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1 Introduction

Structural vector autoregressive (SVAR) models are typically identified by
exclusion restrictions on the impact effects of the structural shocks (e.g., Sims
(1980), Bernanke and Mihov (1998), Kilian (2009)), by restrictions on the
long-run effects of the shocks (e.g, Blanchard and Quah (1989), King, Plosser,
Stock and Watson (1991)) or by restrictions on the signs of the responses of
specific variables to a shock (e.g., Faust (1998), Canova and De Nicoló (2002),
Uhlig (2005)). Recently, a number of articles uses changes in the volatility
of the variables for identification of SVAR models (e.g., Rigobon (2003)).
A number of alternative approaches have been proposed for modelling the
changes in volatility. For example, exogenous changes in the variances of
the residuals are considered by Rigobon (2003), Rigobon and Sack (2003)
and Lanne and Lütkepohl (2008). In contrast, Lanne, Lütkepohl and Ma-
ciejowska (2010) and Herwartz and Lütkepohl (2014), for example, model the
changes in volatility by a Markov regime switching (MS) mechanism whereas
Lütkepohl and Netšunajev (2014b) consider smooth transition of the residual
volatility from one regime to another. Yet another approach is based on a
generalized autoregressive conditional heteroskedastic (GARCH) error struc-
ture (e.g., Normandin and Phaneuf (2004), Bouakez and Normandin (2010),
Weber (2010), Strohsal and Weber (2012)). Typically in this literature there
is not much discussion why a particular volatility model is used.

The objective of this study is to compare the alternative approaches and
discuss their advantages and drawbacks. Thereby we hope to provide a basis
for making a rational decision which model to use for a particular applica-
tion. Specifically we discuss the model setup, identification conditions for the
shocks, estimation and inference methods related to the alternative models.
As far as estimation and inference is concerned, we focus on frequentist pro-
cedures because Bayesian procedures have not been applied much so far in
this context (see, however, Kulikov and Netšunajev (2013)). Hence, there is
not much experience with Bayesian methods. For some of the models they
are not yet fully developed.

We illustrate the different approaches in the SVAR analysis based on the
study by Bjørnland and Leitemo (2009). These authors use conventional
exclusion restrictions on the impact and long-run effects of the shocks in
studying the interaction between monetary policy and the stock market in
the U.S.. We demonstrate how the different volatility models can be used for
generating additional identifying information and we discuss the advantages
and drawbacks of the alternative models for the example system.

Earlier related reviews of some of the models discussed in the following
are given by Lütkepohl (2013) and Lütkepohl and Velinov (2015). They
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discuss a more limited set of volatility models and different, more limited
examples. In particular, they do not compare the full range of volatility
models in the context of a specific example. The latter of the two articles
focuses specifically on combining restrictions on the long-run effects of the
shocks with identifying information from changes in volatility. That topic is
part of our general setup and, hence, it is included in the present study as a
special case.

The remainder of this study is organized as follows. In the next section
the basic SVAR model is introduced and the different volatility models are
discussed in Section 3. The illustrative example is considered in Section 4
and concluding remarks are given in the final section.

2 The Baseline Model

The baseline model is a VAR of order p (VAR(p)) of the form

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where yt = (y1t, . . . , yKt)
′ is a vector of observable variables, the Ai are

(K × K) coefficient matrices, ν is a (K × 1) constant term and the ut are
K-dimensional serially uncorrelated reduced form residuals with mean zero
and nonsingular covariance matrix Σu.

The structural residuals are denoted by εt. They have zero mean and are
serially uncorrelated. Typically they are also assumed to be instantaneously
uncorrelated, that is, εt ∼ (0,Σε), where Σε is a diagonal matrix. Sometimes
it is convenient to assume that the variances of the structural shocks are
normalized to one so that Σε is an identity matrix.

The structural residuals are typically obtained from the reduced form
residuals by a linear transformation:

εt = B−1ut or ut = Bεt. (2)

The matrix B contains the instantaneous effects of the structural shocks
on the observed variables. Given the relation between the reduced form
residuals and the structural residuals, the matrix B has to satisfy Σu =
BΣεB

′. In other words, in principle B can be any matrix satisfying Σu =
BΣεB

′. The relation between the reduced form and structural residuals does
not uniquely determine the matrix B and, hence, the structural innovations
are not uniquely determined without further assumptions.

The conventional approach is to impose further restrictions on B or its
inverse directly to make it unique. These restrictions may be zero restrictions
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indicating that a certain shock does not have an instantaneous impact on one
of the variables (Sims (1980)) or it may be implied by a restriction on the
long-run effects of a structural shock as in Blanchard and Quah (1989). In
the latter approach the matrix of long-run effects of structural shocks is given
by

Ξ∞ = (IK − A1 − · · · − Ap)
−1B,

assuming that the inverse exists. That condition is satisfied for stable, sta-
tionary processes without unit roots. For integrated and cointegrated pro-
cesses the long-run effects matrix is related to the cointegration structure of
the model (see, e.g., Lütkepohl (2005) or Lütkepohl and Velinov (2015)). For
our purposes it is sufficient to know that the matrix of long-run effects can
be computed from the reduced form and structural parameters. Imposing
restrictions on the matrix of long-run effects implies restrictions on B for a
given data generation process (DGP) and, hence, a given reduced form.

Typically the restrictions on B just-identify the structural model and,
hence, the structural shocks. In other words, there are just enough restric-
tions for uniqueness of B and no more. If there are two competing sets
of just-identifying assumptions or theories implying just-identifying restric-
tions, they lead to identical reduced forms and cannot be tested against the
data. Hence, the conventional setup is often uninformative regarding the
validity of specific economic theories. In the next section it is discussed how
heteroskedasticity can be used to improve the situation in this case.

3 SVAR Models with Time-Varying Volatil-

ity

Suppose now that ut is a heteroskedastic or conditionally heteroskedastic
error term. This means that the variances or conditional variances of the
reduced form and, hence, also the structural innovations change over time.
In the macroeconomic literature such behaviour is well documented. Al-
lowing for this feature means that there is more than one volatility regime
present during the sample period and each regime is characterized by a co-
variance matrix Σu(m), say. Suppose that there are M such regimes. If the
corresponding covariance matrices can be decomposed as

Σu(1) = BB′, Σu(m) = BΛmB
′, m = 2, . . . ,M, (3)

with Λm = diag(λm1, . . . , λmK), then the structural shocks obtained as in (2)
satisfy the basic condition that they are instantaneously uncorrelated in all

3



volatility regimes. The diagonal matrices Λm are the matrices of variances
of structural shocks in regime m relative to regime 1. For convenience Λ1 is
chosen to be the identity matrix. In other words, the structural shocks are
normalized to have unit variances in the first volatility regime.

In this setup the matrix of impact effects of the shocks, B, is (locally)
uniquely determined by the decomposition in (3) if for any subscripts k, l ∈
{1, . . . , K}, k 6= l, there is a j ∈ {2, . . . ,M} such that λjk 6= λjl (Lanne et
al., 2010, Proposition 1). In other words, for any two subscripts k and l there
must be at least one regime, where the corresponding relative variances are
different. For example, for the case of just two different volatility states with
covariance matrices

Σu(1) = BB′, Σu(2) = BΛ2B
′

all diagonal elements of Λ2 have to be distinct. For more than two states,

λ2k = λ2l, . . . , λMk = λMl (4)

must not hold for any combination k, l with k 6= l. In other words, lo-
cal uniqueness is ensured if there is sufficient heterogeneity in the volatility
changes. For instance, it is not enough that all variances change in propor-
tion.

Here local uniqueness refers to the fact that the matrix B is unique only
up to changes in the signs of its columns and up to permutations of its
columns. In other words, the matrix B is unique if the structural shocks
are chosen as εt = B−1ut and the signs and ordering of the shocks are fixed.
Thus, allowing for multiple volatility regimes the assumption of regime in-
variant impact effects of the structural shocks, i.e., choosing εt = B−1ut
with a time-invariant transformation matrix implies uniqueness or identifi-
cation without imposing additional economic restrictions. In the context of
SVARs with heteroskedasticity the identification is shifted from imposing the
just-identifying exclusion or long-run restrictions on B towards restrictions
implied by the statistical model setup. These conditions have to be met in
order to obtain exact (local) identification via changes in volatility. Once the
statistical identification is achieved, additional economic restrictions can be
imposed and can be tested formally as over-identifying restrictions.

There are several ways to model the change in volatility. Initially the
change points were just specified exogenously by the analyst, possibly based
on some prior statistical analysis (e.g., Rigobon (2003), Lanne and Lütkepohl
(2008), Bacchiocchi and Fanelli (2012)). Other approaches let the data decide
endogenously on the change points and possibly also the number of volatility
regimes. This approach is used when modelling the changes in volatility
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with a smooth transition specification (Lütkepohl and Netšunajev (2014b)),
via a Markov switching process (e.g., Lanne et al. (2010)), or based on a
generalized autoregressive conditional heteroskedasticity (GARCH) process
(Normandin and Phaneuf (2004)). These approaches allow even for infinitly
many volatility regimes. They are presented and discussed in more detail in
the following sections.

3.1 Exogenously Specified Volatility Changes

A simple model for volatility changes is based on the assumption that the
change points are exogenously given, that is,

E(utu
′
t) = Σu,t = Σu(m) for t ∈ Tm, m = 1, . . . ,M, (5)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M given volatility
regimes usually consisting of consecutive time periods. The Tm, for m =
1, . . . ,M − 1, represent the time periods of volatility changes. The initial
T0 = 0 and TM = T . The Tm are assumed to be known to the analyst and
are, hence, taken as given in the analysis. In practice, they may be obtained
with some prior statistical procedure, for instance, a testing procedure for
changes in the residual covariance matrix.

Estimation of the model is straightforward. Under normality assump-
tions, the likelihood function can be set up and ML estimation can be used
(see, e.g., Lütkepohl (2013)). If the data are not normally distributed, the
estimators are quasi ML estimators with standard asymptotic properties.
Since the likelihood function is nonlinear one may also want to consider a
generalized least squares procedure instead of full ML.

To estimate the structural parameters, Σu(1) has to be replaced by BB′

and BΛmB
′ replaces Σu(m) (m = 2, . . . ,M) in the likelihood function. Note,

however, that for M > 2 this imposes a restriction on the model that can
be tested by a likelihood ratio (LR) test. Under Gaussian assumptions and
the null hypothesis of the restriction being correct, the LR statistic has an
asymptotic χ2 distribution with

1

2
MK(K + 1)−K2 − (M − 1)K

degrees of freedom (see Lanne et al. (2010)). If the null hypothesis is rejected,
the assumption of a time-invariant initial effects matrix B across all volatility
regimes is not in line with the data. In that case, one could consider the
possibility of a time-invariant initial effects matrix across some of the regimes.
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If the decomposition of the covariance matrices is supported by the data,
then the conditions for local uniqueness of B can be tested. In other words,
using (4), null hypotheses

H0 : λ2k = λ2l, . . . , λMk = λMl (6)

have to be tested for all pairs k, l ∈ {1, . . . , K} with k 6= l. These are condi-
tions on the diagonal elements of the Λm matrices. They are identified if they
are ordered uniquely even if B is not identified. For example, one may order
the diagonal elements of Λ2 from smallest to largest, if all elements are dis-
tinct. If some of the elements are equal, the ordering can be based on Λ3 etc..
In any case, their asymptotic distribution can be used for testing the identi-
fying conditions. Wald tests based on the asymptotic distribution of the λmk

can be used for that purpose (see Herwartz and Lütkepohl (2014)). Alterna-
tively, under Gaussian assumptions, LR tests can be considered (Lütkepohl
and Netšunajev (2014a)).

Another issue is the determination of the volatility change points. As
mentioned previously, in practice this is often done by prior statistical pro-
cedures (e.g., Ehrmann, Fratzscher and Rigobon (2011)). Again standard
procedures, e.g., Chow tests can be used for this purpose. Thus, overall the
statistical procedures related to the model are straightforward and compu-
tationally feasible.

Applications of the model are due to Rigobon (2003), Rigobon and Sack
(2003, 2004), Lanne and Lütkepohl (2008) and Ehrmann et al. (2011), for
example. While the straightforward estimation and inference procedures as-
sociated with the model make it attractive for use in practice, the fact that
the volatility change points have to be prespecified is a disadvantage. Clearly,
it is often plausible to assume that the volatility changes are endogenously
generated. Therefore letting the data determine the volatility process includ-
ing its possible change points is more appealing.

3.2 SVAR with Smooth Transition in Variances

One possible model with endogenously changing volatility assumes a smooth
change in the residual covariance matrix. It was proposed in this context by
Lütkepohl and Netšunajev (2014b). More precisely, the change in the covari-
ance structure is modelled as a smooth transition from a volatility regime
characterized by a positive definite covariance matrix Σu(1) to a regime with
a different positive definite covariance matrix Σu(2). The transition is de-
scribed by a smooth transition function G(γ, c, st) that depends on param-
eters γ and c as well as a transition variable st. Lütkepohl and Netšunajev
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(2014b) use a logistic function with transition variable st = t, that is,

G(γ, c, st) = (1 + exp[− exp(γ)(t− c)])−1. (7)

Because exp(γ) > 0 for positive and negative values of γ, G(γ, c, st) > 0 is
close to zero when t is much smaller than c and G(γ, c, st) → 1 for t → ∞.
Formally, the reduced form residual covariance is described as

E(utu
′
t) = Σu,t = (1−G(γ, c, st))Σu(1) +G(γ, c, st)Σu(2). (8)

This setup ensures a positive definite matrix Σu,t because this matrix is a
convex combination of two positive definite matrices. Notice that due to
the covariance change during the transition period there are in fact infinitely
many different covariance regimes.

The transition from the residual covariance matrix Σu(1) to Σu(2) can be
used for identification purposes, using the decomposition

Σu(1) = BB′ and Σu(2) = BΛ2B
′, (9)

where Λ2 = diag(λ21, . . . , λ2K) is a diagonal matrix with positive diagonal
elements as before. Apart from changing the signs of the columns of B this
decomposition is unique for a given ordering of the diagonal elements of
Λ2 if the diagonal elements are all pairwise distinct (Lanne and Lütkepohl
(2008)). Thus, if the B matrix from (9) is used to transform the reduced
form residuals, the covariance matrices of the structural shocks are IK and
Λ2 for the initial and final regimes, respectively. The diagonal elements of
the Λ2 matrix can thus be interpreted as variances of structural shocks in
the final regime relative to the initial regime.

Under the assumption of normality the likelihood function of the model
can be set up and ML estimation can be performed using standard numerical
non-linear optimization algorithms. An iterative procedure for estimation is
discussed in detail by Lütkepohl and Netšunajev (2014b). Since the range
of the smoothness and threshold parameters {γ, c} can be bounded, a grid
search can be performed over the space of these two parameters. Thus,
estimation is technically straightforward and the asymptotic properties of the
parameter estimators are standard under usual assumptions for the DGP.

An important advantage of using this setup is that the identification
condition based on the diagonal elements of Λ2 becomes testable. Lütkepohl
and Netšunajev (2014b) use Wald tests for this purpose. In a related context
Lütkepohl and Netšunajev (2014a) use likelihood ratio tests. If the diagonal
elements of Λ2 are all distinct, any restrictions imposed onB in a conventional
SVAR framework become over-identifying and can be tested against the data.
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Apart from the straightforward estimation and inference procedures of the
model it has also the advantage of transparency of the mechanism of volatility
change. This, however, may turn out to be a disadvantage because it may not
be very realistic in many macroeconomic applications. A simple move from
one volatility regime to another during the sample period is clearly a very
special situation. Of course, the model can be extended by including further
transition terms so that the volatility can move between more states. Also
one could consider other transition variables or transition functions that allow
for more movement between two volatility states. If such volatility changes
are suspected it is a question, however, whether alternative specifications
may be more suitable for capturing them. One such alternative specification
is a Markov switching mechanism that drives the volatility changes. It is
presented next.

3.3 SVARs with Markov Switching in Variances

Lanne et al. (2010) propose to use a Markov regime switching mechanisms
in the VAR residuals for modelling the volatility changes and identifying
structural shocks. The related statistical methodology for using it in the
SVAR framework is partly developed by Herwartz and Lütkepohl (2014). In
this approach the distribution of the error term ut is assumed to depend on
a discrete Markov process st (t = 0,±1,±2, . . . ) with states 1, . . . ,M , and
transition probabilities

pij = Pr(st = j|st−1 = i), i, j = 1, . . . ,M.

The conditional distribution of ut given st is assumed to have a covariance
matrix that is different across states,

ut|st ∼ (0,Σu(st)). (10)

The model allows for Markov switching in the residual covariances only and
not in the VAR parameters. It captures conditional heteroskedasticity. No-
tice that there are finitely many Markov states only. Since the model assigns
probabilities to these states in each period, there are actually infinitely many
possible conditional covariance matrices. Thus, the model can also capture
smooth transitions from one state to another because a particular state does
not necessarily come up with probability one but the system may be in be-
tween states. In other words, the actual volatility may be described by a
mixture of different states, each state being weighted by a certain probabil-
ity in each period.
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Structural identification is obtained in this setting by using the covariance
decomposition

Σu(1) = BB′, Σu(m) = BΛmB
′, m = 2, . . . ,M, (11)

as in the model with exogenously determined changes in volatility. The
conditions are the same as those discussed in Section 3.1.

Estimation of the model can be done by ML if distributional assumptions
are made. Lanne et al. (2010) and Herwartz and Lütkepohl (2014) assume
a normal conditional distribution of ut, i.e., ut|st ∼ N (0,Σu(st)), set up
the likelihood function accordingly and present a suitable optimization algo-
rithm. The actual optimization task is difficult for larger models. There are
several obstacles that make estimation difficult. First, the likelihood func-
tion is actually unbounded so that strictly speaking there is no maximum.
The problem can be overcome by ensuring that all covariance matrices are
positive definite and their eigenvalues are bounded away from zero. Second,
the likelihood function is highly nonlinear and has local optima. This prob-
lem can be alleviated by using a large number of different starting values for
the optimization algorithm. Third, there is the well-known label-switching
problem which arises if the ordering of the regimes changes in the course of
the optimization. These obstacles make it difficult to compute ML estimates
for models with many parameters, that is, for models with many volatility
regimes, many variables or large lag orders. It may be noteworthy that over-
coming these problems is also not straightforward in a Bayesian approach.

If ML estimates can be obtained they have standard asymptotic proper-
ties under suitable assumptions. In fact, the normality assumption may be
relaxed. Asymptotic properties can also be derived if the true distribution
is different so that ML based on the conditionally Gaussian distribution is
actually a quasi ML procedure. Note however, that assuming a Gaussian
conditional distribution implies a nonnormal unconditional distribution of
the data. Hence, the assumption may make sense even for financial data, for
example.

In any case, the difficult numerical computation of the ML estimates is
a drawback of the model when systems with larger numbers of variables are
of interest. It also makes it difficult to use bootstrap techniques that require
estimation of a large number of models. Herwartz and Lütkepohl (2014)
propose a fixed design wild bootstrap method that conditions on some of
the estimated parameters. Little is known about the actual properties of the
method.

Applications of the MS-SVAR model are available in a number of studies.
Examples are Lanne et al. (2010), Herwartz and Lütkepohl (2014), Lütkepohl
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and Netšunajev (2014a), Netšunajev (2013), Lütkepohl and Velinov (2015),
Velinov (2013).

The model has appeal because it lets the data assign the observations
to the different volatility regimes. The regimes obtained in this way often
have a clear interpretation. For example, they may be linked to the busi-
ness cycle or other economically relevant features or periods of particular
interest from the point of view of economics. Identification conditions are
available that can be checked easily. If the model is small enough to compute
Gaussian ML estimates easily, then standard procedures for inference can be
used straightforwardly. The drawback of the model is, however, that for
larger models with long lag orders, a larger set of variables or many different
volatility regimes estimation is difficult and potentially unreliable. Moreover,
even for small models that can be estimated easily, little is known about the
properties of the proposed methods for constructing confidence bands around
impulse responses, for example.

3.4 SVARs with GARCH

Suppose now that the reduced form errors ut follow a multivariate GARCH
process. The information available up to and including period t is contained
in the set Ft and the conditional covariance matrix of ut given Ft−1 is assumed
to be of the form

E(utu
′
t|Ft−1) = BΣε,t|t−1B

′, (12)

where Σε,t|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1) is a diagonal matrix. The indi-

vidual variances of structural shocks are assumed to have a GARCH(1,1)
structure:

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−j + gkσ

2
k,t−j|t−j−1, k = 1, . . . , K. (13)

In other words, the structural shocks are assumed to be orthogonal and their
variances are modelled by individual GARCH(1, 1) processes. Of course, in
principle one could consider higher order GARCH processes. Because this is
not done in practice, we also focus on GARCH(1,1) processes to avoid unnec-
essarily clumsy notation. Notice also that the individual GARCH processes
imply an unconditional variance of 1. Hence, the unconditional covariance
matrix of the structural errors is the identity and

E(utu
′
t) = Σu = BB′.

The setup of our model very much resembles the GO-GARCH speci-
fication proposed by van der Weide (2002) and the model considered by
Normandin and Phaneuf (2004).
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Sentana and Fiorentini (2001) and Milunovich and Yang (2013) provide
general results on the identification of B and, hence, the structural shocks.
Specifically, B is (locally) identified if at least K − 1 of the GARCH(1,1)
processes are nontrivial, that is, γk 6= 0 for at least K − 1 of the K processes
in (13). In essence, there has to be enough heterogeneity in the conditional
variances to identify the shocks. At most one shock may be homoskedastic.

In the empirical literature using GARCH for identifying structural shocks
in an SVAR analysis, formal tests of the identification condition are typi-
cally not applied. Such tests are desirable in particular in macroeconometric
studies because they often involve variables for which one would not ex-
pect conditional heteroskedasticity a priori, especially when data of relatively
low frequency, such as quarterly data are used. Lütkepohl and Milunovich
(2015) propose and explore the properties of tests for identification in SVAR-
GARCH models that were originally suggested by Lanne and Saikkonen
(2007) in a related context. It tests the null hypothesis that there are K − 2
nontrivial GARCH components against the alternative that there are more
such components. Rejecting the null hypothesis implies identification. The
test proceeds as follows.

To emphasize the fact that there may only be h < K nontrivial GARCH(1,1)
components, the process generating the reduced-form errors is written as

ut = B

[
Λ

1/2
t|t−1 0

0 IK−h

]
εt, (14)

where εt ∼ iid(0, IK) and

Λt|t−1 =

 σ2
1,t|t−1 0

. . .

0 σ2
h,t|t−1

 (15)

is an (h× h) diagonal matrix with univariate GARCH(1,1) processes on the
diagonal. In other words,

ut|t−1 ∼
(

0,Σt|t−1 = B

[
Λt|t−1 0

0 IK−h

]
B′
)
.

Partitioning the transformation matrix B such that B = [B1 : B2], where
B1 is (K × h) and B2 is (K × (K − h)), the first part, B1 is identified and,
hence, can be estimated consistently. Lanne and Saikkonen (2007) propose
to choose B2 as an orthogonal complement of the estimated B1. Denoting
by B̂ the estimated B matrix obtained in this way, they propose to test the
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last K−h components of B̂−1ût, say ê2t, for remaining GARCH components
using GARCH tests based on portmanteau type statistics (see Lütkepohl and
Milunovich (2015) for details). More precisely, they consider test statistics
based on autocorrelations of the quantities

ξt = ê′2tê2t − T−1
T∑
t=1

ê′2tê2t

and

ϑt =vech(ê2tê
′
2t)− T−1

∑T
t=1vech(ê2tê

′
2t),

where vech denotes the half-vectorization operator. The test statistics are

Q1(H) = T
H∑
j=1

[γ̃(h)/γ̃(0)]2, (16)

where

γ̃(j) = T−1
T∑

t=j+1

ξtξt−j,

and

Q2(H) = T
H∑
j=1

tr[Γ̃(j)′Γ̃(0)−1Γ̃(j)Γ̃(0)−1], (17)

where

Γ̃(j) = T−1
T∑

t=j+1

ϑtϑ
′
t−j for j = 0, 1, . . . ,

and Γ̃(j) = Γ̃(−j)′ for j < 0. Under the null hypothesis of only h GARCH
components, the statistics Q1(H) and Q2(H) have asymptotic χ2 distribu-
tions with H and H(K −h)2(K −h+ 1)2/4 degrees of freedom, respectively.
The number H of autocorrelations to be included has to be fixed by the
analyst. A value H = 1 is considered by Lanne and Saikkonen (2007) and
Lütkepohl and Milunovich (2015).

For a third possible test, Lütkepohl and Milunovich (2015) consider the
regression

ηt = δ0 +D1ηt−1 + · · ·+DHηt−H + wt, (18)
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where ηt = vech(ê2tê
′
2t), δ0 is a 1

2
(K−h)(K−h+1)-dimensional fixed vector,

the Di, i = 1, . . . , H are 1
2
(K−h)(K−h+1)× 1

2
(K−h)(K−h+1) parameter

matrices and wt is an error term. The LM test statistic for testing the null

H0 : D1 = · · · = DH

is

Q3(H) = 1
2
T (K − h)(K − h+ 1)− T tr[Σ̃wΓ̃(0)−1] (19)

where Σ̃w is the estimated residual covariance matrix of (18). The criti-
cal values are obtained from the χ2(1

2
H(K − h)2(K − h + 1)2) distribution.

Lütkepohl and Milunovich (2015) also choose H = 1 for implementing this
test.

The estimation of the parameters of the SVAR-GARCH model may be
done by ML under Gaussian assumptions, that is, εt is assumed to be nor-
mally distributed. Lanne and Saikkonen (2007) derive a form of the likelihood
that does not depend on unidentified parameters for given h. Thus, estima-
tion is feasible. The actual optimization of the log-likelihood can still be
numerically challenging for large models. Therefore designing useful boot-
strap methods, for example, for estimating impulse responses leaves room for
further research.

In some studies using the SVAR-GARCH approach, other GARCH mod-
els are considered (e.g., Weber (2010), Strohsal and Weber (2012)). In fact,
given the additional identifying information in the GARCH structure, it is
not even necessary to insist on instantaneously uncorrelated shocks and this
assumption is given up in some related literature. The shocks can be identi-
fied by some other assumption such as constant conditional correlations (see
Weber (2010)). In any case, this does not make the treatment of the model
simpler. A drawback is the challenging likelihood function that is difficult
to maximize for larger models with many variables although the procedure
described in the foregoing may alleviate the task. Another drawback is that
the periods of different volatility, such as low volatility and high volatility
periods, may not be obvious from the model. On the other hand, the con-
ditional heteroskedastic structure has been applied extensively for financial
data and, hence, it has some appeal for such data.
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4 The Relation Between U.S. Monetary Pol-

icy and the Stock Market

4.1 The Data and the Structural Model

In this section the different heteroskedastic and conditionally heteroskedas-
tic SVARs are illustrated in the context of an investigation of the interaction
between U.S. monetary policy and the stock market. We use all three mod-
els that allow for endogenously changing volatility and reconsider a study
reported by Bjørnland and Leitemo (2009). These authors use short-run and
long-run restrictions in a conventional SVAR setting to identify the shocks
of interest. The study by Bjørnland and Leitemo (2009) is chosen as point of
departure for several reasons. First, these authors propose a novel identifi-
cation scheme that is not testable in a conventional setting while the SVARs
with heteroskedasticity allow to test the restrictions. Second, the model of
Bjørnland and Leitemo (2009) is at monthly frequency and we use the ex-
tended sample period 1970M1 - 2007M6 and, hence, we have 450 observations
for each variable making, for instance, GARCH model estimation feasible.
The end of the sample is determined to avoid distortions from the crisis that
started around the middle of 2007. Typical macro-VARs on quarterly fre-
quency would not contain more than 250 observations. The data is collected
as close as possible to Bjørnland and Leitemo (2009). We consider a five
dimensional VAR with the vector of variables being yt = (qt, πt, ct,∆spt, rt)

′,
where:

• qt is the linearly detrended log of an industrial production index;

• πt is the scaled (×100) annual change in the log of consumer prices
(CPI);

• ct represents the scaled (×100) annual change in the log of the World
Bank (non energy) commodity price index;

• spt is the log of the S&P 500 stock price index deflated by the CPI to
measure the real stock prices. The series is first differenced to represent
monthly returns (∆spt);

• rt denotes the Federal Funds rate.

The data (with the exception of the commodity price index obtained from
the World Bank) is downloaded from the Federal Reserve Bank of St. Louis
database FRED.
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From the point of view of our analysis it is of particular interest to test the
restrictions specified by Bjørnland and Leitemo (2009) using different models
and, hence, to check whether they are in line with the data. Bjørnland and
Leitemo (2009) criticize the recursive identification of monetary policy and
stock price shocks. They suggest that monetary policy shocks may have an
impact on the stock market within the month. To overcome this problem
combining short-run and long-run restrictions is proposed. The identification
scheme can be visualized as follows:

B =


∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 and Ξ∞ =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

 , (20)

where the asterisks indicate unrestricted elements and zeros denote elements
restricted to zero and B and Ξ∞ denote the matrices of impact and long-
run effects, respectively, of the shocks, as before. The shocks of particular
interest are the shocks ordered fourth and fifth, corresponding to the last
two columns of the matrices. This identification suggests that the last shock
is the monetary policy shock and it has no immediate impact on industrial
production, inflation and commodity prices as well as no long-run effect on
stock prices. The shock ordered fourth is viewed as the stock price shock and
it has no contemporaneous effect on the real side of the economy. Note that
the first three shocks are not of interest for the current analysis. They can
be identified arbitrarily in a conventional SVAR analysis.

In the following we consider alternative sets of restrictions for the ini-
tial effects matrix B and the long-run effects matrix Ξ∞ and explore their
compatibility with the data.

R1: B and Ξ∞ are restricted as in (20) (Bjørnland-Leitemo identification).

R2: Only the two last columns of B and Ξ∞ are restricted as in (20).

R3: Only B is restricted as in (20) and no restrictions are imposed on Ξ∞.

The first set of restrictions constrains the impact effects and long-run re-
sponses just as in the Bjørnland-Leitemo setup. The second set imposes only
the restrictions used for the shocks of interest, i.e., the stock market shock
and the monetary policy shock. Finally, R3 represents the full set of re-
strictions from Bjørnland-Leitemo except for the long-run restriction. Thus,
imposing only those restrictions does not fully identify the shocks of interest.
All these sets of restrictions are either under-identifying or just-identifying
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in a conventional framework. Hence, testing them requires additional identi-
fying restrictions that we get from the changes in volatility in the variables.

4.2 The Volatility Model

We estimate the standard VAR and three (conditional) heteroskedastic VARs
with different assumptions on the evolution of volatility. The VAR order is
chosen to be three as suggested by the Akaike information criterion (AIC) in
a conventional model that does not allow for heteroskedasticity. Bjørnland
and Leitemo (2009) use four lags based on lag reduction tests for their shorter
data range.

In practice, if changes in volatility are suspected, it is useful to think
about the most suitable volatility model for a particular application. For the
system of interest here, volatility changes are likely, for example, because a
financial variable such as ∆spt is included. It is not easy to link the volatility
changes to specific exogenous events and, hence, to specific parts of the sam-
ple period. Therefore a model that assigns the volatility states endogenously
makes more sense than a model with exogenous volatility changes. Given the
stock returns in the system one may think of a GARCH model. However,
also the MS model can capture similar conditional heteroskedastic structures.
Therefore it is a priori equally suitable if enough volatility states are allowed
for. If the volatility change is sufficiently smooth, also the ST model is a
possibility. It is used, in fact, by Lütkepohl and Netšunajev (2014b) for the
presently considered system and we draw on the results from that study for
the ST-SVAR model in the following. In deciding on the volatility model it
may be useful to inspect the residuals from a standard VAR analysis. They
are presented in Figure 5 and show that there are indeed considerable changes
in volatility throughout the sample and capturing them with a model with
exogenously assigned volatility regimes may not be easy. Therefore we con-
sider all three models with endogenous assignment of volatility states in the
following.

Clearly, a visual inspection of the residuals is not enough for making
a good decision on the most suitable volatility model. Such visual tools
have to be complemented with statistical criteria such as information crite-
ria. Therefore we show values of the Akaike information criterion and the
Schwarz criterion (SC) for different models in Table 1. Notice that in all
the volatility models a state-invariant initial effects matrix B is assumed and
the VAR order is 3 for all models. The GARCH model is estimated with
5 univariate GARCH(1,1) components. It turns out that all (conditionally)
heteroskedastic SVARs perform much better than the standard VAR accord-
ing to AIC and SC. In fact, both criteria are minimized for the MS-SVAR
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model with 3 volatility states. We did not try to estimate MS models with
more volatility states because for a 5-dimensional model that would have
been a major computational challenge and the estimates cannot be expected
to be reliable.

The ultimate objective is, of course, to capture the volatility well with
our models. Therefore it is instructive to look at the standardized residuals

ûkt/σ̂kk,t

obtained for the different models. Here σ̂2
kk,t is the kth diagonal element of

the estimated residual covariance matrix or conditional covariance matrix for
period t, depending on the model considered. These quantities are plotted
in Figure 2 for the models with time-varying volatility. Notice that these are
not the structural residuals obtained from these models but reduced-form
residuals. The graphs are just meant to give a visual impression of possible
remaining volatility changes or the ability of the different models to actually
capture the volatility changes in the reduced-form residuals.

Comparing to the residuals in Figure 5, all models appear to improve
on a model without allowance for volatility changes. However, the volatility
models differ in their ability to capture the volatility in the data well. The
visual impression is that the ST-SVAR model leaves quite some unexplained
volatility in the residuals. Also, the MS(2) model appears to be inferior to
the MS(3) model. For example, it leaves more heterogeneity in the com-
modity price residual series than the MS(3) model. Moreover, the GARCH
residuals are somewhat disappointing and clearly inferior to the MS(3) resid-
uals. Note, for example, large outliers in the urt series that are not captured
by the GARCH model. Also some of the other residual series leave room for
improvement relative to the corresponding quantities from the MS(3) model.
For example, the volatility changes in the residuals of the output equation,
uqt , are not well captured by the GARCH model. Thus, it is no accident that
the AIC and SC criteria prefer the MS(3) model as well.

These results are perhaps better understood when looking at the transi-
tion function of the ST-SVAR model and the smoothed state probabilities
of the MS(2)-SVAR and MS(3)-SVAR models in Figure 3. The MS models
indicate that the change in volatility is more complex than what is captured
by the ST-SVAR model. There does not appear to be a smooth transition
from one volatility regime to another if the data are allowed to assign differ-
ent regimes in a different way as in the MS models. Also allowing for a third
state leads to a quite different separation of the sample period than a two
state model. This explains why the MS(3) model is preferred over the ST and
the MS(2) models. Despite the fact that we favor the MS(3)-SVAR for the
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present dataset, we continue looking also at the other models for illustrative
purposes.

4.3 Identification Analysis

The first question we have to address is the identification issue. For all
three models statistical identification conditions are linked to the changes
in volatility. For the ST and MS models they are linked to the relative
variances. Estimates of these quantities are shown in Table 2. For the ST
and MS(2) models the relative variances in the second state are all less than
one. Hence, the ST model moves the volatility from a high volatility state
to a lower volatility state. This corresponds well to the fact that the MS(2)
model assigns the second, hence, lower volatility state to the latter part of the
sample (see Figure 3). In contrast, the first state dominates the second half
of the sample in the MS(3) model. Therefore it is plausible that the relative
variances of the second and third states assigned by the MS(3) model are all
larger than one, that is, the variances are larger than in the first state.

Recall that we have a fully identified ST-SVAR model if all the relative
variances are distinct. Taking into account also the standard errors in Table
2, the estimates suggest that at least the first four relative variances are
distinct. Formal tests that they are all distinct are presented in Table 3.
Note that we have to test K(K − 1)/2 = 10 pairs for a system of dimension
K = 5. For the smooth transition model, the null hypotheses of pairwise
equality is rejected at a 10% significance level for all pairs but the last. Thus,
we conclude that we have some statistically identified shocks but perhaps
not a fully identified ST-SVAR model. In particular, the first three shocks
are identified via heteroskedasticity. For a fully identified set of structural
shocks we need additional restrictions such as those or some of those used
by Bjørnland and Leitemo (2009).

The standard errors of the estimated relative variances for the MS models
in Table 2 tend to be larger than for the ST model and also the estimated
relative variances are not clearly distinct in a number of cases. Therefore
it is not surprising that the corresponding tests for full identification shown
in Tables 3 and 4 do not reject some of the relevant hypotheses. However,
they do indicate that the volatility models contain at least some additional
identifying information because some of the relevant hypotheses are clearly
rejected with p-values much smaller than 5% or even 1%. Interestingly, in
the MS(2)-SVAR model the tests indicate that the first relative variance is
clearly distinct from the others and, hence, the first shock is identified while
in the MS(3)-SVAR model the last shock is identified. Note, however, that
we are using Wald tests for checking the identification restrictions and these
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tests may not be very reliable (see Lütkepohl and Netšunajev (2014a)). Thus,
there may be more identified shocks. Our current statistical procedures do
not provide much evidence for them, however.

The identification issue in the context of the SVAR-GARCH model is a
somewhat different one. We have to check the number of univariate GARCH
components underlying the GARCH structure. Ignoring the problem and
estimating a model with five GARCH components as we have done in the
foregoing, some of the GARCH parameters may actually not be identified.
Thus, the analysis of the SVAR-GARCH model should ideally start with
a thorough investigation of the number of underlying univariate GARCH
components. This is of particular importance in analyses such as the present
one where it is not clear whether the GARCH structure captures changes in
volatility well enough in all variables. Notably variables such as industrial
production are not necessarily well modelled by GARCH. Therefore we use
the tests presented in Section 3.4 to investigate the issue. The results are
shown in Table 5. Since the tests reject fewer than five GARCH components
(r < 5), it makes sense to use the GARCH model with five components
which also fully identifies all five shocks. As discussed earlier, this does not
necessarily mean that the GARCH-SVAR model is the best one. In fact, we
have seen earlier that it may be inferior to the MS(3)-SVAR model in some
respects. What our tests show, however, is that the GARCH specification has
a likelihood with curvature against restrictions on the B and Ξ∞ matrices
if these restrictions are not in line with the data in the framework of the
SVAR-GARCH model.

The overall conclusion of our identification analysis is that all models
may present some power against restrictions on the short-run and long-run
effects matrices B and Ξ∞. Therefore it makes sense to use all four models
to test the restrictions discussed earlier. The test results are presented in
Table 7. Obviously, all the null hypotheses can be rejected against models
with fewer restrictions in all the four volatility setups. Thus there is strong
evidence against any set of the restrictions. Rejecting R1 means, of course,
that the Bjørnland-Leitemo restrictions are rejected. Such a rejection may
be due to only one or a small subset of restrictions being false. To make sure
that they are not rejected because the restrictions used to identify the shocks
of no interest for an analysis of the stock market and monetary shocks, we
also test R2 against a model without zero restrictions on B and Ξ∞. Again,
these restrictions are clearly rejected regardless of the volatility model used.
Moreover, the impact restrictions R3 are rejected in the absence of the long-
run restriction. Similarly, the zero restriction on Ξ∞ is individually rejected
in a test of R1 against R3. These results support findings in Lütkepohl and
Netšunajev (2014b) where also other ST-SVAR models are considered.
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Of course, one could argue that it is not clear whether the Bjørnland-
Leitemo restrictions or the volatility models are rejected by the tests. How-
ever, given that all the volatility models agree in their rejections, this sheds
some doubt on the restrictions. After all, in the conventional approach the
changes in volatility are ignored and the restrictions are just identifying so
that the data have no opportunity to speak up against them.

4.4 Impulse Response Analysis

Having rejected the Bjørnland-Leitemo restrictions one wonders what can
be said about their main issue of interest namely the interaction between
monetary policy and the stock market. The volatility analysis so far has not
provided a full set of economic shocks. Even in the GARCH model where full
identification is found, the shocks delivered by the SVAR-GARCH approach
are just statistically identified and may not have economic meaning. For
example, they may be mixtures of economic shocks. For the other models
there is not even a full set of properly identified shocks. So the question arises
whether we can learn something from our analysis regarding the economic
questions of interest. To answer that question we can take a look at the
identified shocks and see whether they can be interpreted as economically
meaningful shocks. This can best be assessed by looking at the corresponding
impulse responses.

Because we favor the MS(3)-SVAR model on the basis of our statistical
analysis and because in this model we found only one clearly identified shock
we present impulse responses for this shock in Figure 5 together with 68%
confidence intervals. On impact the shock moves up the interest rate and,
hence, qualifies as a contractionary monetary policy shock. On the other
hand, there is a pronounced initial increase in output and inflation which
would not be expected for responses to a monetary policy shock. Therefore
we follow Lütkepohl and Netšunajev (2014b) and interpret the shock iden-
tified via heteroskedasticity as a demand side monetary shock rather than a
supply side shock of the money market. This is also in line with the money
demand shock studied in Kulikov and Netšunajev (2013) and Favara and
Giordani (2009). Hence, in our system and in the system we do not find a
shock that qualifies as a supply side shock of the money market. Hence, the
restrictions may be rejected because they do not identify the desired shock.

Turning now to the response of stock prices (spt), it is seen in Figure 5
that there is a significant decline for a few months after which the stock prices
return to insignificant territory. Such a response is in fact quite plausible as
one would expect the stock market to absorb monetary shocks quickly. Note
that the impulse responses in Figure 5 are the accumulated responses of ∆spt
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and, thus, they are the responses of spt rather than the returns.
For the other models we have also plotted impulse responses to the clearly

identified shocks and checked whether any one of them increases the interest
rate significantly on impact. It turns out that for each of the models only one
shock really qualifies as a monetary shock. We present the impulse responses
of these shocks in Figure 5. As can be seen in the figure, the responses
look very similar in all the models. In particular, they qualitatively tell the
same story regarding the stock market response. The stock returns decline
initially but move back up after a few months. Thus, we can conclude that
there is some evidence of a short-term stock market response to activities in
the money market. It is striking how little the volatility model affects the
results. The important point seems to be that volatility changes are taken
into account at all. The specific model for describing them is of secondary
importance even if it is not an ideal description of the volatility changes. Of
course, this latter conclusion may be specific to this example and cannot be
generalized based on the available evidence.

5 Conclusions

In this study we have reviewed the volatility models in current use for identi-
fying structural shocks in VAR analysis. The great advantage of this tool is
that it offers potentially additional identifying information that can be used
to investigate assumptions that are just-identifying in a conventional SVAR
framework and thereby opens up the possibility to confront the data with
such assumptions. We have pointed out the advantages and drawbacks of
exogenously specified changes in volatility, smoothly changing volatility and
volatility changes modelled by Markov switching and GARCH processes. Un-
derstanding the specific features of these models can help in making more
informed decisions which model to use in a particular application.

Given that little about the actual volatility changes is typically known in
practice for a specific set of variables of interest, exogenously specified volatil-
ity changes usually require considerable pretesting or preliminary analysis of
possible changes. On one hand, they are very rigid in representing the break
in volatility and assume that there is no transition for an extended period
after some change has occurred. On the other hand, estimation is relatively
easy.

Models that allow for endogenously determined volatility changes such as
ST-SVAR, MS-SVAR and SVAR-GARCH models remove the burden of spec-
ifying the change points. Also the changes as such can be very flexible. The
greatest flexibility in this respect is offered by MS-SVAR and SVAR-GARCH

21



models. On the other hand, these models are also the ones most difficult to
estimate. In fact, estimation still poses considerable computational problems
for models of larger size, that is, for models with many variables, large lag or-
ders or, in the case of MS models, large numbers of different volatility states.
For these models not only estimation of the model parameters is difficult but
they also pose considerable problems for constructing bootstrap confidence
intervals for impulse responses, for example.

On the positive side, for all model types precise conditions are known for
full identification of all shocks. Moreover, statistical tests are available for
checking the identification conditions formally.

We have illustrated the use of the models and some of the statistical issues
involved by a detailed analysis of a monthly U.S. model for investigating
the relation between monetary policy and the stock market. We find that
previously used restrictions for identifying the shocks that are just-identifying
in a conventional framework can be formally tested against the data and are
in fact rejected by all volatility models. We find a Markov switching model
with three regimes to be the most suitable model. Unfortunately, we do
not find a full set of economically interpretable shocks using our preferred
volatility model. Only a potential monetary shock and its responses can be
clearly identified. It indicates that money market activities have some impact
on stock returns. The effects are absorbed by the stock market quickly,
however, as one might expect. This result is quite robust with respect to
the volatility model used in this application. Whether or not this is a more
general result is pure speculation. It shows, however, the importance of
allowing for volatility changes in a system of variables where such changes
actually occur.
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Canova, F. and De Nicoló, G. (2002). Monetary disturbances matter for busi-
ness fluctuations in the G-7, Journal of Monetary Economics 49: 1131–
1159.

Ehrmann, M., Fratzscher, M. and Rigobon, R. (2011). Stocks, bonds, money
markets and exchange rates: Measuring international financial trans-
mission, Journal of Applied Econometrics 26: 948–974.

Faust, J. (1998). The robustness of identified VAR conclusions about money,
Carnegie-Rochester Conference Series in Public Policy 49: 207–244.

Favara, G. and Giordani, P. (2009). Reconsidering the role of money for out-
put, prices and interest rates, Journal of Monetary Economics 56: 419–
430.

Herwartz, H. and Lütkepohl, H. (2014). Structural vector autoregressions
with Markov switching: Combining conventional with statistical identi-
fication of shocks, Journal of Econometrics .

Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand
and supply shocks in the crude oil market, American Economic Review
99: 1053–1069.

King, R. G., Plosser, C. I., Stock, J. H. and Watson, M. W. (1991). Stochastic
trends and economic fluctuations, American Economic Review 81: 819–
840.
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Table 1: Comparison of SVAR(3) Models with State Invariant B

Model logLT AIC SC
SVAR(3) -3159.344 6508.689 6899.067
ST-SVAR(3) -2878.255 5976.510 6428.527
MS(2)-SVAR(3) -2826.742 5877.484 6337.719
MS(3)-SVAR(3) -2774.614 5791.230 6288.448
SVAR(3)-GARCH(1,1) -2891.971 6013.942 6486.505

Note: LT – likelihood function, AIC = −2 logLT + 2×no of free parameters, SC

= −2 logLT + log T×no of free parameters.

Table 2: Estimates of Relative Variances for Smooth Transition and Markov
Switching Models

ST-SVAR MS(2)-SVAR MS(3)-SVAR
parameter estimate std.dev. estimate std.dev.
λ21 0.019 0.002 0.019 0.003 3.724 0.849
λ22 0.315 0.057 0.271 0.097 2.741 0.626
λ23 0.548 0.088 0.371 0.125 5.243 1.309
λ24 0.867 0.154 0.428 0.135 3.544 0.761
λ25 0.927 0.172 0.682 0.356 2.568 0.608
λ31 1.859 0.593
λ32 2.554 0.747
λ33 2.693 0.863
λ34 3.981 1.153
λ35 82.265 16.065
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Table 3: Tests for Equality of λ2k for Unrestricted ST-SVAR and MS(2)
Model

ST-SVAR MS(2)-SVAR
H0 Wald statistic p-value Wald statistic p-value
λ21 = λ22 26.463 2.686× 10−7 6.6233 0.0101
λ21 = λ23 35.720 2.277× 10−9 7.9320 0.0049
λ21 = λ24 29.806 4.673× 10−8 9.0093 0.0027
λ21 = λ25 27.498 1.572× 10−7 3.4660 0.0626
λ22 = λ23 4.729 0.029 0.7049 0.4012
λ22 = λ24 10.731 0.001 1.3050 0.2533
λ22 = λ25 10.583 0.001 0.9135 0.3392
λ23 = λ24 2.814 0.093 0.1255 0.7232
λ23 = λ25 3.687 0.054 0.4901 0.4839
λ24 = λ25 0.061 0.805 0.3201 0.5715

Table 4: Tests for Pairwise Equality of λ2k and λ3k for MS(3)-SVAR Model

MS(3)-SVAR
H0 Wald statistic p-value
λ21 = λ22, λ31 = λ32 2.011 0.356
λ21 = λ23, λ31 = λ33 1.138 0.565
λ21 = λ24, λ31 = λ34 2.921 0.232
λ21 = λ25, λ31 = λ35 29.753 0.000
λ22 = λ23, λ32 = λ33 2.993 0.223
λ22 = λ24, λ32 = λ34 1.193 0.551
λ22 = λ25, λ32 = λ35 26.424 0.000
λ23 = λ24, λ33 = λ34 2.758 0.251
λ23 = λ25, λ33 = λ35 34.043 0.000
λ24 = λ25, λ34 = λ35 28.324 0.000

Table 5: Tests for Identification in GARCH-SVAR Model

r under H0 Q1(1) df p-value Q2(1) df p-value Q3(1) df p-value
1 24.026 1 9.5× 10−7 251.520 100 4.8× 10−15 4036.911 100 0
2 20.446 1 6.1× 10−6 148.644 36 1.2× 10−15 2252.564 36 0
3 12.712 1 3.6× 10−4 31.256 9 2.6× 10−4 899.776 9 0
4 15.127 1 1.1× 10−4 15.127 1 1.1× 10−4 12.421 1 4.2× 10−4
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Table 6: Estimates of GARCH Parameters for Model with Unrestricted B
and Ξ∞

γk gk
k estimate std.dev. estimate std.dev.
1 0.349 0.078 0.089 0.182
2 0.342 0.021 0.614 0.039
3 0.245 0.233 0.234 0.223
4 0.125 0.005 0.819 0.037
5 0.095 0.004 0.832 0.036

Table 7: Tests for Identifying Restrictions in Heteroskedastic SVAR Models

H0 H1 LR statistic df p-value
R1 ST-SVAR with unrestricted B, Ξ∞ 35.845 10 8.9× 10−5

R2 ST-SVAR with unrestricted B, Ξ∞ 30.909 7 6.4× 10−5

R3 ST-SVAR with unrestricted B, Ξ∞ 22.491 9 0.0074
R1 R3 13.354 1 2.5× 10−4

R1 MS(2)-SVAR with unrestricted B, Ξ∞ 52.505 10 9.1× 10−8

R2 MS(2)-SVAR with unrestricted B, Ξ∞ 54.586 7 1.4× 10−13

R3 MS(2)-SVAR with unrestricted B, Ξ∞ 19.097 9 0.024
R1 R3 33.408 1 7.4× 10−9

R1 MS(3)-SVAR with unrestricted B, Ξ∞ 54.134 10 4.5× 10−8

R2 MS(3)-SVAR with unrestricted B, Ξ∞ 49.350 7 1.93× 10−8

R3 MS(3)-SVAR with unrestricted B, Ξ∞ 27.921 9 9.8× 10−4

R1 R3 26.212 1 3.5× 10−7

R2 SVAR-GARCH with unrestricted B, Ξ∞ 90.047 10 3.7× 10−15

R2 SVAR-GARCH with unrestricted B, Ξ∞ 92.229 7 0.000
R3 SVAR-GARCH with unrestricted B, Ξ∞ 56.052 9 6.7× 10−9

R1 R3 33.995 1 4.5× 10−9
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Figure 1: Residuals obtained from VAR(3) model without allowance for het-
eroskedasticity.
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(a) Standardized residuals obtained from ST-SVAR model
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(b) Standardized residuals obtained from MS(2)-SVAR model
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(c) Standardized residuals obtained from MS(3)-SVAR model
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(d) Standardized residuals obtained from SVAR-GARCH model

Figure 2: Standardized residuals obtained from different models allowing for
time-varying volatility.
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Figure 3: Volatility regimes obtained from different models.
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Figure 4: Impulse responses to monetary shock obtained from MS(3)-SVAR
model.
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Figure 5: Impulse responses to monetary shock obtained from models.
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