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Abstract
A recent paper of Carvajal, Deb, Fenske, and Quah (Econometrica 2013)[4] applies the 
revealed preference approach in the context of a quantity competition oligopoly game. 
This paper aims to present a diff erent solution concept for an evolutionary model in 
the asymmetric oligopoly setup where fi rms have diff erent cost functions to produce a 
homogenous good. Then, using the approach introduced by Carvajal et al.(2013)[4], we 
derive the testable conditions of the evolutionary oligopoly model. Therefore, contrary 
to the typical empirical literature in IO, without making any parametric assumption 
regarding to the demand curve and the cost function, this nonparametric approach 
characterizes a set of conditions (restrictions) on observational dataset to be consistent 
with evolutionary oligopoly model. An empirical application to the oil market with 
OPEC producers and Non-OPEC producers is presented and we compare the rejection 
rates of both Cournot and evolutionary hypotheses.
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1 Introduction

Revealed preference analysis is a practical and widely used instrument to test empirically

the consistency of a theoretical model of consumer behavior with an observational dataset.

This method has also been applied to analyze the firm behavior. For example, Afriat (1972)

[1], Hanoch and Rothschild (1972)[9] and Varian (1984)[14] characterize a data consistency

test for production analysis of profit maximization and cost minimization models. Most

recently Carvajal et al.(2013 and 2014)[4],[5] and Cherchye et al. (2013)[6] derive testable

conditions in the Cournot oligopoly model of firm competition. Both of papers by Carvajal et

al.(2013 and 2014)[4],[5] apply a revealed preference approach in a single-product and multi-

product oligopoly while Cherchye et al.(2013)[6] proposes a differential approach where the

equilibrium price and quantities are functions of exogenous demand and supply shifters.

On the other hand, evolutionary oligopoly theory arises from the seminal papers of Schaf-

fer (1988 and 1989)[12],[13]. Mainly these two papers, contrary to Friedman (1953)[7] conjec-

ture, argue that firm survival condition does not follow absolute payoff maximizing (APM)

behavior rather it tracks a relative payoff maximizing (RPM) behavior. In particular, Schaf-

fer (1989)[13] verifies that firm survival is better demonstrated through an evolutionary

model with relative payoff maximization rather than absolute payoff maximization. The ap-

propriate evolutionary setup for firm competition is playing the field where all finite players

in oligopoly game compete with each other instantaneously. So the behavior implied by

RPM or spiteful behavior (Hamilton (1970)[8]) leads to more competition between firms in a

quantity oligopoly game. Furthermore, Vega Redondo (1997)[15] shows that the Walrasian

equilibrium turns out to be the unique stochastically stable state in the symmetric Cournot

oligopoly. However, in the present paper we show that evolutionary stability leads to a

non-Walrasian outcome in an asymmetric oligopoly.

The standard evolutionary game theory applies for identical players (with respect to

their cost type) in a symmetric setup. Here, first we construct an evolutionary model in

the asymmetric oligopoly where firms have different cost functions. An equilibrium concept
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of finite population evolutionary stable strategy (FPESS), defined by Schaffer (1988)[12],

is applied. Defining a concept of evolutionary stability requires a symmetric setup with

identical players. So we apply a symmetrization technique in order to transform the game

with asymmetric firms into a symmetric oligopoly game and then extend Schaffer’s definition

(1988)[12] of a FPESS to this setup. As a result, we identify a non-Walrasian solution concept

for evolutionary stability in the asymmetric oligopoly.

Thereafter we study the consistency of evolutionary oligopoly model with an observational

dataset. In particular, we attempt to answer the following questions. Whether a given set

of observations is consistent with the evolutionary oligopoly model or not? Without making

any parametric assumption on demand function, how can we recuperate the marginal costs

from an observed behavior? In principal, inverse demand function and cost functions are

not observable however we are able to observe equilibrium price and equilibrium quantities

of all firms in the market. Suppose that we are given with observed dataset on the behavior

of an industry consisting of K firms producing a homogenous good. Consider a set of

observations {p∗t , (q∗k,t)k∈K}t∈T where p∗t is an observed price of homogenous market good for

each t ∈ T = {1, ..., T} and q∗k,t is observed output quantity of each firm k ∈ K = {1, ..., K}.
For each time t, total output of industry Q∗

t =
∑K

k=1 q
∗
k,t is observed. Following Carvajal et

al.(2013)[4], we will derive conditions on this set of observations to be consistent with the

evolutionary oligopoly model. In general these testable conditions take the form of linear

programing (LP) method.

Motivating Example. Consider a homogenous good market with two firms 1 and 2.

Assume that we observe the produced quantities of each firm and the market price of good

in the two sequential periods as follows:

At observation t, p∗t = 100, q∗1,t = 6, andq∗2,t = 30.

At observation t′, p∗t′ = 50, q∗1,t′ = 9, andq∗2,t′ = 30.

This example explains the recent falling trend of crude oil price in which OPEC (here firm

2) as the main producer in the oil market did not alter its production level in response to US
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oil production increase (here firm 1). Annual average of US crude oil production due to the

new extraction techniques of Shale oil raised from 5,65 million barrels per day in 2011 to 8,68

million barrels per day in 2014 despite the fact that annual average of OPEC oil production

was round 32 million barrels per day without an intense variation during this period. In

this example, firm 1 competes spitefully to increase its production levels and this leads to an

abrupt fall of the market good price at time t′. With an easy calculation, we observe that

there is a 25% decrease in US oil revenue (p∗t q
∗
k,t) (from 600 to 450) while at the same time

OPEC oil revenue was decreased by 50% (from 3000 to 1500). Why did not OPEC reduce its

output in response to the introduction of the US Shale oil technology? As Schaffer (1989)[13]

explains if firms have market power, profit maximizers are not necessarily the best survivors

because of the possibility of spiteful behavior. This spiteful behavior, where one player harms

itself in order to harm another more, cannot be explained by Cournot competition. Is the

evolutionary behavior the answer? And how we can test for this behavior?

This paper is organized as follows. The next section presents the evolutionary oligopoly

model. Then, Section 3 discusses the data consistency test of evolutionary oligopoly model.

Section 4 examines a case study in the crude oil market and concluding remarks are offered

in Section 5.

2 The evolutionary oligopoly model

Consider K firms where all firms engage simultaneously to play an oligopoly stage game

in each period t. Number of firms is constant for all t. The strategies for firms are their

output quantities. Here we consider a static setup in which a player has the same strategy

for all periods t. In evolutionary game theory, we assume that all players inherited with their

strategies and they cannot change their strategies. Though, analogous to biology, there is

a chance for mutation or experimenting of a new strategy. As Schaffer (1989)[13] explained

the mutation can be perceived as the following situation in which the owner of one of the K
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firms hires a new manager and then this new manager may with some positive probability

choose a different strategy for its firm.

We define the payoff function of each firm k, that produces qk given that all other firms

in the market produce Q−k =
∑K

l �=k ql , as following:

πk(qk, Q−k) = P (qk, Q−k)qk − ck(qk), ∀k ∈ K (1)

P (.) is an inverse demand function and decreasing in its arguments and ck(.) represents

an increasing, twice differentiable and convex cost function.

In such a game, where players have different cost functions, defining a concept of evolu-

tionary stability requires a symmetric setup with identical players. Leininger and Markazi

(2014)[10] identify a non-Walrasian solution concept for evolutionary stability in an asym-

metric oligopoly game where players are not identical with respect to their cost functions.

In their model, Selten’s (1980)[11] approach is applied to construct a symmetric monomor-

phic population game out of an asymmetric polymorphic-population game. Leininger and

Markazi (2014, Proposition 4)[10] generalize the asymmetric oligopoly setup from two groups

of high cost and low cost firms to K groups of firms that differ w.r.t. cost functions. In the

present paper, we adopt an analogous asymmetric setup, nevertheless with only one firm in

each group, i.e., K firms with K different cost functions.

In order to construct a symmetric monomorphic population game out of an asymmetric

game with non-identical players, we define a set of roles or information situations as follows

Definition 1. A firm may find itself in a number of roles or information situations i ∈
{1, ..., K} where it must choose its action at each possible role (information situation).1

The set of roles here is identical with the set of cost functions {c1, ..., ck, ..., cK}. Further
we need a role assignment like so

Definition 2. A role assignment is a map that assigns without replacement each of roles

1We use a dissimilar notation i for a role to be not confused with player’s notation k.
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i ∈ {1, ..., K} to one of the K firms.

Firm k ∈ {1, ..., K} is chosen by our role assignment with probability of 1/K as a firm

with cost ck. In this set-up, a firm contemplates behavior before it knows its assigned role

ck ∈ {c1, ..., cK}, an action (local strategy) of firm k assigned at role i is to select a pure

strategy of qki and hence

Definition 3. A behavior strategy for a firm k is a vector qk = [qk1, ..., qki, ..., qkK ] giving a

local strategy qki for each role i ∈ {1, ..., K}.

From this ex-ante point of view the game played in role-contingent strategies is symmetric

(see Selten (1980[11], pp. 97-8.) and for a generalization Balkenborg (1994[3], pp.19-20)).

Let πki(qki, [q]−k) be a local payoff of firm k in role i when the other firms play their behavior

strategies of [q]−k = [q1, ...,qk−1,qk+1, ...,qK]. Therefore one can define the total (expected)

payoff function of each firm as follows

Definition 4. Let qk and [q]−k be a behavior strategy for a firm k and behavior strate-

gies of other firms respectively. The total (expected) payoff function for each firm k in the

monomorphic population game is

Eπk([qk1, ..., qki, ..., qkK ], [q]−k) =
K∑
i=1

1

K
πki(qki, [q]−k) ∀k = 1, ..., K (2)

Consider now a finite population evolutionarily stable strategy of the game among these

K firms. A strategy is evolutionary stable, if no mutant firm l �= k which chooses a different

behavior strategy than q∗
k = [q∗k1, ..., q

∗
ki, ..., q

∗
kK ], say, can realize higher total profits than the

firms which employ the incumbent behavior strategy q∗. In other words, no mutant behav-

ior strategy qm can invade a population of q∗ strategists successfully. Formally Schaffer’s

definition (1988)[12] then reads

Definition 5. A behavior strategy profile q∗ is a FPESS if

Eπk(q
∗
k,q

m
l , [q∗]−k−l) > Eπl(q

m
l , [q∗]−l) ∀qm

l �= q∗
k, and∀l �= k. (3)
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Therefore we write mutant’s total payoff and incumbent’s total payoff respectively as

follows:

Eπl([q
m
l1 , ..., q

m
lK ], [q

∗]−l) =
K∑
i=1

1

K
P (qmli , [q

∗]−l)q
m
li − ci(q

m
li ) (4)

Eπk([q
∗
k1, ..., q

∗
kK ], [q

m
l1 , ..., q

m
lK ], [q]−k−l) =

K∑
i=1

1

K
(

K∑
j �=i

1

K − 1
(P (q∗kj, q

m
li , [q

∗]−k−l)q
∗
kj − cj(q

∗
kj))

(5)

Eπl(.) mutant’s expected payoff consists of K local payoffs where the mutant assigned

to the role i with the uniform probability function of 1/K . Accordingly, the calculation of

incumbent’s expected payoff Eπk(.) is slightly more complicated and consists of other terms

in order to account for the mutant‘s role. For example, when a mutant is assigned to the

role i with the probability of 1/K then the incumbent’s role j �= i can be assigned from the

K − 1 possibility with the probability of 1/(K − 1).

Theorem 1. In the symmetrized game of the asymmetric oligopoly market with K firms

that differ w.r.t. cost functions, there exist a non-Walrasian evolutionary equilibrium where

the FPESS quantities satisfy the following equations

P (
K∑
k=1

q∗k) + P ′(
K∑
k=1

q∗k)(q
∗
k −

K∑
l �=k

1

K − 1
q∗l ) = c′k(q

∗
k) ∀k ∈ {1, ..., K}. (6)

Proof. According to Schaffer (1989)[13], in a playing the field game, we can find a FPESS

as the solution of following optimization problem

(q∗l1, ..., q
∗
lK) = argmax

qml1 ,...,q
m
lK

ϕ = Eπl([q
m
l1 , ..., q

m
lK ], [q

∗]−l)− Eπk([q
∗
k1, ..., q

∗
kK ], [q

m
l1 , ..., q

m
lK ], [q]−k−l)

(7)

First order conditions with respect to qmli respectively are as follows:

1

K
(P (.) + P ′(.)qmli − c′i(q

m
li ))−

1

K

K∑
j �=i

1

K − 1
P ′(.)q∗kj = 0 ∀i ∈ {1, ..., K}
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P ′(.) is the derivative of inverse demand function. For the reason that the solution must

be symmetric in players and satisfies definition (5), we impose qmli = q∗ki = q∗i . Then after

rearranging, the following set of equations are obtained

P (
K∑
i=1

q∗i ) + P ′(
K∑
i=1

q∗i )(q
∗
i −

K∑
j �=i

1

K − 1
q∗j ) = c′i(q

∗
i ) ∀i ∈ {1, ..., K}

The set of roles can be identified with the set of players in our asymmetric setup and the

proof is complete.

In fact the strategy that survives in economic natural selection under playing the field

conditions is the relative, not absolute, payoff maximizing strategy. A firm needs to beat

the average of expected payoffs over all firms rather than to maximize its absolute expected

payoff to be evolutionarily successful.

This theorem represents that, in a homogenous good market with asymmetric cost mod-

eling, the equilibrium price is determined such that a low cost firm obtains a positive markup

over its marginal cost while a high cost firms sells in a price lower than its marginal cost.

However as it has shown in proposition 2 of Leininger and Markazi (2014)[10], all types of

firms can coexists and make a positive profit if the cost functions are sufficiently convex.

It is important to note that the evolutionary equilibrium in the asymmetric setup is differ-

ent from both Walraisan equilibrium and Cournot equilibrium. Though, in a monomorphic

population of firms when they have the same cost functions, FPESS equilibrium reproduces

the Walrasian result as the term (q∗k −
∑K

l �=k
1

K−1
q∗l ) turns out to be zero.

3 Testing data consistency of evolutionary oligopoly

model (characterization)

Deriving testable implication from an evolutionary model of oligopoly is important be-

cause it better explains conditions for firm survival in the market. Particularly, we are able
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to test empirically whether the model described in the previous section effectively holds or

not and it also permits us to compare whether it is distinguishable from the competitive

Walrasian behavior and the best reply Cournot Nash model of firm behavior. In principal,

the inverse demand function and cost functions are not observable however we are able to ob-

serve the equilibrium quantities of all firms and the market equilibrium price. Suppose that

we are given with the observed dataset on the behavior of an industry or a market with K

firms producing a homogenous single good. Consider a set of observations {p∗t , (q∗k,t)k∈K}t∈T
where p∗t > 0 is an observed price of homogenous market good at time t ∈ T = {1, ..., T}
and q∗k,t > 0 is observed output quantity of each firm k ∈ K = {1, ..., K} in every period of

t. Total output of industry Q∗
t =

∑K
k=1 q

∗
k,t is also observed for each time t. Market demand

of this single good is determined by a continuous and differentiable inverse demand function

Pt at each time t and we assume that it is decreasing in its argument. In addition, each firm

k has also a continuous and increasing function of ck.

Before addressing the data consistency test for the evolutionary oligopoly model, we first

give the definitions for the rationalization of Cournot Nash model and perfect competition

(Walrasian) model of firm behavior with an observational dataset. Carvajal et al.(2013)[4]

formally define and characterize the consistency of a dataset with the Cournot model under

convex cost functions2 as follows:

2As it has been argued in the paper Cournot rationalizability on its own does not impose operational
constraints on the observation set across time and it requires assuming a convexity property for cost functions.
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Definition 6 (Cournot rationalizability with convex cost functions). Consider a set of ob-

servations {p∗t , (q∗k,t)k∈K}t∈T. This dataset is Cournot rationalizable if there exist convex cost

functions ck(.)∀k ∈ K and decreasing inverse demand functions Pt(.) for each t ∈ T that

satisfy the following two conditions

1. Pt(Q
∗
t ) = p∗t

2. Pt(Q
∗
t ) + P ′

t (Q
∗
t )q

∗
k,t = c′k(q

∗
k,t)

The first condition connects unobserved inverse demand function evaluated at total out-

put of industry Q∗
t to observed prices in each time t and the second condition states that

q∗k,t, given the output of other firms (best responses of other firms q∗l,t, l �= k ), must solve the

first order condition of firm k’s profit maximization problem at each time t.

Note that the approach explained here, without making any parametric assumption about

demand curve and cost functions, checks the consistency of Cournot model with a set of

observations. Similarly we can define the rationalization of our evolutionary oligopoly model

with an observational dataset as follows:

Definition 7 (Evolutionary rationalizability). Consider a set of observations

{p∗t , (q∗k,t)k∈K}t∈T. This dataset is evolutionary rationalizable if there exist convex cost

functions ck(.)∀k ∈ K and decreasing inverse demand functions Pt(.) for each t ∈ T that

satisfy the following two conditions

1. Pt(Q
∗
t ) = p∗t

2. Pt(Q
∗
t ) + P ′

t (Q
∗
t )q̂

∗
k,t = c′k(q

∗
k,t) where q̂∗k,t = (q∗k,t −

∑K
l �=k

1
K−1

q∗l,t)

The difference between Definition 6 and Definition 7 comes from the second condition

which it is inferred directly from equation 6. Here the relative quantity terms of q̂∗k,t are

substituted in the markup term as opposed to the absolute quantity terms of q∗k,t. In a

relative contest implied by evolutionary successfulness, relative position of firm k at time t

in market i.e. q̂∗k,t is determined by its market share q∗k,t subtracted from the market share
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average of the rest of firms in the market
∑K

l �=k
1

K−1
q∗l,t . That is why, in an oligopolistic

competition, a low cost firm chooses larger market share in order to benefit a higher markup

over its marginal cost and it pushes a high cost firm to choose a smaller market share with

a marginal cost higher than market price.

To compare with Cournot model and evolutionary model, we further consider the perfect

competition model and provide also a definition of Walrasian rationalizability. Price taking

behavior Walrasian (Perfect competition) model sets the marginal cost of each firm k at time

t equal to market price at time t.

Definition 8 (Walrasian rationalizability). Consider a set of observations {p∗t , (q∗k,t)k∈K}t∈T.
This dataset is Walrasian rationalizable if there exist convex cost functions ck(.)∀k ∈ K and

decreasing inverse demand functions Pt(.) for each t ∈ T that satisfy the following condition

Pt(Q
∗
t ) = p∗t = c′k(q

∗
k,t).

Analogous to Carvajal et al.(2013)[4], we define c′k(q
∗
k,t) as a set of subgradients of ck(.) at

q∗k,t and P ′
t (Q

∗
t ) as a set of gradients of inverse demand function Pt(.) at Q

∗
t and assume that

the set of observations {p∗t , (q∗k,t)k∈K}t∈T is consistent with evolutionary oligopoly model. Let’s

say there exist a set of numbers xk,t ≥ 0 and yt ≤ 0 respectively belong to the subsequent

sets of c′k(q
∗
k,t) and P ′

t (Q
∗
t ) that satisfy the first order condition 2) in definition 7 of firm k

at each time t. Then after substituting condition 1) into the condition 2), we obtain the

following property

yt =
x1,t − p∗t

q̂∗1,t
=

x2,t − p∗t
q̂∗2,t

= ... =
xK,t − p∗t

q̂∗K,t

≤ 0 (8)

We denote equation 8 as the Joint demand slope property3 if it is satisfied for each t ∈ T.

Moreover we have another type of restrictions imposed by convexity of cost functions, that

is,

if q∗k,t′ < q∗k,t then xk,t′ ≤ xk,t ∀k ∈ K

3This property is known by Carvajal et al. (2013)[4] as common ratio property.
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This set of restrictions, the so-called co-monotone property, imposes across time for each

firm k and it can also be expressed as

(q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 (9)

This says that the set of {xk,t}(∀t∈T&∀k∈K) obeys increasing marginal costs. So we say that

a non-increasing (decreasing) inverse demand function Pt(.) and convex cost functions ck(.)

evolutionarily rationalize the dataset if the set of {xk,t}(∀t∈T&∀k∈K) satisfies the above two

properties. Hence the following theorem summarizes the above discussion.

Theorem 2. The set of observations {p∗t , (q∗k,t)k∈K}t∈T is consistent with evolutionary model

under convex cost functions if and only if there exist two number sets of {yt ≤ 0}(∀t∈T) and
{xk,t ≥ 0}(∀t∈T&∀k∈K) that satisfy the following properties.

1. yt =
xk,t−p∗t

q̂∗k,t
≤ 0 where q̂∗k,t = (q∗k,t −

∑K
l �=k

1
K−1

q∗l,t) ∀t ∈ Tand ∀k ∈ K

2. (q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 ∀t, t′ ∈ Tand ∀k ∈ K

Proof. Assume that the set of observations is consistent with cost functions {ck}∀k∈K and

demand functions {Pt}∀t∈T then we have already proved that there exist xk,t ∈ c′k(q
∗
k,t)&yt ∈

P ′
t (Q

∗
t ) that satisfy the properties of 1 and 2.

To show the reverse, first of all, it is required to show that if we have positive scalars

{xk,t}(∀t∈T) that are increasing with q∗k,t for some firm k; then there exist a convex cost

function ck with xk,t ∈ c′k(q
∗
k,t). The proof of this statement follows exactly from Carvajal et

al.(2013)[4]. (See Carvajal et al.(2013, Lemma 2)[4]).

Secondly, suppose that there are {xk,t}(∀t∈T&∀k∈K) such that the joint demand slope prop-

erty and co-monotone property hold and moreover there are convex cost functions ck with

xk,t ∈ c′k(q
∗
k,t). Then, we show that {(q∗k,t)k∈K}t∈T form an evolutionary equilibrium if there

exist a non-increasing demand function Pt(.) such that Pt(Q
∗
t ) = p∗t and with firms having

cost functions ck.
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Following Carvajal et al.(2013, Lemma 1)[4], let’s define Pt by Pt(Q) = αt + βtQ, where

βt =
xk,t−p∗t

q̂∗k,t
and we can choose αt such that Pt(Q

∗
t ) = p∗t . A mutant firm l in our symmetrized

version of evolutionary game selects a different behavior strategy qm
l,t = [qml1,t, ..., q

m
lK,t] from

other incumbent firms [q∗]−l,t = [q∗
1,t, ...,q

∗
l−1,t,q

∗
l+1,t, ...,q

∗
K,t] at time t. Here a mutant firm

l chooses a local strategy qmli,t ≥ 0 to maximize the following relative total payoff (equation

7) at each role i and time t

ϕl,t =
K∑
i=1

1

K
Pt(q

m
li,t, [q

∗]−l,t)q
m
li,t−ci(q

m
li,t)−

K∑
i=1

1

K
(

K∑
j �=i

1

K − 1
(Pt(q

∗
kj,t, q

m
li,t, [q

∗]−k−l,t)q
∗
kj,t−cj(q

∗
kj,t))

Since ϕl,t is concave, q
m
li,t is optimal if and only if it satisfies the following FOC evaluated at

qmli,t = q∗ki,t = q∗i,t

P (Q∗
t ) + q∗i,tP

′(Q∗
t )−

K∑
j �=i

1

K − 1
q∗j,tP

′(Q∗
t )− c′i(q

∗
i ) ∀i ∈ {1, ..., K}

As the set of roles is equivalent with the set of players and we also have q∗k,t−
∑K

j �=i
1

K−1
q∗l,t =

q̂∗k,t, xk,t ∈ c′k(q
∗
k,t) and P ′(Q∗

t ) = βt =
xk,t−p∗t

q̂∗k,t

p∗t + q̂∗k,t(
xk,t − p∗t

q̂∗k,t
)− xk,t = 0

Therefore we have proved that q∗k,t constitute an evolutionary equilibrium for firm k at

observation t and this also completes the proof that the set of observations {p∗t , (q∗k,t)k∈K}t∈T
for all t constitutes the evolutionary equilibrium.

Note that the relative quantity terms of q̂∗k,t may be negative or positive and knowing

that the slope of demand curve is negative at each time t, we must have xk,t < p∗t if

q̂∗k,t > 0 and xk,t > p∗t if q̂∗k,t < 0. So this condition can be summarized in the following

form (xk,t − p∗t )q̂
∗
k,t < 0.

In general, these properties impose linear restrictions with unknowns xk,t that can be
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checked by linear programming (LP) or quadratic programming (QP) methods. Therefore

the test takes the form of mathematical optimization problem in which the consistency of a

dataset with the evolutionary model would be verified if the linear constraints could produce

a convex feasible region of possible values for those unknowns. This feasible region is a

convex polytope that formed as the intersection of finitely many half spaces defined by the

following sets of linear restrictions of i-iii

i.
−xk,t

q̂∗k,t
+

xl,t

q̂∗l,t
=

−p∗t
q̂∗k,t

+
p∗t
q̂∗k,t

∀k, l ∈ K, k �= l and ∀t ∈ T

ii. q̂∗k,txk,t < p∗t q̂
∗
k,t ∀k ∈ K and ∀t ∈ T

iii. (q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 ∀k ∈ K, ∀t, t′ ∈ T and t �= t′

where q̂∗k,t =
K

K−1
q∗k,t −

∑K
i=1 q

∗
k,t

K−1
Note that Cournot rationalizability imposes a different set of

restrictions of iv-v on the dataset nevertheless the co-monotone condition iii is the same.

iv.
−xk,t

q∗k,t
+

xl,t

q∗l,t
=

−p∗t
q∗k,t

+
p∗t
q∗k,t

∀k, l ∈ K, k �= l and ∀t ∈ T

v. q∗k,txk,t < p∗t q
∗
k,t ∀k ∈ K and ∀t ∈ T

iii. (q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 ∀k ∈ K, ∀t, t′ ∈ T and t �= t′

Example 1 illustrates a dataset that is not consistent with the Cournot model but can

be rationalized by the evolutionary model. In this example, firm 1 competes spitefully to

increase its production levels and this leads to an abrupt fall of the market good price at

time 2. This spiteful behavior, where one player harms itself in order to harm another

more, cannot be explained by Cournot competition. Furthermore this example explains the

recent dropping trend of crude oil price in which OPEC as the main oil markets producer

did not alter its production level in response to growing of USA production caused by new

extraction techniques of shale oil. This observed behavior cannot be rationalized by the

Cournot competition model but rather by the relative payoff maximizers of the evolutionary

model.
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Example 1. Consider a homogenous good market with two firms 1 and 2 and assume that

we observe the produced quantities of each firm and the market price of good in the two

sequential periods as follows:

At observation t, p∗t = 100, q∗1,t = 6, andq∗2,t = 30.

At observation t′, p∗t′ = 50, q∗1,t′ = 9, andq∗2,t′ = 30.

To see whether this dataset is Cournot rationalizable with convex cost function, it is

required to find a set of numbers assigned to marginal costs i.e. x1,t, x1,t′ , x2,t, x2,t′ ≥ 0 that

satisfy the restrictions (iii-iv). So we have

5x1,t − x2,t = 400, 10x1,t′ − 3x2,t′ = 350

x1,t, x2,t ≤ 100, x1,t′ , x2,t′ ≤ 50

x1,t ≤ x1,t′

Note that co-monotone property does not impose a restriction on firm 2. So it is straight-

forward to check that the solution space defined by these restrictions has not a feasible region.

(Since 5x1,t−x2,t = 400 does not intersect with the region 0 ≤ x1,t ≤ 50, 0 ≤ x2,t ≤ 100.) As

a result, this dataset cannot be rationalized by Cournot model.

However the evolutionary rationalizability (linear restrictions of i-iii) leads to

x1,t + x2,t = 200, x1,t′ + x2,t′ = 100

x1,t ≥ 100, x2,t ≤ 100, x1,t′ ≥ 50, x2,t′ ≤ 50

x1,t ≤ x1,t′

Solving for a feasible region, the set of candidate solutions narrows down as follows

x1,t = 100, x2,t = 100, yt = 0

x1,t′ = 100, x2,t′ = 0, yt′ = −50/21

Along to the identification of marginal costs, the slopes of demand curve in each time i.e.

yt, yt′ ≤ 0 have been identified by formula yt =
xk,t−p∗t

q̂∗k,t
.
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4 A case study in the oil market

In this section we apply the consistency test explained in the section 3 to a dataset

of the crude oil market. In the beginning we use exactly the same dataset of Carvajal et

al.(2013)[4] to compare the effectiveness of our evolutionary model with the Cournot model.

This dataset contains monthly series of crude oil production in thousands of barrels per

day by 7 non-OPEC countries of Canada, China, Egypt, Mexico, Norway, USA and UK

and 12 OPEC countries of Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria,

Qatar, Saudi Arabia, UAE, and Venezuela. The data sources include oil production series

from Monthly Energy Review (MER) and West Texas Intermediate (WTI) crude oil price

series in dollars per barrel taken from St. Louise Federal Reserve from January 1973 until

April 2009. Furthermore, the whole dataset is split up into the several subsets so that each

set is made of W sequential months (as time windows) and I countries. Then we modify

their MATLAB code so as to capture the features of our relative evolutionary test. Table

1 displays a comparison between rejection rates of both tests. As we see the rejection rates

are not very different.

OPEC countries produce approximately at least 40 percent of the world’s oil since its

formation in 1960 and this share is even more for the internationally traded oil. The OPEC

member countries decide about the production levels during their regular meetings held

twice every year and therefore they do not choose their production level monthly. So then

we test both hypotheses with a less frequent dataset of the oil market in which we use an

annual dataset from 1973 until 2015. Average annual crude oil productions are from the

same source of MER where Russia is added to the non-OPEC dataset as well.4 Furthermore

we employ another source for series of oil price. In addition to annual nominal WTI crude

oil prices, we use also price series of annual averages of selected OPEC crude oils (OPEC

basket) published by association of German petroleum industry (MWV). The rejection rates

4Russia (formerly Soviet Union) is a major oil producer that can be used as a one unit since most of
oil production in Soviet Union (around more than 95 percent) was produced in the present-day territory of
Russia.
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are reported in Table 2. Here again we do not observe a strictly different rejection rates

between two models.

Lastly we test both hypothesis among three major players in the oil market that is,

OPEC total production as a single unit, Russia and USA. These three top oil producers are

accounted for over than 85% of the world’s oil production in 1973 and over than 66% in 2014.

Table 3 illustrates the rejection rates for the subsets of this data (with the number of countries

I = 2, 3 and windows W from 2 years up to 6 years). Comparing the evolutionary model to

the Cournot model, we see that the rejection rates jump down for the evolutionary model.

For example, in case of I=2 countries and T=2 years window, the drop in rejection rates is

more than 50 percent (from 0.398 to 0.187). Put side by side both Cournot and evolutionary

models, we conclude that evolutionary oligopoly model explains better the dataset of main

producers (OPEC, Russia and USA) in the oil market.
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Table 1: Rejection rates of Cournot and evolutionary models(Monthly datasets)

OPEC monthly datasets
W Cournot model Evolutionary model

I=2 I=3 I=6 I=12 I=2 I=3 I=6 I=12
3 months 0.284 0.539 0.890 0.995 0.318 0.587 0.912 0.995
6 months 0.646 0.887 0.995 1.000 0.685 0.919 0.998 1.000
12 months 0.901 0.988 1.000 1.000 0.930 0.995 1.000 1.000

Non-OPEC monthly datasets
W Cournot model Evolutionary model

I=2 I=3 I=6 I=7 I=2 I=3 I=6 I=7
3 months 0.439 0.751 0.988 0.995 0.433 0.748 0.974 0.981
6 months 0.831 0.978 1.000 1.000 0.829 0.982 0.998 0.998
12 months 0.961 0.998 1.000 1.000 0.971 0.999 1.000 1.000
WTI oil price series are applied.

Table 2: Rejection rates of Cournot and evolutionary models(Annual datasets)

OPEC Annual datasets with OPEC basket price series
W Cournot model Evolutionary model

I=2 I=3 I=6 I=12 I=2 I=3 I=6 I=12
2 years 0.246 0.451 0.761 0.902 0.262 0.467 0.773 0.902
3 years 0.508 0.762 0.941 0.975 0.500 0.767 0.949 0.975
4 years 0.705 0.895 0.987 1.000 0.701 0.914 0.992 1.000

Non-OPEC Annual datasets with WTI oil price series
W Cournot model Evolutionary model

I=2 I=3 I=6 I=8 I=2 I=3 I=6 I=8
2 years 0.290 0.527 0.858 0.927 0.294 0.525 0.830 0.902
3 years 0.510 0.782 0.979 1.000 0.495 0.748 0.949 1.000
4 years 0.646 0.878 0.994 1.000 0.653 0.860 0.986 1.000
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Table 3: Rejection rates of Cournot and evolutionary models with main oil producers

OPEC, Russia and USA, Annual datasets
W Cournot model Evolutionary model

I=2 I=3 I=2 I=3
2 years 0.398 0.683 0.183 0.439
3 years 0.608 0.850 0.333 0.750
4 years 0.744 0.923 0.487 0.872
5 years 0.833 0.974 0.596 0.921
6 years 0.919 1.000 0.694 0.946
OPEC basket price series are applied.

5 Conclusion

The contributions of present study are twofold. Firstly we show that a static evolutionary

model offers a different solution than a competitive Walrasian equilibrium. In fact, here

we take issue with the result by Vega-Redondo (1997)[15] that the imitation of successful

strategies leads to the competitive equilibrium outcome in the symmetric quantity game of

a homogenous good market. Apesteguia et al. (2010)[2] also show that Vega-Redondo’s

result is not robust to the slightest asymmetry in fixed costs. Then secondly we design for

practical purposes a revealed preference test to check the consistency of developed model

with a generic set of observations based on the work of Carvajal et al.(Econometrica 2013)[4].

Therefore, contrary to the typical empirical literature in IO without making any parametric

assumption regarding to the demand curve and the cost function, this approach characterizes

a set of conditions (restrictions) on observational dataset to be consistent with evolutionary

oligopoly model. Finally, this nonparametric revealed preference test has been applied to a

dataset for oil market and we conclude that the behavior of top oil producers in the market

is more consistent with an evolutionary game than a Cournot game.
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