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Christoph Breunig ?
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This paper proposes a test for missing at random (MAR). The MAR assumption
is shown to be testable given instrumental variables which are independent of
response given potential outcomes. A nonparametric testing procedure based
on integrated squared distance is proposed. The statistic’s asymptotic distribu-
tion under the MAR hypothesis is derived. We demonstrate that our results can
be easily extended to a test of missing completely at random (MCAR) and miss-
ing completely at random conditional on covariates X (MCAR(X)). A Monte Carlo
study examines finite sample performance of our test statistic. An empirical
illustration concerns pocket prescription drug spending with missing values;
we reject MCAR but fail to reject MAR.

Keywords: Incomplete data, missing-data mechanism, selection model,
nonparametric hypothesis testing, consistent testing,
instrumental variable, series estimation.

JEL classification: C12, C14

1. Introduction

When confronted with data sets with missing values it is often assumed in applied research
that observations are missing at random (MAR) in the sense of Rubin [1976]. This condition
requires that the probability of observing potential outcomes only depends on observed
data. To help to decide whether MAR based techniques could be applied we develop
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in this paper a test for the MAR assumption. In general, MAR is not refutable without
further assumptions and here we rely on instruments that are independent of the response
mechanism given potential outcomes. We show that this condition is sufficient to ensure
testability of MAR and derive the asymptotic distribution under MAR of a proposed test
statistic. We provide two extensions of our testing procedure which are testing missing
completely at random (MCAR) and missing completely at random conditional on covariates X
(MCAR(X)).
If the missing data mechanism does not follow MAR, a correction of the potential selec-
tion bias is necessary to ensure consistency of the estimation procedure. There exists two
different instrumental variable approaches to overcome the problem of missing variables.
The first approach relies on instruments that determine response but not the outcomes and
was pioneered by Heckman [1974]. Such instruments, however, are difficult to find, in
particular, when response is directly driven by the outcome. The second approach, also
considered in this paper, relies on instruments that are independent of response given
potential outcomes. This framework was used in parametric regression analysis by Chen
[2001], Liang and Qin [2000], Tang et al. [2003], and Ramalho and Smith [2013]. A non-
parametric extension was proposed by D’Haultfoeuille [2010] and Breunig et al. [2014].
While such instrumental variable methods reduce bias in general, if the data are missing
at random, they unnecessarily increase variance. Indeed, D’Haultfoeuille [2010] showed
that estimation of the distribution of the potential outcome leads to a statistical inverse
problem that is ill-posed in general. This implies that the variance of the estimator becomes
arbitrarily large relative to the degree of ill-posedness.
We also provide tests for the MCAR and MCAR(X) assumptions. Both impose stronger
conditions on the response mechanism as MAR. Indeed, MCAR and MCAR(X) rule out
any correlation between response and outcome. MCAR(X) is also known as the uncon-
foundedness assumption in the treatment effect literature (see, for instance, Imbens [2004]).
When data are MAR but not MCAR various types of correction methods have been sug-
gested so far and include weighted generalized estimating equations (Robins et al. [1994]),
nonparametric estimation of the conditional estimating scores (Reilly and Pepe [1995]), and
multiple imputation (Rubin [2004], Little and Rubin [2002]). For an overview and further
references we refer to Ibrahim et al. [2005]. Either these methods make parametric model
assumptions or have difficulties in dealing with continuous data. These methods reduce
bias if MAR holds, under MCAR, however, they unnecessarily increase variance. Thus, it
is of interest to examine the observed data for evidence whether the response mechanism
satisfies not only MAR but also MCAR or MCAR(X).
We show that the MAR hypothesis is equivalent to an identified conditional moment
equation. Based on this moment equation we construct our test statistic using integrated
squared distance. Under the null hypothesis the test statistic converges to a series of
independent, χ2–squared distributed random variables. The test statistic and its critical
values can be easily implemented. Also only a slight modification is necessary to obtain
a test for MCAR and MAR(X). Under a bounded completeness assumption, our testing
procedure is shown to be consistent against any fixed alternative.
Besides a Monte Carlo simulation we demonstrate the finite sample properties in an empir-
ical illustration using data from the Health and Retirement Study. In this survey, a fraction
of participants does not report their exact expenditure of pocket prescription drugs. The
assumption of MAR/MCAR seems problematic here as whether participants recall their
exact expenditure might be related to the amount of expenditure itself. Using income as
instrument we show that our test rejects the MCAR assumption; but fails to reject MAR.
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In our instrumental variable framework, a test of MCAR has been proposed by Ramalho and
Smith [2013]. Their Hausman type test statistic relies on a parametric model specification
with discrete outcomes and differs form our method where no restriction on the marginal
distribution of the outcome is imposed. Likelihood ratio tests to verify the hypothesis
MCAR have been suggested by Fuchs [1982] and Little [1988], while Chen and Little [1999]
considered a Wald-type test and Qu and Song [2002] proposed a generalized score type
test based on quadratic inference functions. Kline and Santos [2013] develop a method for
assessing the sensitivity of empirical conclusions to departures from MAR based on sharp
bounds of conditional quantiles. As far as we know, a consistent test for MAR has not been
proposed. We further emphasize that our testing procedure does not require knowledge
of the conditional probability of observing potential outcomes up to a finite dimensional
parameter.
The remainder of the paper is organized as follows. Section 2 provides sufficient conditions
for testability of MAR, MCAR, and MCAR(X). The asymptotic distributions of the tests are
derived and their consistency against local alternatives is established. Section 3 examines
the finite sample performance of our test in a Monte Carlo study while Section 4 illustrates
the usefulness of our procedure in an empirical application.

2. The Test Statistic and its asymptotic properties

This section is about testability of missing at random assumptions and the asymptotic
behavior of proposed test statistics. First, we provide sufficient conditions on instruments
to ensure testability of MAR, MCAR(X), and MCAR. Second, we build on identified condi-
tional moment restrictions to construct test statistics. Third, the test statistics’ asymptotic
distributions under the null hypotheses are derived and we establish consistency of the
tests against fixed alternatives.

2.1. Testability

Let Y∗ denote a scalar depend variable and X a dx–dimensional vector of covariates. Further,
∆ is a missing–data indicator for Y∗, such that ∆ = 1 if a realization of Y∗ is observed and
∆ = 0 if Y∗ is missing.1 Throughout this paper, we write Y = ∆Y∗. In the following,
we discuss testability of the different hypothesis MAR, MCAR(X), and MCAR. First, we
consider hypothesis MAR, whether missingness only depends on observed variables. More
precisely, the response mechanism depends only on the observed realizations of Y∗ and
covariates X. That is, we consider the null hypothesis

MAR : P(∆ = 1|Y∗,X) = ∆P(∆ = 1|Y,X) + (1 − ∆)P(∆ = 1|X)

and the alternativeP
(
P(∆ = 1|Y∗,X) = ∆P(∆ = 1|Y,X)+(1−∆)P(∆ = 1|X)

)
< 1.2 Second, we

want to test the hypothesis whether the response mechanism only depends on covariates

1In our setting, Y∗ is assumed to be a scalar. Our results could be easily extended to allow for a dy-dimensional
vector Y∗ of potential outcome variables. In this case, ∆ = (∆( j))16 j6dy and the j-th component of Y∗ would
be observed when ∆( j) = 1 and missing when ∆( j) = 0. This extension would require little modifications of
our method but would burden the notation and the presentation. For this reason we do not consider this
multivariate case.

2Since conditional expectations are defined only up to equality a.s., all (in)equalities with conditional expec-
tations and/or random variables are understood as (in)equalities a.s., even if we do not say so explicitly.
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X. This condition is stronger than MAR as it rules out any correlation between response
and outcome. In this case, the null hypothesis under consideration is given by

MCAR(X) : P(∆ = 1|Y∗,X) = P(∆ = 1|X)

and the alternative by P
(
P(∆ = 1|Y∗,X) = P(∆ = 1|X)

)
< 1. Third, we consider the MCAR

hypothesis whether response is completely at random. As this hypothesis rules out any
correlation between response and observed data, MCAR is stronger than MCAR(X) and,
in particular, MAR. The hypothesis under consideration is

MCAR : P(∆ = 1|Y∗,X) = P(∆ = 1)

and the alternative is P
(
P(∆ = 1|Y∗,X) = P(∆ = 1)

)
< 1.

We now provide sufficient conditions for testability of the above hypotheses. A key
requirement is that an additional vector W, an instrument, is available which satisfies
the following conditions.
Assumption 1. For each unit we observe ∆, Y, X, and W.
Assumption 1 is satisfied when only observations of Y∗ are missing. In the following, we
assume that the random vector W is independent of the response variable conditional on
potential outcomes and covariates.
Assumption 2. It holds

∆ y W | (Y∗,X).

Assumption 2 requires missingness to be primarily determined by the potential outcome Y∗

and covariates X. In particular, this exclusion restriction requires any influence of W on ∆
to be carried solely through (Y∗,X). Conditional independence assumptions of this type are
quite familiar in the econometrics and statistics literature. Examples are treatment effects
(cf. Imbens [2004]) or non-classical measurement error (cf. Hu and Schennach [2008]). In
case of nonresponse, Assumption 2 (without covariates) was exploited by Ramalho and
Smith [2013]. This assumption was also made by D’Haultfoeuille [2010] where further
illustrative examples in case of the counterfactual issue are given. We further emphasize
that Assumption 2 is a testable condition (see Theorem 2.4 of D’Haultfoeuille [2010]).
Assumption 3. For all bounded measurable functions φ, E[φ(Y∗,X)|X,W] = 0 implies that
φ(Y∗,X) = 0.
Assumption 3 is known as bounded completeness. In contrast, to ensure identification in
nonparametric instrumental variable models, stronger versions of Assumption 3, such as
L2–completeness, are required. This type of completeness condition requires Assumption
3 to hold for any measurable function φ with E |φ(Y∗,X)|2 < ∞. L2–completeness is also a
common assumption in nonparametric hypothesis testing in instrumental variable models,
see, for instance, Blundell and Horowitz [2007] or Fève et al. [2012]. There are only a few
examples in the nonparametric instrumental regression literature where it is sufficient to
assume completeness only for bounded functions. One example is estimation of Engel
curves as in Blundell et al. [2007] which, by definition, are bounded between zero and one.
We emphasize that bounded completeness is much less restrictive than L2 completeness.
Sufficient conditions for bounded completeness have been provided by Mattner [1993] or
D’Haultfoeuille [2011] among others. We see below that inference under the considered
hypotheses does not require bounded completeness. On the other hand, we need to impose
Assumption 3 to ensure consistency against fixed alternatives.
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If a valid instrumental variable W is available then consistent density estimation and re-
gression is possible even if MAR does not hold true. On the other hand, using instrumental
variable estimation methods when MAR holds can be inappropriate as the following two
examples illustrate.

Example 2.1 (Density Estimation). The joint probability density function of (Y∗,X) satisfies

pY∗X(·, ·) =
p∆Y∗X(1, ·, ·)

P(∆ = 1|Y∗ = ·,X = ·)

assuming that the conditional probability in the denominator is bounded away from zero.
The conditional probabilityP(∆ = 1|Y∗,X) is not identified in general. On the other hand, if
instrumental variables W are available that are independent of ∆ conditional on (Y∗,X) then
this probability is identified (cf. D’Haultfoeuille [2010]) through the conditional moment
restriction

E
(

∆

P(∆ = 1|Y∗,X)

∣∣∣∣X,W)
= 1. (2.1)

Estimating P(∆ = 1|Y∗,X) via this equation leads to a large variance relative to the ill-
posedness of the underlying inverse problem and the accuracy of this estimator can be
very low. If the data, however, reveals that MAR holds true then P(∆ = 1|Y∗,X) = ∆P(∆ =
1|Y,X) + (1 − ∆)P(∆ = 1|X) which can be directly estimated from the data. �

Example 2.2 (Regression). Consider estimation of E(φ(Y∗)|X) for some known function φ.
Either φ is the identity function in case of mean regression or φ(Y∗) = 1{Y∗ 6 q} in quantile
regression for some quantile q ∈ (0, 1). Let the conditional probability P(∆ = 1|Y∗,X) be
bounded away from zero. As in Breunig et al. [2014] (p. 5) it holds

E(φ(Y∗)|X) = E
(

∆φ(Y∗)
P(∆ = 1|Y∗,X)

∣∣∣∣X)
where P(∆ = 1|Y∗,X) can be estimated via the conditional mean restriction 2.1. As shown
in Breunig et al. [2014], the first step estimation ofP(∆ = 1|Y∗,X) leads to an additional bias
term which can reduce accuracy of estimation. In contrast, under MAR it holds

E(φ(Y∗)|X) = E
(

∆φ(Y∗)
P(∆ = 1|Y,X)

∣∣∣∣X)
where the right hand side is identified from the data and P(∆ = 1|Y,X) can be directly
estimated. Similarly, when interest lies in quantile/mean regressing of Y∗ on W where
W y ∆|Y∗ (cf. Breunig et al. [2014]) then under MAR (without covariates X) it holds

E(φ(Y∗)|W) = E
(

∆φ(Y∗)
P(∆ = 1|Y)

∣∣∣∣W)
.

Also in this case, imposing MAR is desirable to simplify the estimation procedure and
increase estimation precision. �

Example 2.3 (Relation to Triangular Models). Assumptions 2 and 3 hold true in the trian-
gular model

∆ = ϕ(Y∗,X, η) with η ⊥ (W, ε)
Y∗ = φ(ψ(X,W) + ε) with W ⊥ ε
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under a large support condition of ψ(X,W), regularity assumptions for ε, and if the con-
ditional characteristic function of ε given X is infinitely often differentiable and does not
vanish on the real line. See D’Haultfoeuille [2011] page 462–463 for further details. Re-
quiring this characteristic function to be nonvanishing is a standard assumption in the
deconvolution literature. The normal, Student, χ2, gamma, and double exponential distri-
butions all satisfy this assumption while the uniform and the triangular distributions are
the only common distributions to violate this restriction.
In this triangular model, MCAR(X) requires the structural function ϕ to be dependent on
X and η only; that is, ∆ = ϕ(X, η). Under MCAR, ϕ depends neither on Y∗ nor on X and
hence, the structural equation simplifies to ∆ = ϕ(η). The triangular model illustrates the
difference to Heckman’s approach (cf. its nonparametric version in Das et al. [2003]) where
an instrument enters only the selection equation. �

The following result states that the null hypothesis MAR is testable under the previous
conditions. Further, exploiting the properties of the instrument W shows that MAR is
equivalent to an identified conditional moment restriction.
Theorem 2.1. Under Assumptions 1–3 the null hypothesis MAR is testable.

Proof. We rewrite the null hypothesis MAR as

E[∆ − E(∆|X)|Y∗,X] − ∆
(
g(Y∗,X) − E(∆|X)

)
= 0 (2.2)

where g(y, x) := E[∆|Y = y,X = x] and making use of ∆g(Y,X) = ∆g(Y∗,X). The left hand
side of equation (2.2) is a bounded and measurable function with respect to the σ–algebra
generated by (Y∗,X). Now by Assumption 3 the hypothesis MAR is equivalent to

E
[

E(∆|Y∗,X) − ∆g(Y∗,X) − (1 − ∆) E(∆|X)
∣∣∣X,W]

= 0. (2.3)

Further, Assumption 2 implies E[E(∆|Y∗,X)|X,W] = E[∆|X,W]. Thereby, equation (2.3) is
equivalent to

E
[
∆
(
1 − E(∆|Y,X)

)
− (1 − ∆) E(∆|X)

∣∣∣X,W]
= 0 (2.4)

where the left hand side is identified. �

Let us now turn to testability of the hypothesis MCAR(X); that is, whether response only
depends on covariates X. As we see in the following, testability of MCAR(X) follows as in
the proof of Theorem 2.1.
Corollary 2.2. Under Assumptions 1–3 the null hypothesis MCAR(X) is testable.

Proof. Due to Assumption 3 the null hypothesis MCAR(X) is equivalent to

E
[

E(∆|Y∗,X) − E(∆|X)
∣∣∣X,W]

= 0.

Assumption 2 yields E[E(∆|Y∗,X)|X,W] = E[∆|X,W] and hence hypothesis MCAR(X) is
equivalent to

E
[
∆ − E(∆|X)

∣∣∣X,W]
= 0 (2.5)

where the left hand side is identified. �
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The following corollary provides a testability result for the hypothesis MCAR. The result
follows as in the proof of Corollary 2.2 by replacing E(∆|X) with E(∆).
Corollary 2.3. Let Assumptions 1–3 hold true. Then the null hypothesis MCAR is equivalent to
E[∆ − E(∆)|X,W] = 0 and hence, is testable.

2.2. The Test Statistic

In the previous section, we observed that each null hypothesis is equivalent to a conditional
moment restriction

E
[
r(∆,Y,X)

∣∣∣X,W]
= 0

for some bounded function r, which is equivalent to∫
E
[
r(∆,Y,X)

∣∣∣X = x,W = w
]2
π(x,w)d(x,w) = 0

for some weight function π which is strictly positive almost surely (a.s.) on X×W (X and
W denote the supports of X and W, respectively). Let pXW denote the joint probability
density function of (X,W). Further, let ν be an a.s. strictly positive density function on
X × W. Let us introduce approximating functions { f j} j>1 which are assumed to form
an orthonormal basis in the Hilbert space L2

ν :=
{
φ :

∫
|φ(x,w)|2ν(x,w)d(x,w) < ∞

}
. Now

choosing π(x,w) = p2
XW(x,w)/ν(x,w) together with Parseval’s identity yields

0 =

∫ ∣∣∣∣ E [
r(∆,Y,X)

∣∣∣X = x,W = w
]

pXW(x,w)/ν(x,w)
∣∣∣∣2ν(x,w)d(x,w)

=

∞∑
j=1

(
E
[
r(∆,Y,X) f j(X,W)

])2
.

Given a strictly positive sequence of weights (τ j) j>1 the last equation is equivalent to

∞∑
j=1

τ j

(
E
[
r(∆,Y,X) f j(X,W)

])2
= 0. (2.6)

Our test statistic is based on an empirical analog of the left hand side of (2.6) given
(∆1,Y1,X1,W1), . . . , (∆n,Yn,Xn,Wn) of independent and identical distributed (iid.) copies
of (∆,Y,X,W) where Y = ∆Y∗. For a random vector V and some integer k > 1, we denote
by ek(V) := (e1(V), . . . , ek(V))t a vector of basis functions which are used to approximate the
conditional expectations E[∆|V]. In the multivariate case, we consider a tensor-product
linear sieve basis, which is the product of univariate linear sieves. Further, let us denote

Ykn =
(
ekn(Y1,X1), . . . , ekn(Yn,Xn)

)t
and Xln =

(
eln(X1), . . . , eln(Xn)

)t
. We introduce the func-

tions g(y, x) := E[∆|Y = y,X = x] and h(x) := E(∆|X = x). We estimate the functions g and h,
respectively, by the series least square estimators

ĝn(y, x) := ekn(y, x)t (Yt
kn

Ykn)− Yt
kn
∆n

and

ĥn(x) := eln(x)t (Xt
ln

Xln)− Xt
ln
∆n
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where ∆n = (∆1, . . . ,∆n).
Consider the null hypothesis MAR. From the proof of Theorem 2.1, we deduce r(∆,Y,X) =
∆(1 − g(Y,X)) − (1 − ∆)h(X). Replacing g and h by the proposed estimators we obtain our
test statistic

SMAR
n =

mn∑
j=1

τ j

∣∣∣∣n−1
n∑

i=1

(
∆i − ∆i ĝn(Yi,Xi) − (1 − ∆i) ĥn(Xi)

)
f j(Xi,Wi)

∣∣∣∣2 (2.7)

where mn increases with sample size n and (τ j) j>1 is a strictly positive sequence of weights
which is nonincreasing. Additional weighting of the testing procedure was also used by
Horowitz [2006], Blundell and Horowitz [2007], and Breunig [2015].
Let us now turn to a test of the null hypothesis MCAR(X). From Corollary 2.2 we have
r(∆,X) = ∆ − h(X) where h(·) = E(∆|X = ·). Hence, replacing h by ĥn we obtain the test
statistic

SMCAR(X)
n =

mn∑
j=1

τ j

∣∣∣∣n−1
n∑

i=1

(
∆i − ĥn(Xi)

)
f j(Xi,Wi)

∣∣∣∣2. (2.8)

For the null hypothesis MCAR, Corollary 2.3 gives r(∆) = ∆ − E ∆. Again, following the
derivation of the statistic SMAR

n we obtain a statistic for MCAR given by

SMCAR
n =

mn∑
j=1

τ j

∣∣∣∣n−1
n∑

i=1

(
∆i − ∆̂n

)
f j(Xi,Wi)

∣∣∣∣2 (2.9)

where ∆̂n = n−1 ∑n
i=1 ∆i.

2.3. Assumptions for inference

In the following,Y, X, andW denote the supports of Y, X, and W, respectively. The usual
Euclidean norm is denoted by ‖ · ‖ and ‖ · ‖∞ is the supremum norm.
Assumption 4. (i) The functions { f j} j>1 form an orthonormal basis in L2

ν. (ii) There exists some
constant C > 0 such that sup(x,w)∈X×W

{
pXW(x,w)/ν(x,w)

}
6 C.

In our simulations, we used trigonometric basis functions or orthonormalized Hermite
polynomials where Assumption 4 (i) is automatically satisfied if, respectively, ν is Lebesque
measure on [0, 1] or ν is the standard normal density. Assumption 4 (ii) is a mild restriction
on the density of (X,W) relative to ν. Assumption 4 implies E | f j(X,W)|2 6 C. The next
assumption involves the linear sieve spaceHn :=

{
φ : φ(x) = β′neln(x) where βn ∈ Rln

}
.

Assumption 5. (i) There exists Elnh ∈ Hn such that ‖Elnh−h‖2∞ = O(1/γh
ln

) for some nondecreasing
sequences (γh

l )l>1. (ii) It holds supx∈X ‖eln(x)‖2 = O(ln) such that l2n log(n) = o(n). (iii) The smallest
eigenvalue of E[eln(X)eln(X)t] is bounded away from zero uniformly in n.
Assumption 5 (i) determines the sieve approximation error for estimating the function
h in the supremum norm and is used to control the bias of the estimator of h. This
assumption was also imposed by Newey [1997] (for the relation to L2 approximation
conditions see Belloni et al. [2012] p. 10–16). An excellent review of approximating
properties of different sieve bases is given in Chen [2007]. Assumption 5 (ii) and (iii)
restrict the magnitude of the approximating functions {e j} j>1 and impose nonsingularity of
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their second moment matrix (cf. Newey [1997]). The next assumption involves the linear
sieve space Gn :=

{
φ : φ(x, y) = β′nekn(x, y) where βn ∈ Rkn

}
.

Assumption 6. (i) There exists Ekn g ∈ Gn such that ‖Ekn g− g‖2∞ = O(1/γg
kn

) for some nondecreas-
ing sequences (γg

k )k>1. (ii) It holds sup(x,y)∈X×Y ‖ekn(x, y)‖2 = O(kn) such that k2
n log(n) = o(n).

(iv) The smallest eigenvalue of E[ekn(X,Y)ekn(X,Y)t] is bounded away from zero uniformly in n.
Assumption 6 determines the sieve approximation error for estimating the function g and
restrictions on the basis functions {e j} j>1 when their multivariate extension is considered.

2.4. Asymptotic distribution of the test statistic under MAR

Before establishing the asymptotic distribution of the test statistic SMAR
n under MAR, we

require the following definitions. Recall that in case of MAR we have r(∆,Y,X) = ∆(1 −
g(Y,X)) − (1 − ∆)h(X). Let ε(∆,Y,X,W) be an infinite dimensional vector with j-th entry

ε j(∆,Y,X,W) :=
√
τ j r(∆,Y,X) f j(X,W) − εg

j (∆,Y,X) − εh
j (∆,X)

where

ε
g
j (∆,Y,X) :=

√
τ j

(
∆ − g(X,Y)

) ∞∑
l=1

E
[
∆ f j(X,W)el(Y,X)

]
el(Y,X)

and

εh
j (∆,X) :=

√
τ j

(
∆ − h(X)

) ∞∑
l=1

E
[
(1 − ∆) f j(X,W)el(X)

]
el(X).

We have E[ε j(∆,Y,X,W)] = 0 under MAR. We assume E |εg
j (∆,Y,X)|2 < ∞ and E |εh

j (∆,Y,X)|2 <
∞which is satisfied, for instance, if {el}l>1 forms an orthonormal basis. Thereby, under MAR
the covariance matrix Σ = E[ε(∆,Y,X,W)ε(∆,Y,X,W)t] of ε(∆,Y,X,W) is well defined. The
ordered eigenvalues of Σ are denoted by (λ j) j>1. Furthermore, we introduce a sequence
{χ2

1 j} j>1 of independent random variables that are distributed as chi-square with one degree
of freedom. The proof of the next theorem can be found in the appendix.
Theorem 2.4. Let Assumptions 1, 2, 4, 5, and 6 hold true. If

mn∑
j=1

τ j = O(1), n = o(γg
kn

), n = o(γh
ln

), and m−1
n = o(1) (2.10)

then under MAR

n SMAR
n

d
→

∞∑
j=1

λ j χ
2
1 j.

The rates n = o(γg
kn

) and n = o(γh
ln

) ensure that biases for estimating the functions g and
h vanish sufficiently fast. Below, we show that under classical smoothness assumptions
these rates require undersmoothed estimators for g and h. We also like to emphasize that
for the asymptotic result in Theorem 2.4, the bounded completeness condition stated in
Assumption 3 is not required. Below we write an ∼ bn when there exist constants c, c′ > 0
such that cbn 6 an 6 c′bn for all sufficiently large n.
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Example 2.4. Let Y and X be continuously distributed. Let e1, . . . , ekn be spline basis func-
tions and p be the number of continuous derivatives of g. Then Assumption 6 (i) holds
true with γg

j ∼ j2p/(1+dx) (cf. Newey [1997]). Condition n = o(γg
kn

) and Assumption 6 (ii)
is satisfied if kn ∼ nκ with (1 + dx)/(2p) < κ < 1/(2 + ε) for any small ε > 0. Here, the
required smoothness of g is p > (2 + ε)(1 + dx)/2. Hence, the estimator of g needs to be
undersmoothed. Similarly, also the estimator for h needs to be undersmoothed. �

Remark 2.1 (Estimation of Critical Values). The asymptotic distribution of our test statistic
derived in Theorem 2.4 depends on unknown population quantities. As we see in the
following, the critical values can be easily estimated. Let us define

ε̂ j(∆,Y,X,W) :=
√
τ j

(
∆ − ∆ĝn(Y,X) − (1 − ∆)̂hn(X)

)
f j(X,W) − ε̂g

j (∆,Y,X) − ε̂h
j (∆,X)

where

ε̂
g
j (∆,Y,X) :=

√
τ j

(
∆ − ĝn(X,Y)

) kn∑
j′=1

(
n−1

n∑
i=1

∆i f j(Xi,Wi)e j′(Yi,Xi)
)
e j′(Y,X)

and

ε̂h
j (∆,X) :=

√
τ j

(
∆ − ĥn(X)

) kn∑
j′=1

(
n−1

n∑
i=1

(1 − ∆i) f j(Xi,Wi)e j′(Xi)
)
e j′(X).

and ε̂mn = (ε̂1, . . . , ε̂mn)t. We replace Σ by the mn ×mn dimensional matrix

Σ̂mn := n−1
n∑

i=1

(
ε̂1(∆i,Yi,Xi,Wi), . . . , ε̂mn(∆i,Yi,Xi,Wi)

)t(
ε̂1(∆i,Yi,Xi,Wi), . . . , ε̂mn(∆i,Yi,Xi,Wi)

)
.

Let (̂λ j)16 j6mn denote the ordered eigenvalues of Σ̂mn . We approximate
∑
∞

j=1 λ jχ2
1 j by the

finite sum
∑mn

j=1 λ̂ jχ2
1 j. Indeed, we have max16 j6mn |̂λ j − λ j| = Op(E ‖Σ̂mn − Σmn‖) = op(1),

where Σmn denote the upper mn ×mn matrix of Σ. �

2.5. Asymptotic distribution of the test statistic under MCAR(X)

In the following, we derive the asymptotic distribution of the test statistic SMCAR(X)
n under

the null hypothesis HMCAR(X). Let µ(∆,X,W) be an infinite dimensional vector with j-th
entry

µ j(∆,X,W) :=
√
τ j

(
∆ − h(X)

)(
f j(X,W) −

∞∑
l=1

E
[

f j(X,W)el(X)
]
el(X)

)
.

We have E[µ j(∆,X,W)] = 0 under MCAR and we assume as in the previous subsection that
E |

∑
l>1 E[ f j(X,W)el(X)]el(X)|2 < ∞. Let Σµ be the covariance matrix of µ(∆,X,W); that is,

Σµ = E[µ(∆,X,W)µ(∆,X,W)t].
For the next result, (λl)l>1 denote the ordered eigenvalues of Σµ. Recall that {χ2

1l}l>1 is
a sequence of independent random variables that are distributed as chi-square with one
degree of freedom. The next result is a direct consequence of Theorem 2.4 and hence, we
omit its proof.
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Corollary 2.5. Let Assumptions 1, 2, 4, and 5 hold true. If

mn∑
j=1

τ j = O(1), n = o(γh
ln

), and m−1
n = o(1) (2.11)

then under MCAR(X)

n SMCAR(X)
n

d
→

∞∑
j=1

λ j χ
2
1 j.

Remark 2.2 (Estimation of Critical Values). Estimation of critical values in case of Corollary
2.5 follows easily from Remark 2.1. Let us define

µ̂ j(∆,X,W) =
√
τ j

(
∆ − ĥn(X)

)  f j(X,W) −
kn∑

l=1

(
n−1

n∑
i=1

f j(Xi,Wi) el(Xi)
)

el(X)

 .
We replace Σµ by the mn ×mn dimensional matrix

Σ̂mn := n−1
n∑

i=1

(
µ̂1(∆i,Xi,Wi), . . . , µ̂mn(∆i,Xi,Wi)

)t(
µ̂1(∆i,Xi,Wi), . . . , µ̂mn(∆i,Xi,Wi)

)
.

Let (̂λ j)16 j6mn denote the ordered eigenvalues of Σ̂mn . We approximate
∑
∞

j=1 λ jχ2
1 j by the

finite sum
∑mn

j=1 λ̂ jχ2
1 j. Consistency follows as in Remark 2.1. �

2.6. Asymptotic distribution of the test statistic under MCAR

We now derive the asymptotic distribution of the statistic for testing SMCAR
n under the null

hypothesis MCAR. Let us introduce an infinite dimensional vector ν(∆,X,W) with j-th
entry

ν j(∆,X,W) :=
√
τ j

(
∆ − E ∆

)(
f j(X,W) − E[∆ f j(X,W)]

)
.

We have E[ν j(∆,X,W)] = 0 under MCAR. Let Σν be the covariance matrix of ν(∆,X,W);
that is, Σν = E[ν(∆,X,W)ν(∆,X,W)t].
In this subsection, the ordered eigenvalues of Σν are denoted by (λl)l>1. The next result is
a direct consequence of Theorem 2.4 and hence, we omit its proof.
Corollary 2.6. Let Assumptions 1, 2, and 4 hold true. If

mn∑
j=1

τ j = O(1), and m−1
n = o(1)

then under MCAR

n SMCAR
n

d
→

∞∑
j=1

λ j χ
2
1 j.
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Remark 2.3 (Estimation of Critical Values). Estimation of critical values in case of Corollary
2.6 follows easily from Remark 2.1. Let us define

ν̂ j(∆,X,W) :=
√
τ j

(
∆ − ∆̂n

)  f j(X,W) − n−1
n∑

i=1

∆i f j(Xi,Wi)


with ∆̂n = n−1 ∑n

i=1 ∆i. We replace Σν by the mn ×mn dimensional matrix

Σ̂mn := n−1
n∑

i=1

(̂
ν1(∆i,Xi,Wi), . . . , ν̂mn(∆i,Xi,Wi)

)t(̂
ν1(∆i,Xi,Wi), . . . , ν̂mn(∆i,Xi,Wi)

)
.

Let (̂λ j)16 j6mn denote the ordered eigenvalues of Σ̂mn . We approximate
∑
∞

j=1 λ jχ2
1 j by the

finite sum
∑mn

j=1 λ̂ jχ2
1 j. Consistency follows as in Remark 2.1. �

2.7. Consistency against fixed alternatives

Under each null hypothesis, the asymptotic distribution results remain valid if (Y∗,X) is
not bounded complete for (X,W); that is, Assumption 3 does not hold true. On the other
hand, we see in the following that bounded completeness is a necessary condition to obtain
consistency of our tests against fixed alternatives. To establish this property we require the
following additional assumption.
Assumption 7. The function pXW/ν is uniformly bounded away from zero.
If MAR fails, Assumption 7 together with Assumption 3 ensures that the generalized
Fourier coefficients E[r(∆,Y,X) f j(X,W)] are non-zero for some integer j > 1. The following
proposition shows that our test has the ability to reject a false null hypothesis with proba-
bility 1 as the sample size grows to infinity. For the next results, let us introduce a sequence
(an)n>1 satisfying an = o(n). The proof of the next proposition can be found in the appendix.
Proposition 2.7. Assume that MAR does not hold. Let Assumptions 1–7 be satisfied. Then

P
(
n SMAR

n > an
)

= 1 + o(1).

The rate (an)n>1 is arbitrarily close to the parametric rate n−1 which is due the weighting
sequence (τ j) j>1 with

∑mn
j=1 τ j = O(1). The next two results are direct consequences of

Proposition 2.7 and hence, their proofs are omitted.
Corollary 2.8. Assume that MCAR(X) does not hold. Let Assumptions 1–5 and 7 be satisfied.
Then

P
(
n SMCAR(X)

n > an
)

= 1 + o(1).

Corollary 2.9. Assume that MCAR does not hold. Let Assumptions 1–4 and 7 be satisfied. Then

P
(
n SMCAR

n > an
)

= 1 + o(1).
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3. Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the results
of a Monte Carlo simulation. The experiments use a sample size of 500 and there are 1000
Monte Carlo replications in each experiment. Results are presented for the nominal level
0.05.
As basis functions { f j} j>1 used to construct our test statistic, we use throughout the
experiments orthonormalized Hermite polynomials. Hermite polynomials form an or-
thonormal basis of L2

$ with a weighting function being the density of the standard nor-
mal distribution; that is, $(x) = exp(−x2)/

√
2π. They can be obtained by applying the

Gram–Schmidt procedure to the polynomial series 1, x, x2, . . . under the inner product
〈φ,ψ〉$ = (2π)−1/2

∫
φ(x)ψ(x) exp(−x2)dx. That is, H1(x) = 1 and for all j = 2, 3, . . .

H j(x) =
x j−1
−

∑ j−1
k=1〈id

j−1, p j〉ωp j(x)∫ (
x j−1 −

∑ j−1
k=1〈id

j−1, p j〉ωp j(x)
)
ω(x)dx

. (3.1)

Our testing procedure is now build up on the basis functions

f j(·) =
H j+1(·)√
〈H j,H j〉ω

for all j = 1, 2, . . . If the support of the instrument W or its transformation lies in the interval
[0, 1] then one could also use, for instance, cosine basis functions

f j(x) =
√

2 cos(π jx)

for j = 1, 2, . . . . We also implemented our test statistic with these cosine functions in
the settings studied below. But as the results are very similar to the ones with Hermite
polynomials presented below we do not report them here. Throughout our simulation
study, the number of orthonormalized Hermite polynomials is 10. Due to the weighting
sequence (τ j) j>1, results not too sensitive to the number of Hermite polynomials. When
implementing the test with cosine basis functions we used 100 basis functions. In contrast,
results might be more sensitive to the choice of basis functions used to estimate g and h.
Below we use cross validation to choose the appropriate number of basis functions for
these functions.

Testing MCAR Realizations of (Y∗,W) were generated by W ∼ N(0, 1) and Y∗ ∼ ρW +√
1 − ρ2 εwhere ε ∼ N(0, 1). The constants ρ characterizes the ”strength” of the instrument

W and is varied in the experiments. For a random variable V, introduce the function
φ.2(V) = 1{V > q} + 0.1 ∗ 1{V 6 q} where q is the 0.2 quantile of the empirical distribution
of V. In each experiment, realizations of the response variable ∆ were generated by

∆ ∼ Bin
(
1, φ.2

(
νY∗ +

√

1 − ν2 ξ
))

for some constant 0 6 ν 6 1 and where ξ ∼ N(0, 1). If ν = 0 then response ∆ does not
depend on Y∗ and hence the null hypothesis MCAR holds true.
The critical values are estimated as in Remark 2.3. For m = 100 we observed that the
estimated eigenvalues λ̂ j are sufficiently close to zero for all j > m. To provide a basis for
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Model Empirical Rejection probability of nSn with Little’s test
ρ ν τ j = j−2 τ j = j−3 τ j = j−4

0.2 0.0 0.055 0.057 0.056 0.062
0.3 0.148 0.159 0.162 0.155
0.5 0.290 0.297 0.304 0.338
0.7 0.505 0.529 0.530 0.568

0.3 0.0 0.055 0.057 0.056 0.062
0.3 0.253 0.265 0.268 0.273
0.5 0.559 0.588 0.592 0.611
0.7 0.839 0.855 0.857 0.853

0.4 0.0 0.055 0.057 0.056 0.062
0.3 0.387 0.393 0.398 0.430
0.5 0.813 0.831 0.840 0.843
0.7 0.985 0.988 0.986 0.988

Table 1: Empirical Rejection probabilities for Testing MCAR

judging whether the power of our test is high or low, we also provide the empirical rejection
probabilities when using a test of MCAR for normal data proposed by Little [1988].
The empirical rejection probabilities of test statistic SMCAR

n using different weightings and
Little’s test are depicted in Table 1. First, we observe, not surprisingly, that the power of all
tests increase as the correlation between Y∗ and W (measured by ρ) becomes larger. Second,
power also increases with constant ν. From Table 1 we also see that our tests with different
weighting sequences have similar power properties and our tests behave similar as Little’s
test.

Testing MAR Realizations of (Y∗,W) were generated by W ∼ N(0, 1) and Y∗ ∼ ρW +√
1 − ρ2 εwhere ε ∼ N(0, 1) and the constant ρ ∈ (0, 1) is varied in the experiments. In each

experiment, realizations of ∆ were generated by

∆ ∼

 1, if Y∗ ∈ (0, 0.5),
Bin

(
1, φ.2

(
νY∗ +

√

1 − ν2 ξ
))
, otherwise.

for some constant 0 6 ν 6 1 and where ξ ∼ N(0, 1). If ν = 0 then response ∆ only depends
on observed realizations (0, 0.5) and thus, the null hypothesis MAR holds true.
To construct the test statistic, we estimate the function g(·) = E(∆|Y = ·) using B-splines.
The number of knots and orders is chosen via cross validation. Computational procedures
were implemented using the statistical software R using the crs Package Hayfield and
Racine [2007]. In our experiments, cross validation tended to undersmooth the estimator
of g which implied a sufficiently small bias of this estimator. On the other hand, to obtain
appropriate undersmoothing one could also use a data driven choice of basis functions
suggested by Picard and Tribouley [2000]. The critical values are estimated as described in
Remark 2.1. In Table 2 we depict the empirical rejection probabilities when using different
weightings.
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Model Empirical Rejection probability of nSn with
ρ ν τ j = j−2 τ j = j−3 τ j = j−4

0.3 0.0 0.044 0.048 0.050
0.3 0.199 0.205 0.206
0.5 0.295 0.300 0.302
0.7 0.399 0.408 0.414

0.5 0.0 0.055 0.053 0.050
0.3 0.493 0.496 0.493
0.5 0.701 0.710 0.714
0.7 0.860 0.869 0.869

0.7 0.0 0.097 0.076 0.069
0.3 0.817 0.803 0.789
0.5 0.954 0.951 0.950
0.7 0.994 0.995 0.995

Table 2: Empirical Rejection probabilities for Testing MAR

Testing MCAR(X) Realizations of (Y∗,X,W) were generated by W ∼ N(0, 1), X ∼ 0.2 W +
√

1 − 0.22 ξ and Y∗ ∼ ρW +
√

1 − ρ2 ξ + ε where ξ, ε ∼ N(0, 0.25). The constant ρ is varied
in the experiments. The critical values are estimated as described in Remark 2.2.
In each experiment, realizations of response ∆ were generated by

∆ ∼ Binomial
(
1, φ.2

(
νY∗ +

√

1 − ν2 X
))

for some constant 0 6 ν 6 1. Clearly, if ν = 0 then the null hypothesis MCAR(X) holds
true. We estimate the functions h using B-splines. Again, the number of knots and orders
is chosen via cross validation. Table 3 depicts the empirical rejection probabilities of the
test SMCAR(X)

n when using different weightings.

4. Empirical Illustration

We now apply our testing procedure to analyze response mechanisms in a data set from
the Health and Retirement Study (HRS). In this survey, respondents were asked about
their out of pocket prescription drug spending. Those who were not able to report point
values for these were asked to provide brackets, giving point values for some observations
and intervals of different sizes for others. This censoring problem might violate the MAR
hypothesis: the variable is censored only for those who do not recall how much they spent,
and remembering how much one spent might be correlated with the level of spending
itself. We refer to Armstrong [2015] who constructed confidence intervals for partially
identified regression of prescription drug spending on income.
In this empirical illustration, we consider the 1996 wave of the survey and restrict attention
to women with less than 25,000$ of yearly income who report using prescription medica-
tions. This results in a data set with 943 observations. Of these observations, participants
do not report the exact prescription expenditures but rather an interval of nonzero width
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Model Empirical Rejection probability of nSn with
ρ ν τ j = j−2 τ j = j−3 τ j = j−4

0.3 0.0 0.041 0.046 0.048
0.3 0.061 0.060 0.059
0.5 0.118 0.123 0.122
0.7 0.199 0.211 0.205

0.5 0.0 0.041 0.046 0.048
0.3 0.180 0.186 0.185
0.5 0.545 0.561 0.575
0.7 0.823 0.851 0.864

0.7 0.0 0.041 0.046 0.048
0.3 0.406 0.417 0.426
0.5 0.876 0.895 0.904
0.7 0.980 0.990 0.995

Table 3: Empirical Rejection probabilities for Testing MCAR(X)

with finite endpoints or provide no information on their prescription expenditures at all.
The length of these intervals is 10, 80, and 400. If the participants do not report their exact
amount but an interval of length 10 we consider the center of this interval as observation
(these are only six observations). Intervals with width larger or equal to 80 are treated
as missing values. Thereby, 55 observations are missing (roughly 6%). The results pre-
sented below are essentially the same when intervals with length 10 are treated as missing
observations.
Whether we observe prescription drug expenditure Y∗ is assumed to be independent of the
yearly income W conditional on Y∗. We thus use yearly income as instrumental variable.
The test statistics are constructed as described in the previous section. More precisely, we
truncate W to [0, 1] and use cosine basis functions with mn = 100. As we see from Table 4
our test statistics reject the hypothesis MCAR but fail to reject the hypothesis MAR.

τ j = j−1 τ j = j−2 τ j = j−3

MCAR Value of nSMCAR
n 0.273 0.233 0.230

Critical Values 0.214 0.170 0.163

MAR Value of nSMAR
n 0.194 0.143 0.138

Critical Values 0.231 0.188 0.183

Table 4: Values of nSMCAR
n and nSMAR

n together with their critical values

In Figure 1, we estimate the conditional probability P(∆ = 1|Y∗). This conditional prob-
ability is identified through the conditional mean equation E[∆/P(∆ = 1|Y∗)|X] = 1 (cf.
D’Haultfoeuille [2010]). We use a sieve minimum distance estimator based on B-splines as
in Breunig et al. [2014] to estimate P(∆ = 1|Y∗). From Figure 1 we see that the estimator
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for P(∆ = 1|Y∗) is strictly decreasing with Y∗. On the other hand, if data is MCAR then
P(∆ = 1|Y∗) would be constant. Significant statements about the shape of the curve, how-
ever, are hard to make as the solution to the conditional moment restriction is an ill-posed
problem and hence confidence intervals can be very wide.
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Figure 1: Graph of P(∆ = 1|Y∗ = ·)

A. Appendix

A.1. Proofs of Section 1.

Throughout the Appendix, let C > 0 denote a generic constant that may be different in differ-
ent uses. For ease of notation let

∑
i =

∑n
i=1 and

∑
i′<i =

∑n
i=1

∑i−1
i′=1. Further, to keep notation

simple we define V := (Y,X) and Z := (X,W). In the following, εmn(∆,V,W), εg
mn

(∆,V), and

εh
mn

(∆,X) denote mn–dimensional vectors with j– th entries given by ε j(∆,V,W), εg
j (∆,V),

and εh
j (∆,X), respectively. In the appendix, f τmn

denotes a mn dimensional vector with
entries √τ j f j for 1 6 j 6 mn.

Proof of Theorem 2.4. The proof is based on the decomposition

n−1/2
∑

i

(
∆i − ∆i ĝn(Vi) − (1 − ∆i) ĥn(Xi)

)
fmn(Zi)

= n−1/2
∑

i

εmn(∆i,Vi,Wi)

+ n−1/2
∑

i

(
∆i

(
g(Vi) − ĝn(Vi)

)
fmn(Zi) + ε

g
mn

(∆i,Vi)
)

+ n−1/2
∑

i

(
(1 − ∆i)

(
h(Xi) − ĥn(Xi)

)
fmn(Zi) + εh

mn
(∆i,Xi)

)
= In + IIn + IIIn (say).
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Consider In. Consider some fixed integer m > 1. Using Cramer Wold device it is easily
seen that

n−1/2
∑

i

εm(∆i,Vi,Wi)
d
→N(0, Σm)

where Σm is the upper m ×m submatrix of Σ. Hence, we have

m∑
j=1

∣∣∣∣n−1/2
∑

i

ε j(∆i,Vi,Wi)
∣∣∣∣2 d
→

m∑
j=1

λ jχ
2
1 j

with λ j, 1 6 j 6 m, being eigenvalues of Σm. On the other hand, observe∑
j>m

E
∣∣∣∣n−1/2

∑
i

ε j(∆i,Vi,Wi)
∣∣∣∣2 =

∑
j>m

Var
(
n−1/2

∑
i

ε j(∆i,Vi,Wi)
)

=
∑
j>m

E ε2
j (∆,V,W)

which becomes sufficiently small for large m as E ε2
j (∆,V,W)/τ j 6 C for all j > 1. Hence,

from page 199 in Serfling [1981] we infer that In
d
→

∑
j>1λ jχ2

1 j.
Consider IIn. We have

‖IIn‖
2 6 2

mn∑
j=1

τ j

∣∣∣∣n−1/2
∑

i

∆i

(
ĝn(Vi) − (Ekn g)(Vi)

)
f j(Zi) − ε

g
j (∆i,Vi)

∣∣∣∣2
+ 2

mn∑
j=1

τ j

∣∣∣∣n−1/2
∑

i

∆i(Ekn g − g)(Vi) f j(Zi)
∣∣∣∣2

=: An1 + An2.

Consider An1. In the following, we denote Qn := n−1 ∑
i ekn(Vi)ekn(Vi)t. It holds ĝn(·) =

ekn(·)t(nQn)−1 ∑
i ∆iekn(Vi). By Assumption 5, the eigenvalues of E[ekn(V)ekn(V)t] are bounded

away from zero and hence, it may be assumed that E[ekn(V)ekn(V)t] = Ikn where Ikn is the kn
dimensional identity matrix (cf. Newey [1997], p. 161). We observe

An1 6 2
mn∑
j=1

∣∣∣τ j

kn∑
l=1

E[∆ f j(Z)el(V)]Q−1
n n−1/2

∑
i

(
∆i − Ekn g(Vi)

)
ekn(Vi) − ε

g
j (∆i,Vi)

∣∣∣2
+ 2‖Ekn g − ĝn‖

2
V

mn∑
j=1

τ j

kn∑
l=1

∣∣∣n−1/2
∑

i

∆iel(Vi) f j(Zi) − E[∆el(V) f j(Z)]
∣∣∣2

=: 2Bn1 + 2Bn2 (say). (A.1)

For Bn1 we evaluate due to the relation Q−1
n = Ikn −Q−1

n (Qn − Ikn) that

Bn1 6 2
∥∥∥ E[∆ f τmn

(Z)ekn(V)t]n−1/2
∑

i

(∆i − Ekn g(Vi))ekn(Vi) − ε
g
mn

(∆i,Vi)
∥∥∥2

+ 2
∥∥∥ E[∆ f τmn

(Z)ekn(V)t]
∥∥∥2∥∥∥Qn − Ikn

∥∥∥2 ∥∥∥Q−1
n

∥∥∥2 ∥∥∥n−1/2
∑

i

(
∆i − Ekn g(Vi)

)
ekn(Vi)

∥∥∥2

=: 2Cn1 + 2Cn2 (say).

18



Further, from E
[(

∆−Ekn g(V)
)
ekn(V)

]
= 0, E

[
(g−Ekn g)(V)ekn(V)

]
= 0, and E[εmn(∆,V,W)] = 0

we deduce

Cn1 62
mn∑
j=1

τ j E
∣∣∣∑

l>kn

E[∆ f j(Z)el(V)](g(V) − ∆)el(V)
∣∣∣2

+ 2
mn∑
j=1

τ j E
∣∣∣ kn∑

l=1

E[∆ f j(Z)el(V)](Ekn g − g)(V)el(V)
∣∣∣2

62
mn∑
j=1

τ j E
∣∣∣∑

l>kn

E[∆ f j(Z)el(V)]el(V)
∣∣∣2

+ C kn ‖Ekn g − g‖2V

mn∑
j=1

τ j

kn∑
l=1

E[∆ f j(Z)el(V)]2

=o(1)

using that E[(g(V)−∆)2
|V] is bounded,

∑mn
j=1 τ j

∑kn
j=1 E[∆ f j(Z)el(V)]2 = O(1), and by assump-

tion

k2
n ‖Ekn g − g‖2V = O(k2

n/γ
g
kn

) = O(k2
n/n) = o(1).

Consider Cn2. Further, by Rudelson’s matrix inequality (see Rudelson [1999] and also
Lemma 6.2 of Belloni et al. [2012]) it holds∥∥∥Qn − Ikn

∥∥∥2
= Op

(
n−1 log(n) kn

)
.

Moreover, since the difference of eigenvalues of Qn and Ikn is bounded by ‖Qn − Ikn‖, the
smallest eigenvalue of Qn converges in probability to one and hence, ‖Q−1

n ‖
2 = 1 + op(1).

Further,

kn∑
l=1

E
∣∣∣n−1/2

∑
i

(
∆i − Ekn g(Vi)

)
el(Vi)

∣∣∣2 =

kn∑
l=1

E
∣∣∣(∆ − Ekn g(V)

)
el(V)

∣∣∣2 = O(kn)

and hence Cn2 = Op
(
n−1 log(n) k2

n

)
= op(1). Consequently, Bn1 = op(1). Consider Bn2. It

holds

kn∑
l=1

∣∣∣n−1
∑

i

∆iel(Vi) f j(Zi) − E[∆el(V) f j(Z)]
∣∣∣2 = Op(kn/n).

Since ‖Ekn g − ĝn‖
2
V = Op(kn/n) (cf. Theorem 1 of Newey [1997]) and k2

n/n = o(1) it follows
that Bn2 = o(1). Thus, we conclude An1 = op(1). For An2 we observe that

E An2 6 n
mn∑
j=1

τ j E |(Ekn g(V)−g(V)) f j(Z)|2 6 n‖Ekn g−g‖2∞
mn∑
j=1

τ j E | f j(Z)|2 = O
(
n/γg

kn

)
= o(1).

Consequently, we have IIn = op(1). The proof of IIIn = op(1) is analogous. �
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Proof of Proposition 2.7. Let us introduce a smoothing operator K which has an eigen-
value decomposition

{
√
τ j, f j

}
j>1

and a conditional expectation operator T defined by

Tφ = E[φ(∆,V)|Z] for any bounded function φ. Since pZ/ν is uniformly bounded away
from zero by some constant C > 0 we obtain

Sn =

mn∑
j=1

τ j

∣∣∣∣n−1
∑

i

r(∆i,Vi) f j(Zi)
∣∣∣∣2 + op(1)

=

mn∑
j=1

τ j
∣∣∣ E [

r(∆,V) f j(Z)
]∣∣∣2 + op(1)

=

∞∑
j=1

∣∣∣ ∫
X×W

√
τ j E(r(∆,V)|Z = z)

pZ(z)
ν(z)

f j(z)ν(z)d(z)
∣∣∣2 + op(1)

=

∫
X×W

∣∣∣(KTr)(z)
pZ(z)
ν(z)

∣∣∣2ν(z)dz + op(1)

> C E
∣∣∣(KTr)(Z)

∣∣∣2 + op(1).

Since K is nonsingular by construction it follows from the proof of Theorem 2.1 that
E |(KTr)(Z)|2 > 0. �
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