOLOTTI**: Privatisation, Large Shareholders, and Sequential Auctions of Shares
- **Carlo GIUPPONI**: The Substitution of Hazardous Molecules in Production Processes: The Atrazine Case Study in Italian Agriculture
- **Giorgio BRUNELLO**: On the Complementarity between Education and Training in Europe
- **Parkash CHANDER and Henry TULKENS**: Limits to Climate Change
- **Michael FINUS and Bianca RUNDSHAGEN**: Endogenous Coalition Formation in Global Pollution Control
- **Wietze LISE, Richard S.J. TOL and Bob van der ZWAAN**: Negotiating Climate Change as a Social Situation
- **Mohammad R. KHAWLIE**: The Impacts of Climate Change on Water Resources of Lebanon-Eastern Mediterranean
- **Mutasem EL-FADEL and E. BOU-ZEID**: Climate Change and Water Resources in the Middle East: Vulnerability, Socio-Economic Impacts and Adaptation
- **Eva IGLESIAS, Alberto GARRIDO and Abudena GOMEZ**: An Economic Drought Management Index to Evaluate Water Institutions’ Performance Under Uncertainty and Climate Change
- **Wietze LISE and Richard S.J. TOL**: Impact of Climate on Tourist Demand
- **Francesco BOSELLO, Barbara BUCHNER, Carlo CARRARO and Davide RAGGI**: Can Equity Enhance Efficiency? Lessons from the Kyoto Protocol
- **Edwin WOERDMAN**: Developing a European Carbon Trading Market: Will Permit Allocation Distort Competition and Lead to State Aid?
- **Kari KANGAS**: Trade Liberalisation, Changing Forest Management and Roundwood Trade in Europe
- **Xueqin ZHU and Ekko VAN IERLAND**: Effects of the Enlargement of EU on Trade and the Environment
- **M. Ozgur KAYALICA and Sajal LAHIRI**: Strategic Environmental Policies in the Presence of Foreign Direct Investment
- **Savas ALPAY**: Can Environmental Regulations be Compatible with Higher International Competitiveness? Some New Theoretical Insights
- **Roldan MURADIAN, Martin O’CONNOR, Joan MARTINEZ-ALER**: Embodied Pollution in Trade: Estimating the “Environmental Load Displacement” of Industrialised Countries
- **Matthew R. AUER and Rafael REUVENY**: Foreign Aid and Direct Investment: Key Players in the Environmental Restoration of Central and Eastern Europe
- **Onno J. KUIK and Frans H. OOSTERHUIS**: Lessons from the Southern Enlargement of the EU for the Environmental Dimensions of Eastern Enlargement, in particular for Poland
- **Carlo CARRARO, Alessandra POME and Domenico SINISCALCO**: Science vs. Profit in Research: Lessons from the Human Genome Project
- **Efrem CASTELNUOVO, Michele MORETTO and Sergio VERGALLI**: Global Warming, Uncertainty and Endogenous Technical Change: Implications for Kyoto
- **Gian Luigi ALBANO, Fabrizio GERMANO and Stefano LOVO**: On Some Collusive and Signaling Equilibria in Ascending Auctions for Multiple Objects
- **Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH**: A Note on Testing for Environmental Kuznets Curves with Panel Data
<table>
<thead>
<tr>
<th>Year</th>
<th>Journal</th>
<th>Authors (if available)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>CLIM</td>
<td>Paolo BUONANNO, Carlo CARRARO and Marzio GALEOTTI</td>
<td>Endogenous Induced Technical Change and the Costs of Kyoto</td>
</tr>
<tr>
<td>2001</td>
<td>CLIM</td>
<td>Guido CAZZAVILLAN and Ignazio MUSLI (I)</td>
<td>Transitional Dynamics and Uniqueness of the Balanced-Growth Path in a Simple Model of Endogenous Growth with an Environmental Asset</td>
</tr>
<tr>
<td>2001</td>
<td>CLIM</td>
<td>Giovanni BAIOCCHI and Salvatore DI FALCO (I)</td>
<td>Investigating the Shape of the EKC: A Nonparametric Approach</td>
</tr>
<tr>
<td>2001</td>
<td>CLIM</td>
<td>Marzio GALEOTTI, Alessandro LANZA and Francesco PAULI (I)</td>
<td>Desperately Seeking (Environmental) Kuznets: A New Look at the Evidence</td>
</tr>
<tr>
<td>2001</td>
<td>NRM</td>
<td>Gary D. LIBECAP and Zeynep K. HANSEN (I)</td>
<td>U.S. Land Policy, Property Rights, and the Dust Bowl of the 1930s</td>
</tr>
<tr>
<td>2001</td>
<td>NRM</td>
<td>Lee J. ALSTON, Gary D. LIBECAP and Bernardo MUELLER (Ii)</td>
<td>Land Reform Policies, The Sources of Violent Conflict and Implications for Deforestation in the Brazilian Amazon</td>
</tr>
<tr>
<td>2001</td>
<td>SUST</td>
<td>Guido CAZZAVILLAN and Ignazio MUSU (I)</td>
<td>Transitional Dynamics and Uniqueness of the Balanced-Growth Path in a Simple Model of Endogenous Growth with an Environmental Asset</td>
</tr>
<tr>
<td>2001</td>
<td>SUST</td>
<td>Giovanni BAIOCCHI and Salvatore DI FALCO (I)</td>
<td>Investigating the Shape of the EKC: A Nonparametric Approach</td>
</tr>
<tr>
<td>2001</td>
<td>SUST</td>
<td>Marzio GALEOTTI, Alessandro LANZA and Francesco PAULI (I)</td>
<td>Desperately Seeking (Environmental) Kuznets: A New Look at the Evidence</td>
</tr>
<tr>
<td>2001</td>
<td>SUST</td>
<td>Paulo A.L.D. NUNES and Yohanes E. RIYANTO</td>
<td>Policy Instruments for Creating Markets for Biodiversity; Certification and Ecolabeling</td>
</tr>
<tr>
<td>2001</td>
<td>SUST</td>
<td>Paulo A.L.D. NUNES and Erik SCHOKKAERT (Iii)</td>
<td>Warm Glow and Embedding in Contingent Valuation</td>
</tr>
<tr>
<td>2001</td>
<td>SUST</td>
<td>Paulo A.L.D. NUNES, Jeroen C.J.M. van den BERGH and Peter NIJKAMP (Iii)</td>
<td>Ecological-Economic Analysis and Valuation of Biodiversity</td>
</tr>
<tr>
<td>2001</td>
<td>VOL</td>
<td>Johan EYCKMANS and Henry TULKENS (Ii)</td>
<td>Simulating Coalition Stability: Burden Sharing Agreements for the Climate Change Problem</td>
</tr>
<tr>
<td>2001</td>
<td>PRIV</td>
<td>Axel GAUTIER and Florian HEIDER</td>
<td>What Do Internal Capital Markets Do? Redistribution vs. Incentives</td>
</tr>
<tr>
<td>2001</td>
<td>PRIV</td>
<td>Bernardo BORTOLOTTI, Marcella FANTINI and Domenico SINISCALCO</td>
<td>Privatisation around the World: New Evidence from Panel Data</td>
</tr>
<tr>
<td>2001</td>
<td>ETA</td>
<td>Toke S. AIDT and Jayarsi DUTTA (Ii)</td>
<td>Transitional Politics. Emerging Incentive-based Instruments in Environmental Regulation</td>
</tr>
<tr>
<td>2001</td>
<td>ETA</td>
<td>Alberto PETRIUCI</td>
<td>Consumption Taxation and Endogenous Growth in a Model with New Generations</td>
</tr>
<tr>
<td>2001</td>
<td>ETA</td>
<td>Pierre LASERRE and Antoine SOUBEYRAN (Ii)</td>
<td>A Ricardian Model of the Tragedy of the Commons</td>
</tr>
<tr>
<td>2001</td>
<td>ETA</td>
<td>Pierre COURTOIS, Jean Christophe PEREAU and Tarik TAZDAIT</td>
<td>An Evolutionary Approach to the Climate Change Negotiation Game</td>
</tr>
<tr>
<td>2001</td>
<td>NRM</td>
<td>Unai PASCIAL and Edward BARBIER</td>
<td>A Model of Optimal Labour and Soil Use with Shifting Cultivation</td>
</tr>
<tr>
<td>2001</td>
<td>NRM</td>
<td>Christophe BONTEMPS, Stéphane COUTURE and Pascal FAVARD</td>
<td>Is the Irrigation Water Demand Really Convex?</td>
</tr>
<tr>
<td>2001</td>
<td>CLIM</td>
<td>Ming CHEN and Larry KARP</td>
<td>Environmental Indices for the Chinese Grain Sector</td>
</tr>
<tr>
<td>2001</td>
<td>CLIM</td>
<td>Larry KARP and Jianguo ZHANG</td>
<td>Controlling a Stock Pollutant with Endogenous Investment and Asymmetric Information</td>
</tr>
<tr>
<td>2001</td>
<td>ETA</td>
<td>Michele MORETTO and Giampaolo ROSSINI</td>
<td>On the Opportunity Cost of Nontradable Stock Options</td>
</tr>
<tr>
<td>2001</td>
<td>SUST</td>
<td>Elisabetta STRAZZERA, Margarita GENIUS, Riccardo SCARPA and George HUTCHINSON</td>
<td>The Effect of Protest Votes on the Estimates of Willingness to Pay for Use Values of Recreational Sites</td>
</tr>
<tr>
<td>2001</td>
<td>NRM</td>
<td>Frédéric BROCHIER, Carlo GIUPPONI and Alberto LONGO</td>
<td>Integrated Coastal Zone Management in the Venice Area – Perspectives of Development for the Rural Island of Sant’Erasmo</td>
</tr>
</tbody>
</table>
Frédéric BROCHIER, Carlo GIUPPONI and Julie SORS: Integrated Coastal Management in the Venice Area – Potentials of the Integrated Participatory Management Approach

Frédéric BROCHIER and Carlo GIUPPONI: Integrated Coastal Zone Management in the Venice Area – A Methodological Framework

Enrico C. PEROTTI and Luc LAEVEN: Confidence Building in Emerging Stock Markets

Barbara BUCHNER, Carlo CARRARO and Igor CERSOSIMO: On the Consequences of the U.S. Withdrawal from the Kyoto/Bonn Protocol

Riccardo SCARPA, Adam DRUCKER, Simon ANDERSON, Nancy FERRAES-EHUAN, Veronica GOMEZ, Carlos R. RISOPATRON and Olga RUBIO-LEONEL: Valuing Animal Genetic Resources in Peasant Economies: The Case of the Box Keken Creole Pig in Yucatan

Clemens B.A. WOLLNY: The Need to Conserve Farm Animal Genetic Resources Through Community-Based Management in Africa: Should Policy Makers be Concerned?

Gianni CICIA, Elisabetta D’ERCOLE and Davide MARINO: Valuing Farm Animal Genetic Resources by Means of Contingent Valuation and a Bio-Economic Model: The Case of the Pentro Horse

Cloni TISDELL: Socioeconomic Causes of Loss of Animal Genetic Diversity: Analysis and Assessment

M.A. JABBAR and M.L. DIEDHOU: Does Breed Matter to Cattle Farmers and Buyers? Evidence from West Africa

K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa

Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?

Duncan KNOWLER and Edward BARBIER: The Economics of a “Mixed Blessing” Effect: A Case Study of the Black Sea

Andreas LöSCHEL: Technological Change in Economic Models of Environmental Policy: A Survey

Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions

Marzio GALEOTTI, Alessandro LANZA and Matteo MANERA: Rockets and Feathers Revisited: An International Comparison on European Gasoline Markets

Effrosyni DIAMANTOUDI and Efthimios S. SARTZETAKIS: Stable International Environmental Agreements: An Analytical Approach

Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus

Giuseppe DI VITA: Renewable Resources and Waste Recycling
This paper was presented at the International Workshop on "Climate Change and Mediterranean Coastal Systems: Regional Scenarios and Vulnerability Assessment" organised by the Fondazione Eni Enrico Mattei in co-operation with the Istituto Veneto di Scienze, Lettere ed Arti, Venice, December 9-10, 1999.

This paper was presented at the International Workshop on “Voluntary Approaches, Competition and Competitiveness” organised by the Fondazione Eni Enrico Mattei within the research activities of the CAVA Network, Milan, May 25-26, 2000.

This paper was presented at the International Workshop on “Green National Accounting in Europe: Comparison of Methods and Experiences” organised by the Fondazione Eni Enrico Mattei within the Concerted Action of Environmental Valuation in Europe (EVE), Milan, March 4-7, 2000.

This paper was presented at the International Workshop on “New Ports and Urban and Regional Development. The Dynamics of Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, May 5-6, 2000.

This paper was presented at the Sixth Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, January 26-27, 2001.

This paper was presented at the RICAMARE Workshop “Socioeconomic Assessments of Climate Change in the Mediterranean: Impact, Adaptation and Mitigation Co-benefits”, organised by the Fondazione Eni Enrico Mattei, Milan, February 9-10, 2001.

This paper was presented at the International Workshop “Trade and the Environment in the Perspective of the EU Enlargement”, organised by the Fondazione Eni Enrico Mattei, Milan, May 17-18, 2001.

This paper was presented at the International Conference “Knowledge as an Economic Good”, organised by Fondazione Eni Enrico Mattei and The Beijer International Institute of Environmental Economics, Palermo, April 20-21, 2001.

This paper was presented at the Workshop “Growth, Environmental Policies and + Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001.

This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001.

This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001.

This paper was circulated at the International Conference on “Climate Policy – Do We Need a New Approach?”, jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001.
2001 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Antitrust, Regulation</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Evaluation</td>
<td>Marialuisa Tamborra</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Antitrust, Regulation</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Evaluation</td>
<td>Marialuisa Tamborra</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>
SUBSCRIPTION TO “NOTE DI LAVORO”

Starting from January 1998 Fondazione Eni Enrico Mattei issues a Periodic E-mail “Note di Lavoro” Bulletin listing the titles and the abstracts of its most recent Working Papers. All the “Note di Lavoro” listed in the Bulletin are available on the Internet and are downloadable from Feem’s web site “www.feem.it”.

If you wish to receive hard copies you may choose from the payment options listed in the following table (minimum order: 10 papers)*.

*Orders for individual papers should clearly indicate the “Nota di Lavoro” number and can therefore be issued for published papers only.

All orders must be sent by fax to:
“Publications Office” - Fondazione Enrico Mattei: Fax +39+2+52036946

PAYMENT OPTIONS

<table>
<thead>
<tr>
<th>How many papers?</th>
<th>What’s the price?</th>
<th>How to pay?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 or more*</td>
<td>US$ 4.00 each</td>
<td>By Credit card or Bank transfer</td>
</tr>
<tr>
<td></td>
<td>Euro 5.00 each</td>
<td></td>
</tr>
<tr>
<td>Annual subscription (approx. 100 papers/year)</td>
<td>US$ 250.00</td>
<td>By Credit card or Bank transfer</td>
</tr>
<tr>
<td></td>
<td>Euro 219.00</td>
<td></td>
</tr>
</tbody>
</table>

Please fill out the Working Paper Subscription Form indicating your preferences (Periodic E-mail “Note di Lavoro” Bulletin, Annual subscription, Order for individual papers - minimum 10)!

WORKING PAPER SUBSCRIPTION FORM

Name: __
Affiliation(if applicable): __
Address: __
 __
 __
Phone: _____________________ Fax: ________________________ E-mail: ______________________
I wish to:

☐ receive the Periodic E-mail Working Papers Bulletin

☐ place a full annual subscription for 2002 (US$ 250.00/Euro 219,00) ______________________

☐ order no……individual papers (minimum 10 papers at US$ 4.00/Euro 5,00 each)* ______________________

Total ______________________

I will pay by:

☐ VISA ☐ American Express Card No. ___________________ Expiration Date: ___________________

Signature: ___________________

Bank transfer in US$ (or Euro in Italy) to Fondazione Eni Enrico Mattei - account no. 39341-56 - SWIFT ARTIITM2 - ABI 03512 - CAB 01614 - Credito Artigiano - Corso Magenta 59, 20123 Milano, Italy.

Copy of the bank transfer should be faxed along with the order.

Please return this duly completed form to:
“Publications Office” - Fondazione Enrico Mattei - Corso Magenta, 63 - 20123 Milano, Italy