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Forecasting volatility of wind power production* 

Zhiwei Shena** and Matthias Rittera 

Abstract: The increasing share of wind energy in the portfolio of energy sources highlights its 

uncertainties due to changing weather conditions. To account for the uncertainty in predicting 

wind power production, this article examines the volatility forecasting abilities of different 

GARCH-type models for wind power production. Moreover, due to characteristic features of 

the wind power process, such as heteroscedasticity and nonlinearity, we also investigate the 

use of a Markov regime-switching GARCH (MRS-GARCH) model on forecasting volatility 

of wind power. The realized volatility, which is derived from lower-scale data, serves as a 

benchmark for the latent volatility. We find that the MRS-GARCH model significantly 

outperforms traditional GARCH models in predicting the volatility of wind power, while the 

exponential GARCH model is superior among traditional GARCH models.  

Keywords: Wind energy, volatility forecasting, GARCH models, Markov regime-switching, 

realized volatility 

JEL code: C22, Q42, Q47 

1. Introduction 

Increasing energy demand and the negative impact of fossil energy consumption on climate 

change impacts have led to a worldwide boom of renewable energies such as wind energy. The 

global cumulative installed wind energy capacity increased from 24 GW in 2001 to 370 GW 

in 2014 and is expected to reach 596 GW until 2018 (GWEC, 2014; 2015). However, relying 

on renewable energy to meet increasing energy demand is still problematic. One of the main 

concerns of renewable energy production is its riskiness due to changing weather conditions. 

This is particularly true for wind energy production, which is the most rapidly expanding 

energy source. Volume risk is an important economic issue since energy is a non-storable 

commodity. In view of the increasing share of risky renewable energies in the portfolio of 

* The authors would like to thank Martin Odening and Brenda López Cabrera for their helpful comments. The 
financial support from the German Research Foundation via the CRC 649 “Economic Risk”, Humboldt-
Universität zu Berlin, is gratefully acknowledged. 
a Humboldt-Universität zu Berlin, Department of Agricultural Economics, Philippstr. 13, 10115 Berlin, Germany. 
** Corresponding author: zhiwei.shen@agrar.hu-berlin.de, Tel.: +49 (0) 30209346834, Fax: +49 (0) 30209346841. 
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energy sources a quantification of the production risk has gained considerable attention. 1 

Interest in prediction of wind energy production is manifold: In the long run (several years), 

investors want to predict their returns on investments in wind energy production. In the short 

run (several hours to days), grid operators have to make decisions about energy scheduling in 

order to balance supply and demand on a regional or national grid. Moreover, energy traders 

want to make informed decisions on how much they can offer or bid in the next trading cycle. 

This requires reliable forecasts of the output of wind energy farms. 

Two main streams of approaches and models have been proposed to generate wind power 

forecasts. The first type are physical or meteorological models. They rely on Numerical 

Weather Prediction models to determine meteorological forecasts, which are then transformed 

into wind power forecast via a power curve (Monterio et al., 2009). The second type are 

mathematical or statistical approaches. They use the statistical models (e.g., time series models, 

data mining models such as neural networks or support vector machines) to identify the spatial-

temporal relationship between the wind power production and explanatory variables (e.g., 

historical wind power data). Based on this relationship the wind power forecasts are estimated 

from the observed explanatory variables (Brown et al., 1984; Bilgili et al., 2007). The strengths 

of different models rest on the different forecast horizons. An overview about the various 

modelling approaches can be found in Giebel et al. (2011) and Kusiak et al. (2013).  

Regardless of these approaches and models, two kinds of forecasts can be considered. Early 

research focused on point forecasts of wind energy production, i.e., a single value of 

conditional expectation of wind power production is predicted. To make optimal decisions for 

energy participants, however, it is not sufficient to know only the expected wind power 

production. The actual production most likely deviates from the forecast and their difference 

causes imbalance costs for market participants. Therefore, participants in the energy market 

need an assessment of the uncertainty involved in the prediction. To account for the uncertainty 

of wind power production, probabilistic forecasts of wind energy production have been 

proposed (Bremnes, 2004; Pinson et al., 2007; Trombe et al., 2012). Probabilistic forecasts are 

more flexible than point forecasts and can be quantile or interval forecasts (Bremnes, 2004; 

Anastasiades and McSharry, 2013) or full predictive density forecasts (Lau and McSharry, 

2010).  

1 Actually, the Economist Intelligence Unit (2011) reports from a survey among 280 executives and investors in 
the renewable energy industry that 66% percent of the respondents were concerned about volumetric risk in wind 
energy production. 
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One crucial parameter that captures the uncertainty of wind power production in probabilistic 

forecasting is volatility. It is also a determinant of financial risk management instruments such 

as insurance or wind derivatives. To measure the volatility of wind power production, 

characteristic features of wind data have to be taken into account. First of all, it has to be 

recognized that not only wind speed but also its volatility is usually time-varying. In a medium 

term perspective, seasonal effects of wind activity have to be considered (Šaltytė-Benth and 

Benth, 2010). In addition, one can observe stochastically time-varying heteroscedasticity 

similar to financial markets (Lau and McSharry, 2010). Moreover, wind power production can 

be affected by ramp events when energy output changes by a substantial fraction of the capacity 

within short time. Ramp events can be caused by a passage of large scale weather systems or 

by thunderstorms. As a result, high wind speed shutdowns may occur, causing a rapid decrease 

in wind power production. 

So far, a variety of volatility models have been applied either to wind speed data or to wind 

power data to capture time-varying heteroscedasticity. Alexandridis and Zapranis (2013) 

estimate an ARIMA model for daily average wind speed data and model seasonal variation of 

the volatility with a truncated Fourier series. The prevalent models, however, are autoregressive 

conditional heteroscedasticity (ARCH) and generalized autoregressive conditional 

heteroscedasticity (GARCH). Tastu et al. (2014) use an ARCH model to generate the variances 

in the probabilistic forecasts of wind power production for an offshore wind farm in Denmark. 

Liu et al. (2011) evaluate the effectiveness of ARMA-GARCH approaches for modeling the 

mean and volatility of wind speed, including different GARCH models such as EGARCH and 

TGARCH. Lau and McSharry (2010) identify an ARIMA-EGARCH model for aggregated 

wind power data in Ireland and produce forecasts of the wind power density up to 24 hours 

ahead. However, wind speed or wind power data exhibit random breaks and nonlinear 

behaviors. The classic ARMA and ARMA-GARCH models may be too restrictive to capture 

such nonlinear dynamic process. Recently, a Markov regime switching model has been 

proposed and found suitable to model the dynamic behavior of wind power (Pinson et al., 2008) 

and wind speed (Song et al., 2014). A nice feature of this model is that it allows for reflecting 

the impact of random external factors since the regime switching process is driven by a Markov 

chain. To account for the nonlinearity and heteroscedasticity of volatility, we propose the use 

of Markov regime switching GARCH (MRS-GARCH) model as an alternative for modeling 

the volatility of wind power production in this article.  
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In contrast to previous studies aiming at forecasting wind power production, this paper focuses 

on volatility forecasts and explores the performance of volatility forecasting within the class of 

GARCH models including Markov regime switching GARCH. A volatility forecast 

comparison can be difficult since the true, latent volatility is unobservable. As a result, the 

predicted value must be compared with an ex post proxy of volatility, e.g., realized volatility. 

The concept of realized volatility was initially introduced in financial market due to the 

availability of high frequency financial data (Andersen et al., 2003). The daily volatility of 

stock price is calculated by summing squared intraday returns. As a model-free estimator, 

realized volatility has often been used as an ex post proxy to evaluate the volatility forecast 

models in financial and energy markets (Marcucci, 2005; Brownlees et al., 2011; Byun and 

Cho, 2013). To our knowledge, realized volatility has not been exploited in the wind power 

production analysis so far.  

In this article we use wind power production from a wind farm in Germany. Since the interest 

of energy market participants traditionally lie on the hourly forecast as required by the market 

structure (Trombe and Pinson, 2012), the hourly resolution of wind power production is chosen 

to generate the hourly volatility forecast through the considered models. To evaluate the 

forecasted volatility, we are able to access to higher frequency data of wind power production 

reported for an interval of 10 minutes and then derive the realized volatility as the ex post proxy 

of hourly volatility. 

The contribution of this article to the existing literature is threefold. First, we develop a Markov 

regime switching GARCH model to describe the time-varying volatility of wind power 

production. This model could allow us to capture the nonlinearity of wind power production 

due to changing weather conditions or ramp events. Second, an assessment of the performances 

of the class of GARCH volatility forecasting models is provided. The results show that Markov 

regime switching GARCH seems to outperform other GARCH models and EGARCH perform 

second best. Third, this is the first time to explore the use of realized volatility for wind power 

production. We find that an instant ramp event within an hour causes a bias in realized volatility 

estimator for hourly spot volatility. 

The rest of the paper is structured as follows. The next section describes the volatility 

forecasting methodology: we briefly give an overview of the traditional GARCH models, and 

then describe the Markov regime switching GARCH model in detail as well as forecast 

evaluation criteria. In the subsequent section, these models are applied to wind power data from 
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a wind farm in Germany. We present the comparison of those volatility forecasting models, in-

sample and out-of-sample respectively. The last section provides conclusion and discussion on 

the benefit of Markov regime switching GARCH model and offers suggestions for further 

research. 

2. Volatility Forecasting Methodology 
2.1 Traditional GARCH Models 

Prior to modelling the volatility of wind power production, an appropriate Autoregressive (AR) 

model that captures the time-varying means of wind power data is often used (Trombe et al., 

2012). Considering a time series of wind power {𝑦𝑦𝑡𝑡}, we use the AR(k) model given by: 

 
𝑦𝑦𝑡𝑡 = 𝑐𝑐 + �𝜙𝜙𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡, (1) 

where 𝑐𝑐 is a constant, 𝑘𝑘 the order of autoregressive terms, 𝜙𝜙𝑖𝑖 the ith autoregressive coefficient 

and 𝜀𝜀𝑡𝑡 the error term. Suppose that the error term 𝜀𝜀𝑡𝑡 has a time-varying variance and it can be 

represented as: 

 𝜀𝜀𝑡𝑡 = 𝜂𝜂𝑡𝑡ℎ𝑡𝑡,  (2) 

where 𝜂𝜂𝑡𝑡is an iid random variable with mean 0 and variance 1; ℎ𝑡𝑡 is the conditional standard 

deviation at 𝑡𝑡 given the information set Ω𝑡𝑡−1 = {𝑦𝑦𝑡𝑡−1, … ,𝑦𝑦1} at 𝑡𝑡 − 1, i.e., ℎ𝑡𝑡2 = 𝑉𝑉[𝜀𝜀𝑡𝑡| Ω𝑡𝑡−1]. 

The specification of ℎ𝑡𝑡2  determines the conditional variance evolution and the forecast of 

volatility at the next periods. To determine the specification of the conditional variance, a 

variety of GARCH models have been developed. The traditional GARCH(p, q) model was 

proposed by Bollerslev (1986) consisting of the order k of the moving average ARCH term and 

the order m of the autoregressive GARCH term. It can be written as: 

 
ℎ𝑡𝑡2 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑘𝑘

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗ℎ𝑡𝑡−𝑗𝑗2
𝑚𝑚

𝑗𝑗=1

, (3) 

where 𝜔𝜔  is the constant term, 𝜀𝜀𝑡𝑡−𝑖𝑖2  the ARCH term, ℎ𝑡𝑡−𝑗𝑗  the GARCH term, and 

(𝛼𝛼1, … ,𝛼𝛼𝑝𝑝,𝛽𝛽1, … ,𝛽𝛽𝑞𝑞)  are the coefficient parameters to be estimated. It indicates that the 

variance depends on previous errors and also previous conditional variances. To ensure a 

stationary and positive conditional variance, the parameters are confined to satisfy 𝜔𝜔 > 0, 𝛼𝛼𝑖𝑖 ≥

0, 𝛽𝛽𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝑖𝑖𝑘𝑘
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗𝑚𝑚

𝑗𝑗=1 < 1 (Tsay, 2010). Although any order of GARCH model is 

possible, in general a GARCH(1, 1) is sufficient to capture the volatility clustering in the data. 

5 



It is called the standard GARCH model, denoted as SGARCH in this paper. Then, Equation (3) 

reduces to: 

 ℎ𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽1ℎ𝑡𝑡−12 , (4) 

The important features of this GARCH model are its mean reversion due to the stationary 

condition (𝛼𝛼1 + 𝛽𝛽1 < 1) and its symmetry (i.e., the sign of the error term has no influence on 

the future volatility). 

Variants of GARCH models 

To account for asymmetric effects in volatility forecasting, several GARCH models have been 

developed. In this paper, we consider four models from the vast literature, namely exponential 

GARCH (EGARCH), threshold GARCH (TGARCH), Glosten-Jagannathan-Runkle GARCH 

(GJR GARCH) and nonlinear GARCH (NGARCH). We chose these four model for the 

following reasons: first, these GARCH models have been widely recommended due to their 

simplicities and demonstrated abilities to forecast volatility (Brownlees et al., 2011); second, 

Liu et al. (2011) applied the above-mentioned GARCH models for wind speed volatility and 

found that the volatility of wind speed has the nonlinear and asymmetric time-varying 

properties. Since wind speed is the main driving factor of wind power production, it is 

reasonable to refer to wind speed modelling. A brief overview of these GARCH models and 

how they deal with the asymmetry is provided below2. 

The EGARCH model was proposed by Nelson (1991) in the form of the log of variance as 

 
log(ℎ𝑡𝑡2) = 𝜔𝜔 + �𝛼𝛼𝑖𝑖[|𝜂𝜂𝑡𝑡−𝑖𝑖| − E(|𝜂𝜂𝑡𝑡−𝑖𝑖|)]

𝑘𝑘

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗log (ℎ𝑡𝑡−𝑗𝑗2
𝑚𝑚

𝑗𝑗=1

)

+ �𝛾𝛾𝑖𝑖(𝜂𝜂𝑡𝑡−𝑖𝑖)
𝑝𝑝

𝑖𝑖=1

, 

(5) 

where 𝜂𝜂𝑡𝑡−𝑖𝑖 = 𝜀𝜀𝑡𝑡−𝑖𝑖 ℎ𝑡𝑡−𝑖𝑖⁄ , 𝛼𝛼𝑖𝑖and 𝛾𝛾𝑖𝑖 capture the asymmetric effect of the sign and the magnitude 

of 𝜂𝜂𝑡𝑡 on the volatility. For example, when 𝛾𝛾𝑖𝑖 < 0, the negative value of 𝜀𝜀𝑡𝑡−𝑖𝑖 results in higher 

volatility than the positive value in EGARCH. Unlike the GARCH model in Equation (3), there 

is no restriction on the parameters in EGARCH.  

The TGARCH developed by Zakoian (1994) models the conditional standard deviation as: 

2 A more detailed analysis of these asymmetric models can be found in Hentschel (1995). 
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ℎ𝑡𝑡 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖(|𝜀𝜀𝑡𝑡−𝑖𝑖| − 𝛾𝛾𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖)

𝑘𝑘

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗ℎ𝑡𝑡−𝑗𝑗

𝑚𝑚

𝑗𝑗=1

, (6) 

where 𝜔𝜔 > 0 , 𝛼𝛼𝑖𝑖 ≥ 0 , 𝛽𝛽𝑖𝑖 ≥ 0  and |𝛾𝛾𝑖𝑖| ≤ 1 . Similar to TGARCH, Glosten et al. (1993) 

introduced the GJR GARCH with the focus on the variance instead of the standard deviation. 

Formally stated: 

 
ℎ𝑡𝑡2 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖(|𝜀𝜀𝑡𝑡−𝑖𝑖| − 𝛾𝛾𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖)2

𝑘𝑘

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗ℎ𝑡𝑡−𝑗𝑗2
𝑚𝑚

𝑗𝑗=1

, (7) 

Finally, the NGARCH, also known as nonlinear asymmetric GARCH, was developed by Engle 

and Ng (1993) in the following specification: 

 
ℎ𝑡𝑡2 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖(𝜀𝜀𝑡𝑡−𝑖𝑖 − 𝛾𝛾𝑖𝑖ℎ𝑡𝑡−𝑖𝑖)2

𝑘𝑘

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗ℎ𝑡𝑡−𝑗𝑗2
𝑚𝑚

𝑗𝑗=1

, (8) 

where 𝜔𝜔 > 0, 𝛼𝛼𝑖𝑖 ≥ 0, 𝛽𝛽𝑖𝑖 ≥ 0. In the TGARCH, GJR GARCH and NGARCH, 𝛾𝛾𝑖𝑖 reflects the 

asymmetric effect. When 𝛾𝛾𝑖𝑖 > 0, the models indicate that negative error terms increase future 

volatility by a larger amount than positive ones of the same magnitude. In the application, we 

only use these GARCH models with the order (1, 1). 

2.2 Markov Regime Switching GARCH Model 

When inspecting time series of wind power production, continuous periods with fluctuations 

of lower and higher magnitudes are often easily noticed and call for the use of regime-switching 

model. The use of Markov regime switching model proposed by Hamilton (1989) has received 

a growing interest in the wind power community due to its superior ability to account for 

structure breaks and random changes in the dynamic process (Pinson et al., 2008; Trombe et 

al., 2012). The basic idea of this model is allowing the parameters of the model to switch across 

different regimes (states or phases) according to a Markov process, which is governed by a 

state variable 𝑠𝑠𝑡𝑡. In other words, it implies a mixture of processes with different characteristics 

according to the probability of being in each state. Early studies have mainly applied Markov 

regime switching models to forecast average wind power production, and the application to 

volatility forecasting is still rare. In this paper, we allow the regime-switching in both, average 

wind power production and its volatility, resulting in an extension of the Markov regime-

switching model with different GARCH specifications in each regime. A difficulty of the 

regime switching model is the determination of the number of states since the underlying 

regimes themselves are unobserved and econometric tests for choosing the optimal number of 

regimes are still under development. As a result, almost all applications of Markov regime 
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switching models assume two or three different regimes (Balcilar et al., 2015; Lammerding et 

al., 2013; Marcucci, 2005). Similarly, we follow Trombe et al. (2012) and consider only two 

regimes in the Markov regime switching GARCH (MRS-GARCH)  model for forecasting 

volatility of wind power production, i.e., 𝑠𝑠𝑡𝑡 ∈ {1,2}. 

Description of MRS-GARCH model 

The regime switching process follows a first order Markov chain with transition probability: 

 Ρ(𝑠𝑠𝑡𝑡 = 𝑗𝑗|𝑠𝑠𝑡𝑡−1 = 𝑖𝑖) = 𝑝𝑝𝑖𝑖𝑗𝑗   (9) 

that indicates the probability of the regime switching from state 𝑖𝑖 at time 𝑡𝑡 − 1 into state 𝑗𝑗 at 

time 𝑡𝑡. By definition, the probability of switching from state 𝑖𝑖 at 𝑡𝑡 − 1 into state 𝑖𝑖 at 𝑡𝑡 is: 𝑝𝑝𝑖𝑖𝑖𝑖 =

1 − 𝑝𝑝𝑖𝑖𝑗𝑗 when only two regimes are assumed. The transition matrix 𝚸𝚸, which describes all the 

probabilities of regimes switching from one to the other, is given by: 

 𝚸𝚸 = �
𝑝𝑝11 𝑝𝑝21
𝑝𝑝12 𝑃𝑃22� = � 𝑝𝑝 1 − 𝑞𝑞

1 − 𝑝𝑝 𝑞𝑞 �. (10) 

Under the framework of MRS-GARCH, we allow the regime-switching in both, the mean and 

the volatility of wind power production, and each regime is characterised by different 

parameter sets. Thus, Equation (1) for modelling conditional mean equation of wind power 

production changes to: 

 
𝑦𝑦𝑡𝑡 = 𝑐𝑐(𝑖𝑖) + �𝜙𝜙𝑖𝑖

(𝑖𝑖)𝑦𝑦𝑡𝑡−𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡, (11) 

where 𝑖𝑖 = 1, 2 and 𝜀𝜀𝑡𝑡 = 𝜂𝜂𝑡𝑡ℎ𝑡𝑡 as in Equation (2). However, the specification of a GARCH 

model for the conditional variance becomes problematic since the autoregressive structure of 

the conditional variance makes the specification path-dependent. The conditional variance of 

𝜀𝜀𝑡𝑡 being in state (𝑖𝑖) at time t, given the past unobservable regime path (𝑠𝑠𝑡𝑡, 𝑠𝑠𝑡𝑡−1, … , 𝑠𝑠1) and 

information set Ω𝑡𝑡−1  at time 𝑡𝑡 − 1 , is ℎ𝑡𝑡
2|(𝑖𝑖) = 𝑉𝑉[𝜀𝜀𝑡𝑡|(𝑠𝑠𝑡𝑡, 𝑠𝑠𝑡𝑡−1, … , 𝑠𝑠1),Ω𝑡𝑡−1] . In the regime 

switching context, a GARCH model with path dependency would be computationally 

intractable and infeasible because the number of regime paths grows exponentially with the 

number of observations. To avoid this problem of path dependence, Klaassen (2002) proposed 

simplifications to the GARCH model, which integrates out the past regimes to get the 

conditional expectation of the past conditional variance by also taking into account the current 

regime. As a result, the expression of GARCH(1, 1) for the conditional variance can be written 

as: 
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 ℎ𝑡𝑡
2|(𝑖𝑖) = 𝜔𝜔(𝑖𝑖) + 𝛼𝛼1

(𝑖𝑖)𝜀𝜀𝑡𝑡−12 + 𝛽𝛽1
(𝑖𝑖)E𝑡𝑡−1�ℎ𝑡𝑡−1

2|(𝑖𝑖)|𝑠𝑠𝑡𝑡�. (12) 

More details can be found in Klaassen (2002). The advantage of this approach is that it allows 

to calculate the log likelihood function and multi-step ahead volatility forecasts recursively as 

in standard GARCH models. The multi-step volatility forecasts can be computed as the 

weighted average of multi-step volatility forecasts in each regime, where the weights are the 

predicted probability of being in each regime. 

Estimation  

The specification of a Markov regime switching model requires the estimation of the 

unobservable regime sequence {𝑠𝑠𝑡𝑡} and the parameter set in each regime. Since the state 

variable 𝑠𝑠𝑡𝑡 is unobservable, the inference of state variable can only be determined based on the 

data. The conditional probability of 𝑠𝑠𝑡𝑡 being in regime 𝑗𝑗, given the information set Ω𝑡𝑡 at time 

𝑡𝑡 and parameters Θ is: 

 𝜉𝜉𝑠𝑠𝑡𝑡|Ω𝑡𝑡
𝑗𝑗 = Ρ(𝑠𝑠𝑡𝑡 = 𝑗𝑗|Ω𝑡𝑡, Θ ), (13) 

where Θ refers to all the parameters that specify the stochastic process. An important step that 

allows for iteratively calculating 𝜉𝜉𝑡𝑡
𝑗𝑗  is to reformulate Equation (13) via the definition of 

conditional probability: 

 
𝜉𝜉𝑠𝑠𝑡𝑡|Ω𝑡𝑡
𝑗𝑗 = Ρ(𝑠𝑠𝑡𝑡 = 𝑗𝑗|Ω𝑡𝑡, Θ ) =

𝑓𝑓(𝑦𝑦𝑡𝑡, 𝑠𝑠𝑡𝑡 = 𝑗𝑗|Ω𝑡𝑡−1, Θ)
𝑓𝑓(𝑦𝑦𝑡𝑡|Ω𝑡𝑡−1,Θ)

, (14) 

where the numerator is the conditional joint density of 𝑦𝑦𝑡𝑡 and 𝑠𝑠𝑡𝑡 being in state 𝑗𝑗 given Ω𝑡𝑡−1, Θ, 

while the denominator is the conditional density of 𝑦𝑦𝑡𝑡 given Ω𝑡𝑡−1, Θ. The numerator can be 

determined by: 

 𝑓𝑓(𝑦𝑦𝑡𝑡, 𝑠𝑠𝑡𝑡 = 𝑗𝑗|Ω𝑡𝑡−1, Θ) = 𝜉𝜉𝑠𝑠𝑡𝑡|Ω𝑡𝑡−1
𝑗𝑗 𝑓𝑓(𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑗𝑗,Ω𝑡𝑡−1, Θ), (15) 

where 𝜉𝜉𝑠𝑠𝑡𝑡|Ω𝑡𝑡−1
𝑗𝑗 = Ρ(𝑠𝑠𝑡𝑡 = 𝑗𝑗|Ω𝑡𝑡−1, Θ ) is the forecast of the probability of 𝑠𝑠𝑡𝑡  being in state 𝑗𝑗 

given Ω𝑡𝑡−1  at 𝑡𝑡 − 1 and Θ. The forecast of the probability matrix can be obtained via the 

transition matrix 𝚸𝚸 as: 

 𝝃𝝃𝑠𝑠𝑡𝑡|Ω𝑡𝑡−1 = 𝚸𝚸𝝃𝝃𝑠𝑠𝑡𝑡−1|Ω𝑡𝑡−1, (16) 

The conditional density 𝑓𝑓(𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑗𝑗,Ω𝑡𝑡−1, Θ) depends on the specification of the model and 

the distribution of error distribution in each regime.  

The denominator in Equation (14) can be calculated as the sum of conditional joint densities 

for all regimes (in our case the number of regimes is 2): 
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𝑓𝑓(𝑦𝑦𝑡𝑡|Ω𝑡𝑡−1,Θ) = �𝑓𝑓(𝑦𝑦𝑡𝑡, 𝑠𝑠𝑡𝑡 = 𝑗𝑗|Ω𝑡𝑡−1, Θ)

2

𝑗𝑗=1

. (17) 

Finally, inserting Equations (15), (16) and (17) into Equation (14) yields: 

 𝜉𝜉𝑠𝑠𝑡𝑡|Ω𝑡𝑡
𝑗𝑗 = Ρ(𝑠𝑠𝑡𝑡 = 𝑗𝑗|Ω𝑡𝑡, Θ )                                                       

=
∑ 𝑝𝑝𝑖𝑖𝑗𝑗2
𝑖𝑖=1 𝜉𝜉𝑠𝑠𝑡𝑡−1|Ω𝑡𝑡−1

𝑖𝑖 𝑓𝑓(𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑗𝑗,Ω𝑡𝑡−1, Θ)
∑ ∑ 𝑝𝑝𝑖𝑖𝑗𝑗2

𝑖𝑖=1 𝜉𝜉𝑠𝑠𝑡𝑡−1|Ω𝑡𝑡−1
𝑖𝑖 𝑓𝑓(𝑦𝑦𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑗𝑗,Ω𝑡𝑡−1, Θ)2

𝑗𝑗=1
. 

(18) 

The corresponding conditional log likelihood of the observations is given by: 

 
ℓ(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑇𝑇|Θ) = � log𝑓𝑓(𝑦𝑦𝑡𝑡|Ω𝑡𝑡−1,Θ)

𝑇𝑇

𝑡𝑡=1

. (19) 

The maximum likelihood estimators can be obtained by maximizing Equation (19).  

2.3 Forecast Evaluation 

To evaluate the predictive accuracy of different models, statistical loss functions are typically 

employed. A model that has a smaller average loss is considered to be more accurate. However, 

many researchers have highlighted that a few extreme observations may have an excessively 

large impact on the outcomes of forecast evaluation and comparison tests and have suggested 

to use loss functions that are less sensitive to large observations (Bollerslev and Ghysels, 1994; 

Andersen et al., 1999; Poon and Granger, 2003). Therefore, instead of using one particular 

statistical loss function, we here adopt different statistical loss functions, namely Root Mean 

Square Error (RMSE), RMSE-LOG, Mean Absolute Error (MAE), MAE-LOG and QLIKE 

(Patton, 2011; Byun and Cho, 2013). With the forecasted volatility and the actual volatility at 

hand, RMSE, RMSE-LOG, MAE, MAE-LOG and QLIKE are defined as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁

� �𝜎𝜎�𝑡𝑡2 − ℎ�𝑡𝑡2�
2

𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

, (20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁

� �log (𝜎𝜎�𝑡𝑡2) − log (ℎ�𝑡𝑡2)�
2

𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

, (21) 

 
𝑅𝑅𝑀𝑀𝑅𝑅 =

1
𝑁𝑁

� |𝜎𝜎�𝑡𝑡2 − ℎ�𝑡𝑡2|
𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

, (22) 
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𝑅𝑅𝑀𝑀𝑅𝑅 =

1
𝑁𝑁

� |log (𝜎𝜎�𝑡𝑡2) − log (ℎ�𝑡𝑡2)|
𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

, (23) 

 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑅𝑅 =

1
𝑁𝑁

� (log�ℎ�𝑡𝑡2� +
𝜎𝜎�𝑡𝑡2

ℎ�𝑡𝑡2
)

𝑇𝑇+𝑁𝑁

𝑡𝑡=𝑇𝑇+1

, (24) 

where 𝜎𝜎�𝑡𝑡2 is the ex post proxy of conditional variance representing the actual volatility at 𝑡𝑡, 𝑡𝑡 >

𝑇𝑇, and ℎ�𝑡𝑡2 is a volatility forecast at 𝑡𝑡 and 𝑁𝑁 is the testing horizon. In our paper, we use realized 

volatility as 𝜎𝜎�𝑡𝑡2 (see Section 3.1). 

To determine if the predictive accuracies of the competing models are significantly different, 

we use the Diebold-Mariano (DM) test (Diebold and Mariano, 1995). Such a test is based on 

the loss function differential between model 𝑎𝑎  and model 𝑏𝑏 , defined as 𝑑𝑑𝑡𝑡 = [𝑔𝑔�𝑒𝑒𝑎𝑎,𝑡𝑡� −

𝑔𝑔�𝑒𝑒𝑏𝑏,𝑡𝑡�]  where 𝑔𝑔(⋅)  means a loss function, 𝑒𝑒⋅,𝑡𝑡  corresponding forecast errors from the 

competing models. In our paper we focus on two loss functions: square error loss function and 

absolute error loss function. The null hypothesis of DM test is no difference in the accuracy of 

the two competing forecasts, i.e., E(𝑑𝑑𝑡𝑡) = 0. The DM test statistic takes the form of a t-statistic, 

i.e., 𝐷𝐷𝑅𝑅 = �̅�𝑑/�𝑉𝑉���̅�𝑑� ~ 𝑁𝑁(0,1), where �̅�𝑑 = 1
𝑛𝑛
∑ 𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡=1 , and 𝑉𝑉���̅�𝑑� is the asymptotic variance of 

�̅�𝑑. For more details, we refer to Diebold and Mariano (1995). The null hypothesis is rejected 

or accepted based on the DM test statistic and the critical value. 

3. Empirical Volatility Forecasting Results 
3.1 Wind Power Data 

Volatility models have been applied to wind speed data as well as to wind power production 

data. Wind speed data at weather stations have the advantage of being easily accessible, and a 

transformation of wind speed data into energy production data is possible by means of rather 

simple power curves that take into account turbine types, turbine height and other technical 

specifications. This is found to be quite useful because mostly researchers do not have access 

to wind power data due to the commercial sensitivity. However, the distance between weather 

stations and wind turbines results in a bias on transformed production data. Alternatively, wind 

speed data from reanalysis data could reduce the bias, but empirical evidence showed that the 

𝑅𝑅2 of estimated power curves rarely exceeds 0.76 (Ritter et al, 2015) and thus actual production 

risk is underestimated. Moreover, the power curve may be different with the different time of 
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year and different environmental conditions (Anastasiades and McSharry, 2013). To avoid this 

kind of basis risk, we prefer to work with observed instead of transformed production data. 

Wind power production data are collected from a wind farm located in the middle of Germany 

(see Figure 1). The wind farm consists of six wind turbines with same maximum capacity, 

namely 2.3 MW. The wind power data used in the estimation and forecasting of all models are 

recorded every hour from 1 October 2012 to 7 January 2014 for a total of 10,945 observations. 

The reason to justify the choice of the hourly resolution is that energy market participants are 

traditionally interested at the hourly forecast as required by the market structure (Trombe and 

Pinson, 2012). Following Anastasiades and McSharry (2013) and Pinson (2012), time series 

data are normalized and expressed as a percentage of the wind farm capacity, which range in 

the interval [0,1] (see Figure 2). Missing values due to technical disorder and long-time 

shutdown of the wind farm are neglected. For in-sample estimation, we use the data from 1 

October 2012 to 31 December 2013, while the data from 1 January to 7 January 2014 are used 

for out-of-sample evaluation. Parameters for the considered models in the forecast are 

estimated on an increasing sample as new information arrives. For example, when estimating 

a GARCH model using data from from 1 October 2012, 0:00, to 31 December 2013, 24:00, we 

obtain a one-step-ahead (i.e., one-hour-ahead) forecast for 1:00 on 1 January 2014. By 

increasing the sample by one hour and re-estimating the model for the new sample until 1 

January 2014, 1:00, we obtain a forecast for 2:00 on 1 January 2014. This estimation is repeated 

until a forecast for 23:00 on 7 January 2014 is achieved. As a result, the estimation needs to be 

repeated 168 times. For multi-step-ahead forecast, the number of repetitions will reduce by the 

forecast horizon. We calculate the multi-step-ahead volatility forecast by summing up the 

hourly ahead volatility forecast over next periods since practitioners and risk managers might 

be more interested in the stability of the grid of wind power production over the next period 

than multi-step ahead one-hour volatility. 

Since the true volatility is latent and unobservable, we use the realized volatility as the ex post 

proxy to compare with the forecast from the models. The realized volatility is based on the 

cumulative squared deviation over different time intervals. When we divide one hour into 𝑚𝑚  

periods and denote 𝑦𝑦𝑡𝑡,𝑖𝑖 (𝑖𝑖 = 0, … ,𝑚𝑚) as an observation for the 60/𝑚𝑚-minute wind production 

at time t, the realized volatility within one hour can be calculated as: 

 
𝜎𝜎�𝑅𝑅𝑅𝑅,𝑡𝑡
2 = ��𝑦𝑦𝑡𝑡,𝑖𝑖 − 𝑦𝑦𝑡𝑡,𝑖𝑖−1�

2
𝑚𝑚

𝑖𝑖=1

   (25) 
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In this paper, we use wind power data reported for an interval of 10 minutes from 1 January to 

7 January 2014 to calculate the realized volatility for hourly wind production, i.e., 𝑚𝑚 = 6. To 

calculate the realized volatility at h step ahead, we sum the hourly realized volatility over the 

h steps.  

 

Figure 1: Wind farm location in Germany 

 

Figure 2: Time series of normalized wind power production over a 10-day episode in Oct. 2012 

3.2 Estimation  

In this section, we present the results of estimating all the considered models in the in-sample 

period. The calibration of the model consists of two steps. The first step is to determine a proper 

autoregressive (AR) model that captures the time-varying means of wind power data (Equation 
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1). The order of AR term is usually chosen by using the autocorrelation function (ACF) and 

partial autocorrelation function (PACF). Figure 3 shows that the ACF decays very slow while 

the PACF becomes insignificant at lag 3, suggesting an AR(3) for modelling the mean dynamic 

of wind power production. The choice of the AR(3) process is also preferred according to 

Bayesian information criterion (BIC). After fitting an AR(3), the resulting residuals show no 

evidence of serial correlation (see Figure A1 in the Appendix). To detect the volatility 

clustering in the wind power production, the standard step is to further look at the 

autocorrelations of the squared residuals from the estimated model. Figure 4 plots the squared 

residuals obtained after fitting the AR(3) model to the wind power production time series. The 

volatility clustering effect can be observed in the squared residuals, meaning that large errors 

tend to follow large errors and small errors tend to follow small errors. The ACF and PACF in 

Figure 5 also illustrate the serial correlation in the squared residuals, supporting the use of 

GARCH models for the wind power production. In the remaining section, we will present the 

estimates of traditional GARCH models and MRS-GARCH model. 

 

 

Figure 3: ACF (left) and PACF (right) of wind power production 
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Figure 4: Squared residuals from an AR(3) model 

 

Figure 5: ACF (left) and PACF (right) of the squared residuals of the AR(3) 

GARCH models 

We estimate the different GARCH models (such as SGARCH, EGARCH, TGARCH, GJR-

GARCH and NGARCH) together with AR(3) model of mean process. For the sake of 

simplicity and to capture the volatility clustering effect sufficiently, we only consider all these 

GARCH models with 𝑝𝑝 = 𝑞𝑞 = 1 in our study. Figure A2 in the Appendix shows no correlation 

in the standardized squared residuals, implying that GARCH (1, 1) well captures the time-

varying heteroscedasticity.  

The parameter estimates for the traditional GARCH models are presented in Table 1. Almost 

all parameters for various GARCH models are significant, except for the coefficient of AR(3) 
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in the SGARCH and NGARCH. Moreover, the significance of 𝛾𝛾 in these asymmetric GARCH 

models implies the presence of nonlinear and asymmetric effects in the volatility of wind power 

production data. Interestingly, the asymmetric effect is opposite to that observed in the 

volatility of finance data: In financial markets, a negative value of 𝛾𝛾 is often expected for the 

EGARCH model, suggesting that the negative value of 𝜀𝜀𝑡𝑡−𝑖𝑖 in Equation (5) results in a higher 

volatility than the positive value. In contrast, we observe a positive 𝛾𝛾 of the EGARCH model 

from modelling the volatility of wind power production, which means that positive changes 

lead to a higher volatility than negative ones. In the TGARCH, GJR GARCH, and NGARCH, 

𝛾𝛾<0, implying that the impact of a positive change on volatility is amplified compared to 

negative ones, hence the results are consistent with that from the EGARCH model. This implies 

that increasing wind power production leads to a higher conditional volatility for the next 

periods than decreasing ones. 

We also present the estimates of the parameters for MRS-GARCH in the last two columns of 

Table 1. Due to the two-regime structure, 16 parameters need to be estimated in total. The 

estimates for the conditional mean in both regimes are significant while the estimates of 𝜔𝜔 and 

𝛼𝛼1 for the conditional variance in regime 1 is close to 0 and thus cannot reject the null of a zero 

value from t test. The estimates highlight the existence of two regimes: regime 1 is 

characterised by a low mean and low volatility (denoted as ‘low regime’), the impact of 

previous shocks on the conditional volatility is nil in this state; regime 2 is characterised by a 

high mean, high volatility and high persistence in the conditional volatility (denoted as ‘high 

regime’). Table 1 shows that the transition probabilities of both regimes are significant and 

above 0.83, indicating that both regimes are persistent and for only less than 20% chances, the 

regimes will switch from one to the other. The unconditional probability of wind power 

production being in the low regime is 0.42, lower than that of being in the high regime, 0.58. 

Figure 6 illustrate the wind power production and estimated sequence of regimes probability 

for the MRS-GARCH model. The plotted estimated sequence is the probability of being in 

regime 1 for wind power production. At most periods, these two regimes do not appear to be 

clearly distinguished for wind power production except the periods when the wind power 

production is close to 0 or maximal capacity, with the probability almost 1 or 0. Normally, we 

can compare the sequence probabilities with 0.5 to define the regimes for each observation 

more clearly. Moreover, it is not manifest to differ the volatility of each observation according 

to the sequence of regimes. The estimated sequence of regimes probability seems to be mainly 
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driven by the mean value of wind power production rather than the volatility in our case, i.e., 

high wind power production in high regime. 

 

 

Figure 6: Wind power production and estimated sequence of probabilities of being in regime 1 
(i.e., low regime)  
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Table 1: Estimation results of traditional GARCH models and MRS-GARCH 

Parameter GARCH EGARCH TGARCH GJR-GARCH NGARCH MRS-GARCH 

      Regime 1 Regime 2 

Mean equation 

𝑐𝑐 0.0578*** 0.0854*** 0.1102*** 0.0580*** 0.0740*** 0.0005*** 0.0500*** 

AR(1) 0.8130*** 0.7893*** 0.8172*** 0.7949*** 0.7977*** 0.6825*** 0.6916*** 

AR(2) 0.1149*** 0.1122*** 0.1153*** 0.1186*** 0.1327*** 0.0410*** 0.1709*** 

AR(3) 0.0086 0.0457*** 0.0258*** 0.0220*** 0.0143 0.0451*** 0.0745*** 

Conditional variance equation 

𝜔𝜔 0.0002*** -0.2137*** 0.0025*** 0.0002*** 0.0001*** 0.0000 0.0015*** 

𝛼𝛼1 0.2403*** 0.1893*** 0.1799*** 0.1677*** 0.1477*** 0.0000 0.2066*** 

𝛽𝛽1 0.7587*** 0.9587*** 0.8491*** 0.7842*** 0.6810*** 0.4401*** 0.7933*** 

𝛾𝛾  0.2993*** -1.0000*** -0.5299*** -1.0737***   

𝑝𝑝      0.8352*** 

𝑞𝑞      0.8357*** 

P(𝑠𝑠𝑡𝑡 = 𝑖𝑖)      0.4201 0.5799 

𝑄𝑄𝐿𝐿𝑔𝑔 (𝑄𝑄) 11690.55 12351.78 12394.37 12043.92 12240.36 15021.21 
Note: Asterisks *** indicate significance at the 1 per cent level. 
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3.3 Comparison of Models 

We begin evaluating the performance of different models by comparing some statistics for both 

in-sample estimation and out-of-sample forecast. The in-sample goodness-of-fit statistics are 

presented in Table 2. The log-likelihood suggests that the MRS-GARCH model fits best our 

wind power production data compared to other state-independent GARCH models. The 

SGARCH turned out to be the least preferable although it captures well the autocorrelation of 

the volatility according to Figure A2. TGARCH turns out to be the second best model, followed 

by EGARCH. The result is also confirmed by the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC), which account for the parsimony of the models. Table 

2 also shows that the persistence, which indicates the influence of a shock to volatility, is rather 

high. In the MRS-GARCH model, the persistence difference in the two regimes is considerable 

for onshore wind power production observations unlike for financial data.  

Having a good in-sample fit does not necessary lead to an accurate and reliable forecast from 

the models. Moreover, the models with good in-sample fits likely suffer over-fitting or over-

parametrization problems. To determine the best forecasting model, we conduct the out-of-

sample evaluation of one- and five-step ahead volatility forecasts against the realized volatility. 

Figure 7 shows the realized volatility and one-step ahead forecasted volatilities from MRS-

GARCH and TGARCH. From the figure, it is not able to determine the best one among the 

considered models. Therefore, we evaluate the forecasts by using different loss function criteria 

described in Section 2.3. The results are presented in Table 3. For 1-step ahead volatility 

forecast, the smallest values of all loss functions except QLIKE are observed for MRS-GARCH 

model3, suggesting that MRS-GARCH model generally outperforms the other GARCH models 

for volatility forecast of wind power production. EGARCH appears to be second best in the 

out-of-sample evaluation. Surprisingly, TGARCH turns out to be the worst one in the out-of-

sample evaluation although it performed very well in the in-sample evaluation. On the other 

hand, SGARCH takes the third or fourth place for different selection criteria in the out-of-

sample evaluation despite the worst performance in the in-sample fitting. However, the 

differences for all the models in terms of RMSE and MAE are rather moderate. The result is 

also found for the volatility forecast at 5-step ahead. 

3 The different rank using QLIKE is expected since its loss function depends on the multiplicative forecast error 
instead of additive forecast error as in RMSE and MAE. Moreover, this is common in the volatility forecast 
literature, e.g. Marcucci (2005); Patton (2011); Byun and Cho (2013). 
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Table 2. In-sample goodness-of-fit statistics 

Model # Param. Persistence AIC BIC Log(L) Rank 

SGARCH 7 0.999 -2.167 -2.163 11690.55 6 

EGARCH 8 0.959 -2.290 -2.284 12351.78 3 

TGARCH 8 0.993 -2.297 -2.292 12394.37 2 

GJR-GARCH 8 0.999 -2.233 -2.227 12043.92 5 

NGARCH 8 0.999 -2.269 -2.264 12240.36 4 

MRS-GARCH 16 0.440/0.999 -2.783 -2.773 15021.21 1 

Note: The persistence of MRS-GARCH is reported for Regimes 1 and 2, respectively. AIC is calculated 
as (−2log (𝑄𝑄) + 2𝑘𝑘)/𝑇𝑇, where 𝑘𝑘 is the number of parameters and 𝑇𝑇 is the number of observations. BIC 
is calculated as (−2log (𝑄𝑄) + 𝑘𝑘log(𝑇𝑇))/𝑇𝑇. 

 

 

Figure 7: Realized volatility and 1-step forecasted volatility from MRS-GARCH and 

TGARCH 
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Table 3. Out-of-sample evaluation for 1-step ahead volatility forecast 

Model RMSE 
(Rank) 

RMSE-LOG 
(Rank) 

MAE 
(Rank) 

MAE-LOG 
(Rank) 

QLIKE 
(Rank) 

SGARCH 0.0335 
(3) 

1.9332 
(2) 

0.0244 
(3) 

0.9195 
(4) 

-2.4430 
(3) 

EGARCH 0.0328 
(2) 

1.9845 
(3) 

0.0243 
(2) 

0.9117 
(2) 

-2.4592 
(2) 

TGARCH 0.0416 
(6) 

2.3421 
(6) 

0.0308 
(6) 

1.0139 
(6) 

-2.4227 
(6) 

GJR-GARCH 0.0390 
(5) 

2.1738 
(5) 

0.0283 
(5) 

0.9687 
(5) 

-2.4321 
(4) 

NGARCH 0.0344 
(4) 

2.0626 
(4) 

0.0254 
(4) 

0.9134 
(3) 

-2.4813 
(1) 

MRS-GARCH 0.0295 
(1) 

1.7597 
(1) 

0.0207 
(1) 

0.8406 
(1) 

-2.4244 
(5) 

 

Table 4. Out-of-sample evaluation for 5-step ahead volatility forecast 

Model RMSE 
(Rank) 

RMSE-LOG 
(Rank) 

MAE 
(Rank) 

MAE-LOG 
(Rank) 

QLIKE 
(Rank) 

SGARCH 0.1260 
(3) 

0.5487 
(4) 

0.0882 
(4) 

0.5694 
(4) 

-2.3679 
(4) 

EGARCH 0.1001 
(2) 

0.4279 
(2) 

0.0701 
(2) 

0.4770 
(2) 

-2.3737 
(3) 

TGARCH 0.1732 
(6) 

0.6709 
(6) 

0.1219 
(6) 

0.6300 
(6) 

-2.3677 
(5) 

GJR-GARCH 0.1600 
(5) 

0.6468 
(5) 

0.1062 
(5) 

0.5951 
(5) 

-2.3507 
(6) 

NGARCH 0.1281 
(4) 

0.4805 
(3) 

0.0881 
(3) 

0.5133 
(3) 

-2.4104 
(2) 

MRS-GARCH 0.0982 
(1) 

0.4066 
(1) 

0.0676 
(1) 

0.4696 
(1) 

-2.4287 
(1) 

Note: The volatility at 5-step ahead is calculated as 𝜎𝜎𝑡𝑡+5|𝑡𝑡
2 = ∑ 𝜎𝜎�𝑡𝑡+𝑗𝑗|𝑡𝑡

25
𝑗𝑗=1 , where 𝜎𝜎�𝑡𝑡+𝑗𝑗|𝑡𝑡

2  is the forecast 
volatility at 𝑡𝑡 + 𝑗𝑗 given information at 𝑡𝑡. 
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Figure 8: Forecast horizon and root mean square error 

Previous literature has shown that the performance of various models might differ with the 

forecast horizon (Marcucci, 2005). Hence, we plot the RMSE with regard to different forecast 

horizons (Figure 8). It shows that the RMSE of the MRS-GARCH model is consistently lowest 

within 24 hours ahead, followed by that of the EGARCH model. This difference from previous 

literature may be due to the higher frequency of wind power production data. To evaluate the 

predictive accuracies of the competing models, we use the Diebold-Mariano (DM) test reported 

in Table 5 where the benchmark is the best model for 1-step ahead horizon (MRS-GARCH). It 

is observable that the MRS-GARCH model significantly outperforms every other model in 

terms of square error loss function and absolute error loss function. Moreover, the values of 

DM test statistics are negative, implying that the MRS-GARCH model has a lower loss than 

other models. Therefore, the MRS-GARCH model is superior in predicting the volatility of 

wind power production. Moreover, we are also interested in the predictive accuracy of the 

EGARCH model, so we also use the EGARCH model as the benchmark in the DM test. The 

results in Table 6 show the EGARCH model performs significantly better than all other 

GARCH models except the MRS-GARCH model. The same finding is also observed for 5-

step ahead volatility forecasts. 
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Table 5. Diebold-Mariano Test (1-step ahead) 

Model Square error loss Absolute error loss 

MRS-GARCH Benchmark 

SGARCH -2.49*** -3.64*** 

EGARCH -2.02*** -3.44*** 

TGARCH -4.24*** -5.54*** 

GJR-GARCH -3.86*** -4.82*** 

NGARCH -2.86*** -3.79*** 
Note: The negative sign implies that the benchmark’s loss is lower than that implied by other models. 
Asterisks *** denote significance at the 1 per cent level. 

Table 6. Diebold-Mariano Test (1-step ahead) 

Model Square error loss Absolute error loss 

EGARCH Benchmark 

MRS-GARCH 2.01*** 3.44*** 

SGARCH -0.48* -0.06* 

TGARCH -4.60***   -5.81*** 

GJR-GARCH -4.13***   -4.67*** 

NGARCH -1.12***   -1.58*** 
Note: The negative sign implies that the benchmark’s loss is lower than that implied by other models. 
Asterisks *** and * denote significance at the 1 and 10 per cent levels, respectively. 

Although the Markov regime switching GARCH model outperforms all the other models, it is 

observed in Figure 7 that its forecast volatility deviates largely from the realized volatility. It 

seems that none of the considered models can predict the sudden jumps in hourly volatility of 

wind power production. This may be due to the fact that wind power production recorded at 10 

minutes fluctuates more than the production data at every hour. To understand those two spikes 

of realized volatility between 3rd and 4th of January, we plot the wind power production 

recorded at 10 min (Figure 9). On 3rd of January, wind power production experiences two 

instantaneous rapid decreases, resulting in the big increases of realized volatility. Thus, jumps 

at 10 minutes cause a bias in the realized volatility estimator for hourly spot volatility.  
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Figure 9: Wind power production on 3rd of January, 2014 

4. Conclusions 
In this article, we have studied the specification of different GARCH models to forecast the 

volatility of wind power production. Besides the comprehensive comparison of traditional 

GARCH models in the context of wind power production, an important contribution of this 

paper is that we propose and examine the use of Markov regime-switching GARCH (MRS-

GARCH) model to better account for nonlinear and heteroscedastic effects of wind power 

production. The comparison in the in-sample fitting according to model selection criteria (Log-

likelihood, AIC, BIC) suggests that the MRS-GARCH model captures the dynamic process of 

wind power production better than other models. However, good in-sample fitting does not 

necessarily imply a good predictive ability in out-of-sample comparison. To evaluate the 

forecasting performances of different models, the ‘true volatility’ would be needed. Since the 

true volatility is latent and unobservable, we resort to the concept of realized volatility 

introduced in financial market as an ex post proxy of the volatility of wind power production. 

Empirical results show that the MRS-GARCH model significantly outperforms other GARCH 

models in forecasting volatility according to a set of statistical loss functions and tests. The 

difference at 1-step ahead volatility forecast, however, is moderate. Taking into account the 

computational effort and information gain, the EGARCH model might also be a fair choice to 

forecast the volatility of wind power production. Moreover, although the MRS-GARCH model 

has already outperformed other considered models, it cannot predict the abrupt changes in the 

realized volatility due to the big instantaneous jumps in high frequency wind power production. 
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Further research on modelling volatility forecast with jumps to improve the predictive ability 

may be of considerable interests. 

This study is of particular relevance for energy traders to make decision on the balance of 

supply and demand of wind energy and for investors to develop financial risk management 

tools against changing weather conditions. Our results support the use of Markov regime-

switching GARCH models for forecasting volatility of wind power production since the model 

can better capture the dynamic nature of wind power production. The suggested model shows 

superior performance on the short-term volatility forecast of wind power production and gives 

more accurate forecast information on the uncertainty about future wind power production. 

Accordingly, it will be helpful for risk managers and market traders to determine Value-at-Risk 

of their energy portfolios and to price the related derivatives or insurances on wind power 

production. 

There are several extension of this study that may improve the volatility forecast. First, one 

may apply the models with heavy-tailed distributions instead of the normal distribution in our 

case. The assumption of a heavy-tailed distribution might improve the results by considering 

the fact that the wind power production data are bounded and mass data points are generated 

around the boundary. Second, the Markov regime-switching model was only incorporated with 

a standard GARCH model in our case. It would be interesting to consider the combination with 

other asymmetric GARCH models as well. Last but not least, given substantial geographical 

difference of wind conditions, the validation of models using wind farm data from different 

locations is of great importance and relevance to its potential implementation for energy traders 

and investors. 
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6. Appendix 

 

Figure A1: ACF (left) and PACF (right) of residuals from a AR(3) model for wind power 
production 

 

 

 
 

Figure A2: Square residuals (left, top), conditional variance estimated from SGARCH(1,1) (left, 
bottom), and the ACF of standardized squared residual (right) 
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