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Abstract

Basic methods to compute the required sample size are well understood and sup-
ported by widely available software. However, the sophistication of the sample size
methods commonly used has not kept pace with the complexity of the experimen-
tal designs most often employed in practice. In this paper, we compile available
methods for sample size calculations for continuous and binary outcomes with and
without covariates, for both clustered and non-clustered RCTs. Formulae for panel
data and for unbalanced designs (where there are different numbers of treatment and
control observations) are also provided. The paper includes three extensions: (1)
methods to optimize the sample when costs constraints are binding, (2) simulation
methods to compute the power of a complex design, and (3) methods to consider in
the sample size calculation adjustments for multiple testing. The paper is provided
together with spreadsheets and STATA code to implement the methods discussed.
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1 Introduction

One of the big challenges in economics has been to estimate causal relationships be-
tween economic variables and policy instruments. Randomized Controlled Experiments
(RCT) have become one of the main tools that researchers use to accomplish this objec-
tive1(Hausman and Wise, 1985; Burtless, 1995; Heckman and Smith, 1995; Duflo et al.,
2007). More simple RCTs are usually set up with the objective of estimating the impact
of a certain policy or intervention, while more complex RCTs can be implemented to test
the competing hypotheses that explain a phenomenon (also known as field experiments,
see Duflo (2006) and Levitt and List (2009)).

When setting up a RCT, one of the first important tasks is to calculate the sample
size that will be used for the experiment. This is to ensure that the planned sample
is large enough to detect expected differences in outcomes between the treatment and
control group. A sample size that is too small leads to a underpowered study, which will
have a high probability of overlooking an effect that is real. The implications of small
sample sizes go beyond that, low power also means that statistically significant effects
are likely to be false positives2. Studies with samples larger than required also have their
drawbacks: they will expose a larger pool of individuals to an untested treatment, they
will be more logistically complex and will be more expensive than necessary.

Basic methods to compute the required sample size are well understood and sup-
ported by widely available software. However, the sophistication of the sample size
formulae commonly used has not kept pace with the complexity of the experimental
designs most often used in practice. RCTs are usually analysed using data collected be-
fore the intervention started (baseline data) but this is often ignored by the sample size
formulae commonly used by researchers, as is the inclusion of covariates in the analysis.
Another departure from the basic design is that interventions are commonly assessed
not just on a single outcome variable but more than one, creating problems of multiple
hypotheses testing that should be taken into account when computing the required sam-
ple size. Depending on the context and specific assumptions, taking into consideration
some of these departures from the basic design will lead to smaller or larger sample sizes.

The objective of this paper to provide researchers with a practioner’s guide, sup-
ported by software, to allow them to incorporate in their sample size calculations cer-
tain features that are commonly present in RCTs and that are often ignored in practice.
Although most of the content is not novel, most of it is dispersedly published in quite
diverse notation, making it difficult for the applied researcher to find the right formulae
just at the busy time when he/she is writing the research proposal that will fund the
RCT. We also note that understanding the sample size implications of different design
features can be very useful to design the RCT (what waves of data to collect, what
information to collect, etc.)

The article will include sample size calculations for both continuous and binary out-

1See Blundell and Costa Dias (2009) and Imbens and Wooldridge (2009) for reviews on non-
experimental methods.

2An intuitive explanation using a numeric example can be found in The Economist (2013) “Trouble
at the lab”, 19th October
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comes, starting with the simplest case of individual level trials, and then cluster ran-
domised trials. We will also cover how to take into account pre-intervention data, as well
as covariates. Along the paper, we favour simplicity in exposition and attempt to keep
the language accessible to the applied researcher who does not have previous exposure to
sample size calculations. The article has three extensions: cost minimization, simulation
methods, and sample size estimation for multiple outcomes. The first extension explains
how to allocate the sample in order to minimize costs. It is well known, but little used
in practice, that if the budget must cover both intervention and data collection costs,
then the same level of power can be achieved at smaller costs if more units are allocated
to the control arm than the treatment. The second extension explains how to compute
the power using simulation methods, which is useful when there are no existing formulae
for the RCT that is being planned. The last extension shows how to adapt the sample
size computations when several outcomes are used.

An inherent difficulty in using the sample size formulae that we provide in the paper
is that assumptions are needed on some key parameters of the data generating process,
which are not required by the basic formulae. Our view is that the widespread trend to-
wards making data publicly available, including the data used in academic publications,
will definitively help researchers to find realistic values for the parameters of interest.
Moreover, social science journals might follow the trend set by medical journals on mak-
ing compulsory for authors to report certain key estimates which are commonly used in
sample size calculations (Schulz et al., 2010).

The paper is organized as follows. Section 2 provides an overview of an example
intervention that will be used throughout the paper, section 3 provides an overview
of basic concepts involved in power calculations, section 4 considers power calculations
for continuous outcomes, section 5 focusses on discrete outcomes, section 6 outlines
several extensions and section 7 concludes. As supplementary material, we include: (1)
a training dataset that can be used to calculate the parameters which are relevant for the
sample size calculations, (2) spreadsheets to use the methods proposed for continuous
outcomes, as well as STATA programs for discrete ones (in Appendix D). We also provide
examples of STATA code to estimate key parameters needed to perform sample size
calculations in Appendix B and code to compute power through simulations in Appendix
C.

2 Overview of an Example Intervention

In this section, we will set up an example that we will use for the rest of the paper.
Let’s assume that we would like to evaluate APRENDE2, a job-training program that
will be implemented by the Colombian government. The Colombian government will
run a Randomized Controlled Trial (RCT) to evaluate APRENDE2. Our task is to
compute the required sample size for such evaluation. The main outcomes of interest
are individual’s earnings, and the proportion of individuals that work at least 16 hours
a week, the median in the sample.

As it will be clear later on, to be able to compute the sample size requirements,
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we will need some basic parameters, such as average earnings, the standard deviation
of earnings, and the proportion of individuals that work at least 16 hours a week. We
are at the planning stage, so we have not collected the data yet, and hence we do not
know for certain what these parameters would be in our target population. We may use
grey literature or published studies that report these parameters in our context, or in a
context similar to the one that we will be working on.

In this particular study, we have been fortunate that the government previously
evaluated APRENDE, a different program to APRENDE2 but with the same beneficiary
population. The dataset used to evaluate APRENDE contains the key variables that
we need for the sample size calculation of APRENDE2.3 For instance, for each person
in the sample, the dataset contains the earnings, and whether the person is working, as
well as some other additional variables that we might use as covariates in the analysis.
This information is available for several years, and it also contains an identifier for the
town where the person lives, features that will be important when we carry out more
complicated analyses.

APRENDE2 might be evaluated in two ways, either as an individual based RCT or a
cluster based one. In the former, a few pilot towns will be chosen, and a list compiled of
the eligible individuals interested in participating in APRENDE2 in those towns. Within
each town, a lottery will be used to decide which individuals are chosen to participate
in APRENDE2 in this pilot phase, and which are randomized out. Alternatively, a
cluster RCT could be used in which a random mechanism would split the set of towns
that are part of the evaluation into treatment and control. Eligible individuals living
in treatment towns can apply and participate in APRENDE2. In this case, we will say
that the town is the cluster because it is the unit of randomization (but the data used
for the evaluation will be collected at a more disaggregated level, i.e., the individual).
Other examples of commonly used clusters are schools, job centres, primary care clinics,
etc.

One of the main parameters needed to compute the sample size requirements is the
effect size, which is the smallest effect of the policy that we want to have enough power
to detect. When considering the effect size for an individual based RCT, we must take
into account that it refers to the comparison in the outcome levels of individuals initially
allocated to treatment versus control. Note that this difference will be diluted by any
non-compliance (i.e. individuals initially allocated to treatment that eventually decide
not to participate), and hence we must adjust the effect size accordingly. For instance,
if we think that APRENDE2 will increase participants’ average earnings in 14,000 but
30% of individuals initially allocated to participate in APRENDE2 decide not to take
it up, we must plan for a diluted effect size of 9,800 (=14,000*0.7) as this will take into
account the non-compliance rate.

In a cluster RCT, the relevant comparison is the differences in outcome levels be-
tween the eligible individuals living in treatment towns (irrespective of whether they
participated or not) and the eligible individuals living in control ones (also, irrespective

3More generally, one could use a general puporse household survey from a similar enviroment if it
contains the right variables.
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of whether they participated or not). Because not all eligible individuals living in treat-
ment towns will end up participating, the coverage rate of the policy must be taken into
account when considering the effect size. Assuming that APRENDE2 increases partici-
pants’ average earnings by 14,000, we should plan for an effect size of 8,400 (=14,000*0.6)
if the coverage rate is expected to 60% (it is expected that 40% of the eligible popula-
tion living in the treatment towns will not participate in APRENDE2, either because
of capacity constraints or because they are not interested). Of course, the effect size
would have to be even smaller if we think that individuals in control towns can travel to
treatment towns and participate in APRENDE2 (contamination). For instance, if 10%
of individuals living in control towns could do that, then the planned effect size would
have to be 7,000 (= 14,000*(0.6-0.1)).

3 Basic Concepts

When computing the required sample size for an experiment, one of the most important
questions that the researcher must answer is what is the smallest difference in the average
of the outcome variable between treatment and control that she would like the study to
be able to detect. The answer to this crucial question is the the effect size (sometimes
referred to as the minimum detectable effect or MDE in the literature), denoted below
as δ.

For those unfamiliar with sample size calculations, this may be a slightly strange
concept, as in order to calculate the sample size for a trial, we need to input the impact
we expect the trial to have. It is common to refer to existing literature in order to
get a sense of this effect size. Of course, the results from previous literature must be
contextualized to the study that is being planned. For instance, the researcher might
think that APRENDE2 should be less effective than existing studies, maybe because
it targets all ages, rather than the youth. Differences in expected non-compliance and
contamination between APRENDE2 and other existing studies will also modify the effect
size that we will plan for. Nothing precludes the researcher from conducting sample size
calculations with several different values of the effect size to gauge the sensitivity of the
results.

Assessing whether the intervention being tested had an actual effect on the average
of the outcome variable is challenging because, usually, we will not have data on the
entire population of treatment and control individuals and clusters. In most cases, we
will simply have data on a sample of them. Because of sampling variation, the sample
average of the outcome variable of the treatment group individuals will most likely be
different from the control group one. What needs to be assessed is whether this difference
is large enough as to indicate that it is due to actual differences on the population level
values of the outcome variable, which will be attributed to the intervention, or whether it
is small enough so that it could be due to sampling noise. This is where hypothesis testing
is being called for. The null hypothesis (H0) will usually be that the population mean
of the outcome variable in the treatment group will be the same as in the control group.
In other words, the null hypothesis is that the intervention was on average ineffective,
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and the alternative hypothesis that the effect of the intervention is δ (the difference in
the population mean of the outcome variable between treatment and control, which we
call the effect size).

When conducting the hypothesis test, two possible errors are likely to happen. On
the basis of the sample at hand, and the test carried out, the researcher could reject a
true null hypothesis, that is, to conclude that the intervention was effective when it was
not. This type of “false positive” error is usually called a Type I error (see Figure 1).
The other possible error is to conclude that that the intervention had no effect when one
exists (fail to reject the null hypothesis if it is false). This type of “false negative” error
is called a Type II error.

The researcher will never be able to know whether a Type I or Type II error is being
committed, because the truth is never fully revealed. But the researcher can design
the study as to control the probability of committing each type of error. Significance,
usually denoted by α, is the probability of committing a Type I error (Prob[reject H0|H0

true] = α). Commonly α is set to equal .054. This means that when the null is true, we
won’t reject it in 95% of cases. The probability of a Type II error, denoted by β, is the
chance of finding no intervention effect, when one exists (Prob[fail reject H0|H1 true] =
β). Common values of β are between 0.1 and 0.2.

Power is defined as 1−β, that is, Prob[reject H0|H1 true]. In our context, Power is the
probability that the intervention is found to have an effect on the mean of the outcome
variable when there is a genuine effect. Put more bluntly, power is the probability that a
study has of uncovering a true effect. The researcher would like the power to be as high
as possible; otherwise it has a high chance of overlooking an effect that is real. Usually,
Power of 0.8 or 0.9 are considered high enough (consistent with values of β between 0.1
and 0.2).

For the continuous outcome case, we will need to know the variance5 of the outcome,
σ2. Again, one can get a sense of this from previous studies or from a pilot study if
one has been conducted. The parameters mentioned above are the minimum set of
parameters for which we need to have estimates to calculate the required sample size for
the experiment.

There is an additional input to take into consideration when calculating power for
cluster randomised trials. This is the intracluster correlation (ICC), which is a measure of
how correlated the outcomes are within clusters. This parameter, denoted here as ρ and
defined below, can be estimated from a pilot survey or based on measures found in the
exisiting literature. This parameter plays an important role in sample size calculations
for cluster randomised trials, and can lead to one requiring much larger sample sizes
than in the individual level randomisation case6. The reason for this is that the larger is
the correlation of outcomes amongst individuals within clusters, the less informative an
extra individual sampled within the cluster is. Adding an extra cluster of k individuals

4Later in the paper, we will discuss testing for multiple outcomces, which will affect the value chosen
for α

5In the binary case, the variance of the outcome is a function of the mean
6Where covariates are included, it is the conditional ICC that will be used in the calculations below.

This may be harder to obtain from previous studies.
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Figure 1: Type I and Type II Errors

will result in greater power rather than including k more individuals across existing
clusters.

4 Continuous Outcomes

Here we derive the sample size calculation for the simple case of a RCT in which the
treatment, T , is randomized at the individual level, and the outcome variable, Y, is
continuous. This simple case allows us to focus on the main steps that are necessary to
derive the sample size formulae, and it is useful to give a sense of how the other formuale
used throughout this paper are derived.7 Usually, we test whether T had an effect on Y
by testing whether the population means of Y are different in the treatment than in the
control group. More formally, if we denote the population means in the treatment and
control groups by µ1 and µ0, respectively, the null hypothesis is H0: µ1-µ0=0; and the
alternative hypothesis, that the difference in the population means equals the MDE, by
H1:µ1-µ0=δ.

Assume that we have a sample of n0 individuals in the control group, and a sample
of n1 individuals in the treatment group. We denote by Ti = 0 or Ti = 1 if individual i
is part of the control or treatment group respectively. To test H0 against H1, we would

7The material in this section is standard of statistical textbooks. In this section, we follow Liu (2013)
closely.
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estimate the following OLS regression8:

Yi = α+ βTi + εi,

where Yi is the value of the outcome variable (say earnings in the case of APRENDE2)
and εi is an error term with zero mean and variance σ2, which for the time being we
assume it is known. The z-statistic associated with β is given by the OLS estimate of β
divided by its standard error, that is:

Z =
Ȳ1 − Ȳ0

σ
√

1
n0

+ 1
n1

,

where Ȳ1 and Ȳ0 are the sample averages of Yi for individuals in the treatment and
control group respectively, and σ is the standard deviation of Yi. If the null hypothesis
is true, then µ1=µ0, and Z follows a Normal distribution with zero mean and variance
of one. Hence, the null hypothesis will be rejected at a significance level of α if Z≥
zα/2 or Z≤ −zα/2, where the cumulative distribution function of the standard Normal
distribution evaluated at zα/2 is 1− α/2.

As mentioned above, power, denoted by 1−β, is the probability of rejecting the null
hypothesis when the alternative is correct, that is,

1− β = Pr(Z ≤ −zα/2 ∪ Z ≥ zα/2|H1) = Pr(Z ≤ −zα/2|H1) + Pr(Z ≥ zα/2|H1)

Because the altenative hypothesis is correct, µ1-µ0 is no longer zero, but δ. Hence, the

mean of Z is no longer zero but δ/(σ
√

1
n0

+ 1
n1

). In this case, Pr(Z ≤ −zα/2|H1) is

approximately zero, and hence we have that9

1− β = Pr(Z ≥ zα/2|H1) = 1− Pr(Z < zα/2|H1)

By substracting the mean of Z under the altenative hypothesis from both sides of the
inequality, we obtain

β = Pr(Z − δ

σ
√

1
n0

+ 1
n1

< zα/2 −
δ

σ
√

1
n0

+ 1
n1

)

Because the left hand side of the inequality now follows a Normal distribution with zero
mean and unit variance, it is the case that

z1−β = zα/2 −
δ

σ
√

1
n0

+ 1
n1

,

which implies that10

8We use a regression framework to keep the parallelism with forthcoming sections, but a t-test for
two independent samples is equivalent

9See for instance Liu (2013). Note, however, that Liu (2013) defines zα/2 such that the cumulative
distribution function of the standard Normal distribution evaluated at zα/2 is α/2 instead of 1− α/2.

10Note that zβ = −z1−β .
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zβ + zα/2 =
δ

σ
√

1
n0

+ 1
n1

In the case in which σ is unknown and is estimated using the standard deviation in the
sample, then a t distribution with v = n0 + n1 − 2 degrees of freedom must be used
instead of the Normal distribution. In this case, we have that

tβ + tα/2 =
δ

σ
√

1
n0

+ 1
n1

Solving for δ, we obtain the expression for the MDE that can be detected with 1 − β
power at significance level α:

δ = (tβ + tα/2)σ

√
1

n0
+

1

n1
(1)

Alternatively, assuming that the sample size in the treatment and control groups are
the same, n0 = n1 = n∗, the expression for the sample size of each arm is given by:

n∗ = 2(tβ + tα/2)
2σ

2

δ2
(2)

It should be noted from equation 2 that for the results of a power calculation to be
meaningful, one must have accurate estimates of both the minimum detectable effect
and the variance of outcomes, as both are key inputs.

Although subsequent equations will be more complicated, the derivation of these all
follows a similar approach to that above.

Finally for this section, we outline the case where variances are unequal, following
List et al. (2011). This case is uncommon in practice, as it is difficult a priori to consider
how the treatment will affect not just the mean of the outcomes, but the variance too.
On example could be the provision of weather-linked insurance to farmers. Here one
would expect the variance of consumption to decline for the treated individuals. Total
sample size is defined as N = n0 + n1 and

δ = (tβ + tα/2)

√
σ20
n0

+
σ21
n1

After working through a series of equations ( see Appendix A for the full derivation),
we derive a formula for N∗ and the optimal allocations of n0 and n1:

N∗ = (tβ + tα/2)
2 1

δ2

(
σ20
π∗0

+
σ21
π∗1

)
, (3)

where π∗0 = σ0
σ0+σ1

and π∗1 = σ1
σ0+σ1

, and n∗0 = π∗0N
∗ and n∗1 = π∗1N

∗. From this it can
be seen that the group with the larger variance is allocated a greater proportion of the
sample.
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4.1 Clustered

In many cases, the outcome variable is measured at the individual level, but the randomi-
sation takes place at the cluster level (school, village, firm)11. This may be driven by
concerns over spillovers within a cluster, whereby individual level randomisation would
lead to control members outcomes being contaminated by those of treated individuals.
In this case the sample size formula must be adjusted to reflect that observations from
individuals of the same cluster are not independent, as they may share some unobserved
characteristics.

The estimating equation will take the form of

Yij = α+ βTj + vj + εij , (4)

where i denotes individual, and j denotes the cluster. Tj is the treatment indicator, vj
and εij are eror terms at the cluster and individual level. The variances of vj and εij are
given by var(vj) = σ2c and var(εij) = σ2p, and σ2c + σ2p = σ2.

To carry out the sample size calculation in the presence of clustering, we require an
additional input; the intracluster corrrelation or ICC, denoted here as ρ:

ρ =
σ2c

σ2c + σ2p

The ICC thus gives a measure of the proportion of the total variance accounted for
by the between variance component. The intuition behind the ICC is that the larger the
fraction of the total variance accounted for by the between cluster variance component
(σ2c ), the more similar are outcomes within the cluster, and the less information is gained
from adding an extra individual within the cluster. Proceeding as in the simple case
above, we derive the following equation12:

δ2 = (tα/2 + tβ)22

(
mσ2c + σ2p

mk

)
, (5)

where there are k clusters per treatment arm and m individuals per cluster13. Using the
definition of the ICC, and rearranging, we arrive at the formula for the total sample per

11We use the term individual to denote the level at which the observation is measured. In most cases it
will be people or households but it could also be firms (if the cluster is a town and the outcome variable
is the profits of small businesses).

12 With clustering, and assuming equal variances for the two groups, the standard error of β̂ takes the
form: √(

σ2
c

k
+

σ2
p

mk

)
+

(
σ2
c

k
+

σ2
p

mk

)
=

√
2
mσ2

c + σ2
p

mk

13In the clustered case, the degrees of freedom in the t distribution are 2(k − 1).
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treatment arm14:

n∗ = m∗k∗ = (tα/2 + tβ)22
σ2

δ2
(1 + (m− 1)ρ) (6)

Comparing equations 2 and 6, the only difference is the term (1 + (m − 1)ρ), which is
commonly referred to in the literature as either the design effect or the variance inflation
factor (VIF). This term is a consequence of the clustered treatment allocation, and will
lead to larger required sample sizes .

In order to get a sense of the interplay between the ICC and the number per clus-
ter, Table 1 presents required sample sizes for two different values of δ. We use the
APRENDE data here in order to get a standard deviation value, as well as reasonable
values for δ. The actual ICC for this data is .042 - within the ranges of ICC values
presented in Table 115. Consider first the upper left quadrant. The case where ICC=0
represents individual level randomisation. As the ICC increases, so too does the sample
size. The extent of the increases depends also on m, the other key term in the VIF.
One can see that for a ρ=.03, a rather small value for the ICC, and m=60, a cluster
randomised trial requires almost triple the sample size to that of an individual level
equivalent (7083 compared to 2557).

Another way to see this is to consider the upper right quadrant. At low levels of the
intracluster correlation, there is a marked decline in the required number of clusters as
we increase m (the number of individuals per cluster). For ρ = .01, k drops from 279 to
51, 18% of the initial value as we move move from left to right. As the ICC increases,
this decline is much shallower. For ρ = .2 the right-hand value for k is 74% of the initial
value. It should be clear from this table that its very important to get accurate measures
of key input parameters. Small differences in these values, such as moving from ρ = .01
to .03, can have significant impacts on the required sample size, particularly when m is
large.

Finally, by comparing the upper and lower sections of Table 1, we see the impact of
the size of the MDE - the larger is the value of δ, the smaller is the sample size required
to detect a statistically significant effect.

4.1.1 Unequal numbers of clusters

It is useful to know what the equations look like for uneven allocations of both the
number of clusters per treatment arm, k, and the number of individuals within these
clusters, m. This may be due to restrictions imposed on the size of one of the treatment
arms, for example because of logistical constraints. It should be noted that departing
from an equal split for the two groups leads to a larger total required sample size, so

14To operationalise this formula one can either solve for m as a function of k or solve for k as a function
of m. In the latter case (due to the fact that the degrees of freedom of the t distribution are a function
of the number of clusters (2(k−1) in the absence of covariates)), it neccessary to use an iterative process
to ensure that the correct degrees of freedom (2(k∗ − 1)) are used to calculate the optimal number of
clusters, k*. This issue will be more pronounced when the number of clusters is small.

15In Appendix B we show how to compute the ICC using STATA.
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this should be done only when restrictions require so, or when this decreases the overall
cost (for instance when control clusters are cheaper than treatment clusters - see section
6.1). That said, total sample size only rises markedly for highly unbalanced allocations.
The number of clusters in the treatment arm (k1) as a function of the number of clusters
in the control arm (k0) is given by:

k1 =
(tα/2 + tβ)2

(
mσ2

c+σ
2
p

m

)
δ2 − (tα/2 + tβ)2

(
mσ2

c+σ
2
p

mk0

) (7)

This can also be written in terms of the design effect as:

k1 =
(tα/2 + tβ)2σ2

(
1+(m−1)ρ

m

)
δ2 − (tα/2 + tβ)2σ2

(
1+(m−1)ρ

mk0

) (8)

The formula for the number of individuals per treatment cluster (m1) as a function of
the number of individuals per control cluster (m0) is given by:

m1 =
(tα/2 + tβ)2

(
σ2
p

k

)
δ2 − (tα/2 + tβ)2

(
2σ2
c
k +

σ2
p

m0k

) (9)

Rewriting in terms of ρ and σ yields:

m1 =
(tα/2 + tβ)2σ2

(
(1−ρ)
k

)
δ2 − (tα/2 + tβ)2σ2

(
1+(2m0−1)ρ

m0k

) (10)

4.2 The Role of Covariates

Although, due to randomisation, covariates are not used to partial out differences be-
tween treatment and control, they can be very useful in reducing the residual variance
of the outcome variable, and subsequently leading to lower required sample sizes.

There are several different ways of representing the power calculation formula with
covariates, which will be presented for completeness, and due to the fact that in different
situations, one may only have the required inputs suited to using a single formula.

The simplest or most intuitive version is as follows:

n∗ = m∗k∗ = (tα/2 + tβ)22
σ2x
δ2

(1 + (m− 1)ρx), (11)

where σ2x is the conditional variance (that is the residual variance once the covariates

have been controlled for), and ρx =
σ2
x,c

σ2
x,c+σ

2
x,p

the conditional ICC16. The form of equation

16In the case with covariates, the number of degrees of freedom of the t tistribution is 2(k − 1) − J ,
where J is the number of covariates.
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11 mirrors that of the unconditional representation in equation 6. If there is baseline
data, or data from a similar context with the relevant variables, it is straightforward to
get estimates of these conditional parameters17. However, if this is not available, and
estimates must be gleaned from the existing literature, it may be that these parameters
are not directly obtainable. For this reason we present a different form of the conditional
power calculation, which use different parameters. Bloom et al. (2007) present the
following formula:

n∗ = m∗k∗ = (tα/2 + tβ)22
σ2

δ2
(mρ(1−R2

c) + (1− ρ)(1−R2
p)), (12)

where R2
c is the proportion of the cluster-level variance component explained by the

covariates, and R2
p the individual-level equivalent. This formulation is useful to see the

differing impact of covariates at different levels of aggregation i.e. if the covariates are at
individual or cluster level. For instance, an individual covariate can affect both R2

p and
R2
c , whilst a cluster level covariate can only increase R2

c . Equation 12 may be useful if
R2
p and R2

c are reported in existing research, and the parameters in equation 11 are not.
To reiterate, with a series of calculations, it is straightforward to move from equation 12
to 11, using R2

c , R
2
p, σ

2 and ρ to obtain values for σ2x and ρx
18.

Finally, Hedges and Rhoads (2010) present the formula for the inclusion of covariates
as:

n∗ = m∗k∗ = (tα/2 + tβ)22
σ2

δ2
[
(1 + (m− 1)ρ)− (R2

p + (mR2
c −R2

p)ρ)
]

This equation may be useful for building intuition into the role of covariates, as
the first term in parentheses is the regular design effect, whilst the second shows how
covariates impact the overall variance inflation factor.

Table 2 presents how the inclusion of both individual and cluster level covariates
impact required sample sizes for six different scenarios (m= 8, 20 and 100, ρ=.01 and
.3). Values for the standard deviation come from that of the earnings variable for 2002
in the APRENDE data. As it is clear from equation 12, the larger either R2

p or R2
c is,

the smaller the sample size per arm is. Note from equation 12 that the influence of R2
p

is larger when ρ is smaller. For example, in Table 2, when ρ = 0.01, m = 100, and
R2
c=0, the sample size per arm decreases from 1351 to 1048 (a 22% reduction) when

R2
p increases from 0 to 0.5. However, the same increase in the R2

p only translates into a
decrease from 19342 to 19123 (a 1% reduction) when ρ = 0.3. In this sense, increasing
R2
p is similar to increasing the number of individuals per cluster, which has little effect

on power when ρ is high.

17Refer to Appendix B to see how to estimate these parameters.
18Using the definition of ρx, we note that σ2(1− ρ)(1− R2

p) = σ2
x,p = (1− ρx)σ2

x and σ2ρ(1− R2
c) =

σ2
x,c = ρxσ

2
x. This allows us to write the R2 terms as functions of ρ, σ2, ρx and σ2

x: (1 − R2
c) =

ρxσ
2
x

ρσ2

and (1−R2
p) =

(1−ρx)σ2
x

(1−ρ)σ2 . These expression are used in intermediate steps to move from equation 12 to
equation 11.
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As it is also clear from equation 12, the effect of R2
c is mediated by mρ, so the

reduction in sample size achieved by increasing R2
c will be higher when both m and ρ

are large. Again, increasing R2
c is analogous to increase the number of clusters. This will

have a larger effect when ρ is large and when m is large (because a large m indirectly
implies that the number of clusters is small, so we obtain a larger effect when we increase
them). This is also clear in Table 2: when ρ = 0.3, m = 100, and R2

p=0, the sample size
per arm decreases from 19342 to 9940 (a 48% reduction) when R2

c increases from 0 to
0.5. However, the same increase in the R2

p only translate in a decrease from 679 to 654
(a 3.6% reduction) when ρ = 0.01 and m = 8.

A final point to note here is an issue raised by Bloom et al. (2007) regarding un-
conditional versus conditional ICCs. As mentioned by the authors, one should not be
concerned with the possibility that an individual level covariate, by reducing the individ-
ual level variance component by a larger extent than the cluster level component, may
lead to a higher conditional ICC. What matters is that by reducing both components,
individual level covariates increase precision and thus lower required sample sizes. This
issue is not a concern with cluster level covariates, which can only impact σ2c , thus will
always lead to conditional variances and ICCs that are smaller than their unconditional
counterparts.

4.2.1 Unequal numbers of clusters

As we presented in Section 4.1.1, we can write down the sample size equations where
either k or m are unequal.

First, consider the expression for k1 as a function of k0 and m, written in the form
presented by Bloom et al. (2007)19:

k1 =
(tα/2 + tβ)2σ2

(
mρ(1−R2

c)+(1−ρ)(1−R2
p)

m

)
δ2 − (tα/2 + tβ)2σ2

(
mρ(1−R2

c)+(1−ρ)(1−R2
p)

mk0

) (13)

As before, we can also write an expression for m1 as a function of k and m0
20:

m1 =
(tα/2 + tβ)2σ2

(
(1−ρ)(1−R2

p)

k

)
δ2 − (tα/2 + tβ)2σ2

(
2m0ρ(1−R2

c)+(1−ρ)(1−R2
p)

m0k

) (14)

4.3 Difference-in-differences and lagged outcome as a covariate

Where the researcher has not only data on the outcome variable subsequent to treatment,
but also prior to treatment (baseline), it is possible to employ a difference-in-differences
approach, as well as to include the baseline realisation of the outcome variable as a

19We can also write an expression for k1 in the form of either equation 7, where we replace σc and σp
with σx,c and σx,p or equation 8, where we replace σ and ρ with σx and ρx.

20We can also write an expression for m0 in the form of either equation 9 or 10, replacing unconditional
parameters with their conditional versions.
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covariate, a special case of the approach above. Following Teerenstra et al. (2012) the
data generating process (which includes the panel component) follows:

Yijt = β0 + β1Tj + β2POSTt + β3(POSTt × Tj) + vj + vjt + εij + εijt,

where i indexes individuals, j clusters, and t time periods (t=0, the pre intervention
period, or t=1, the post intervention period). POSTt takes the value 0 if t=0 and 1 if
t=1, and Tj is the treatment indicator.

The error terms are structured as two cluster-level components (vj and vjt) and two
individual-level components (εij and εijt), where vj and εij are time-invariant. Two
autocorrelation terms are required in this case, namely the individual autocorrelation of
the outcome over time, ρp, and the analagous cluster level term, ρc:

ρp =
σ2p

σ2p + σ2pt
and ρc =

σ2c
σ2c + σ2ct

,

where var(vj)=σ
2
c , var(vjt)=σ

2
ct, var(εij)=σ

2
p and var(εijt)=σ

2
pt
21. The ICC in this sita-

tion is expressed as22:

ρ =
σ2c + σ2ct

σ2c + σ2ct + σ2p + σ2pt

Once these parameters are in hand, we can define the key paramater used in sample
size calculations, r, the fraction of the total variance composed of by the time invariant
components:

r =
σ2c + σ2p/m

σ2c + σ2ct + σ2p/m+ σ2pt/m
=

mρ

1 + (m− 1)ρ
ρc +

1− ρ
1 + (m− 1)ρ

ρp

The sample size formula for a difference-in-differences estimation can be written as

n∗ = m∗k∗ = 2(1− r)(tα/2 + tβ)22
σ2

δ2
(1 + (m− 1)ρ) (15)

and the sample size formula for an estimation using the baseline outcome variable as a
covariate as:

n∗ = m∗k∗ = (1− r2)(tα/2 + tβ)22
σ2

δ2
(1 + (m− 1)ρ) (16)

In order to see the benefit of using the panel element, it is instructive to compare
equations 15 and 16 with equation 6. The most important message is that the sample
size requirement is minimized by including the baseline level of the outcome variable as
a covariate (note that 1 − r2 < 1 and that 1 − r2 < 2(1 − r)). Alternatively, given a
sample, the highest power is achieved by including the baseline value of the outcome
variable as covariate. Hence if baseline data on the outcome variable is available, one

21We note the abuse of notation in using t subscripts for the variance terms σ2
ct and σ2

pt, as these terms
are constant across the two time periods.

22Appendix C.5 details how to estimate these key panel data parameters.
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should always control for it as a covariate rather than doing difference-in-differences or
a simple post-treatment comparison (McKenzie, 2012; Teerenstra et al., 2012).

Also, it is useful to see that the largest reduction on sample size requirements when we
include the baseline value as covariate takes place when r is close to 1 (hence 1−r2 which
multiplies the sample size formulae 16 is close to zero). Intuitively, by conditoning on the
baseline value of the outcome variable, we are netting out the time invariant component
of the variance (which is large when r is close to 1).

Note also that if r is close to zero, given a sample, there might be little difference
in power between including the baseline value of the outcome as a covariate, and just
post-treatment differences. Hence, from the point of view of power, it might be better
to spend the resources devoted to collect the baseline on collecting a larger sample post-
treatment or several post-treatment waves (see McKenzie (2012))23. Interestingly, in
terms of power, including the baseline value of the variable as covariate always dominates
over differences-in-differences. Moreover, baseline data is required for both estimators.
Hence, there is little reason in terms of power to justify difference-in-differences

In Table 3, we report the sample size requirements for the three estimation strategies
for various values of r, calibrating the calculations to the likely effect size and variance of
the earnings for 2002 in the APRENDE data. The resulting sample sizes quantifies the
intuition above - the higher the time invariant component of the variance, r, the greater
the benefit of controlling for baseline differences via covariate or difference-in-differences
vis. a vis. single post-treatment difference. For low values of r, a difference-in-differences
strategy is highly inefficient. The table also makes clear the dominance over the other
two strategies of controlling for the baseline outcome as a covariate, for all values of r.

5 Binary Outcome Case

5.1 Non-clustered

Next, we move on to discussing the case where the outcome variable is binary, for
instance whether an individual is working or not or whether a student obtained a certain
grade level or not. There is a large literature that focusses on the binary outcome case,
with several different approaches (for example Demidenko (2007), Moerbeek and Maas
(2005)). Some papers deal with effect sizes measured in differences in log odds, others
with differences in probability of success between treatment and controls. We follow
Schochet (2013) who measures the effect size in terms of differences in the probability of
success. We believe that this is more intuitive for most economists, and that the required
inputs might be more easily accessible from published studies24. One difference between
the continuous and the binary outcome case is that in the latter, we do not need the

23There might be other reasons to collect baseline data than gains in power. These vary from checking
whether the sample is balanced in the outcome variables, to collect information that allow to stratify
the sample, and to have the basis for heterogeneity analysis (see McKenzie (2012)).

24An advantage of the approach we follow is that the impact parameter does not depend on whether
covariates are included or not. This is not the case when impact is measured in log odds. See Schochet
(2013) for a detailed discussion of this.
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variance. Binary outcomes follow a Bernoulli distributon, so knowing p, the probability
of success, also yields the variance; p(1− p).

Using a logistic model, we can write the probability of success for individual i as:

pi = Prob(yi = 1|Ti) =
eβ0+β1Ti

1 + eβ0+β1Ti
,

where yi is binary (takes value 1 in case of success and 0 in case of failure) and as before,
Ti denotes treatment status. The effect size, δ can thus be written as p(yi = 1|Ti =
1) − p(yi = 1|Ti = 0) or (p1 − p0), where the subscripts denote treatment and control
status respectively.

Following an analogous procedure as in the continuous case, we arrive at a sample
size equation for the binary case (Donner and Klar, 2010):

N∗ =

(
p1(1− p1)

π
+
p0(1− p0)

1− π

)
(zβ + zα/2)

2

(p1 − p0)2
, (17)

where π is the proportion of the sample that is treated25, n∗1 = πN∗ and n∗0 = (1−π)N∗.
Note that equation 17 is equivalent to equation 3, where σ20 and σ21 are replaced with
their equivalents in the binary case, p0(1−p0) and p1(1−p1). In general, these variances
will be different, so as we saw in equation 3, the optimal treatment-control split will
differ from .5. The optimal allocation to treatment status, π∗ can be written as:

π∗ =

√
p1(1−p1)
p0(1−p0)

1 +
√

p1(1−p1)
p0(1−p0)

(18)

Hence, in the binary outcome case, the optimal split would only equal .5 in the
special case where p0=1− p1 for example p0=.4 and p1=.6. In that case of an even split
between treatment and control status (π = .5), we can write n∗ as

n∗ = (p1(1− p1) + p0(1− p0))
(zβ + zα/2)

2

δ2
(19)

5.2 Clustered

Having considered the individual level treatment case, we now move to cluster ran-
domised treatment, still following Schochet (2013), as we do for the rest of section 5.
For the cluster randomised case, a Generalised Estimating Equation (GEE) approach is
followed, where the clustering is accounted for in the variance-covariance matrix, using
the ICC, ρ. As before we can write the probability of success for individual i in cluster
j as

pij = Prob(yij = 1|Tj) =
eβ0+β1Tj

1 + eβ0+β1Tj
,

25If the null hypothesis of zero impact is tested using a Pearson’s chi-square test, and n∗1 = n∗0, then

n∗ =
(zα/2

√
2p̄(1−p̄)+zβ

√
p1(1−p1)+p0(1−p0))2

(p0−p1)2
where p̄ = p1+p0

2
, (see Fleiss et al. (2003) equation 4.14, as

well as equation 4.19 for different sample sizes in treatment and control).
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For cluster j, the m×m variance covariance matrix Vj is written as

Vj = A
1/2
j R(ρ)A

1/2
j , (20)

where Aj is a diagonal matrix with diagonal elements pij(1−pij) and R(ρ) is a correlation
matrix with diagonal elements taking the value of 1, and off-diagonals the value of ρ.
Hence cov(yij , ykm) = ρ when j = m and =0 when j 6= m. Note the lack of a j subscript
on R(ρ) - it is taken as common across clusters, as in the Generalised Least Squares
(GLS) approach for a continuous outcome. This means that we no longer specify a
random effect for each cluster, and allows us to get closed form solutions for the sample
size equations26.

The sample size equation for the binary outcome case with cluster randomisation
can be written as:

N∗ =

(
p1(1− p1)

π
+
p0(1− p0)

1− π

)
(zα/2 + zβ)2

δ2
(1 + (m− 1)ρ), (21)

where π is the fraction of clusters randomised to receive treatment, n∗1 = mk∗1 = πN∗

and n∗0 = mk∗0 = (1−π)N∗. As above, if the treatment is evenly allocated, we can write
this as

n∗ = mk∗ = (p1(1− p1) + p0(1− p0))
(zβ + zα/2)

2

δ2
(1 + (m− 1)ρ) (22)

As before, the sample size equation for the binary outcome mirrors that of the con-
tinuous outcome, with the design effect being the only difference between the individual
and cluster randomised sample size equations.

Table 4 presents sample size requirements for three different levels of success prob-
ability for the control groups, p0; 0.1, 0.3 and 0.5. The first thing to notice is that the
closer p0 is to .5, the larger the is sample size required. This is because for a binary
variable, variance is largest at p=0.5. For example, for m=30 and ρ=.03, the sample
size for p0=0.5 is double that of p0=.1. As in the continuous case, we see that higher
ICCs and larger cluster sizes, m, lead to larger required total samples. This is due to
the design effect.

5.2.1 Unequal numbers of clusters

It might be useful to have a formula for k1 as a function of m and k0, that will provide
power of (1− β) for the given m and k0:

k1 =

p1(1−p1)
m (zα/2 + zβ)2(1 + (m− 1)ρ)

δ −
(
p0(1−p0)
mk0

)
(zα/2 + zβ)2(1 + (m− 1)ρ)

(23)

26Results from simulations we ran utilising the GEE approach yielded very similar results to those
using a linear probabilty model with random effects. Schochet (2009) finds similar results using GEE
and random effects logit models too.
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5.3 The Role of Covariates

In this section, we consider the case of individual treatment allocation where one has a
single covariate, Xi, that is discrete, but not neccessarily binary. In the case where the
Xi is continuous, one can discretise the variable. Here, we write pi as

pi = Prob(yi = 1|Ti, Xi) =
eβ0+β1Ti+β2Xi

1 + eβ0+β1Ti+β2Xi

Where covariates are included, we need several extra inputs into the sample size equa-
tion, relating to the distribution of the covariates, and how success probabilities change
according to the covariate values.

First, assume that Xi can take any of the following Q values, {x1, ......, xQ}. Define
θq = Prob(Xi = xq) for q ∈ {1, ....., Q} , with (0 < θq < 1) and

∑
q θq = 1. Next

we need to specify how success probabilities change across the values of Xi. Define
p0q = Prob(Yi = 1|Ti = 0, Xi = xq) and p1q = Prob(Yi = 1|Ti = 1, Xi = xq). Then we
can define an effect size for a specific value of q, δq = p1q−p0q, and an overall effect size,
δ =

∑
q θqδq. Schochet (2013) notes that covariate inclusion will improve efficiency if at

least two of the p0q or p1q probabilities differ across covariate values.
With these inputs at hand, we can now write the sample size equation as:

N∗ = (gM−1g′)
(zβ + zα/2)

2

δ2
, (24)

where

M =

m1 m2 m3

m2 m2 m4

m3 m4 m5

 ,
m1 =

∑
q

{πθqp1q(1− p1q) + (1− π)θqp0q(1− p0q)}

m2 =
∑
q

{πθqp1q(1− p1q)}

m3 =
∑
q

xq{πθqp1q(1− p1q) + (1− π)θqp0q(1− p0q)}

m4 =
∑
q

xq{πθqp1q(1− p1q)}

m5 =
∑
q

x2q{πθqp1q(1− p1q) + (1− π)θqp0q(1− p0q)}
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and g is a 1× 3 gradient vector with elements:

g[1, 1] =
∑
q

θq[p1q(1− p1q)− p0q(1− p0q)]

g[1, 2] =
∑
q

θq[p1q(1− p1q)]

g[1, 3] =
∑
q

xqθq[p1q(1− p1q)− p0q(1− p0q)]

In the Appendix section D we provide a purposefully designed STATA programme to
carry out this computation for 5 different values of covariates27.

5.3.1 Clustered

Finally we consider a cluster randomised treatment in the presence of a single, discrete
cluster-level covariate. Candidates for this could be a discrete cluster caracterisitc or a
continuous variable, such cluster means of the outcome variable at baseline, which are
then discretised. We write the probability of success here as

pij = Prob(yij = 1|Tj , Xj) =
eβ0+β1Tj+β2Xj

1 + eβ0+β1Tj+β2Xj
,

The variance-covariance matrix in this scenario is very similar to that without a covariate
(see equation 20) with the exception of the use of the conditional ICC, ρx, not the raw
ICC (ρ) in the correlation matrix. The sample size calculation for this section can be
expressed as

N∗ = 2m∗k∗ = (gM−1g′)
(zβ + zα/2)

2

δ2
(1 + (m− 1)ρx), (25)

where g and M are defined as above, and ρx is the conditional ICC, as we saw in
the continuous outcome case with cluster-randomisation and covariates. Note that the
inclusion of a cluster-level covariate can lead to precision gains through decreasing the
total residual variance, as well as by decreasing the conditional ICC. Schochet (2013)
suggests that the latter will have more impact on lowering the required sample size.

Table 5 presents the number of clusters required in the binary outcome case for two
values of ρ; 0.05 and 0.1, and a binary covariate. What we see here is that the greater
is the difference between p00 and p01 (the difference in control group success rates for
the two values of the covariate), the greater is the sample size reduction due to the
inclusion of the covariate. The number of clusters required (for m=60, ρ=.05, p0=.5,
and a constant effect size of .1 across covariate levels) is 51 in the absence of a covariate
(bottom right section of Table 4). In Table 5, this number falls to 49 when p00=.4 and
p01=.6, and falls markedly to 32 when p00=.2 and p01=.8. In this example, the spread
in impact values across the values of X has a more noticeable effect when the spread in
control group success rates across X values is larger.

27As supplementary material we supply STATA programmes for 2, 3, 4 and 5 possible values of the
covariate. Schochet (2013) provides a set of SAS programmes for sample size calculations for binary
outcomes.
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6 Extensions

6.1 Optimal sample allocation under cost constraints

In the previous sections, we have described how to compute the sample size that will
allow us to reach a desired level of power. However, we did not take into account any
cost considerations, which are usually very relevant for researchers. Researchers have a
number of degrees of freedom when designing the sample of a study: ratio of the sample
size in the treatment versus control group, number of clusters vs. number of individuals
within a cluster, etc. Hence, it makes sense to choose the options that minimize costs
without decreasing power28.

In our previous examples, we have assumed the number of treatment and control
units (clusters and/or individuals) to be the same. This is a common strategy used by
researchers because it maximizes the power of the study given a total sample (this is
the case for continuous outcomes. As discussed in section 5.1, for the binary outcome
case, an even treatment-control split is unlikely to optimal in general). If the costs of the
study depend solely on the total sample, then this approach will also maximize power
given a total cost29. Hence, the approach will also minimize costs for a given level of
power.

However, it is easy to think of cases where the costs do not depend solely on the
total sample, but also of other parameters. For instance, if the research budget includes
the cost of running the intervention then treatment units will be more expensive than
the control ones. In these situations, we can maximize power (given an overall cost)
by allocating a larger sample to the control group than the equal split. To understand
the intuition, starting from the equal split, allocating units from treatment to control
will result in a overall cost reduction but also loss of power because of the imbalance.
However, the latter could be more than offset if we use the part of the cost reduction
to boost total sample size. But of course, this will have a limit. As the loss of power
increases more than linearly with the imbalance, the loss of power might not be offset if
the sample is already highly unbalanced.

To allow the user to operationalize the above, below we provide the formulae that
allows us to compute C∗, the minimum cost that allow us to detect a given MDE, δ. This
will be of use for the researcher that has a clear view on the MDE of the intervention
that she is testing, and wants to find out the minimum cost that will allow her to detect
it in order to submit a competitive bid. We also provide formulae for δ∗ which is the
feasible MDE given a total cost C. This will be of more use to the researcher that has
a binding cost constraint and is figuring out how effective her intervention must be in
order to detect its effect under the cost constraint. The specific formulae depends on

28Here, we do not study how to minimize costs as function of the autocorrelation of the outcome
variable. For low autocorrelated outcomes, costs might be minimized subject to a given level of power
by not having baseline, but multiple post-treatment measures (McKenzie, 2012).

29This implicitly assumes that the variance of the outcome variable in treatment and control groups is
the same. In situations when this is not true, power is maximized if the group with the higher variance
is larger (for example see equation 3).
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the specific structure of the cost function. We specify a different one on each of the
subsections below30.

6.1.1 Individually allocated treatment

There are many different variations of cost functions we may specify. Here we present a
few alternatives. First consider the situation where treatment allocation is individually
allocated and the cost function is given by

C = c0n0 + c1n1

Once we have specified the cost function, we then solve a constrained optimisation
problem, minimising the MDE subject to the cost function. This yields a solution in
terms of n0, n1 and the cost function parameters31:

n1
n0

=

√
c0
c1

Hence, the more expensive the treatment units are, the smaller the treatment group
would be compared to the control. Using the cost function, we can write n0 and n1 as
functions of the cost parameters:

n∗0 =
C

c0 +
√
c0c1

and n∗1 =
C

c1 +
√
c0c1

(26)

The relations in equation 26 would be combined with equation 1 to obtain the smallest
MDE achievable in order to obtain a power of 1− β given the budget constraint C:

δ∗ = (tβ + tα/2)

√
1

n∗0
+

1

n∗1
, (27)

which leads to a formula for δ∗ as a function of the cost parameters:

δ∗ = (tβ + tα/2)
σ√
C

(
√
c0 +

√
c1) (28)

This formulation is useful in order to assess whether or not to conduct a trial at a given
budget, C. For instance, if the budget for the trial, C, were very small, this would
limit the number of individuals in the trial, and would thus require a very large effect
size in order to achieve a power of 1 − β. If this effect size is unrealistic, the RCT is
under-powered with the given budget. Alternatively we can derive an expression for the
minimum total cost, C∗, required in order to achieve a power of 1−β with a given value
of δ. In order to do so, we use the relations in equations 26 and 27:

C∗ = (tβ + tα/2)
2σ

2

δ2
(
√
c0 +

√
c1)

2 (29)

30In what follows we provide formulae for optimal allocations for continuous outcomes. One can follow
a similar approach to the one outlined below to derive the equivalent formulae for binary outcome cases.

31The equivalent formula for the discrete case is: n1
n0

=
√

c0
c1

p1(1−p1)
p0(1−p0)

.
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6.1.2 Cluster-level treatment allocation with heterogenous cluster costs

Moving on to the cluster randomisation case, we follow the same method as above, first
specifying a cost function and then minimising the MDE subject to this cost function.
For instance, if the treatment is the provision of a cluster-level service or amenity (a
clean well or improved sanitation amenities at the village level), then the only difference
between the costs of treatment and control areas will be the fixed cost of this service
provision, yielding a cost function of the form:

C = f0k0 + f1k1,

where f0 = f ′0 + vm and f1 = f ′1 + vm. Here, the cluster size is fixed at a certain
m32, thus we do not consider this dimension of the sample when optimising. Solving a
constrained optimisation problem as before (where the objective function is the square
of the MDE) gives us the following solution33:

k1
k0

=

√
f0
f1

As before, we use the cost function to write the optimal values of k1 and k0 as functions
of the cost parameters:

k∗0 =
C

f0 +
√
f0f1

and k∗1 =
C

f1 +
√
f0f1

(30)

The remaining step in this constrained optimisation problem is to use equation 8
with equation 30 to compute the effect size as a function of the optimal values of k0 and
k1, which will yield the minimum effect size that will need to be found in order to obtain
a power of 1− β, given the budget constraint, C34:

δ∗ = (tα/2 + tβ)

√
σ2
(

1 + (m− 1)ρ

mk∗0
+

1 + (m− 1)ρ

mk∗1

)
, (31)

which can be written in terms of the cost function parameters as:

δ∗ = (tα/2 + tβ)

√
σ2(1 + (m− 1)ρ)

(
f0 +

√
f0f1

mC
+
f1 +

√
f0f1

mC

)
(32)

32For example, where the cluster is a school, and the outcome variable is the result of a test taken by
all pupils in the school, m.

33In this section, we ignore that the degrees of freedom of the t-distribution are a function of the
number of clusters, k. This will normally have a minimal effect on the sample size, unless the number
of clusters is very small.

34We provide the formulae for the case without covariates. One can replace σ2 with σ2
x and ρ with ρx

to adapt the formulae to the case with covariates.
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We can also derive an expression for the minimum total cost, C∗, required in order
to achieve a power of 1− β with a given value of δ. To do so, we combine equations 30
and 31 to arrive at:

C∗ = (tα/2 + tβ)2
σ2

δ2
(1 + (m− 1)ρ)

m

(√
f0 +

√
f1

)2
(33)

6.1.3 Cluster-level treatment allocation with heterogenous individual costs

Were the treatment to have an individual-level component, such as a vaccination pro-
gramme or a job training programme, then the variable costs may be of more relevance.
This may give rise to a cost function such as:

C = 2fk + v0m0k + v1m1k,

where k is fixed and f represents the fixed cost of data collection at the cluster. The
constrained optimisation problem yields the following ratio:

m1

m0
=

√
v0
v1
,

which we can combine with the cost function in order to get the following expressions
for optimal values of m0 and m1:

m∗0 =
C − 2fk

k(v0 +
√
v0v1)

and m∗1 =
C − 2fk

k(v1 +
√
v0v1)

(34)

As we saw in section 6.1.2, the final step now is to use equation 10 with equation 34 to
compute the effect size as a function of these optimal values of m0 and m1, which will
yield the minimum detectable effect size required to achieve a power of 1− β, given the
budget constraint, C:

δ∗ = (tα/2 + tβ)

√
σ2
(

1 + (m∗0 − 1)ρ

m∗0k
+

1 + (m∗1 − 1)ρ

m∗1k

)
, (35)

which we can write in terms of the cost function parameters as:

δ∗ = (tα/2 + tβ)

√
σ2
(

2ρ

k
+

(1− ρ)(
√
v0 +

√
v1)2

C − 2fk

)
, (36)

Finally, we can derive an expression for the minimum total cost, C∗, required in order
to achieve a power of 1− β with a given value of δ. To do so, we combine equations 35
and 34:

C∗ = 2fk +
(tα/2 + tβ)2σ2(1− ρ)(

√
v0 +

√
v1)

2

δ2 − (tα/2 + tβ)2σ2(2ρk )
(37)
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6.1.4 Cluster-level treatment allocation with homogenous individual and
cluster costs

We now consider a cost function with homogenous individual and cluster costs. The aim
here is to achieve an optimal allocation of the total sample into number of clusters, k,
and cluster sizes,m. The cost function thus takes the form

C = k(f + vm),

where f is the fixed cost per cluster, and v the variable cost, per individual. Minimising
the square of the MDE (as given in equation 5) subject to this cost constraint yields
optimal values for m:

m∗ =

√
f

v

σ2p
σ2c

(38)

Using this formula and the form of the cost function we derive an expression for the
optimal k:

k∗ =
C

f + v

√
f
v

σ2
p

σ2
c

(39)

As Liu (2013) notes, it my be instructive to use the definition of the ICC to rewrite
equations 38 and 39 as:

m∗ =

√
f

v

1− ρ
ρ

and k∗ =
C

f + v
√

f
v
1−ρ
ρ

(40)

Here we see that the larger is the ICC, the smaller the optimal m. This is due to the fact
that when the ICC is high, outcomes within clusters are highly correlated, and increasing
the number within the cluster, m, adds little in precision gains. Resources are better
spent by increasing the number of clusters, k.

With the optimal values of m and k in hand, we can compute the minimum effect
size in order to achieve power of 1− β, given the budget constraint, C:

δ∗ = (tα/2 + tβ)

√
2σ2

(
1 + (m∗ − 1)ρ

m∗k∗

)
(41)

To complete this section, we derive an expression for the minimum total cost, C∗,
required in order to achieve a power of 1− β with a given value of δ. In order to do so,
we combine equations 41 and 40:

C∗ =
2σ2

δ2
(tα/2 + tβ)2

[
f + v

√
f

v

1− ρ
ρ

]1 + (
√

f
v
1−ρ
ρ − 1)ρ√

f
v
1−ρ
ρ

 (42)
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6.1.5 More complex cost functions

The researcher might face more complex design features that the ones discussed above,
and the optimal allocation might require different number of treatment and control
clusters, and/or different number of individuals sampled across treatment and control
clusters. For these situations, it is useful to generalize equation 5 and express the MDE
as:

δ2 = (tα/2 + tβ)2

(
σ2c
k0

+
σ2p
m0k0

+
σ2c
k1

+
σ2p
m1k1

)
.

In general, the optimal allocation of k0,k1,m0, and m1 will be obtained by minimizing(
σ2
c
k0

+
σ2
p

m0k0
+ σ2

c
k1

+
σ2
p

m1k1

)
subject to a cost constraint35. For specific parameter values,

this minimisation can be done using numerical optimization software.
There are some simplified cases in which one can also combine some of the previ-

ous results with a grid search on one of the unknown parameters to find the optimal
solution using a simple spreadsheet. For instance, consider the case in which treat-
ment and control cluster fixed costs are different but m is not given, so an optimal m
must be found. This would be as the case of subsection 6.1.2 but with unknown m.
Hence, using that f0=f

′
0+vm and that f1=f

′
1+vm, different values of f0 and f1 can be

computed for each possible m. These will lead to different values of k0 and k1 using
equation 30. The optimal combination of m, k0 and k1 will be the one that minimizes(
σ2
c
k0

+
σ2
p

mk0
+ σ2

c
k1

+
σ2
p

mk1

)
.

Another simplified case which is likely to be of interest is when the treatment and
control variable cost per observation are different, but the fixed cost per cluster are the
same. This is the case of section 6.1.3 but where k is not given, and an optimal value
for it must be found. Again, a grid search for different values of k can be used to find
the optimal combination of k,m0,m1. For each different value of k, the corresponding
values of m0 and m1 can be computed using equations 34. The optimal combination of

k, m0 and m1 will be the one that minimizes
(
σ2
c
k +

σ2
p

m0k
+ σ2

c
k +

σ2
p

m1k

)
.

In practice, the cost function might not be as simple as the one used above. For
instance, costs could increase discontinuously in the number of individuals per cluster if
interviewers must spend an extra night, or a new vehicle must be purchased to be able
to cover more than a certain amount of clusters in a given time period. However, the
exercise of computing the cost for each combination of clusters and number of individuals
per cluster should be feasible. This information can be embedded within an isopower
curve, which yields the different combinations of clusters (k) and individuals per cluster
(m) that provide the same level of power36. The cost information, together with the
isopower curve, will allow the researcher to choose the combination that minimizes cost.
There may be cases where the data collection is commissioned to a survey firm that

35Note that minimizing the MDE is equivalent to maximizing power. Note also that the other com-
ponents of the MDE formulae are fixed with the sample

36using formulae such as equations (8), (10), (13), (14) or (23) depending on the case
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is not willing to share the cost function. In these circumstances, the researcher can
provide possible combinations of number of clusters and number of individuals (from
the isopower curve), and the survey firm can choose the one that minimizes its costs.

6.2 Simulation

A researcher might need to compute the required sample size for an experiment whose
features do not conform to the ones indicated in previous sections. The possibilities of
variation are endless. They include experiments in which the number individuals per
cluster varies across clusters, experiments with more than two treatment arms, or using
data from more than two time periods, to say a few. In situations where some features
of the experimental design vary significantly with respect to the canonical cases given
above, simulation methods can be very useful to estimate the power of a given design,
and correspondingly adjust the sample of the design to achieve the desired level of power.

To understand the logic of the simulation approach, it is useful to remember the
definition of power: the probability that the intervention is found to have an effect on
outcomes when that effect is true. In a hypothetical scenario in which the researcher
happened to have 1,000 samples as the ones of her study, and if she could be certain
that “the effect is true” in all these samples, then she could estimate such probability
(power) by simply counting in how many of these samples she “finds” the effect (the null
hypothesis of zero effect is rejected), and dividing it by 1,000.

The simulation approach simply operationalizes the above by providing the researcher
with 1,000 (or more) computer-generated samples, hopefully similar to the one of her
study (or at least, obtained under the assumptions that that the researcher is planning
the study). Because these are computer-generated samples, the researcher can obtain
these samples imposing the constraint that the effect is true (and in particular, it will
draw the samples assuming that the effect of the intervention is the same as the effect
size, δ, for which she wants to estimate the power).

In general, the steps required to estimate the power of a given design through simu-
lation are as follow (see Appendix C for an example)37:

Step 1 : define the number of simulations that will be used to estimate the power of
the design, say S; as well as the significance level for the tests.

Step 2 : define a model that will be used to draw computer-generated samples “as
those in the study”. This model will have a non-stochastic part (sample size, number
of clusters, distribution of the sample across clusters, number of time periods, ICC,
autocorrelation terms, mean and standard deviation of the outcome variable, effect size,
etc) and a stochastic part (error term)38. An example of such model could be, for
instance, equation 4 but for specific values for the effect size, standard deviation and
ICC (in Appendix C.6 these are set as δ = 4, σ = 10 and ρ = .3 ).

37Feiveson (2002) provide insightful examples for Poisson regression, Cox regression, and the rank-sum
test.

38If a pilot dataset is available, an alternative approach is to bootstrap from this data(see Kleinman
and Huang (2014)).
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Step 3 : using computer routines for pseudo-random numbers, obtain a draw of the
error term (or composite of error terms) for each individual in the sample. It is crucial
that the error term is drawn taking into account the stochastic structure of our exper-
iment (the correlation of draws amongst different individuals and time periods through
the ICC or similar parameters). To draw samples from the error terms, a distribution
will need to be assumed. Although assuming Normality is common, the approach allows
to assume other distributions that might be more appropriate for the specific experiment.

Step 4 : using the model and parameter values indicated in Step 2, and the sample
of the error term (or composite of error terms) generated in Step 3, obtain the values
of the outcome variable for the sample. Once this is done, the draws of the error term
generated in Step 3 can be discarded.

Step 5 : using the data on outcomes generated in Step 4, and the model of Step 2,
test the null hypothesis of interest (usually, that the intervention has no effect39). Keep
a record of whether the null hypothesis has been rejected or not.

Step 6 : Repeat Steps 3 to 5 for S times
Step 7 : the estimated power is the number of times that the null hypothesis was

rejected in Step 5 divided by S.
Although using simulation methods to estimate power has a long tradition in statis-

tics, the approach is not so commonly used in practice (Arnold et al. 2011)40. We
suspect that Step 3 is the most challenging for the applied researchers. In Appendix C,
we provide several hints, which could be of some help.

6.3 Adjusting sample size calculations for multiplicity

A common problem with experiments (and more generally in empirical work) is that,
more than one null hypothesis is usually tested. For instance, it is common to test the
effect of the intervention on more than one outcome variable. This creates a problem
because the number of rejected null hypothesis (the number outcome variables for which
an effect is found) will increase (independently of whether they are true or not) with
the number of null hypotheses (outcome variables) tested if the significance level is kept
fixed with the number of hypotheses.

For instance, consider that we are testing the effect of an intervention on three
different outcome variables, and that we use an α equal to 0.05 for each test. If we assume
that the three outcome variables are independent, then probability that we do not reject
any of the three when the three null hypotheses are all true is (1 − 0.05)3. Hence, the
probability that we reject at least one of them if the three are true is 1−(1−0.05)3 = 0.14.
Why is this a problem? Assume that the intervention will be declared successful it is
found that it improves at least one of the outcomes. The numbers above implies that
the intervention will be declared successful with a probability of 0.14 (larger than the

39We are assuming that the test for the null hypothesis has the correct size. Otherwise see Lloyd
(2005)

40See Hooper (2013), Kontopantelis et al. (Forthcoming), and Kumagai et al. (2014) for some recent
implementations of the simulation approach to estimate power.
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normal significance level of 0.05) even if it has no real effect on any of the three outcome
variables.

The problem of multiplicity of outcome variables is recognized by regulatory agencies
that approve medicines (Food and Drug Administration (1998) and European Medicines
Agency (2002)) and has recently become more common also in applied work in economics
(Anderson (2008), Carneiro and Ginja (2014)41). The standard solution requires per-
forming each individual hypothesis test under an α smaller than the usual 0.05 (Ludbrook
1998, Romano and Wolf 2005) so that the probability that at least one null hypotheses
is rejected when all null hypotheses are true ends up being 0.0542. Hence, when doing
the sample size calculations, the researcher should also use a smaller α than 0.05, which
will increase the sample size requirements.

When the outcome variables are independent, the probability that at least one null
hypothesis is rejected when all are true, usually called the Family Wise Error Rate
(FWER) is 1− (1− α)h, where α is the level of significance of the individual tests and
h is the number of null hypothesis that are tested (i.e. number of outcome variables).
Hence, if our study needs a FWER =0.05, then the significance level for each individual
test is given by 1− (1− 0.05)(1/h), which would be 0.0169 in our example of h = 343.

In most experiments, the outcome variables will not be independent. Taking into
account this dependency will yield higher values of α, and consequently smaller sample
size requirements. If one was willing to assume the degree of dependency amongst the
different outcome variables, then a time consuming but feasible approach to compute
the required power is to use the simulation methods previously described combined with
a method for Step 5 (testing the null hypothesis) that takes into account the multiple
tests carried out and the dependence in the data (such as Romano and Wolf (2005)
or Westfall and Young (1993)). If this was not available, a rule of thumb is to use

α = 1− (1− 0.05)(1/
√
h), a correction which was popularised by John W. Tukey(Braun,

1994). This will result in an α larger than when independence is assumed, and hence
smaller sample size requirements.

7 Conclusion

In this paper, we have reviewed the methods to provide sample size calculations for stud-
ies that go beyond the simple comparisons of treatment and control averages. Extensions
have included how to maximize power given a cost constraint, adjusting the sample size
calculations when multiple outcomes are being tested, and the use of simulation exercises
to estimate the power of more complex designs not covered so far.

Researchers will need to make more assumptions when taking advantage of these
more complex methods that we provide here than in simpler ones. However, we believe

41There is less consensus on whether correcting for multiplicity is necessary when testing multiple
treatments (see Wason et al. (2014)).

42An alternative way to analyse the data is to test jointly (through an F-test) the null hypotheses that
the intervention does not have an impact on any of the outcome variables considered.

43A common simplification is to use the Bonferroni correction, which would be 0.05/h
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that the increasing availability of publicly available datasets means that researchers are in
a relatively good position to make credible assumptions about the required parameters.
Researchers could also help other researchers by reporting basic parameters such as
intra cluster correlations, individual and cluster level correlations, and R-squares in
their papers. Journal editors could help to speed up the process by coordinating on
certain reporting, rules as it has happened in Medicine (Schulz et al., 2010).

Our experience is that researchers more often than not, tend to go for an equal split
of sample size between treatment and control, before thinking how an unequal split
could decrease the costs (or provide more power at the same cost). The formulae and
other information that we have provided here might enable researchers to improve on
this practice.

Another issue in which we expect further development in the future is to consider
adjustments in the sample size calculations when the RCT considers multiple outcomes.
It is starting to make its way on empirical work to adjust the p-values when multiple
hypotheses are being tested. Hence, it is only a question of time that this adjustment is
not only done ex-post once the data is collected, but considered ex-ante when the study
is being designed and the sample planned.
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Appendices

A Derivation of sample size formula for individual-randomized
case with unequal variances

In this section we derive the optimal sample allocations for the individual-randomized
case where variances are unequal, arriving at the expression found in equation 3. We
start with the expression for δ:

δ = (tβ + tα/2)

√
σ20
n0

+
σ21
n1

δ2 = (tβ + tα/2)
2

(
σ20

N − n1
+
σ21
n1

)
∂δ2

∂n1
= (tβ + tα/2)

2

(
(−1)(−1)

σ20
(N − n1)2

+ (−1)
σ21

(n1)2

)
= 0

⇒ σ20
(N − n1)2

=
σ21

(n1)2

⇒ σ0
(N − n1)

=
σ1

(n1)

⇒ n1σ0 = (N − n1)σ1

⇒ N =
n1σ0
σ1

+ n1 =
n1σ0 + n1σ1

σ1

⇒ N =
n1σ0 + n1σ1

σ1
=
σ0 + σ1
σ1

n1

Defining π1 = σ1
σ0+σ1

leads to N = n1
π1

. By symmetry, the F.O.C. for n0 will result in
N = n0

π0
, where π0 = σ0

σ0+σ1
. Plugging these values for n0 and n1 back into the equation

for δ2 we see that:

N∗ = (tβ + tα/2)
2 1

δ2

(
σ20
π∗0

+
σ21
π∗1

)
,

where π∗0 = σ0
σ0+σ1

and π∗1 = σ1
σ0+σ1
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B Estimating Key Parameters in STATA

On ocassions, we might have a dataset from a similar environment to the one for which
we are planning the RCT. In this case, we might use this dataset to estimate the key
parameters needed for the sample size calculations. In this section, we show how to
do this with the APRENDE dataset. The variables earnings 02 and earnings 01 denote
earnings in two different time periods. The variable read is used as a covariate, and the
varaible town id is the cluster identifier.
use "APRENDE.dta", clear
drop if read==.
/ * estimate ρ*/
loneway earnings 02 town id
gen rho=r(rho)
/* estimate σp*/
gen sigma p=r(sd w)
/* estimate σc*/
gen sigma c=r(sd b)
/* estimate σx, using the varable read as the X variable*/
regr earnings 02 read, cluster(town id)
predict uhat,resid
sum uhat
gen sigma x=r(sd)
/ * estimate ρx*/
loneway uhat town id
gen rho x=r(rho)
/* estimate σxp*/
gen sigma xp=r(sd w)
/* estimate σxc*/
gen sigma xc=r(sd b)
/ * estimate R2

p*/
gen R2 i=(sigma pˆ2-sigma xpˆ2)/sigma pˆ2
/ * estimate R2

c*/
gen R2 c=(sigma cˆ2-sigma xcˆ2)/sigma cˆ2
/* estimate the panel data parameters ρp and ρc */
egen earnings 02 c=mean(earnings 02),by(town id)
egen earnings 01 c=mean(earnings 01),by(town id)
gen earnings 02 p=earnings 02-earnings 02 c
gen earnings 01 p=earnings 01-earnings 01 c
corr earnings 02 c earnings 01 c
gen rho c=r(rho)
corr earnings 02 p earnings 01 p
gen rho p=r(rho)
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C Simulation Code

The objective here is to provide sections of code that are useful if you would like to
run your own simulations. This may be done in order to verify formulae for certain
outcomes, or to provide a simulated estimate of sample size if no formulae are available
for the specific, likely complex, trial design to be implemented.

C.1 How to create clusters

The code below creates a dataset with 100 clusters (k = 100) with 10 observations per
cluster (m = 10), with equal treatment/control allocation. At the cluster level, a nor-
mally distributed cluster-level error term, with a standard deviation of 10, is created
(called group below). As shown later, this will be used to create an ICC.

/*CLUSTER LEVEL*/
/* create an empty dataset with 100 observations*/
set obs 100
gen cluster= n
/*draw from a normal distribution, with mean 0, standard deviation
10 */
gen group=rnormal(0,10)
sum
local N=r(N)
/*create the treatment variable indicator*/
gen treat=0
/* allocate half of the cluster to treatment status, the remaining
half to control*/
replace treat=1 if n<=‘N’/2
so cluster
tempfile cluster error g
/*create a temporary file for the cluster errors */
save ‘cluster error g’,replace
/*INDIVIDUAL LEVEL*/
clear
/*n=mk, so if we require k=100 and m=10, we need n=1000*/
set obs 1000
/*Generate clusters*/
gen u=invnormal(uniform())
/*cut the data into 100 equally sized sections*/
egen cluster = cut(u), g(100)
replace cluster=cluster+1
so cluster

*merge in cluster errors
merge cluster using ‘cluster error g’
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C.2 How to generate data with a specific ICC

In this section, all of the initial code is the same as before. The addition comes in
the bottom lines, when we create the outcome variable, y, as a mix of individual- and
cluster-level errors. The code below sets the ICC=.3 . Note too that we set σ = 10, the
average of y in the control group to 10, and δ = 4.

/*CLUSTER LEVEL*/
set obs 100
gen cluster= n
/* set σ = 10 */
gen group=rnormal(0,10)
sum
local N=r(N)
gen treat=0
replace treat=1 if n<=‘N’/2
so cluster
tempfile cluster error g
save ‘cluster error g’,replace
/*INDIVIDUAL LEVEL*/ clear
set obs 1000
gen u=invnormal(uniform())
egen cluster = cut(u), g(100)
replace cluster=cluster+1
so cluster
merge cluster using ‘cluster error g’
tab m
drop m
/* set σ = 10 */
gen individual=rnormal(0,10)
/*create error term as composite of group and individual error terms,
with weights to achieve an ICC=.3*/
gen epsilon = (sqrt(.3))*group + (sqrt(.7))*individual
/* set y=10 for the control group */
gen y=10+ epsilon if treat==0
/* generate a δ = 4 */
replace y=10+4+epsilon if treat==1

Once the data has been created, we may want to estimate the ICC. This is done
using STATA’s loneway command. Below we consider the ICC for the control clusters:

loneway y cluster if treat==0
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C.3 How to Introduce Covariates

To add a covariate at the cluster level, we follow the code as in the section above with
two additions. In the cluster level code we add:

gen x g=rnormal(0,10)

Then, at the bottom of the code, when specifying the data generating process for y,
we decide on the R2 of this covariate. Note that both cluster- and individual-level error
terms both have σ = 10, as does the covariate. The code below generates an R2 of .2,
and a conditional ICC of .3 as well (the conditional variance is .8 of total variance, so
to get a conditional ICC of .3, we weight the group component by .3*.8=.24):

gen y=10+(sqrt(.24))*group + (sqrt(.2))*x g + (sqrt(.56))*individual

C.4 How to generate data with binary outcomes and specific ICCs

In order to get clustered binary outcomes, we specify a beta-binomial distribution as
the data generating process at the cluster level. This means cluster success rates,pj are
draws from a distribution with mean p and variance ρp(1 − p). The beta-binomial dis-
tribution has two parameters, α and β, which we can derive using the two expressions
p = α

α+β and ρ = 1
1+α+β . Rearranging, we get α = p(1−ρ)

ρ and β = p(1−p)(1−ρ)
ρ . At the

individual level, binary outcomes yij are generated from a bernoulli(pj) distribution. In
this way we can generate individual binary outcomes that are correlated within cluster,
with ICC ρ.

/*CLUSTER LEVEL*/
set obs 100
gen cluster= n
/* set ICC = .25*/
local rho=.25
/* set p0=.5 and δ = .05 */
local p0=.5
local p1=.55
/* rbeta is STATA’s beta-binomial distribution command*/
gen p0=rbeta( (‘p0’*(1-‘rho’)/‘rho’),((1-‘rho’)*(1-‘p0’)/‘rho’))
gen p1=rbeta( (‘p1’*(1-‘rho’)/‘rho’),((1-‘rho’)*(1-‘p1’)/‘rho’))
local N=r(N)
gen treat=0
replace treat=1 if n<=‘N’/2
gen p=p0
replace p=p1 if treat==1
drop p0 p1
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so cluster
tempfile cluster p g
save ‘cluster p g’,replace
/*INDIVIDUAL LEVEL*/
clear
set obs 1000

* Generate clusters
gen u=invnormal(uniform())
egen cluster = cut(u), g(100)
replace cluster=cluster+1
so cluster

*merge in cluster errors
merge cluster using ‘cluster p g’
tab m
drop m
/*quick way to generate bernoulli(p) distributed data*/
gen y = ( uniform() < p )

C.5 How to create panel data

In this section we detail how to create panel data, with specific autocorrelation and ICC
terms. Below, the values are set to ρc = .2, ρp = .7, the ICC ρ = .3, and as before, σ = 10:

/*CLUSTER LEVEL*/
set obs 100
gen cluster= n
/* set σ = 10 */
gen grp=rnormal(0,10)
gen grp1=rnormal(0,10)
gen grp2=rnormal(0,10)
/* where we determine ρc */
gen group1=sqrt(.2)*grp +sqrt(.8)*grp1
gen group2=sqrt(.2)*grp +sqrt(.8)*grp2
sum
drop grp*
local N=r(N)
di ‘N’
gen treat=0
replace treat=1 if n<=‘N’/2
so cluster
save cluster error,replace
/*INDIVIDUAL LEVEL*/
clear
set obs 1000
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* Generate clusters
gen u=invnormal(uniform())
egen cluster = cut(u), g(100)
replace cluster=cluster+1
so cluster

*merge in cluster errors
merge cluster using cluster error
tab m
drop m u
/* set σ = 10 */
gen indv=rnormal(0,10)
gen indv1=rnormal(0,10)
gen indv2=rnormal(0,10)
/* where we determine ρp */
gen individual1=sqrt(.7)*indv+sqrt(.3)*indv1
gen individual2=sqrt(.7)*indv+sqrt(.3)*indv2
drop indv*
/* where we set the ICC */
gen y0=10+(sqrt(.3))*group1 + (sqrt(.7))*individual1
/* allow y to increase by 2 in the second period, a common time trend*/
gen y1=12+(sqrt(.3))*group2 + (sqrt(.7))*individual2
drop group* individual*
/* set δ = 4 */
replace y1=y1+4 if treat==1

As part of the simulation, we might want to verify that the data is being generated
with the correct ρp and ρc. Below is some simple code to estimate these parameters from
the simulation directly above:

/* construct cluster means of outcome variable */
egen y1 cluster=mean(y1),by(cluster)
egen y0 cluster=mean(y0),by(cluster)
/*construct individual component of outcome variable */
gen y1 individual=y1-y1 cluster
gen y0 individual=y0-y0 cluster
/* ρc estimate */
corr y1 cluster y0 cluster
/* ρp estimate*/
corr y1 individual y0 individual

C.6 How to compute power through simulation

In this section we present code in order to simulate power as detailed in section 6.2.
The basic idea here is to run 1000 simulations, and then count the number of times the

39



treatment coefficient is statistically significantly different from zero. Counting the num-
ber of times we get a statistically significant parameter, and dividing it by 1000 yields
our simulated power. In the code below, we refer to the seven steps outlined in section
6.2 in order to outline how one may proceed with simulating power. The example below
is for a continuous outcome with cluster-randomized treatment.

/*STEP 1*/
local numits=1000
local it=0
/ create a temporary file that will store the output from the simulations

*/
tempname memhold
tempfile montec results
postfile ‘memhold’ reject t rho using ‘montec results’
/* start quietly */
qui{
/*start iterations here*/
while ‘it’<=‘numits’{
local it=‘it’+1
clear
/* STEPS 2 and 3 */

*cluster errors
set obs 100
gen cluster= n
gen group=rnormal(0,10)
sum
local N=r(N)
di ‘N’
gen treat=0
replace treat=1 if n<=‘N’/2
so cluster
tempfile cluster error g
save ‘cluster error g’,replace
clear
set obs 1000

* Generate clusters
gen u=invnormal(uniform())
egen cluster = cut(u), g(100)
replace cluster=cluster+1
so cluster

*merge in cluster errors
merge cluster using ‘cluster error g’
tab m
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drop m
gen individual=rnormal(0,10)
/* STEP 4*/
gen y=10+(sqrt(.3))*group + (sqrt(.7))*individual
replace y=y+4 if treat==1
loneway y cluster if treat==0
local rho=r(rho)
regr y treat,cluster(cluster)
/* STEP 5 */
local t loop= b[treat]/ se[treat]
local df=100
local critical u=invttail(‘df’,.05/2)
local critical l=invttail(‘df’,1-.05/2)
local reject t=(‘t loop’>‘critical u’)|(‘t loop’<‘critical l’)
di ‘reject t’
/*write output from simulation to the temporary file*/
post ‘memhold’ (‘reject t’) (‘rho’)
clear
}
/* STEP 6 */
} /* close quietly*/
postclose ‘memhold’
use ‘montec results’,clear
/* STEP 7 */
/* reject=1 if null is rejected, 0 otherwise. So the mean of reject
from the 1000 simulation draws will yield the simulated power */
sum reject t rho

D STATA Programmes to Compute Power with Binary
Outcomes

Below is some code that creates a STATA .ado programme in order to get power for
binary outcomes. The first section of code immediately below is for the case where there
are no covariates:

cap prog drop discretepower
program discretepower
syntax anything [,alpha(real .05) beta(real .8) pi(real .5)]
tokenize "‘0’",parse(" ,")
local rho =‘1’
local m =‘2’
local p 0 =‘3’
local impact =‘4’
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local z alpha = invnormal(1-(‘alpha’/2))
local z beta = invnormal(‘beta’)
local deff = (1+‘rho’*(‘m’-1))
local p 1 =‘p 0’+‘impact’
local k =(‘deff’/‘m’)*( (‘p 1’*(1-‘p 1’)/‘pi’)+(‘p 0’*(1-‘p 0’)/(1-‘pi’))
) *((‘z alpha’+‘z beta’)ˆ2)/‘impact’ˆ2
di
di "Total number of clusters= " ‘k’
end

Here is an example of how to use this .ado file for the case where p0 = 0.5, δ = .1,
ρ = .05 and m = 30. The order in which these parameters must be entered is specified
by the positional arguments within the .ado file. For example, see the line local rho
=‘1’

. This tells us that the value of ρ should be entered first. Looking at the proceeding
lines, we also see that the order of the remaining parameters are to be entered is m, p0
and finally the design effect δ. Looking at the third line of code above (starting with the
word syntax), there are several options that may be changed from the default values -
α (set at .05), β (set at .8) and π (set at .5):

discretepower .05 30 .5 .1

Now for the more complicated code below, where we allow a single discrete covari-
ate, as we saw in section 5.3. The code below allows for a discrete X with five points of
support. The code could easily be shortened for a simple binary X, or extended for more
points of support. The code for points of support up to 5 is supplied as supplementary
material:

cap prog drop discretepowerX
program discretepowerX
syntax anything [,alpha(real .05) beta(real .8) pi(real .5)]
tokenize "‘0’",parse(" ,")
local rho =‘1’
local m =‘2’
local x 0 =‘3’
local theta 0 =‘4’
local p C0 =‘5’
local impact 0 =‘6’
local x 1 =‘7’
local theta 1 =‘8’
local p C1 =‘9’
local impact 1 =‘10’
local x 2 =‘11’
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local theta 2 =‘12’
local p C2 =‘13’
local impact 2 =‘14’
local x 3 =‘15’
local theta 3 =‘16’
local p C3 =‘17’
local impact 3 =‘18’
local x 4 =‘19’
local theta 4 =‘20’
local p C4 =‘21’
local impact 4 =‘22’
local p C =(‘theta 0’*‘p C0’ + ‘theta 1’*‘p C1’ + ‘theta 2’*‘p C2’ +
‘theta 3’*‘p C3’ + ‘theta 4’*‘p C4’)
local p T0 =‘p C0’+‘impact 0’
local p T1 =‘p C1’+‘impact 1’
local p T2 =‘p C2’+‘impact 2’
local p T3 =‘p C3’+‘impact 3’
local p T4 =‘p C4’+‘impact 4’
local deff = (1+‘rho’*(‘m’-1))
local impact =(‘theta 0’*‘impact 0’ + ‘theta 1’*‘impact 1’ + ‘theta 2’*‘impact 2’
+ ‘theta 3’*‘impact 3 ’ + ‘theta 4’*‘impact 4’)
local z alpha = invnormal(1-(‘alpha’/2))
local z beta = invnormal(‘beta’)
#delimit ;
matrix M=(
(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’) + (1-‘pi’)*‘theta 0’*‘p C0’*(1-‘p C0’))
+
(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’) + (1-‘pi’)*‘theta 1’*‘p C1’*(1-‘p C1’))
+
(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’) + (1-‘pi’)*‘theta 2’*‘p C2’*(1-‘p C2’))
+
(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’) + (1-‘pi’)*‘theta 3’*‘p C3’*(1-‘p C3’))
+
(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’) + (1-‘pi’)*‘theta 4’*‘p C4’*(1-‘p C4’))
,
(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’)) +
(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’)) +
(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’)) +
(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’)) +
(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’))
,
‘x 0’*(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’) + (1-‘pi’)*‘theta 0’*‘p C0’*(1-‘p C0’))
+
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‘x 1’*(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’) + (1-‘pi’)*‘theta 1’*‘p C1’*(1-‘p C1’))
+
‘x 2’*(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’) + (1-‘pi’)*‘theta 2’*‘p C2’*(1-‘p C2’))
+
‘x 3’*(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’) + (1-‘pi’)*‘theta 3’*‘p C3’*(1-‘p C3’))
+
‘x 4’*(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’) + (1-‘pi’)*‘theta 4’*‘p C4’*(1-‘p C4’))
\
(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’)) +
(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’)) +
(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’)) +
(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’)) +
(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’))
,
(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’)) +
(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’)) +
(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’)) +
(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’)) +
(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’))
,
‘x 0’*(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’)) +
‘x 1’*(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’)) +
‘x 2’*(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’)) +
‘x 3’*(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’)) +
‘x 4’*(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’))
\
‘x 0’*(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’) + (1-‘pi’)*‘theta 0’*‘p C0’*(1-‘p C0’))
+
‘x 1’*(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’) + (1-‘pi’)*‘theta 1’*‘p C1’*(1-‘p C1’))
+
‘x 2’*(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’) + (1-‘pi’)*‘theta 2’*‘p C2’*(1-‘p C2’))
+
‘x 3’*(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’) + (1-‘pi’)*‘theta 3’*‘p C3’*(1-‘p C3’))
+
‘x 4’*(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’) + (1-‘pi’)*‘theta 4’*‘p C4’*(1-‘p C4’))
,
‘x 0’*(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’)) +
‘x 1’*(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’)) +
‘x 2’*(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’)) +
‘x 3’*(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’)) +
‘x 4’*(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’))
,
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‘x 0’ˆ2*(‘pi’*‘theta 0’*‘p T0’*(1-‘p T0’) + (1-‘pi’)*‘theta 0’*‘p C0’*(1-‘p C0’))
+
‘x 1’ˆ2*(‘pi’*‘theta 1’*‘p T1’*(1-‘p T1’) + (1-‘pi’)*‘theta 1’*‘p C1’*(1-‘p C1’))
+
‘x 2’ˆ2*(‘pi’*‘theta 2’*‘p T2’*(1-‘p T2’) + (1-‘pi’)*‘theta 2’*‘p C2’*(1-‘p C2’))
+
‘x 3’ˆ2*(‘pi’*‘theta 3’*‘p T3’*(1-‘p T3’) + (1-‘pi’)*‘theta 3’*‘p C3’*(1-‘p C3’))
+
‘x 4’ˆ2*(‘pi’*‘theta 4’*‘p T4’*(1-‘p T4’) + (1-‘pi’)*‘theta 4’*‘p C4’*(1-‘p C4’))
);
mat invM=invsym(M);
matrix g=(
‘theta 0’*(‘p T0’*(1-‘p T0’) - ‘p C0’*(1-‘p C0’)) +
‘theta 1’*(‘p T1’*(1-‘p T1’) - ‘p C1’*(1-‘p C1’)) +
‘theta 2’*(‘p T2’*(1-‘p T2’) - ‘p C2’*(1-‘p C2’)) +
‘theta 3’*(‘p T3’*(1-‘p T3’) - ‘p C3’*(1-‘p C3’)) +
‘theta 4’*(‘p T4’*(1-‘p T4’) - ‘p C4’*(1-‘p C4’))
,
‘theta 0’*(‘p T0’*(1-‘p T0’)) +
‘theta 1’*(‘p T1’*(1-‘p T1’)) +
‘theta 2’*(‘p T2’*(1-‘p T2’)) +
‘theta 3’*(‘p T3’*(1-‘p T3’)) +
‘theta 4’*(‘p T4’*(1-‘p T4’))
,
‘theta 0’*‘x 0’*(‘p T0’*(1-‘p T0’) - ‘p C0’*(1-‘p C0’)) +
‘theta 1’*‘x 1’*(‘p T1’*(1-‘p T1’) - ‘p C1’*(1-‘p C1’)) +
‘theta 2’*‘x 2’*(‘p T2’*(1-‘p T2’) - ‘p C2’*(1-‘p C2’)) +
‘theta 3’*‘x 3’*(‘p T3’*(1-‘p T3’) - ‘p C3’*(1-‘p C3’)) +
‘theta 4’*‘x 4’*(‘p T4’*(1-‘p T4’) - ‘p C4’*(1-‘p C4’))
);
matrix gprime=g’;
matrix A=g*invM*gprime;
# delimit cr;
local A=A[1,1]
local k = (‘deff’/‘m’)*(‘A’) * (‘z alpha’+‘z beta’)ˆ2) / ‘impact’ˆ2
di "k==" ‘k’
end

As in the simpler case above, the order in which one must enter the paramters is
defined by the positional arguments in the .ado - in this case complicated case, 22 pa-
rameters are required. Here is an example of how to use the programme for a case of
ρ = .05 and m = 30. We know how to order the parameters by referring to the positional
arguments at the beginning of this code. So, we see to start, the order is ρ first, then
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m, then x0, followed by θ0 and so on for the remaining 18 parameters:

discretepowerX 0.05 30 -2 .2 .1 0 -1 .2 .4 .05 0 .2 .5 .1 1 .2 .6
.15 2 .2 .9 .2

To clarify, the full syntax for this prgramme is:
discretepowerX ρ m x0 θ0 pC1 δ0 x1 θ1 pC1 δ1 x2 θ2 pC2 δ2 x3 θ3 pC3 δ3 x4
θ4 pC4 δ4
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Total Sample Size Requirements (n*) Number of Clusters, k*

Effect size =10000

numbers of individuals per cluster (m) numbers of individuals per cluster (m)

10 30 60 100 10 30 60 100

IC
C

 (
ρ

)

0 2508 2508 2508 2508 251 84 42 25

0.01 2743 3264 4046 5089 274 109 67 51
0.03 3194 4718 7004 10053 319 157 117 101

0.05 3646 6173 9963 15017 365 206 166 150

0.1 4774 9808 17360 27428 477 327 289 274

0.2 7030 17079 32153 52251 703 569 536 523

Effect size =20000

numbers of individuals per cluster (m) numbers of individuals per cluster (m)

10 30 60 100 10 30 60 100

IC
C

  
(ρ

)

0 628 628 628 628 63 21 10 6

0.01 693 839 1058 1351 69 28 18 14

0.03 806 1202 1796 2589 81 40 30 26

0.05 919 1565 2536 3829 92 52 42 38

0.1 1201 2474 4384 6931 120 82 73 69

0.2 1765 4292 8083 13136 177 143 135 131

Table 1: Total Sample Size Requirements for Continuous Outcomes under 
Cluster Randomisation

The cells in the left panels report the total sample size per treatment arm (m*k) and the right panels report the number of clusters per treatment arm (k) 
required to achieve 80% power at 5% significance if the effect size is either 10,000 (top panel) or 20,000 (bottom panel) and the standard deviation is 
126383.5.  The intra cluster correlation (ρ) is given in the first column of the Table.



Table 2: Total Sample Size Requirements for Continuous Outcomes under Cluster Randomisation with a Covariate

numbers of individuals per cluster (m) = 100 numbers of individuals per cluster (m) = 20 numbers of individuals per cluster (m) = 8

IC
C

 (
ρ

) 
=

 0
.0

1 0 0.1 0.2 0.4 0.5 0 0.1 0.2 0.4 0.5 0 0.1 0.2 0.4 0.5

0 1351 1294 1232 1110 1048 766 704 642 518 456 679 617 555 430 368

0.1 1293 1237 1176 1054 993 754 692 630 506 444 674 612 550 426 364

0.2 1231 1175 1114 993 933 741 679 617 494 432 669 607 545 421 359

0.4 1107 1052 992 871 812 716 654 592 469 407 659 597 535 411 349

0.5 1045 991 931 811 752 704 642 580 456 394 654 592 530 406 344

IC
C

 (
ρ

) 
=

 0
.3

0 0.1 0.2 0.4 0.5 0 0.1 0.2 0.4 0.5 0 0.1 0.2 0.4 0.5

0 19342 19298 19254 19167 19123 4219 4176 4132 4044 4000 1951 1907 1863 1776 1732

0.1 17462 17418 17374 17287 17243 3843 3800 3756 3668 3624 1801 1757 1713 1625 1581

0.2 15581 15538 15494 15406 15362 3467 3423 3380 3292 3248 1650 1606 1562 1475 1431

0.4 11821 11777 11733 11645 11602 2715 2671 2627 2540 2496 1349 1305 1262 1174 1130

0.5 9940 9897 9853 9765 9721 2339 2295 2251 2164 2120 1199 1155 1111 1023 980

R
p
2 R

p
2 R

p
2

R
c2

R
p
2 R

p
2 R

p
2

R
c2

Each cell reports the total sample size (m*k) required to achieve 80% power at 5% significance if the effect size is 20,000 and the standard deviation is 126383.5. The number of individuals per cluster (m )is 100 in the left panel, 20 in the middle panel 
and 8 in the right panel. The intra cluster correlation (ρ) is 0.01 in the top panel and 0.3 in the bottom panel. Rc2 is the proportion of the cluster-level variance component explained by the covariate, and Rp2 is its individual-level equivalent.



Difference

r
0.1 4909 8820 4860
0.25 4909 7354 4603
0.5 4909 4909 3687
0.75 4909 2464 2159
0.9 4909 998 949

Table 3: Sample size Requirements for 
Continuous Outcomes in Panel Data Models

Difference-
in-

differences

Lagged 
Outcome

The ICC is .05 and the number of individuals per cluster , m, is set to 20. Effect size is 
equal to 10000 and the standard deviation is 126383.5



Total Sample Size Requirements (N*) Number of Clusters (2k*)

Control Group Success Rate (p0): 0.1

numbers of individuals per cluster (m) numbers of individuals per cluster (m)

10 30 60 100 10 30 60 100

IC
C

0 392 392 392 392 39 13 7 4

0.01 428 506 624 781 43 17 10 8

0.03 498 734 1087 1558 50 24 18 16

0.05 569 961 1550 2335 57 32 26 23

0.1 746 1531 2708 4278 75 51 45 43

0.2 1099 2669 5023 8163 110 89 84 82

Control Group Success Rate (p0): 0.3

numbers of individuals per cluster (m) numbers of individuals per cluster (m)

10 30 60 100 10 30 60 100

IC
C

0 706 706 706 706 71 24 12 7

0.01 770 911 1123 1406 77 30 19 14

0.03 897 1321 1957 2804 90 44 33 28

0.05 1024 1731 2790 4203 102 58 47 42

0.1 1342 2755 4874 7700 134 92 81 77

0.2 1978 4804 9042 14693 198 160 151 147

Control Group Success Rate (p0): 0.5

numbers of individuals per cluster (m) numbers of individuals per cluster (m)

10 30 60 100 10 30 60 100

IC
C

0 769 769 769 769 77 26 13 8

0.01 838 992 1223 1531 84 33 20 15

0.03 977 1438 2131 3054 98 48 36 31

0.05 1115 1885 3038 4577 112 63 51 46

0.1 1461 3000 5307 8384 146 100 88 84

0.2 2154 5230 9846 15999 215 174 164 160

Effect size is set to .1 and treatment is evenly allocated (π=.5).

Table 4: Sample Size Requirements for Discrete Outcomes Under Cluster 
Randomisation



ICC=.05 ICC=.1

.1/.1 .05/.15 .03/.17 .1/.1 .05/.15 .03/.17

.45/.55 50 49 49 88 86 85
.4/.6 49 47 47 85 83 81
.3/.7 42 40 39 74 70 68
.2/.8 32 29 27 56 50 47

Table 5: Number of Clusters Required for Discrete Outcomes 
Under Cluster Randomisation With A Binary Covariate

Control group 
success rates for 

X
j
=0/X

j
=1

Impacts  for X
j
=0/X

j
=1 Impacts  for X

j
=0/X

j
=1

Number of individuals per cluster,m ,is set at 60. The overall base rate in this table is set to .5, with the overall impact set 
to .1. Treatment is evenly allocated (π=.5), and θ= P(Xj=1)=.5.
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