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1. Introduction 

 

Measuring productive efficiency has been developing during the last decades to become an 

important research strand within the fields of economics, management science and operations 

research. Two seminal contributions are Farrell (1957) and Charnes et al. (1978). Although 

the latter paper uses the efficiency definition of the former paper the approaches for setting up 

the calculation of the measures differ in the two papers and this has had consequences for how 

the research strand has developed within economics, management science and operations 

research due to the fact that researchers with the latter background have tended to neglect the 

contribution of Farrell (Førsund and Sarafoglou, 2002). 

The purpose of the paper is to explore some basic issues in the efficiency literature with a 

focus on differences between economic interpretations and more operations-research based 

formulations of efficiency.  The paper may therefore be especially useful for researchers from 

other disciplines than economics. The paper may also serve as an introduction to Data 

Envelopment Analysis (DEA) (the name was coined in Charnes et al., 1978), elucidating 

pitfalls and giving the basic ideas of efficiency analyses using DEA as a tool for researchers 

not so familiar with efficiency analysis and DEA.  

The plan of the paper is as follows.  In Section 2 the definitions of efficiency measures in the 

two seminal papers Farrell (1957) and Charnes et al. (1978) are reviewed and the differences 

in approaches pointed out. Section 3 explores the interpretations of the shadow prices (dual 

variables or weights) in DEA problems set up as linear programming problems. Section 4 

provides general productivity interpretations of efficiency measures. Sections 5 and 6 take a 

look at developments within the DEA literature that may be of doubtful value: Section 5 

reviews the introduction of restrictions on weights and Section 6 discusses the soundness of 

the cross-efficiency approach. Conclusions are offered at the end of each section and a general 

summing-up is presented in Section 7. 
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2. Efficiency measure definitions  

 

Introduction 

The fundamental definition of efficiency is apparently different in the two seminal papers; 

Farrell (1957) basing his definition on the proportional scaling needed for observations of an 

inefficient units to be projected onto an efficient production function (later termed the frontier 

function) and Charnes et al. (1978) basing their definition on an index of weighted outputs on 

weighted inputs, restricting this ratio to be less than or equal to the one for the most efficient 

operation (normalised to 1). 

In order to carry out a study of efficiency three elements must be in place 

i) Definitions of efficiency measures 

ii) Methods for calculating efficiency measures 

iii) Relevant data for inputs and outputs of an activity we want to measure efficiency 

for. 

Farrell (1957) and Charnes et al. (1978) provided both definitions and methods. However, 

when Farrell followed up a comment when his paper was discussed at the presentation in 

Royal Statistical Association in 1976 that the newly developed linear programming could be 

applied, the application in Farrell and Fieldhouse (1962) was designed only to accommodate 

the case of a single output and constant returns to scale. Charnes et al. (1978) generalised the 

linear programming to multiple outputs and stressed the connection between dual and primal 

problems. These formulations are still in use today and may explain why this paper only is 

followed by researcher with management science and operational research background.  

The need for relevant data was stressed in both seminal papers. A model representation of the 

real world must always be a simplification. There is a trade-off between focusing on a limited 

set of variables and the degrees of freedom from a methodological point of view. Suffice it to 

say that a fruitful choice of variables depends on knowledge of the activities at hand, as do the 

ability to draw conclusion from the analysis being of value for practical policy measures. The 

question of having sufficient data will be touched upon in Section 5. 

One should be aware of the fact that it has been very difficult to establish the causes of 

efficiency differences between the units of analysis both from a theoretical and 
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methodological point of view1. Without this knowledge it is very difficult to give advice on 

policies to improve efficiency. However, this issue is outside the scope of the paper (see e.g. 

Førsund (2010) for a discussion). 

 

The Farrell definitions of efficiency measures 

Farrell (1957) did not present formal definitions of the efficiency measures, maybe due to a 

wish to keep the exposition simple in order to be “of interest to a wide range of economic 

statisticians, business men and civil servants, many of whom have little knowledge of 

economic theory or mathematics” (p. 11). However, his widely reproduced graphical 

illustrations convey very well his efficiency definitions. His original illustration; Diagram 1, 

is reproduced in Figure 1. The variables y and x along the axes are input coefficients, i.e. an  

 

Figure 1. The original Farrell (1957) illustration of efficiency measures 

 

input divided by the output. The illustration is based on a single output and two inputs. The 

curve SS’ represents the unit isoquant of the efficient, or frontier, production function 

assumed to have constant returns to scale (CRS)2. All technical information about the 

production function then collapses to this unit isoquant in input coefficient space. The unit 

under study is located at P. Technical efficiency is then defined as the relative distance to the 

                                                            
1 Using two-stage procedures to seek for variables correlated with efficiency scores is more explorative than 
based on theory and a key issue is whether  such environmental variables influence only the efficiency score or 
also the production possibility set.  
2 CRS means that expanding the inputs proportionally with the same factor the output(s) will increase with the 
same proportion. 
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frontier keeping output constant but shrinking the use of inputs proportionally in order to 

reach point Q on the frontier; OQ/OP.  

Knowledge about a frontier technology can be obtained in two ways; based on engineering 

information about the production activity in question, or based on observed best practice. The 

latter approach is usually followed in empirical applications. 

The Farrell input- and output-oriented efficiency measures can, in the case of multiple outputs 

and inputs, be generalised using a standard transformation function between inputs and 

outputs in economics, ( , ) ( 0, 0),Y XF Y X F F    where X  is a vector of inputs and Y a vector of 

outputs. We can use the expression ( , ) 0F Y X  as the representation of the general production 

possibilities expressing the set in general as 

{( , ) : 0 can be produced by 0}T Y X Y X= ³ ³                                                                    (1a) 

The border of the set corresponds to a frontier production function. A formulation using the 

transformation function above is 

 ( , ) : ( , ) 0, 0, 0T Y X F Y X Y X                                                                                  (1b)                           

The last equation is derived inserting the transformation relation above. Equality in the 

transformation relation means that we are on the border of the set, i.e. on the frontier function, 

while strict inequality means we have an inefficient unit. For a unit j the formal definition of 

technical efficiency is: 

 1 1Min : ( , ) 0 , (0,1], 1,...,
jj j j j j jE F Y X E j n                                                                          (2) 

Farrell used the notation E1 for this input-oriented technical efficiency measure.3 A common 

frontier technology for all units is assumed. 

Farrell also discussed an output-oriented technical efficiency measure defined as a scaling of 

outputs keeping inputs constant. He also wanted this measure E2 to be between 0 and 1: 

2 2

1
: ( , ) 0 , (0,1], 1,...,

jj j j j j
j

E Min F Y X E j n 


      
  

                                                                (3) 

A separate diagram was not offered for the output-oriented measure, but that is not necessary 

in the CRS case because as Farrell pointed out the measures are identical in this case. (Point P 

is moved to the frontier point Q on SS’ in Diagram 1 increasing the output for given inputs, 

with SS’ now representing the isoquant for the output obtainable on the frontier.) 

                                                            
3 Farrell (1957, p. 259) used the lowercase notation e1 and e2, but changed to upper-case notation for the input-
oriented efficiency measure in Farrell and Fieldhouse (1962, p. 258). 
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The Farrell efficiency measures correspond to the concept of distance functions introduced in 

Shephard (1970). (Shephard’s input distance function is the inverse of Farrell’s input-oriented 

efficiency measure, and Shephard’s output distance function is identical to Farrell’s output-

oriented efficiency measure.) 

The line AA’ is the isocost line with a slope equal to the (negative) ratio of the input prices 

measured  for the input represented on the vertical axis and the input represented on the 

horizontal axis. The isocost line is tangent to the point Q’ on the unit isoquant. Measures 

based on costs can then be established. Technical efficiency E1 can be measured by the ratio 

of costs at the frontier point Q and the observed costs, i.e. OQ/OP again, keeping the observed 

output level and input prices. Farrell introduced a new measure of Overall Efficiency OE 

measured as OR/OP, and the measure Allocative Efficiency AE or Price Efficiency by OR/OQ. 

The latter measure shows the relative cost reduction of moving from a frontier point to a point 

where input costs for the given output is minimised. As we can easily see, the overall 

efficiency measure decomposes into the product of the technical efficiency and the allocative 

efficiency; 1OE E AE  . 

The three cost concepts we need to link the measures to a general situation with multiple 

outputs and inputs and a transformation relation for the production relationships are 

0 0

1

0

1

* 0

1

min subject to ( , ) 0,

m

j i ij
i

m
Q
j i j ij

i

m

j i ij j j j j
i

C q x

C q x

C q x F Y X Y Y













  







                                                                  (4) 

Here the first cost concept is observed input outlays with qi as price of input i (common to all 

units for simplicity) and xij
0 unit j’s observed quantity of input i, Cj

Q is the input costs at the 

frontier point Q adjusting the inputs with the efficiency score θj, and Cj
* is the minimized 

costs at point Q’ given that output is greater or equal to the observed output. The technical 

input-oriented efficiency can be written 0
1 /Q

j jE C C ,  allocative efficiency is * / Q
j jAE C C  

and overall efficiency is * 0/j jOE C C .    We can easily see the same multiplicative 

decomposition of overall efficiency as above. 

Notice that it is the analyst that introduces economic behaviour of cost minimisation, not 

necessarily any of the units under study. The optimised cost Cj
* is thus only a normative 
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benchmark, and does not necessarily reflect behaviour of any observed unit. This point may 

easily be misunderstood in the literature:  it is the analyst that introduces an artificial unit that 

obeys the frontier technology and operates without any technical inefficiency.  Point Q’ in 

Fig.1 serves as a hypothetical benchmark.       

Farrell (1957, pp. 260-261) puts forward arguments for weaknesses with allocative or price 

efficiency and recommends focusing on technical efficiency. His concerns are that price 

efficiency is sensitive to introduction of new observations through the impact on curvature of 

isoquants or errors in measurement of prices, and that the current choice of input proportions 

may be based on past or expected future prices and not on current prices, and will therefore 

only provide a good measure in a completely static situation.  

 

Estimation methods 

Knowledge about a frontier technology can be obtained in two ways; based on engineering 

information about the production activity in question, or based on observed best practice. The 

latter was recommended by Farrell (1957) and is usually followed in empirical applications. 

Farrell (1957) proposed a method for estimating a best-practice frontier by enveloping the 

data by a non-parametric piecewise linear function, imposing convex negatively-sloped 

isoquants and constant returns to scale (CRS). He comments that this way of estimating a 

production function may not be the best if estimating a frontier is all that is required, but that 

“it was chosen simply as providing the best measure of technical efficiency” (Farrell, 1957, p. 

262).4  His estimation method in his original Diagram 2 is illustrated in Figure 2, where input 

coefficients are measured along the axis as in Diagram 1. The CRS frontier production 

function is estimated by piecewise linear segments spanned by the best-practice observations. 

In order to keep the end parts of the unit isoquant parallel with the axis and have the type of 

convex isoquants he wanted, he entered artificial units of value (∞, 0) (a large number suffices 

in actual applications) for input coefficients in principle for each axis. (We will return to this 

practice in Section 5.) Farrell (1957) applied his approach in the case of a single output only.  

His method of estimating the efficiency scores was based on solving a system of linear 

                                                            
4 He then goes on to suggest statistical approaches to estimating parametric frontier functions that were followed 
up in the economics literature during the first three decades after his seminal publication (Førsund and 
Sarafoglou 2002; 2005). 
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Figure 2. The original Farrell (1957) illustration of estimation procedure 

 

equations, stating that observations must lie above to the right in Fig. 2 or on the frontier 

segments; no points can be located closer to the origin. As mentioned in Section 1, in the 

discussion of Farrell’s 1957 paper at the meeting of the Royal Statistical Association in 1956, 

Hoffman made the crucial intervention that a newly developed technique, linear 

programming, could be applied. In Farrell and Fieldhouse (1962) linear programming was 

applied for the first time to the efficiency problem, however, still restricted to constant returns 

to scale and a single output. Farrell and Fieldhouse (1962) suggested generalisations both to 

variable returns to scale and to multiple outputs, but were not completely successful in doing 

this (Førsund et al. 2009). A group of agricultural economists at Berkeley formalised more 

successfully the Farrell and Fieldhouse approach and extended the linear programming to 

multiple outputs (Boles 1967; 1971) (for more references to works by the Berkeley group, see 

Førsund and Sarafoglou 2002; 2005). 

 

The ratio form of the efficiency measure 

Charnes et al. (1978) start out declaring that they want to relate their ideas about efficiency 

measurement to development in economics by making “reference to production functions and 

related concepts…” (p. 430). However, they also want to relate their ideas to engineering, and 

this is actually the starting point for their efficiency definition; it is (allegedly) based on how 

efficiency is defined within that discipline. The key quote from the engineering literature is: 

“efficiency is the ratio of the actual amount of heat liberated in a given device to the 

maximum amount that could be liberated by the fuel” (p. 430). (The reference for the quote is 
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to Encyclopaedia Americana.) This quote leads to the introduction of the ratio approach of 

maximising a ratio of weighted outputs on weighted inputs subject to this ratio being less than 

or equal to one for all units, where the weights are the endogenous variables to be determined. 

This ratio definition is only valid for constant returns to scale. The definition of efficiency for 

a unit j0 (using the original symbols in Charnes et al., 1978) is: 

      

0 0

0

0 0

0

0

0 0

1

1

1
0

1

Max

subject to

1 1..., ,...

, 0 ,

s

rj rj
r

j m

ij ij
i

s

rj rj
r

m

ij ij
i

rj ij

u y
h

v x

u y
j j n

v x

u v r i











 

 









                                                                                             (5)                          

In (5) hj0 is the efficiency measure, y and x are the output and input vectors, respectively, with 

s outputs and m inputs, number of units are n, and urj0 , vij0 are the weights associated with 

outputs and inputs, respectively.5  

The first ratio expression in (5) defining efficiency in Charnes et al. (1978) is what is termed 

productivity in economics. The construction of productivity indices constitutes a well-known 

aggregation problem in economics. A productivity index is closely related to an efficiency 

index. If a productivity index for a unit is compared to the productivity index of the most 

productive unit by forming a ratio, then this ratio is an efficiency index using the most 

productive unit as a benchmark (see Section 4). This is just what the constraints on the 

productivity index imply in the Charnes et al. (1978) definition.  

Conclusions 

Farrell (1957) had a production function in mind when defining technical efficiency. A 

pertinent observation is that the Farrell (1957) definition of efficiency does not depend on the 

                                                            
5 Later in the paper, in order to avoid the weights turning out zero, the sum of slacks is added in the objective 
function of multiplier weighted by the inverse of a non-Archimedean infinitely large number M. In Charnes et al. 

(1979) it is stated that on dual form this addition implies that  =1/M is used as the lower limit for the weights in 
(5). However, since this number can be arbitrarily close to zero, for practical purposes this may leave economic 
rates at zero or infinity and the construct is hardly in use anymore in applied studies. There are also more formal 
reasons for not using the non-Archimedean (Podinovski, 2004b). 
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method by which the frontier and efficiency scores are estimated, unlike starting from the 

ratio definition  that is usually estimated using linear programming (although formulated as a 

fractional programming problem). It is also worthwhile to note that the ratio definition as a 

term is awkward when specifying variable returns to scale, and the name ratio approach is 

actually not used in Banker et al. (1984), p. 1085, when the ratio problem is derived from the 

dual to the “envelopment problem”, i.e., the optimisation problem leading simultaneously to 

the estimate of a frontier production function and efficiency scores in the output – input space.  

As the definition stands this approach seems to be quite different from the seminal approach 

of Farrell (1957). We do not see the need for a specific orientation (input or output as in (2) 

and (3)), and we do not see the proportional scaling that is central to the Farrell definitions. 

But Charnes et al. (1978), as promised, manage to relate the analysis to economics by turning 

the fractional program of the ratio definition (5) into an equivalent linear program6, and 

furthermore, to show that the generalised optimisation problem of Farrell and Fieldhouse 

(1962) stated in output and input variables, is in fact the dual to the transformed ratio 

problem. The estimates of efficiency scores of the different approaches are therefore identical 

for unique solutions due to the duality property of a linear programming problem. It may then 

be said that is does not matter which definition that is adopted. 

 

 

3. The interpretation of shadow prices 

 

Introduction 

As mentioned in the Introduction, the term Data Development Analysis (DEA) was 

introduced in Charnes et al. (1978) and now stands for the model used to estimate efficiency 

measures like (2) and (3). Due to the standard assumptions imposed on the transformation 

function F(X,Y) in the second expression in (1) the optimisation problem will be a linear one 

and we have a primal problem and a dual problem. It is now most common to call the 

formulation implying enveloping the data like the illustration in Fig. 2 the primal problem. 

The dual problem follows from the theory of linear programming. The interpretation of the 
                                                            
6 It may be noted that the latter fractional programming problem, as far as we know, is not in use for practical 
computations. Since the problem has the Farrell problem as its dual, one may say that starting with the fractional 
problem (5) is done just to state a definition of efficiency, but as actual computation is concerned it is a detour. 
 



11 
 

dual variables (also termed weights, multipliers or shadow prices, the last expression being 

common in Economics) is of key importance for understanding the DEA efficiency model. 

Unfortunately such an understanding is usually not explicitly found in papers on DEA.  

 

The DEA non-parametric efficiency model 

The DEA non-parametric efficiency model has the following production possibility set in the 

case of variable returns to scale (VRS) (Banker et al., 1984): 

1 1 1

( , ) : , , 1, 0
n n n

j j j j j j
j j j

T Y X Y Y X X   
  

 
     
 

                                                        (6)  

For this equation we assume that the axioms of convexity and free disposability for the 

production possibility set presented in Banker et al. (1984) hold. The scalar variables λj are 

called “intensity weights” in the DEA literature. All values are constrained to be non-

negative, and at least one output, one input and one intensity weight have to be strictly 

positive. Dropping the condition that the intensity weights sum to 1 constant returns to scale is 

imposed (an assumption of T being a cone is introduced).  

The set T is a polyhedral set with the points 
1 1

( , )
n n

j j j jj j
Y X 

   representing all possible 

combinations within the set based on n units of observation. Vertex points will be the efficient 

points spanning the border of the production possibility set. The weights λj have to be 

estimated in a way consistent with the axiom of the set being the closest convex set 

enveloping all data points. When we have the optimal solution for these weights we also have 

an estimate of the production possibility set and the border of the set; commonly termed the 

frontier production function. 

When using  LP for both estimating the frontier and the efficiency measures,  as done for the 

first time in Farrell and Fieldhouse (1962), and generalised to multiple outputs and made 

accessible to the research community in Charnes et al. (1978), then we have the fundamental 

relationship between a primal solution and a dual solution of an optimal solution. In a 

technical sense one may then say that whether efficiency is defined using the primal or dual 

does not matter. However, one should not forget that the basic definition of an efficiency 

measure in economics is based on the frontier production function concept and formulated in 
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input – output space. It is therefore natural, at least for economists, to view the problem called 

the envelopment problem in operations research for the primal model and the problem 

formulated in a shadow price space for the dual problem (the multiplier problem in OR 

literature).   

The standard primal problem (the envelopment problem) in contemporary DEA literature 

using the Banker et al. (1984) model based on the set T in (6) to estimate Farrell technical 

efficiency scores for a unit j0 in the case of variable returns to scale and input orientation of 

the efficiency measure is7: 

            

0

0 0

0

0

1

1

1
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subject to

, 1,...,

, 1,...,

1

0 , sign free
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n

ij j j ij
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n

rj j rj
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y y r s
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 
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
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







                                                                                            (7) 

We here see the Farrell proportional (or radial) scaling of inputs as in (2) in order for an 

inefficient point to be projected to the frontier.  

The dual problem to problem (7) is 

   

0 0 0

0 0

0 0 0

0 0 0

1

1

0
1 1

Max ( )
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


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                                                                              (8) 

The variables
0 0 0
, ,ij rj jv u u  are the shadow prices on the constraints in (7), which are the input 

constraints, the output constraints and the convexity constraint, respectively. In DEA it is 

                                                            
7 Notice that we do not use an infinitesimal small constant  (a non-Archimedean quantity) explicitly in the 
DEA models, since we suppose that each model is solved in two stages in order to separate efficient and weakly 
efficient units (Cooper et al. 2006).  
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more common to call these variables for multipliers or weights. We then have the 

fundamental duality result for a unique optimal solution:
 0 0 0 0

.j rj rj jr
u y u    In addition to 

the weighted sum of outputs, expressed in dimensionless efficiency measure units, there is the 

shadow price ujo on the convexity constraint in the case of variable returns to scale.
                                          

The interpretation of dual variables will be based on formulating the Lagrangian function for 

the primal problem. Setting up the Lagrangian for the constrained optimisation problem (7) 

(as a maximisation problem for convenience) for unit j0 we have 
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                                                                                                  (9) 

The necessary first-order conditions for a solution to problem (9) are: 
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                              (10) 

From the first condition we have that the intensity weight 
0j

  will be zero for unit j0 if this 

unit is inefficient (
0

1j  ); using the duality result of equality of the two objective functions 

in (7) and (8) we have
0 0 0 0 0

1   rj rj j ij ijr i
u y u v x , i.e. the first condition in (10) holds with 

strict inequality. The second condition will hold with equality since the efficiency score is 

unrestricted. We have that a non-positive value of the efficiency score is not admissible under 

the assumption of at least one output and one input being strictly positive, and at least one 

intensity weight must be positive. Furthermore, the efficiency score cannot exceed one in the 

optimal solution; inputs must be scaled down for inefficient units and remain the same for 
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efficient units due to the nature of the minimisation problem. From the two last 

complementary slackness conditions we have that the shadow prices become zero for 

variables where we have non-negative slacks, i.e. the units in question are inefficient in these 

dimensions. 

If we have a unique solution to problem (7) then the shadow prices of the output and input 

constraints can be interpreted by applying the Envelope Theorem for an inefficient unit. 

However, we know that there may typically be multiple solutions, especially for shadow 

prices. We will therefore assume that for inefficient units with the projection point to the 

frontier being in the relative interior of a face we have unique solutions for the endogenous 

variables. Thus, considering unit j0, assuming we have an optimal solution to problem (7), we 

get:   
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                                  (11) 

Concerning a change in an exogenous variable we have in general that the shadow price on 

the constraint in question for an inefficient unit measures the impact on the objective function, 

the efficiency score, of a marginal increase in the variable in question.  

Looking at a change in input i for unit j0 we have that 
0

0j   for unit j0 being inefficient 

from the first necessary condition in (10). In the first (direct) interpretation of (11) the shadow 

price on the constraint is weighted with the efficiency score. But because this latter is a 

constant, we can evaluate the impact of a change in the input constraint by evaluating the 

change at the input value
0 0

( )j ijx that is on the frontier. The unit of measurement for the 

shadow price weighted with the efficiency score is efficiency score units per measurement 

unit of the input variable in question. The efficiency score is reduced when an input of an 

inefficient unit increases. Notice that the unit of measurement of the dual variable
0ijv  itself is 

the inverse of the input unit of measurement. 

For an inefficient unit the shadow price on the output constraint is directly interpreted as the 

increase in the efficiency score of a marginal increase in the output variable in question 

evaluated at a frontier point. Remember that by definition of the input-oriented efficiency 
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measure the output component of unit j0 is on the frontier. The unit of measurement for the 

shadow price is efficiency score units (dimensionless) per measurement unit of the output 

variable in question.  

In the DEA literature the product of a shadow price and an input,
0 0ij ijv x  is called a virtual 

input, and similarly for the product of a shadow price and an output 
0 0rj rju y is called virtual 

output. As seen from the objective function of the dual problem (8) a virtual output is just 

expressing the contribution to the efficiency score at the optimal solution of the variable in 

question. However, as seen from the first constraint in (8) a virtual input is giving its 

contribution to the share 1 and is dimensionless (remember the measurement unit of the dual 

variable stated above). To get the contribution to the efficiency score we have to multiply the 

dual variable with the efficiency score as seen from the first expression in (11). 

The interpretation of the shadow prices in terms of standard production function concepts can 

straightforwardly be made utilising the dual problem (8). The second constraint will hold with 

equality in an optimal solution for unit j0 and is the equation of the hyperplane of the 

corresponding face (called a facet if the face is of full dimension m + s - 1). Assuming that 

unit j is an efficient unit we have by differentiation of the first equation below: 
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                                                                                           (12) 

This is the economic concept of the marginal productivity of input i in terms of the output of 

type r evaluated at a point on the face where the projection of the inefficient unit j0 is located. 

Using also the types r’ and i’ of outputs and inputs, respectively, we develop in the same way 

the following expressions: 
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                                                                                     (13) 

The first ratio expression is the marginal rate of transformation between output r and r’ and 

the second ratio expression is the marginal rate of substitution between input i and i’. The 
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faceted form of the frontier production function implies that these three fundamental 

economic concepts are constant on a face and varies from face to face.  

We know that vertex points are extreme-efficient units (efficient units with zero slacks), so 

the solution for shadow prices for these units will necessarily not be unique because these 

units belong to more than one face on the surface of the frontier production function. Because 

the constraint qualification is not satisfied for the vertex units we cannot use the Envelope 

Theorem for investigating impacts of change in data for such units. 

In the DEA literature shadow prices in the meaning of the dual variables v and u have 

sometimes been used synonymous to market prices. But we must be careful here. Assuming 

that units located at the frontier follow economic strategies of either minimising costs or 

maximising profit, we have that ratios of market prices correspond to the ratios of dual 

variables in (12) and (13) with input price substituting for a corresponding dual variable of an 

input constraint and an output price for a corresponding dual variable of an output constraint.  

But notice that without more information we cannot establish a correspondence between a 

dual variable and a price. Furthermore, we cannot say much about the economic adaptations 

of an inefficient unit; giving this unit rational objectives of cost minimisation or profit 

maximisation some explaining has to be done to measure such a unit as inefficient.                        

It follows from (12) and (13) that the economic concepts of marginal productivity and rates of 

transformation and substitution cannot be made when the dual variables are zero for inputs or 

outputs on the face in question; we get values of zero or (plus/minus) infinity. All the 

economic concepts have economic meaningful values for a face of full dimension only. 

Furthermore, a zero dual variable for an output in problem (8) means that this variable does 

not contribute to the efficiency score, and a zero variable for an input means that this input 

does not contribute to  the summing-up condition to unity (the roles will be reversed for an 

output-oriented problem). 

 

Calculation of shadow prices 

There is an interest in the efficiency literature for calculating shadow prices. There is an 

extensive review in Zhou et al. (2014). An early paper is Färe et al. (1993), using the 

relationships in (13) on an estimated parametric distance function. However, there are some 

pitfalls with the procedure of finding shadow prices. As explained above the shadow prices 

are evaluated at a frontier point. But as stated in Section 2 there is no assumptions about 
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economic behaviour in DEA. So the projection point of an inefficient unit and the evaluation 

of shadow prices at this point are done by the analyst, and there is by assumption no observed 

unit doing optimisation. The units turning out being efficient are mostly located at vertex 

points, but the shadow prices are not unique here, as mentioned above. Furthermore, if the 

manager of a unit should have a sudden revelation about the frontier and how to realise a 

frontier point, the projection point is just one of very many points that the manager wants to 

move to due to his new insights. Sometimes projection points are used as targets for the units, 

but this idea suffers from the same weakness that a projection point is just one of many 

possible points to try to reach. A radial projection point does not necessarily serve an 

objective function of e.g. maximising profit. 

As an example let us assume that we have just one output and two inputs and that point Q’ in 

Fig. 1 corresponds to a corner point in Fig. 2. If we know the price q2 of one input we can 

then try to estimate the other price q1 that is unknown by using the second relation in (13) 

introducing the condition for cost minimisation: q1= q2v1/v2. However, at a corner point the 

shadow prices are not known, so the left-hand or right-hand values have to be used. As is 

evident from Fig. 2, assuming the price q2 to be known, we get varying estimates for q1 for 

different corner points acting as cost-minimising benchmarks for the observations.  

 

Conclusions 

The concept of shadow prices is generally used by economists as the name for Lagrangian 

parameters used for constraints in an optimisation problem when a Lagrangian is employed. 

Using the DEA model of Banker et al. (1984) the constraints in the LP problem set up to 

estimate efficiency scores comprise outputs, inputs and securing convexity. It is vital for the 

understanding of the solution that the interpretations of the shadow prices (also called weights 

or multipliers) are clear. It is often the case in the DEA literature that these interpretations are 

not explicitly stated.  The objective function is the efficiency score for input orientation (or 

the inverse of the score for output orientation). The shadow prices in an optimal solution 

therefore express the change in the objective function, the efficiency score, by a change in the 

constraint caused by a change in the exogenous output or input observation. Evaluation of the 

derivatives of the value function (unique optimal solutions inserted in the objective function) 

the Envelope Theorem  yields that the shadow prices express the marginal change in the 

efficiency score for an inefficient unit, with a frontier projection point in the interior of a face, 
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of marginal changes in outputs and inputs, respectively. This gives a link to economic 

concepts such as marginal rates of transformation between outputs, marginal rates of 

substitution between inputs, and marginal productivities. All these concepts are expressed by 

ratios of the appropriate shadow prices. Using economic conditions for optimality deriving so-

called shadow prices is problematic. One problem is that a corner point does not have any 

unique solution for shadow prices, and another problem is that having to know one input or 

output price the estimate of other prices will vary with the observation, probably in conflict 

with the standard assumption of give common prices for all the units. 

 

 

4. Productivity interpretations of the Farrell efficiency measures 

 

Introduction 

The ratio formulation of the efficiency measure in (5) due to Charnes et al. (1978) leads to the 

measure being interpreted as a productivity measure with the multipliers or shadow prices as 

weights. However, this may be an awkward interpretation and may have been the motivation 

behind the interest of imposing restrictions on the weights to get a “sounder” or more 

acceptable expression for productivity. But we will show that Farrell measures of productivity 

like the measures in (2) and (3) can be given a straightforward productivity interpretation 

without involving the shadow prices. 

 

The Farrell suite of efficiency measures 

Farrell (1957) defined two technical measures of efficiency, the input-oriented measure  based 

on scaling inputs of inefficient units with a common scalar, projecting the point radially to the 

frontier keeping observed output constant, and the output-oriented measure scaling outputs of 

inefficient units with a common scalar, projecting the point radially to the frontier keeping 

observed inputs constant. The measures were defined for a frontier function exhibiting 

constant returns to scale. However, he also discussed variable returns to scale and studied this 

further in Farrell and Fieldhouse (1962) without explicitly introducing measures reflecting 

scale properties. This was done in Førsund and Hjalmarsson (1974) and (1979), developing a 
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family of five efficiency measures.  This was illustrated using a smooth variable returns to 

scale frontier production function exhibiting an S-shaped graph as typical for neoclassical 

production functions obeying the Regular Ultra Passum  Law of Frisch (1965)8. This may be 

the reason for this family of efficiency measures being rather unknown in the DEA literature. 

However, the efficiency measures are valid for any type of frontier function as long as a basic 

requirement of the variation of the elasticity of scale is fulfilled. It is in particular valid for the 

generic DEA model exhibiting variable returns to scale (VRS) in Banker et al. (1984) that will 

be used in this paper. 

 

The family of Farrell efficiency measures is illustrated in Figure 3 (Førsund and Hjalmarsson, 

1979) in the case of the frontier within a non-parametric framework being a piecewise linear  

 

Figure 3. The Farrell efficiency measures applied to a piecewise linear frontier 

 

function. The point of departure is the observation P0 = (y0, x0) that is inefficient with respect 

to the VRS frontier. The reference point on the frontier for the input-oriented measure E1 with 

respect to the VRS frontier is P1
VRS = (y0, x1

VRS), and the reference point on the frontier for the 

output-oriented measure E2 with respect to the VRS frontier is P2
VRS = (y2

VRS, x0). A second 

                                                            
8 The Regular Ultra Passum Law requires that the scale elasticity decreases monotonically from values greater 
than one, through the value one to lower values when moving along a rising curve in the input space. 
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envelopment is indicated by the ray from the origin being tangent to the point PTops. (We will 

return to the interpretation of this point below.) This frontier exhibits constant returns to scale 

(CRS). The reference points on the frontier are P1
CRS   = (y0, x1

CRS) and P2
CRS = (y2

CRS, x0). 

The dotted factor ray from the origin to the observation gives the productivity of the 

observation, and the dotted factor ray from the origin to a reference point on the VRS frontier 

gives the productivity of this reference point. As is easily seen from Fig. 3 the productivity at 

the CRS envelopment is the maximal productivity obtained on the VRS frontier. Comparing 

the observation with the reference point PTops = (yT, xT) therefore gives the relative 

productivity of an observation to the maximal productivity on the VRS frontier. Continuing 

Farrell’s numbering of measures a measure E3 is introduced covering this measurement and is 

therefore termed the measure of technical productivity.9 The two remaining efficiency 

measures E4 and E5 introduced in Førsund and Hjalmarsson (1979) are the scale efficiency 

measures10 comparing the productivity of the reference points P1
VRS and P2

VRS respectively 

with the point PTops of maximal productivity on the frontier. 

All Farrell measures of efficiency can be given an interpretation of relative productivity; the 

productivity of the observation relative to specific points on the VRS frontier. Before showing 

the relative productivity interpretation in the case of a single output and a single input in a 

general setting, let us state the definitions of the Farrell input-and output-oriented technical 

efficiency measures, starting with the definition of the production possibility set (1a) in 

Section 2. By assumption let the set T exhibit variable returns to scale (VRS) of its frontier. 

The input-and output-oriented efficiency measures can be defined as                                                                 

   1

2
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E y x Min x y T
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
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 

 

 
                                                                                      (14)          

The relative productivity interpretation can be shown in the following way using Fig. 3, 

starting with the input-oriented efficiency measure: 

0 0 0 0

10 0 0
1 1

/ /

/ /VRS

y x y x
E

y x y E x
= =                                                                                                      (15)                        

                                                                                                  

The same productivity interpretation holds for the output-oriented efficiency measure:  

0 0 0 0

20 0 0
2 2

/ /

/ ( / ) /VRS

y x y x
E

y x y E x
= =                                                                                                (16) 

                                                            
9 In Førsund and Hjalmarsson (1979), introducing this measure, it was called the gross scale efficiency. 
10 In Førsund and Hjalmarsson (1979) these measures were called measures of pure scale efficiency. 
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In the input-oriented case we adjust the observed input quantity so that the projection of the 

observation is on the frontier, and in the output-oriented case we adjust the observed output, 

using the symbols for adjusted input and output introduced above. 

 

For the three remaining measures we will make a crucial use of the CRS envelopment in order 

to calculate the measures. The notation E1
CRS and E2

CRS making explicit reference to the CRS 

envelopment as the benchmark frontier together with PTops = (yT, xT) will be used. The 

measure of technical productivity is 
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                                               (17) 

The first expression in each of the two lines of the equations is the definition of the measure 

of technical productivity using the productivity at the point PTops as a reference. The second 

expressions, input-orientation or output-orientation, respectively, show the most convenient 

way of calculating the productivity measure.  Using the CRS envelopment the maximal 

productivity for the VRS technology is the same along the entire ray from the origin going 

through the point PTops.  The productivity measure E3 is equal to both the input-oriented 

measure and the output-oriented measure using the CRS envelopment as the frontier. It is easy 

to see geometrically that in the case of using the CRS envelopment the two efficiency 

measures must be identical, as pointed out by Farrell (1957). 

 

Measures for scale efficiency are also defined using a relative productivity comparison. The 

input-oriented scale efficiency E4 (keeping output fixed) and the output-oriented scale 

efficiency E5 (keeping input fixed) are:  
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                                                                                       (18) 

The relative productivity comparison for input-oriented scale efficiency in Fig. 1 is between 

the observed output on the efficiency-corrected input on the VRS frontier and the maximal 

productivity at the PTops - point = (yT, xT). For output-oriented scale efficiency we have an 



22 
 

analogous construction. The calculations of the scale efficiency measures can either be based 

on the ratios between the efficiency scores for input-oriented efficiency relative to the VRS 

frontier and the CRS envelopment or expressed as deflating the technical productivity 

measure with the relevant efficiency measures relative to the VRS frontier. 

 

The concepts of elasticity of scale and technically optimal scale 

Before generalising the relative productivity interpretation to multiple outputs and inputs we 

need to introduce the concept of elasticity of scale. The definition of scale elasticity for a 

frontier production function is the same whether it is of the neoclassical differential type  

( , ) 0F y x =  or if the production possibility set has a faceted envelopment border like in the 

DEA case. We are looking at the maximal proportional expansion β of outputs for a given 

proportional expansion α of inputs, i.e. looking at ( , ) 0F βy αx = . The scale elasticity is 

defined as the derivative of the output expansion factor w.r.t. the input expansion factor on the 

average value of the ratio of the output factor on the input factor11: 

1

( , , ) ( , , )
( , ) α β

β x y α α β α x y
ε x y

α β α = =

¶ ¶
= =

¶ ¶
                                                                           (19) 

The scale elasticity is evaluated without loss of generality for 1.α β= =  In the DEA case 

with non-differentiable points (vertex points and points on edges) the expression above is 

substituted with the right-hand derivative and the left-hand derivative, respectively, at such 

points (Krivonozhko et al 2004; Førsund et al 2007; Podinovski et al 2009; Podinovski and 

Førsund 2010). 

Returns to scale is defined by the value of the scale elasticity; increasing returns to scale is 

defined as ε > 1, constant returns to scale as ε = 1 and decreasing returns to scale as ε < 1. 

For a production function with variable returns to scale there is a connection between the 

input- and output- oriented measures via the scale elasticity. Following Førsund and 

Hjalmarsson (1979) in the case of a frontier function for a single output and multiple inputs 

we have  

2 1 1 2 for 1,εE E E E ε
> >

= 
< <

                                                                                              (20) 

                                                            
11 See Hanoch (1970); Panzar and Willig (1977); Starrett (1977). 
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where the variable ε is the average elasticity of scale along the frontier function from the 

evaluation point for the input-saving measure to the output-increasing measure. In Førsund 

(1996) this result was generalised for multiple outputs and inputs in the case of a 

differentiable transformation relation ( , ) 0F y x =  as the frontier function, using the Beam 

variation equations of Frisch (1965). This result holds for points of evaluation being 

projection points in the relative interior of faces. The path between the points will be 

continuous although not differentiable at vertex point or points located at edges. 

We must distinguish between scale elasticity and scale efficiency (Førsund 1996). 

Formalising the illustration in Fig. 3 the reference for the latter is the concept of technically 

optimal scale of a frontier function (Frisch 1965). The set of points TOPST having maximal 

productivities for the border of the set T  in (1a) with the frontier exhibiting VRS can be 

defined as (Førsund and Hjalmarsson 2004) 

 ( )  ( , ) 1, ( , )TTOPS x y x y x y T  ,   (21)                             

It must be assumed that such points exist and that for outward movements in the input space 

the scale elasticity cannot reach the value of 1 more than once for a smooth neoclassical 

frontier. However, it can in the DEA case be equal to 1 for points on the same face. The point 

(yT, xT) used above is now replaced by vectors yT and xT belonging to the set TOPST. From 

production theory we know that in general a point having maximal productivity must have a 

scale elasticity of 1. In a long-run competitive equilibrium efficient production units will 

realise the technically optimal scale with the scale elasticity of 1 implying zero profit. 

 

The productivity interpretation of the efficiency measures in the general case 

The interpretation of the five Farrell measures as measures of relative productivity can 

straightforwardly be generalised to multiple outputs and inputs. Introducing general 

aggregation functions gy(y1, y2,…,yM) and gx(x1, x2,…, xN) for outputs and inputs, respectively, 

increasing in the arguments and being homogeneous of degree 1 in outputs and inputs, 

respectively (y and x are now interpreted as vectors and y1, x1 etc. as elements of the 

respective vectors), we have, starting with the definition of relative productivity in the input-

oriented case for an observation (y0, x0):  
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In the first expression relative productivity is defined in the input-oriented case using the 

observed vectors y0, x0 and the vectors y1
VRS, x1

VRS for the projection onto the VRS frontier at 

analogous to the point P1
VRS in Fig. 3 in the two-dimensional case. In the second expression 

the vectors for y1
VRS and x1

VRS are inserted, keeping the observed output levels y0 and 

contracting the observed input vector using the input-oriented efficiency E1 to project the 

inputs x0 to the VRS frontier. In the third expression the homogeneity property of the input 

index function is used. 

In the case of output orientation of the efficiency measure E2 we get in the multiple output – 

multiple input case following the procedure above: 
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                           (23)                         

Using the general aggregation functions gy(y), gx(x) the measure of technical productivity can 

be derived using input- or output-orientation: 
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        (24)                 

We obtain the same relationship between the technical productivity measure and the oriented 

measures with the CRS envelopment as in the simple case illustrated in Fig.3. 

The case of multi-output and –input is done in the same way for the scale efficiency measures 

as for the other measures utilising the homogeneity properties of the aggregation functions: 
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Again, we obtain the same relationship between the technical productivity measure and the 

oriented measures defining scale efficiency as in the simple case illustrated in Fig. 3. The 

calculations of the scale efficiency measures can either be based on the ratios between the 

efficiency scores for input-oriented efficiency relative to the VRS frontier and the CRS 

envelopment or expressed as deflating the technical productivity measure with the relevant 

efficiency measures relative to the VRS frontier. 

 

Conclusions 

Charnes et al (1978) introduced the ratio form of productivity measures for estimating the 

efficiency scores via estimating the weights in a linear aggregation of outputs and inputs used 

to measure the productivity of a unit, and then maximising this productivity subject to no 

productivity ratio using these weights for all units being greater than one (as a normalisation, 

see Section 2). This ratio measure is said to be inspired by how efficiency is defined in the 

engineering literature. However, this way of defining efficiency measures is not as 

satisfactory for economists as the Farrell approach introducing explicitly a frontier production 

function as a reference for efficiency measure definitions.  

The original Farrell measures developed for constant returns to scale (CRS) can be extended 

to five efficiency measures for a frontier production function exhibiting variable returns to 

scale (VRS); input- and output technical efficiency, input- and output scale efficiency, and the 

technical productivity measure. The relationship between the two measures of technical 

efficiency involves the average scale elasticity value between the two frontier projection 

points along the frontier surface. The technical productivity measure and the two scale 

efficiency measures are developed based on the Frisch (1965) concept of technically optimal 

scale, predating the use of the concept most productive scale size in the DEA literature with 

almost 20 years.  

It does not seem to be recognised in the DEA literature that in the general case of multiple 

outputs and inputs the Farrell efficiency measures can all be given productivity interpretations 

in a more satisfactory way than the ratio form of Charnes et al. (1978). Using quite general 

aggregation functions for outputs and inputs with standard properties, it has been shown that 

all five Farrell efficiency measures can be given a productivity interpretation employing a 

proper definition of productivity. Each of the two technical efficiency measures and the 

technical productivity measure can be interpreted as the ratio of the productivity of an 
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inefficient observation and the productivity of its projection point on the frontier, using the 

general aggregation equations.   Of course, we have not estimated any productivity index as 

such, this remains unknown, but that was not the motivation of the exercise in the first place. 

 

 

5. Weight restrictions in DEA 

 

Introduction 

Early empirical application of the DEA analysis of Charnes et al. (1978), based on the ratio 

definition of efficiency found there, revealed some specific features of the solutions that 

created alarm. The problem were of two types, 

i) Too many of the units under study became efficient 

ii) Too many weights in the LP solution of the DEA problem became zero, thus 

allegedly implying that the corresponding outputs or inputs for units may not count 

in the solution for the efficiency score. 

The proposed solution was to restrict the weights in some ways. Most of the papers concerned 

with weight restrictions start with the Charnes et al. (1978) efficiency definition of weighted 

outputs over weighted inputs as in (5). This may explain the interest in the weights. It is also 

common to associate the weights with value judgements, and state that introducing 

restrictions on these weights is to introduce values. However, the question is if this is 

warranted. 

  

Forms of weight restrictions 

The earliest applications of weight restrictions were done within a CRS model (Thomson et 

al. (1986), Dyson and Thanassoulis, 1988). The constraints can also be introduced in a VRS 

model like (8). The most common ways of restrictions have been imposed on the weights in 

the dual CRS model will be shown below. The types of weight restrictions can be classified in 

several ways (see the survey in Allen et al., 1997). We will focus on the most common types 

of restrictions. 

i) Absolute restrictions: 
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                 , , 1,.., , 1,...,i i i r r rv u i m r s                                                               (26) 

Bounds are put on the range of the weights. The problem is how to determine such bounds. It 

is also a question of how many bounds to impose. Remember that the weights are specific to a 

unit, so if all units are to get restrictions we are talking about 2m s n   limits to be set; a 

rather high number for a typical dataset. So a choice of uniform limits is often done.  

The use of experts setting limits is mentioned in the literature. The expert with knowledge of 

the type of production in question cannot be any expert since he is asked to do this in dual 

space. It seems difficult to find persons working in industry that are able to associate anything 

with a dual space. In the few papers that have tried to find weight restrictions by working with 

sector experts it is difficult to see any generalising principles appearing from the often 

considerable effort spent (Joro and Viitala 2004). 

ii) Relative restrictions, i.e., restrictions on marginal productivities, marginal rates of 

substitution and marginal rates of transformation (the last two are used in Charnes 

et al., 1990): 
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One may believe that it is easier to get information on economic ratios, and that sector experts 

will be more familiar with these. Charnes et al. (1990) also suggest the use of prices for 

setting limits for ratios. However, this is hardly relevant, because this assumes that the 

hypothetical unit on the frontier, located at a point in the relative interior of a facet, is actually 

minimising costs or maximising profit, but this cannot apply to inefficient units, and then 

certainly not to their projections, and efficient units are typically vertex points that are not 

differentiable, so it is also without good meaning to appeal to economic optimising conditions 

for such points. The standard assumption in DEA is, after all, that data are not generated 

based on economic optimisation. 

iii) Share of efficiency score (Wong and Beasley, 1990): 
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                                                                                (28) 
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As seen above Wong and Beasley (1990) introduced a special version of weight constraints 

by constraining the share one variable had of the efficiency score to be within bounds. An 

exercise using the approach is found in Beasley (1995). Although Wong and Beasley are 

aware of the multipliers being dimensionless, constraining the shares of the efficiency score is 

called introducing value judgements (p. 831). On the background of Section 3 it is difficult to 

agree with such a terminology. Again, the technical role of shadow prices in a programming 

problem is confused with values in an economic sense. 

 

A critical review of seminal contributions 

There are several surveys of weight restrictions in the literature (Allen et al., 1997; Pedraja-

Chaparro et al., 1997; Thanassoulis et al., 2004; 2008). However, no examination of the 

soundness of the approach is offered. Therefore a more critical view of the approach is 

warranted (see Førsund (2013) for an extensive critical review). 

The first (published) paper to raise the weight-restriction issue in DEA is Thompson et al. 

(1986).  The efficiency problem set up involves just six units, sites for locating a high-energy 

physics lab in Texas, and three inputs are specified assuming the same output for all the units. 

The problem was that running this DEA model five of the six sites turned out as efficient.12 

The “system task force” started with manipulation of the weights in order to “weight the 

problem’s primary dimensions to establish preference for one site versus another (p. 37).” 

This was done by imposing restrictions in what they called the price-weight space. The 

concept of assurance regions to characterise lower and upper bounds for the input multipliers 

was born.  

In Charnes et al. (1990) the problem faced was like the problem in Thompson et al. (1986); 

too many efficient units. Running a standard DEA model with constant returns to scale on 

data for banks, DEA even recognised a few “notoriously inefficient banks” as efficient. A 

more objective assessment of managerial performance was desired. The solution was to base 

the estimate of the efficiency weights on only a few units declared efficient by bank experts. 

In the example only three banks, recognised as pre-eminently efficient, were chosen to 

represent the technology. It was stated that these three banks “were sufficient to provide for a 

reasonable range of flexibility in relative valuations of inputs and outputs” (p. 75). The ratio 

                                                            
12 It may be argued that the main reason for this result was the lack of degree of freedom; three variables and six 
observations. 



29 
 

model of Charnes et al. (1978) was restricted in multiplier space by cones formed by the three 

efficient units. Imposing the restriction on the cones corresponds to transforming the data for 

the other units to comply with the shape of the frontier production function determined by 

those units. Data are transformed using the few efficient units to span the production 

possibility set, such that standard DEA software can be used after the transformation. 

However, to discard information from real data sets and basing the estimation of efficiency 

measures on a very few units chosen by some experts, does not seem to represent a proper 

scientific approach to the estimation problem at hand. The evaluation will obviously depend 

on the few selected units (Charnes et al. 1990, p. 81). 

In Dyson and Thanassoulis (1988) there is no mentioning of a production function at all, and 

neither any reference to Farrell (1957). Their concern is a different one from that in 

Thompson et al. (1986). They are worried about the complete weight flexibility in the ratio 

model, since “some DMUs [are] being assessed only on a small subset of their inputs and 

outputs, while their remaining inputs and outputs are all but ignored” (p. 563). Furthermore, 

they state (p. 564): “Few would argue against reducing weight flexibility in DEA, since doing 

so would ensure that the subsequent assessment not only cannot effectively ignore any inputs 

or outputs, but also would assign weights to inputs and outputs more in line with some 

general view of their perceived importance.” This statement reveals that they want to attach 

values beyond a production-function frame of reference to output and inputs.  

As to the concern of zero weights influencing the efficiency score it should be noted from (8) 

that for the input-oriented problem the sum of the product of shadow prices and the 

corresponding inputs is equal to one, so the weights for inputs do not have a direct impact on 

the efficiency score, but, of course, indirectly through the influence on the solution for the 

output weights. (In the case of output orientation it is the sum of the product of shadow prices 

and outputs that are equal to one and the concern should only be about input weights.) 

Regarding zero weights it is important to have in mind that the data at hand actually 

determine the outcome (Olesen and Petersen 1996).  Zero weights may appear because data 

do not contain sufficient information to avoid this given the variables specified as outputs and 

inputs. Olesen and Petersen (1996) are very clear on the connection between the data and the 

resulting form of the frontier production function when using the DEA model to estimate it. 

They analyse consequences of ill-conditioned data sets in detail, and point out the role of 

facets of full dimension if estimates of rates of transformation and substitution is also wanted, 
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and not only an efficiency score. There cannot be any zero value for multipliers or weights in 

the relative interior of a fully dimensional efficient facet. The problem is that variation in data 

may not support a full set of the rates. A data set is called ill-conditioned if a relatively large 

number of the units are located in areas where a full set of ratios does not exist.  

A typical source of confusion can be found in the following statements (Dyson and 

Thanassoulis 1988, pp. 564-565): “However, it is difficult to decide exactly how weights are 

to be constrained within a DEA assessment model in the general case, as weights cannot be 

readily interpreted”, and furthermore: “In general, the weights in a DEA model do not have a 

clear interpretation, which makes constraining them arbitrary.” However, as shown in Section 

3 the shadow prices on output and input constraints have, indeed, a well-defined mathematical 

interpretation as the change in the objective function by a marginal change in the constraints. 

But this has nothing to do with putting values on outputs and inputs as such.  

 

Some problems with imposing weight restrictions 

An interesting new insight in Allen et al. (1997) is, however, presented concerning the nature 

of the Farrell radial technical efficiency measure when weight restrictions are introduced. For 

input and output variables that have their marginal rates constrained, it is shown that the radial 

nature of the Farrell measure is lost if the constraints are binding, even if the equality between 

the ratio definition and the scaling factor still holds.  In case of absolute constraints on 

weights the equality may also be lost.  

The possible divergence between the ratio measure of efficiency of Charnes et al. (1978) and 

the radial scaling factor of Farrell (1957) due to weight restrictions is given a thorough and 

extensive treatment in Podinovski and Athanassopoulos (1998) and in a series of related 

follow-up papers (Podinovski 1999; 2001a; 2001b; 2004b). It is rigorously shown that placing 

absolute weight restrictions in a DEA model equivalent to the model (5) in Charnes et al. 

(1978) generally does not lead to the correct evaluation of the relative efficiency of the 

assessed unit. 

We will argue that the most defensible approach to weight restriction is that there is additional 

information about the shape of the production function. As we have seen in Section 3 

marginal productivities and rates of transformation and substitution are expressed by ratios of 

dual variables. But as is evident from Section 3 these properties are face-specific, so to 
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impose general restrictions seems inappropriate. It would, indeed, be a formidable task to get 

enough information about properties of each face.  

In three related contributions (Podinovski 2004a; Podinovski 2005; Podinovski 2007), 

Podinovski establishes a way of transforming information about trade-offs between outputs or 

inputs in input-output space and work out the corresponding restrictions on weights in the 

dual space. Incorporating trade-off information will extend the production possibility set. A 

main property of the trade-off approach is then that the technological meaning of efficiency in 

terms of the radial contraction factor, the Farrell technical efficiency measure, is not changed. 

It is shown that introducing so-called value judgements for introducing weight constraints in 

the dual space will not lead to the efficiency measure calculated using the ratio definition 

being equal to the Farrell technical efficiency measure in Section 2. 

There are some problems with the trade-off approach, however. It is underlined in Podinovski 

(2005) that the trade-offs are not the same as marginal rates of transformation and substitution 

(however, trade-offs may be regarded as bounds on such rates). Furthermore, the trade-offs 

are assumed to be valid for all observations. To check if this holds for a realistic data set is, 

indeed, some task. When estimating a frontier function concept the actual technology 

applying to each observed unit is not investigated, it is the pure data that are used. The 

problem of getting more information about the frontier function rates remains unresolved.  

The shadow prices appearing in linear programming and occurring in the ratio definition of 

efficiency are not measures of economic values. If an overall efficiency measure is sought, 

then the values have to be found in another way, and treated as exogenous to the 

programming problem, just like the original definition of overall efficiency in Farrell (1957), 

introducing input prices.  

 

Conclusions 

A main motivation for introducing constraints on weights is the occurrence of zero values in 

the solutions for shadow prices on the constraints. However, zero values is a consequence of 

positive slacks in the input or output constraints that occur quite often. The problem 

formulation is such that using weights to express a productivity index becomes awkward. It 

must not be forgotten that the objective of the benchmarking exercise is to estimate efficiency 

scores, not productivity indices. The nature of the data combined with the specification of 
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input and output variables may result in some of the variables ending up with zero weights. 

But trying to fix this by introducing constraints of positive shadow prices implies that the 

imposed values of the constraints will actually appear in the solution, if the constraints are 

binding. The analyst may then be unduly dictating the solution and influencing the form of the 

production possibility set without any real empirical understanding of how this set looks like. 

 

 

6. Cross efficiency 

 

Introduction 

The concept of cross-efficiency evaluation was first proposed by Sexton et al. (1986) and 

followed up later in Doyle and Green (1994), the latter paper having 296 citations in the Web 

of science per 31.10.201313 reflecting a significant number of applications. The key starting 

point is the restriction in the original Charnes et al. (1978) paper that the productivity of the 

unit under investigation, with output- and input weights to be determined solving an 

optimisation problem, and the productivities of all the other units using the same weights for 

calculating productivities must be equal to or less than 1 (a normalisation) (see (5) in Section 

2). The nature of the optimisation problem of maximising the productivity of the unit under 

investigation has led to the introduction of the term self-rated efficiencies (Sexton et al. 1986) 

(or self-appraisal in Doyle and Green 1994) for determining the weights calculating the 

Farrell (1957) technical efficiency score, using the formulation that the unit can determine the 

weights that puts it in the best possible light. According to Doyle and Green (1994) obtaining 

such a ‘simple’ efficiency score for a unit can be thought of as a process of self-appraisal. To 

use own weights to calculate the productivity of other units was then called peer appraisal in 

Doyle and Green (1994).  

Introducing constraints on weights was introduced in Sexton et al. 1986 at the same time as 

cross-efficiency was introduced.14 However, Doyle and Green (1994) advocate that cross-

                                                            
13 The paper by Sexton et al. (1986) is not listed in the Web of Science. 
14 However, this pioneering introduction of weight restrictions is not recognised in the literature (see the surveys 
in Allen et al. 1997;  Førsund (2013);  Pedraja-Chaparro 1997; Thanassoulis  et al. 2004; Thanassoulis  et al. 
2008). But the critique of weight restrictions in Section 5 also applies to Sexton et al. (1986). 
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efficiency is superior and state that constraints on weights have something of the air of 

arbitrariness, and furthermore:  

“We suggest that cross-efficiency, with its intuitive interpretation as peer-appraisal, 
has less of the arbitrariness of additional constraints, and has more of the right 
connotations of a democratic process, as opposed to authoritarianism (externally 
imposed weights) or out and out egoism (self-appraisal)” (Doyle and Green, 1994, p. 
570). 

The fact that the solutions for weights may not be unique (vertex points will always have 

multiple solutions)  led Sexton et al. (1986) to search for secondary objectives to deal with 

this problem (Liang et al., 2008a; Wang and Chin, 2010a). Minimising the other DMUs’ 

cross-efficiencies was called ‘aggressive’, while trying to make these cross-efficiencies large 

was called ‘benevolent’.  

In the cross-efficiency literature one can often find that the problem of determining weights is 

portrayed as a choice open to the individual unit, or DMU in DEA lingo. Whether this is the 

reason or not, game theory concepts have been introduced in the sense that the DMUs are 

engaged in a strategic game with other units when determining weights. 

  

Formal definition of cross-efficiency 

The starting point  for cross-efficiency models is the Charnes et al (1978) (CCR)  ratio model 

(5) for n units employing  m inputs x  to produce s outputs y with weights v and u for inputs 

and outputs, respectively, calculating an efficiency measure hj0 for unit j0 (see Section 1 on 

Efficiency measure definitions). The left-hand side of the constraint in (5) is defined as cross 

efficiency scores using the weights of unit j0 under investigation as weights for a unit j (j 

=1,..,n). Expanding the unit j0 under investigation to all units a matrix E of cross efficiencies 

is formed, for simplicity changing notation to the one used by Doyle and Green using k 

instead of j0 for the unit under investigation:  
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In (29) k is the row index and j the column index. Moving along the kth row of the matrix E of 

cross-efficiencies in Table 1 each entry Ekj is the productivity that results for unit j using the 
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optimal weights of unit k accords to DMU j. The weights for the row unit are used for all 

calculations. Averaging along a row k is DMU k’s averaged appraisal of peers, termed EROW 

(k) in Sexton et al., averaging down column j is an averaged appraisal of DMU j of all row 

units, termed ECOL (j) in Sexton et al.,   i.e. peers’ appraisal of unit j, weights for the row 

unit is used down the column and the cross efficiencies in a column are termed peer appraisal 

in Doyle and Green (1994). The standard Farrell efficiency score (hj0 in the original Charnes 

et al. 1978) formulation) is here Ekk, i.e. the leading diagonal of the matrix (in fat types) gives 

us all efficiency scores of the n units, and are called self-appraisal.  

Table 1. The cross-efficiency matrix E 
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The unit k’s cross-efficiency score is defined as the average of the scores along the row of unit 

k:                                                                                                                                                                           
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where the superscript ‘*’ indicates the optimal solutions for the weights of unit k.15  The peers’ 

appraisal cross-efficiency score for unit j is the average for its column: 
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In Doyle and Green (1994) the efficiency scores for unit k, respectively j, Ekk and Ejj, are 

skipped, but not in Sexton et al (1986). However, it is not always clear in the literature what 

                                                            
15 In Doyle and Green the symbols used for output- and input weights are switched compared with the use in 
CCR and Sexton et al. 
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type of average to use in order to distinguish among the 100% efficient DMUs, average of one 

unit’s appraisal of peers (row average) or peers’ appraisal of one unit (column average). 

Doyle and Green use the row average while e.g. Wang and Chin (2010) show the row average 

in Table 1, p. 3668. Sexton et al. call the average of all the cross-efficiency values for EBAR. 

In order to understand the nature of the weights the linear programming (LP) problems 

corresponding to the CCR model in (5) are set out. The production function exhibits constant 

returns to scale (CRS) and is input-oriented16. The primal problem using k as the unit under 

investigation is: 
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                                                                                                                          (32)  

The solution for the endogenous variables j and θk are functions of the exogenous variables, 

i.e., the observations of inputs and outputs for all units. For a specific observation k the left-

hand sides in the two first types of constraints defines the reference point on the frontier for 

unit k. If unit k is inefficient the unit index of the positive intensity weights j in the solution 

of problem (5) show the referencing units for the projection of observation k to a frontier face 

(a face of full dimension m+s-1 is called a facet). The intensity weights are unique for 

observation k because the weight for k itself is zero, but on the right-hand sides both inputs 

and outputs of unit k appear.17 Referencing units will per definition lie on the frontier with the 

efficiency score of 1, and the two constraints in (32) will hold with equality. 

The dual LP model involving the weights appearing in (32) is:  

                                                            
16 When the frontier function is CRS input-orientation and output-orientation yield identical efficiency scores 
and cross-efficiency terms. 
17 To make this point clearer the weights j should have a subscript k, but this rather obvious indexing is usually 
supressed in the DEA literature. 
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We may notice that the optimal efficiency score for unit k is calculated just by the weighted 

sum of outputs because the weighted sum of inputs is normalised to 1 by the nature of the 

optimisation problem (5) when forming the dual problem to (32). The second constraint in 

(33) is expressing the property that no unit can have productivity higher than one using the 

weights of the unit k under investigation when defining productivity. Looking at the primal 

formulation (32) this is equivalent to the restriction that the best performance of any unit is to 

be on the frontier. For inefficient units with inequalities in the constraints in (32) the 

corresponding shadow prices or weights will be zero. 

 

A critique of the cross-efficiency approach 

In Sexton et al. (1986) cross-efficiencies are introduced in order to address the issue of 

evaluating price efficiency in the case of no observations of prices. In Doyle and Green 

(1994) advantages of cross-efficiencies are listed. The two main advantages of cross 

efficiency is claimed to be i) a unique ranking of efficient units is achieved, ii) unrealistic 

weight schemes are eliminated. Let us investigate these two claims. 

First of all it must be made clear that measuring the efficiency of production units is based on 

finding the relative distance in a specific sense between each unit and the common frontier 

function for all units. The classical definition of technical efficiency in Farrell (1957) is based 

on projecting each unit to the frontier assuming a common contraction factor for inputs or 

expansion factor for outputs. In order to find the frontier and the optimal 

contraction/expansion factors the role of cross efficiencies, appearing implicitly in the second 

constraint in the dual LP problem, is to make sure that no unit can be more efficient than a 

unit on the frontier. Once the frontier is determined the efficiency score for a unit is calculated 

without considering cross efficiencies. There seems to be no further role to be played by the 
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cross efficiencies. The average value of cross efficiencies has no apparent economic meaning 

that can be used to rank efficient units.  

If for some reason a ranking of efficient units is wanted, there are other approaches.  Charnes 

et al. (1985) construct a measure that describes the units’ importance as benchmarks by 

utilizing the fact that the efficient units act as referents for the inefficient units and simply 

count the number of times a unit acts as a referent. Andersen and Petersen (1993) calculate 

super-efficiency scores by excluding one efficient unit at a time from the set of observations 

used to calculate the frontier. Torgersen et al. (1996) calculate the importance of efficient 

units as benchmarks for inefficient units by calculating the improvement potential of the 

inefficient units that has the efficient unit under investigation in their reference set. (See 

Torgersen et al. for more references literature on how to discriminate between efficient units.) 

To make the critique more precise let us look at the interpretation of a cell in the E – matrix;

* *
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s m

kj rk rj ik ijr i
E u y v x

 
   . Let us assume that unit j is efficient, i.e. Ejj = 1. This will then be 

the highest value in the column, and the other cross-efficiency values will be created using the 

weights found optimal for the row units. The weights of unit k (row) are used to evaluate the 

productivity of unit j (column). But the weights are obtained from calculating the efficiency 

score θk for unit k, and they are shadow prices on output and input constraints in the 

optimisation problem (32) for unit k. Their interpretation is the change in the efficiency score 

of a marginal change in an input or output evaluated at a frontier point that is the projection 

point of the inefficient row unit in question (see Section 3 on the Interpretation of shadow 

prices). A higher value of Ekj than for other row units in the column for unit j must mean that 

one or more weights for outputs must be higher or one or more weights for inputs must be 

lower than for the other row units. But the weights in peer-appraisal cross-efficiencies going 

down a column all stem from different optimisation problems, and all have shadow-price 

interpretations that only have a meaning in these separate optimisation problems. It should 

also be pointed out that the cross-efficiency score Ekj is a productivity measure and not an 

efficiency measure because the denominator in (29) is typically not equal to one as it is for 

unit k. Thus, the column sum of cross efficiency scores does not have any apparent economic 

meaning. The projection points of the row units may typically be on different faces and 

different from the one or more faces the efficient unit j is located on. In the case of unit j 

being inefficient it is even less likely that its projection point belongs to the same face as all 

row units in the column for unit j. If the idea is that a cross-efficiency number should tell us 
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how close the row unit is to the frontier compared with the column unit, this seems to be an 

idea without sound foundation. A cross-efficiency score tells nothing about the position of 

unit k relative to the relevant face on the frontier. Aggregation down the column makes this 

even worse.  

It is stated the following in the web-site deazone.com about the cross-efficiency matrix:  

“This tool for interpreting the results consists of creating a table where the number of rows (j) 
[i]18 and columns (j) equals the number of units in the analysis. For each cell (ij), the 
efficiency of unit j is computed with weights that are optimal to unit j. The higher the values in 
a given column j, the more likely it is that the unit j is an example of truly efficient operating 
practices (Doyle and Green 1994)”. 

However, there is no theoretical substantiation of the claim in the last sentence, so the 

statement that to be the most cross-efficient DMU is a great mark of distinction, and harder to 

attain than 100% efficiency (Doyle and Green 1994) is just hanging in the air, as is the 

statement that cross efficiency provides an effective measure for differentiating performance 

among all DMUs (Du et al 2013). 

As in the literature on weight restriction in DEA there is an underlying tendency to introduce 

preferences also in cross-efficiency. However, it seems rather meaningless to say that “cross 

efficiency takes into account the preferences (regarding multipliers) from all DMUs” based on 

the averaging procedure of cross-efficiencies (Du et al 2013, p.2). 

 

Secondary goals 

A problem for giving cross-efficiencies any meaning is that weights may not be unique 

(weights for units being vertex points will in general have non-unique weights). Therefore 

Sexton et al (1986) introduced secondary objectives based on finding the minimum or 

maximum values of the weights for a unit in order to influence cross-efficiency scores. The 

optimisation problems can be set up as in Wang and Chin (2010a, c): 

                                                            
18 A row should be labelled i. 
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This problem is in the spirit of the suggestion in Doyle and Green (1994) called Method III, 

with a normalisation to 1 of the denominator in an aggregate productivity expression. The 

efficiency level for the unit k under investigation is to be kept at the value of the efficiency 

score found as the solution to problem (32), θkk. The condition on all individual cross-

efficiencies is the same as in (33). 

Sexton et al. (1986) termed this choice of weights for an aggressive strategy of the units. 

However, it is of course the analyst that performs this choice of weights making the cross-

efficiencies as small as possible under the constraints. 

The opposite option of making the cross-efficiencies as large as possible was termed 

benevolent: 
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However, although running these models overcome the non-uniqueness of the weights, the 

approach does not contribute to understand why the cross-efficiencies have any good meaning 
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in the first place. It is also not clear that the weights urk and vik that are endogenous weights in 

problems (7) and (8) realise the condition 
1

1.
m

ik iki
v x

=
=å  

Liang et al (2008a) also discuss secondary goals using the sum of Farrell technical 

inefficiencies over the units as the objective function to be minimised. It is stated as a theorem 

that the approach is equivalent to a form of the Doyle and Green (1994) model. However, 

neither a proof nor information of which model of Doyle and Green they have in mind are 

shared with the reader. Wang and Chin (2010a) elaborate further on the approach of Liang et 

al.  

 

Elimination of unrealistic weight schemes 

The cross-efficiency score has been proposed to be used as the ranking criteria usually 

including the standard efficiency score. Then “unbalanced” weighting schemes may not have 

a significant impact on the ranking. Doyle and Green (1994) are especially concerned with 

maverick DMUs “choosing to use zero weights for variables that will set them in a bad light”. 

Using only cross-efficiency scores will allegedly avoid ranking such units so favourably. But 

this is an empirical question and is not shown to hold in general. 

However, it may be the case that the occurrence of too many zero weights may be the 

consequence of ill-conditioned data (Olesen and Petersen 1996) and not something that can be 

easily fixed by deviating from the narrow path of efficiency evaluation proper. 

 

Using cross-efficiency profiles 

Doyle and Green (1994) suggested that additional characteristics of cross-efficiencies like 

variance and range of ratings may be considered. Such criteria were also mentioned in 

Despotis (2002).  The approach of Ramón et al. (2010) tries to prevent unrealistic weighting 

schemes by focussing on the choice of profiles of the weights.  This is achieved by 

introducing weight restrictions on the multipliers. Although the purpose of the restrictions is 

to satisfy an idea about a profile the critique in Doyle and Green (1994) that any weight 

restriction scheme is arbitrary still holds. 
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Variable returns to scale 

The constant returns to scale model of Charnes et al. (1978) is referred to in most of the 

papers on cross-efficiency. But the approach is extended to a variable returns to scale (VRS) 

model of Banker et al. (1984) in Wu et al. (2009a) doing cross-efficiency on Olympic 

rankings. The dual model (6) is made into a VRS model by introducing a shadow price 

(weight) uk on the convexity constraint in the primal model (5) of the sum of intensity weights 

being 1, resulting in this variable to be subtracted from the objective function in (6) and from 

the second constraint. Cross-efficiencies are now formed by 

  1

1

, , 1,..,
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rk rj k
r

m

ik ij
i

u y u
k j n

v x


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                                                                                                  (36)                         

This is called the VRS aggregate output to input ratio in Wu et al (2010a). But because this 

shadow price is free in sign, the numerator may, for some combination of ks and js, become 

negative. This is then taken care of in the model calculating the weights by introducing a 

constraint that the numerator should be non-negative. This works technically but implies that 

the production possibility set is no longer the same as the set for a VRS specification of the 

DEA model. This adds to the critique of the cross-efficiency approach. 

 

Game applications 

Many of the cross-efficiency papers are written as if the unit or DMU itself considers setting 

the weights. Maybe this is the reason for game theory being introduced in the cross-efficiency 

models. Construction of game models can be found in Liang et al. (2008b), Wang and Chin 

(2010b), and Wu et al. (2009 a, b, c). In these games each DMU is regarded as being in 

competition with each other, and setting its bundle of weights that optimises its own 

efficiency score under various constraints concerning efficiency scores of the other units. In 

Wu et al. (2009c) the cross-efficiency score for a unit is calculated including its standard 

efficiency score, and each DMU participates in a bargaining game about setting its efficiency 

score. The game has a Nash bargaining solution implying that in equilibrium all units accept a 

score that is in between the standard efficiency score and the cross-efficiency score. 
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Wu et al. (2009c) want to eliminate the average assumption in determining the ultimate cross-

efficiency and to improve the cross efficiency evaluation method from a cooperative game 

perspective. Each DMU will be a player, the characteristic function value of each coalition is 

defined, and the solution of Shapely value is computed to determine the ultimate cross 

efficiency for each DMU. 

When modelling games about determining efficiency scores one is certainly outside the frame 

of trying to evaluate the efficiency of a unit relative to a frontier production function. 

 

Conclusions 

The main purpose of introducing cross efficiency was to get a better discrimination between 

efficient units using a constant-returns-to-scale specification. The cross-efficiency terms 

appear in a condition in the dual LP problem securing that no unit can have productivity 

greater than 1 (a normalisation), calculating the productivities using the optimal weights of 

the unit under investigation. The weights are the shadow prices on output- and input 

constraints in the primal (enveloping) LP problem, and are zero for all non-binding 

constraints. The Farrell technical efficiency score for a unit is calculated as the common scalar 

contracting all the inputs proportionally in the case of input orientation, and the inverse of the 

common scalar expanding the outputs in the case of output orientation. In the cross-efficiency 

literature there has been no formal analysis supporting the view that the cross-efficiency 

numbers have any role to play in evaluating the efficiency of the units. The cross-efficiency 

terms will depend on both the levels and mix of the outputs and inputs of the units in 

question. It may be that when one starts using the ratio definition (1) of efficiency the notion 

of productivities unduly capture the imagination of the analyst. In the literature using cross-

efficiency the units are often given an active role of choosing the most favourable weights and 

choosing weights in order to put other units in an unfavourable or favourable light. Of course, 

it is the analyst that is performing an efficiency analysis, and weights are the result of the 

specific method used, not any choice of units to make. When various types of games 

involving units as competing players setting weights are introduced such games has very little 

to do with efficiency measurement proper. 
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7. Conclusions 

 

Economists’ approach to efficiency analysis is commonly based on starting with a 

transformation of inputs into outputs that is called the transformation function. This concept is 

to be understood in a broad context applicable to any type transformation process run by 

humans. Farrell (1957) is then the natural reference to efficiency concepts connected with the 

notion of a frontier production function introduced by Farrell. In a linear programming (LP) 

context this means that the envelopment form is the primal problem. The ratio form being the 

set-up in Charnes et al. (1978) then represents the dual approach.  However, it is argued in 

Section 2 that the ratio form as formulated originally is not the way to estimate an efficiency 

score. Therefore the ratio approach is regarded as a detour and the analyst should stick to 

formulating the estimation problem as a LP problem. Standard   software usually gives 

solutions to both problems.  

For the purpose of interpretation it is useful to remember the definition of shadow prices in 

LP problems. As elaborated upon in Section 3 the shadow prices on inputs and outputs show 

the change in the efficiency score of a change in the given inputs and outputs in the respective 

constraints. 

The ratio form of Charnes et al. (1978) shown in Section 2 brought into the efficiency story 

the concept of productivity. The connection is that efficiency can be defined as the ratio of 

observed productivity and the productivity of the projection of an inefficient observation to 

the frontier function either keeping outputs fixed (input orientation) or the inputs fixed (output 

orientation). This connection is elaborated upon in Section 4 showing the relative productivity 

interpretation for the generalised five Farrell efficiency measures covering the case of variable 

returns to scale. We then have technical efficiency measures, scale efficiency measures and a 

technical measure of productivity, the last two types of measures building upon the old 

concept of technically optimal scale in production theory.  

Two subfields of efficiency analysis are surveyed in Section 5 and 6 and found to have 

serious shortcomings. In Section 5 the introduction of so called “weight restrictions” are 

surveyed and the shortcomings thoroughly discussed. The idea of weight restriction stems 
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from the ratio form of the efficiency problem and the common occurrence of optimal 

solutions of zero for the weights or dual variables or shadow prices. The consequence of 

imposing constraints on dual variables is that if the constraints are binding, then it is the 

analyst that imposes his choice of values on the solution. But from an engineering point of 

view it is the input-output space that is the reality, and if the more or less complex connection 

between the imposed values of dual variables and the production possibility set is not known, 

then using weight restrictions may lead to nonsensical results. 

The meaning of the concept of cross efficiency is discussed in Section 6. This concept also 

has its origin in following the ratio formulation of the estimation of efficiency. The basic idea 

is that something can be learned by using the weights of inputs and outputs found as the 

optimal solution for a unit to evaluate the other units, thus forming a matrix of cross 

efficiencies. However, this is a misuse of the efficiency analysis proper. The weights are unit 

specific in the problem of determining each unit’s efficiency score. It is very difficult to see 

that cross efficiency calculations can provide any insights into the purpose of estimation 

efficiency scores. 
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