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Change point and trend analyses of annual expectile
curves of tropical storms∗

P. Burdejova W. K. Härdle † P. Kokoszka‡ Q. Xiong

May 27, 2015

Abstract

Motivated by the conjectured existence of trends in the intensity of tropical
storms, this paper proposes new inferential methodology to detect a trend in the an-
nual pattern of environmental data. The new methodology can be applied to data
which can be represented as annual curves which evolve from year to year. Other
examples include annual temperature or log–precipitation curves at specific loca-
tions. Within a framework of a functional regression model, we derive two tests
of significance of the slope function, which can be viewed as the slope coefficient
in the regression of the annual curves on year. One of the tests relies on a Monte
Carlo distribution to compute the critical values, the other is pivotal with the chi–
square limit distribution. Full asymptotic justification of both tests is provided.
Their finite sample properties are investigated by a simulation study. Applied to
tropical storm data, these tests show that there is a significant trend in the shape
of the annual pattern of upper wind speed levels of hurricanes.

JEL classification: C12, C15, C32, Q54
Keywords: change point, trend test, tropical storms, expectiles, functional data analysis

1 Introduction
A great deal of research in environmental and climate sciences has been dedicated to
detecting change points and trends in various time series, including those related to
temperature, precipitation and wind speed. In a typical setting, a scalar time series
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Singapore Management University, 81 Victoria Street, Singapore 188065.
‡Department of Statistics, Colorado State University, 1877 campus delivery, Fort Collins, CO
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X1, X2, . . . , XN is analyzed. Sometimes several correlated series are considered. Most
environmental and climate series exhibit a pronounced annual periodicity which must
be removed, or otherwise accounted for, before statements on change–points or trends
can be inferred. Sometimes, it is difficult to approximate the periodic component by
a Fourier expansion due to the irregular domain and amplitude of observations within
a year. The data that motivate this work are tropical storm wind speed data, examples
are shown in Figure 1. The onset and end of typhoon and hurricane seasons, as well as
their intensity, can change from year to year. We therefore propose to treat the data avail-
able for a whole year as a single high–dimensional data object and perform the change
point and trend analyses on these objects rather than the scalar observations directly.
Such an approach is now relatively well–established in the field of functional data analy-
sis (FDA), the monographs of Horváth and Kokoszka (2012) or Ferraty and Vieu (2006)
contain many examples. Methodological foundations of FDA are addressed in Ramsay
and Silverman (2005), its mathematical foundations in Hsing and Eubank (2015). While
the amount of information available in the data is invariably reduced by various smoothing
and dimension reduction methods, the most important and relevant features of the data
come into focus. In the problems we study in this paper, we are interested in the evolu-
tion of the annual pattern of tropical storms strength over several decades, not in specific
hourly measurements.

Our functional methodology is combined with recent advances in expectile curve esti-
mation, see Appendix A. We thus focus not only on the average pattern but on change
points and trends in annual curves which describe the behavior at various levels of wind
speed. This is illustrated in Figure 1. The curves in the middle summarize the pat-
tern of average wind speed. These curves will exhibit some evolution from year to year.
The curves above them summarize the annual patterns of the highest speeds; they may
exhibit a different evolution than the average curves. This issue is well–known in climate
research; typically trends in the averages are contrasted with trends in extremes. In our
application, no modeling of extreme behavior is required, the expectile curves are within
the range of the data points. They provide information of behavior which lies between
the typical behavior and the unobservable extreme behavior. Following the work of Smith
(1989), evaluation of trends in extremes has attracted a great deal of attention, with re-
spect to change point analysis of extremes, we are aware only of the work of Dierckx and
Teugels (2010).

The data objects that this paper studies have the form Xn(t), where n refers to year,
and t to time within the year. In the framework of functional data analysis, t is viewed
as a continuous argument. The data are observed at a regular or irregular grid, but are
converted to functional objects by means of various basis expansions which are defined for
every t. We consider a sequence of curves Xn(t, τ) for several expectile levels τ ∈ (0, 1);
these are similar to quantile levels. We are interested in detecting change points and
trends in the functional time series X1(·, τ), X2(·, τ), . . . , XN(·, τ). For this purpose, we
use the existing change point test of Berkes et al. (2009) and develop two trend tests. No
trend tests have presently been available for the data structure described above. These two
tests form a methodological contribution to statistics, while the analysis of the expectile
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Figure 1: Typhoons (left) and hurricanes (right) data in 2005 with expectile curves for
τ = 0.1, 0.5 and 0.9. data load hurricanes.R

curves of tropical storms provides an insight to climate science.
The paper is organized as follows. In Section 2 we review the test of Berkes et al. (2009)

and present the two trend tests. These tools are applied in Section 3 to the analysis of
expectile curves. Three appendices contain, respectively, background on expectile curves,
a simulation study, and the details of the asymptotic theory for the trend tests. All codes
are available as Quantlets on Quantnet (2015).

2 Change point and trend tests
This section presents the significance tests that will be applied to tropical storm data in
Section 3. The change point test described in Section 2.1 was derived by Berkes et al.
(2009), it is also described in Chapter 6 of Horváth and Kokoszka (2012). Trend tests
introduced in Section 2.2 are new; their derivation and full large sample justification are
presented in Section C. In both inferential settings, we consider as sequence of curves
Xn(t), t ∈ [0, 1], n = 1, 2, . . . N . The index n can be identified with year, the index t
with time within the year normalized to unit interval. The exposition that follows uses
now fairly standard concepts of functional data analysis, including functional principal
components (FPC’s) and their empirical counterparts (EFPC’s), see e.g. Chapter 3 of
Horváth and Kokoszka (2012).
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2.1 Change point test

In change point tests, the null hypothesis is that the mean function does not change with
year:

H0 : EX1 = EX2 = . . . = EXN .

The specific value of the mean is not part of the null hypothesis. The alternative is
that there are change points k∗1, k

∗
2, . . . , k

∗
M such that the means Xi are not the same

in all segments (k∗m−1, k
∗
m]. The theory and practice of change points tests have been

described in many textbooks, e.g. Brodsky and Darkhovsky (1993), Csörgő and Horváth
(1997), Chen and Gupta (2011), so we do not dwell on the background on move on to the
description of the test of Berkes et al. (2009).

The test is based on the normalized differences of estimated mean functions:

Pk(t, τ) =
k(N − k)

N
{µ̂k(t, τ)− µ̃k(t, τ)} ,

where

µ̂k(t, τ) = k−1

k∑
i=1

Xi(t, τ), µ̃k(t, τ) = (N − k)−1

N∑
i=k+1

Xi(t, τ).

Next, we compute the estimated functional principal components v̂` of the curves Xn and
calculate the scores

(2.1) ξ̂j,n =

∫ 1

0

{
Xn(t)− X̄N(t)

}
v̂j(t)dt.

The scores are calculated using the function pca.fd in the R package fda, see Chapter 7
of Ramsay et al. (2009). This function also produces estimated eigenvalues λ̂` and
the percentage of variance explained by the first d eigenvalues. We find the smallest d
such that 85% of the variance is explained and calculate the test statistic

Ŝd =
1

N2

d∑
j=1

1

λ̂j

N∑
k=1

(∑
1≤i≤k

ξ̂j,i −
k

N

∑
1≤i≤k

ξ̂j,i

)
.

For large N , the statistics Ŝd has approximately the same distribution as the random
variable Kd whose critical values are given Table 1, see Horváth and Kokoszka (2012) for
more details.

2.2 Trend tests

Suppose the functions Xn(t) follow the trend model

(2.2) Xn(t) = α(t) + β(t)n+ εn(t)

in which the error functions εn are iid and square integrable: E ||εn||2 = E
∫ 1

0
ε2
n(t)dt <∞.

The testing problem in this setting is

H0 : β = 0, vs. HA : β 6= 0.

4



d 5 6 7 8 9 10 11 12
10% 1.2797 1.4852 1.6908 1.8974 2.0966 2.2886 2.4966 2.6862
5% 1.4690 1.6847 1.8956 2.1242 2.3227 2.5268 2.7444 2.9490
1% 1.8667 2.1260 2.3423 2.5893 2.8098 3.0339 3.2680 3.4911

Table 1: Critical values of the distribution of Kd, which approximates the distribution of
the statistic Ŝd for large N .

The parameter functions α, β are assumed to be elements of the space L2 = L2([0, 1]), so
technically, β = 0 means that β(t) = 0 for almost all t.

A natural approach to testing is based on an estimator of β. If this estimator is small
for all t ∈ [0, 1], there is not enough evidence to reject H0. The least squares estimator of
β under H0 , cf. Section C, is given by

(2.3) β̂(t) =
6

N(N + 1)(N − 1)

N∑
k=1

(2k −N − 1)Xk(t).

Our first approach is based on the statistic
∫ 1

0
β̂2(t)dt. To describe its asymptotic dis-

tribution additional notation is needed. Introduce the covariance function of the errors
cε(t, s) = E[εn(t)εn(s)]. Denote by λj, j = 1, 2, . . . the eigenvalues of cε. Next, define the
residuals

(2.4) ε̂n(t) = Xn(t)− α̂n(t)− β̂n(t)n,

where

(2.5) α̂(t) =
2

N(N − 1)

N∑
k=1

(2N + 1− 3k)Xk(t).

Denote by λ̂j the eigenvalues of the empirical covariance function

(2.6) ĉε(t, s) =
1

N

N∑
n=1

ε̂n(t)ε̂n(s).

Theorem 2.1 describes large sample properties of the suitably normalized statistic∫ 1

0
β̂2(t)dt.

Theorem 2.1 (i) Under H0,

(2.7) Λ̂N =
N3

12

∫ 1

0

(
β̂(t)

)2

dt
L−→ Λ∞

def
=

∞∑
j=1

λjZ
2
j ,

where {Zj, j ≥ 1} are independent standard normal variables, and the λj are the eigen-
values of the covariance function cε.

5



(ii) Under HA,

(2.8) P
{

Λ̂N > qN(α)
}
→ 1, as N →∞,

where qN(α) is the (1− α)th quantile of the distribution of ΛN =
∑N

j=1 λ̂jZ
2
j .

Theorem 2.1 is proven in Section C.
The distribution of Λ∞ can be approximated by the distribution of

(2.9) ΛN =
N∑
j=1

λ̂jZ
2
j .

This leads to the Monte Carlo test whose consistency is claimed in part (ii) of Theo-
rem 2.1. To implement the test, we generate a large number, say R = 104, of independent
replications of ΛN (the λ̂j are estimated only once, from the original sample). Denote
these replications by ΛN,r, 1 ≤ r ≤ R. The P–value of the test is computed as the fraction

of the ΛN,r which are greater than Λ̂N (computed from the data).
It is also possible to develop a test similar to the test of Berkes et al. (2009) in the

sense that a limit distribution is independent of the distribution of the data. In fact, in
the trend model, the limit distribution is the usual chi–square distribution. This is stated
in Theorem 2.2, in which we use the inner product notation 〈f, g〉 =

∫ 1

0
f(t)g(t)dt.

Theorem 2.2 Suppose E ||ε||4 <∞ and

(2.10) λ1 > λ2 > . . . > λq > λq+1 > 0.

i) Under H0,

(2.11) T̂N =
N3

12

q∑
j=1

λ̂−1
j

〈
β̂, v̂j

〉2 L−→ χ2
q.

ii) If for some 1 ≤ j ≤ q, 〈β, vj〉 6= 0, then the test is consistent, i.e.

(2.12) P
{
T̂N > q(α)

}
→ 1, as N →∞,

where q(α) is the (1−α)th quantile of the chi–square distribution with q degrees of freedom.

Theorem 2.2 is proven in Section C.
Observe that to establish the consistency, it is not enough to assume β 6= 0 in L2. Since

the statistic T̂N is based on projections on the first q EFPC’s, we must assume that the
slope function β is not orthogonal to the subspace spanned by the first q FPC’s.
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3 Application to typhoon and hurricane data
In this section we apply the tests of Section 2 to annual expectile curves of wind speed
data. The data have the form Xn(ti), where the times ti are separated by six hours, and
the index n stands for year. The value Xn(ti) is the wind speed in knots (1 kn = 0.5144
m/s). We work with two data sets: typhoons in the West Pacific area over the period
1946–2010, and hurricanes across the North Atlantic basin over the period 1947-2011.
Both datasets are accessible free of charge at the website of Unisys Weather Information,
UNISYS (2015).

Since there are about 1,460 time points ti per year, we treat time 0 ≤ t ≤ T within
a year as continuous, and the observed curves as functional data. For each year n, we
construct expectile curves Xn(t, τ), for τ = 0.1, 0.2, . . . , 0.9. Examples of expectile curves
we study are given in Figure 1. The index τ ∈ (0, 1) has the following interpretation.
If τ = 0.5, the curve Xn(t, τ) describes the mean strength of tropical storms throughout
the year. If τ is close to 1, the curve Xn(t, τ) captures the annual pattern of highest wind
speeds. If τ is close to zero, it does the same for the lowest wind speeds. More details are
provided in Appendix A.

3.1 Change point analysis

The results of the application of the change–point test of Section 2.1 are shown in Table 2.
For both data sets and at all levels τ , the test rejects the null hypothesis that the mean
pattern does not change. As explained in Appendix A, the construction of the expectile
curves involves the selection of a smoothing parameter λ. Table 2 shows the results for
λ selected by the AIC criterion. To validate our conclusions, we performed the same
analysis using λ which is either twice or half of the λ selected by AIC. In both cases, all
empirical significance levels remained under 5%.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
d 10 11 12 12 12 12 12 12 12

Ŝd 3.3522 3.2291 3.4317 3.4978 3.6564 3.8554 4.0342 4.2317 4.5084
*** ** ** *** *** *** *** *** ***

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
d 5 5 5 6 6 6 7 7 7

Ŝd 2.7440 3.3993 3.8759 4.4640 4.7141 4.8680 5.0366 4.9247 4.5740
*** *** *** *** *** *** *** *** ***

Table 2: Results of the application of the change point test of Section 2.1 to typhoon
(upper panel) and hurricane (lower panel) expectile curves. Usual significance codes are
used: ** – significant at 5% level, *** - at 1% level.

The change point test shows that for all expectile levels τ , there are statistically signif-
icant changes in the annual pattern. It is instructive to complement the above inferential
analysis by simple exploratory analysis that reveals some dependence on the level τ .
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Figure 2: The squared norms Pn(τ) showing the magnitude of change in mean annual
pattern for expectile curves of typhoons (upper panel) and hurricanes (lower panel).
The largest changes occur in the expectile curves corresponding to τ = 0.9.

P beta est.R

Consider squared norms

Pn(τ) =

∫ T

0

P 2
n(t, τ)dt

of the normalized differences introduced in Section 2.1. The plot of Pn(τ) against the
year index n shows the magnitude of change of the mean function. We display such plots
in Figure 2. They show that the largest changes occur for the expectile levels τ close to
one; there is more change when focusing on the highest wind speeds than on median or
lowest speeds.

The change point analysis above shows that the pattern of typhoon and hurricane wind
speeds cannot be treated as stable over the sample periods we study. In the next section,
we investigate if this instability can be attributed to systematic trends.

3.2 Trend analysis

We now apply the trend tests introduced in Section 2.2 to typhoon and hurricane expec-
tile curves. In the Monte Carlo test based on Theorem 2.1, we use 104 replications of
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the random variable ΛN defined by (2.9). In the chi–square test based on Theorem 2.2,
we determine q as the smallest number which explains at least 85% of the variance of
the residual curves ε̂n defined by (2.4). The results of the tests are presented in Tables 3
and 4.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
typhoons P–value 0.365 0.537 0.545 0.495 0.438 0.381 0.329 0.316 0.269

hurricanes P–value 0.439 0.239 0.133 0.081 0.062 0.047 0.038 0.040 0.055

Table 3: P–values for the Monte Carlo trend test based on Theorem 2.1

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
q 10 11 12 12 12 12 12 12 12

typhoons P–value 0.534 0.705 0.722 0.688 0.587 0.466 0.382 0.371 0.453

q 5 5 5 6 6 6 7 7 7
hurricanes P–value 0.069 0.024 0.015 0.006 0.003 0.003 0.004 0.006 0.035

Table 4: P–values for the chi–square trend test based on Theorem 2.2

For the typhoon data, none of the two tests finds evidence of a trend. For the Hurricane
data, the Monte Carlo test based on Theorem 2.1 indicates the existence of a trend for
expectile levels τ = 0.6 − 0.9 while the chi–square test of Theorem 2.2 for all τ except
τ = 0.1. Simulations reported in Appendix B show that the chi–square test tends to
overreject for data generating processes (DGP’s) of length and error structure similar
to the tropical storm expectile curves. We therefore conclude that there is evidence for
the existence of a trend for upper expectile functions of hurricane data. The estimated
slope functions β̂ are plotted in Figure 3.

We conclude the trend analysis by showing in Figure 5 the dependence on τ of the norm

‖β̂‖ =
√∫

β̂2(t)dt of the estimated slope function. Even though there is statistical evi-

dence for nonzero slope function only for the upper expectiles of hurricane data, the ex-
ploratory analysis of the norms indicates that there is a very clear increasing dependence
of the slope on τ . Based on the estimates β̂, the slope functions β appear to be much
smaller for lower expectiles, and to detect them, if they are in fact nonzero, larger sample
sizes N would be needed. There is not much difference between the size of β̂, for typhoon
and hurricane data, but the β̂ for hurricanes show a clear pattern with positive mass
around July and November, and negative mass in early Fall. For the typhoon curves
the pattern of mass accumulation is spread more uniformly throughout the year, with
a pronounced negative mass in November. The significance tests we developed provide
a statistical justification for these fairly subtle visual differences.

3.3 Main conclusions of data analysis

The change point tests have shown that the annual pattern of wind speeds for both
hurricanes and typhoons cannot be treated as constant, no matter what expectile level is
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Figure 3: Estimated slope functions, β̂, for upper expectile curves of hurricane data.
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Figure 4: Estimated slope functions, β̂, for upper expectile curves of typhoon data.
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considered. The application of the new trend tests has focused on a more subtle question,
which has however received a fair deal of attention: is there a trend in the intensity of
tropical storms. A review of relevant research is not our aim, the paper of Kossin et al.
(2013) provides background and references. There are two novel aspects to our approach:
1) focus on the annual curves, 2) separate analysis for each intensity level. Based on sixty
years of data, our tests detect a trend in the upper wind speeds of Atlantic hurricanes.
Exploratory analysis suggests a similar conclusion for Pacific typhoons, but it cannot be
supported by low P–values with the amount of available data. These conclusions are
similar to the findings of Kossin et al. (2013) who use different, custom–prepared, data
sets. Their P–value for the existence of a trend in North Atlantic is less that 10−3, but
for the North–West pacific it is 0.03 (for South Pacific it is 0.09, 0.06 for the South Indian
Ocean). Their analysis is concerned with the trend in the scalar data, not a trend in
the annual pattern. They find all trends to be positive. In a sense, such trend coefficients
can be viewed as averages of the annual curves like those displayed in Figures 3 and 4.
The hurricane curves indeed have more positive mass, whereas for the typhoon curves
the negative mass is larger (the typhoon curves are not statistically different from zero,
according to our tests). The slope functions of the hurricanes indicate increasing intensity
in summer and late fall, and decreasing intensity in early fall. For typhoons, these curves
indicate decreasing intensity in November.

The conclusions of this paper which are supported by significance tests and do not
contradict existing research are as follows:

1. The annual pattern of wind speeds of both hurricanes and typhoons has been chang-
ing at all wind speed levels over the last 60 years.

2. There is a significant trend in the shape of this pattern for upper wind speed levels
of hurricanes.
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A Construction of annual expectile curves
In this section we provide some background needed to understand how the expectile
curves studied in Section 3 are constructed. The underlying concept of expectiles was
first discussed by Newey and Powell (1987) and further analyzed in several directions,
e.g. Efron (1991) or Rossi and Harwey (2009) focused on time-varying expectiles. Most
relevant to our setting is the paper by Schnabel and Eilers (2009), which extended the
work of Eilers and Marx (1996). It combined the LAWS (least average weighted squares)
algorithm with P-splines in order to estimate expectile curves. Recent applications include
Guo and Härdle (2012), Sobotka et al. (2013) and Guo et al. (2015) or more applicable
one in finance by Taylor (2008), where Value at risk (VaR) and Expected shortfall (ES)
were estimated using expectiles.

Suppose Y is a square integrable random variable with density f . Fix τ ∈ (0, 1).
The τ -th expectile e = eτ is the number which minimizes

Eτ (e) = (1− τ)E−(e) + τE+(e),

where

E−(e) =

∫ e

−∞
(u− e)2f(u)du = E

[
(X − e)2 I {X ≤ e}

]
;

E+(e) =

∫ ∞
e

(u− e)2f(u)du = E
[
(X − e)2 I {X > e}

]
.

Let F (y) be a cumulative distribution function of Y and G(y) =
∫ y
−∞ uf(u)du its first

partial moment. For every τ ∈ (0, 1), the expectile e = eτ can be obtained as τ -quantile
of the distribution function T (x), where

T (x) =
G(x)− xF (x)

2 {G(x)− F (x)}+
{
x−

∫∞
−∞ udF (u)

} .
If τ = 1/2, then 2Eτ (e) = E [(X − e)2], so e = EX. Expectiles have a similar inter-

pretation as quantiles, but have some desirable properties outlined in the references cited
above.

Consider now a scatter plot of points (ti, xi), 1 ≤ i ≤ I. In our applications, the ti
correspond to times within a year at which wind speed is measured and xi to the wind
speed. Since the form of the dependence of the xi on the ti is unknown, a B-spline
expansion is used. We thus assume that

xi ≈ ga(ti) =
J∑
j=1

ajBj(ti),

and find coefficients a = (a1, a2, . . . , aJ) which minimize

Sτ (a) = (1− τ)S−(a) + τS+(a),
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where
S−(a) =

∑
xi≤ga(ti)

{xi − ga(ti)}2 , S+(a) =
∑

xi>ga(ti)

{xi − ga(ti)}2 .

If τ is close to 1, then S+(a) must be made small. This means that the curve ga will be
above most of the points (ti, xi).

Denote a matrix of B-splines differences as D. In order to control the smoothness of
curves we can add penalization and minimize

Sτ (a) + λa>D>Da,

with λ as shrinkage parameter chosen by a desired criterion.
In our calculations, we chose λ according to AIC criterion. The whole algorithm is

implemented in the R package expectreg, see Sobotka et al. (2014) for further details.
In some applications, particularly to small and volatile datasets, one can observe cross-

ing curves, even if this is not possible in theory. For that reason expectile curves can be
modeled as bivariate functions of the form

µ(x, τ) =
K∑
k=1

L∑
`=1

ak`Bk(x)C`(p).

The coefficients ak` are estimated by minimizing

S(a) =
n∑
i=1

J∑
j=1

wi(τj) {xi − µ(ti, τj)}2

where

wi(τj) =

{
1− τ if xi ≤ µ(ti, τj)
τ if xi > µ(ti, τj).

Expectile and quantile sheets are explained in more detail by Schnabel (2011) or Schna-
bel and Eilers (2013).

B Trend tests: finite sample performance
A simulation study validating the change point test of Section 2.1 is reported in Berkes
et al. (2009). In this section, we examine the finite sample performance of the trend tests
introduced in Section 2.2.

Data generating processes We consider two models for the error functions εn(t).
The first is a generic Gaussian model in which we take the εn(t) to be Brownian bridges
Bn(t). We represent Brownian bridge as a Fourier series with stochastic coefficients
(the Karhunen–Loéve expansion, e.g. Bosq (2000)):

Bn(t) =
√

2
∞∑
j=1

Znj
sin(jπt)

jπ
≈
√

2
J∑
j=1

Znj
sin(jπt)

jπ
,
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where {Zj, j ≥ 1} are independent standard normal random variables. We set J = 100 so
the trajectories of the Bn have similar smoothness as the typhoon and hurricane expectile
curves.

The second model for the εn is based more directly on the tropical storm data. We
proceed as follows. We consider τ = 0.1, 0.5, 0.9. For each level τ , we compute the sample
mean function and the sample functional principal components v̂j(t; τ) of the expectile
curves Xn(t, τ). Next we compute the scores ξjn(τ) according to (2.1). Denote by σj(τ)
the standard deviation of the ξjn(τ), 1 ≤ n ≤ N, (N = 65). The εn are generated as
independent realizations of the random function

ε(t; τ) =

q∑
j=1

σj(τ)Zj v̂j(t; τ), Zj ∼ iid N(0, 1),

with q determined from the original expectile curves according to the 85% rule. We thus
have four models for the error curves which we refer to as BB, E1, E5, E9. The errors
E1, E5, E9 are different depending on whether hurricane or typhoon data are used. The
empirical rejection rates are however very similar in both cases. We display the results
for the errors based on the hurricane data.

We generate artificial data according to the specification

Xn(t) = bβ(t)n+ εn(t).

To find empirical size, we set β(t) = β0(t) = 0. To find empirical power, power, we use
the slope functions

β1(t) = −
cos
(
tπ3
2

)
100

; β2(t) =
sin (tπ20)

100
,

which are graphed in Figure 6. The constant b is used to adjust the magnitude of the
departure from the null hypothesis. For E1, E5 and E9 error curves we set b = 20, for BB
errors we use b = 1. The different values are used to ensure similar signal to noise ration
for both types of errors.

We consider sample sizes N = 30, 60, 120 Empirical rejection rates are shown in Tables
5 and 6. The Monte Carlo test, generally has slightly better size and power, but the
pivotal chi–square test performs well too. It tends to overreject under H0 (for N = 60
and N = 120), which may explain the smaller P–values in Table 4 as compared to Table 3.
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Figure 6: Slope functions used to assess power.

BB β0 β1 β2

N=30 0.055 0.175 0.136
N=60 0.056 0.967 1.000
N=120 0.064 1.000 1.000

E1 β0 β1 β2

N=30 0.060 0.082 0.078
N=60 0.045 0.438 0.440
N=120 0.042 1.000 1.000

E5 β0 β1 β2

N=30 0.042 0.072 0.060
N=60 0.047 0.435 0.438
N=120 0.044 1.000 1.000

E9 β0 β1 β2

N=30 0.069 0.081 0.091
N=60 0.058 0.435 0.404
N=120 0.042 1.000 1.000

Table 5: Rejection rates of the Monte Carlo test. Columns corresponding to β0 report
empirical size, those to β1 and β2, empirical power.

BB β0 β1 β2

N=30 0.064 0.344 0.053
N=60 0.058 0.995 0.085
N=120 0.069 1.000 0.238

E1 β0 β1 β2

N=30 0.053 0.071 0.089
N=60 0.058 0.215 0.220
N=120 0.056 0.975 0.971

E5 β0 β1 β2

N=30 0.047 0.065 0.044
N=60 0.064 0.249 0.193
N=120 0.049 0.982 0.898

E9 β0 β1 β2

N=30 0.051 0.075 0.085
N=60 0.065 0.216 0.234
N=120 0.058 0.929 0.967

Table 6: Rejection rates of the Chi–square test. Columns corresponding to β0 report
empirical size, those to β1 and β2, empirical power.
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C Trend tests: large sample justification

Representing trend model (2.2) as the regressionX1(t)
...

XN(t)

 =

1 1
...

...
1 N

 · [α(t)
β(t)

]
+

 ε1(t)
...

εN(t)

 ,
we obtain the least squares estimators (2.3) and (2.5). Direct verification shows that

cβ(t, s)
def
= Cov

{
β̂(t), β̂(s)

}
= ANcε(t, s),

where

AN =
12

N(N + 1)(N − 1)
.

The constant AN is repeatedly used in the proofs of Theorems 2.1 and 2.2.

C.1 Proof of Theorem 2.1

Proof of part (i): Under H0 (β = 0),

β̂(t) = AN

N∑
k=1

kεk(t)−
1

2
AN(N + 1)

N∑
k=1

εk(t).

Using the identity

(C.1)
N∑
k=1

kεk = N
N∑
n=1

εn −
N−1∑
k=1

k∑
n=1

εn,

we have

β̂(t) = AN

N∑
k=1

kεk(t)−
1

2
AN(N + 1)

N∑
k=1

εk(t)

= AN

(
N

N∑
n=1

εn(t)−
N−1∑
k=1

k∑
n=1

εn(t)
)
− 1

2
AN(N + 1)

N∑
n=1

εn(t).

(C.2)

To determine the limit behavior of β̂(t), we thus need an invariance principle for the
partial sum process.

SN(x, t) =
1√
N

∑
1≤n≤[Nx]

εn(t), 0 ≤ x, t ≤ 1.

A result of this type has recently been established by Berkes et al. (2013). It states that

(C.3) SN(x, t)
L−→ Γ(x, t),
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where Γ(x, t) is the two parameter Gaussian process which admits the representation

(C.4) Γ(x, t) =
∞∑
j=1

√
λjWj(x)vj(t),

where {Wj(x), 0 ≤ x ≤ 1} are independent standard Wiener processes on [0, 1]. The λj
and the vj are, respectively, the eigenvalues and the eigenfunctions of the covariance func-
tion cε(t, s) = E[εn(t)εn(s)]. In (C.3), and whenever weak convergence of two parameter

processes is concerned,
d→ denotes the convergence in the Skorokhod space D([0, 1], L2).

Since AN ∼ 12N−3, (C.2) implies

β̂(t) = ANN
3
2SN(1, t)− ANN

1
2

N−1∑
k=1

SN

(
k

N
, t

)
− 1

2
AN(N + 1)N

1
2SN(1, t)

∼ 12N−
3
2SN(1, t)− 12N−

3
2

{
1

N

N−1∑
k=1

SN

(
k

N
, t

)}
− 6N−

3
2SN(1, t)

= 6N−
3
2SN(1, t)− 12N−

3
2

{
1

N

N−1∑
k=1

SN

(
k

N
, t

)}
.

By the continuous mapping theorem and (C.3)

1

N

N−1∑
k=1

SN

(
k

N
, t

)
L−→
∫ 1

0

Γ(x, t)dx,

Thus

(C.5)
N

3
2

6
β̂(t)

L−→ Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx.

Using the continuous mapping theorem again, we obtain

N3

36

∫ 1

0

{
β̂(t)

}2

dt
L−→
∫ 1

0

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}2

dt.

Set

(C.6) Dj = Wj(1)− 2

∫ 1

0

Wj(x)dx,

so that, by (C.4), we have

Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx =
∞∑
j=1

√
λjDjvj(t).
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Then, by Parseval’s identity,

(C.7)

∫ 1

0

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}2

dt =

∣∣∣∣∣
∣∣∣∣∣
∞∑
j=1

√
λjDjvj

∣∣∣∣∣
∣∣∣∣∣
2

=
∞∑
j=1

λjD
2
j .

The random variables Dj are independent normal with mean zero and variance

Var[Dj] = E

[
W (1)− 2

∫ 1

0

W (x)dx

]2

= EW 2(1)− 4E

[
W (1)

∫ 1

0

W (x)dx

]
+ 4E

[∫ 1

0

W (x)dx

]2

=
1

3
.

We can write Dj = 1√
3
Zj, where Zj are standard normal variables. By (C.7)

∫ 1

0

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}2

dt =
1

3

∞∑
j=1

λjZ
2
j .

Thus (2.7) is proven.

Proof of part (ii): The proof follows from several lemmas. It is assumed throughout
that HA holds, i.e ||β|| > 0. The argument relies on Lemma C.1 whose proof follows from
the relevant definitions, and so is omitted.

Lemma C.1 Suppose {Xn} and {qn} are sequences of random variables. Suppose further
that {Xn} diverges to infinity in probability and {qn} is bounded in probability , i.e. for
each M, limn→∞ P(Xn > M) = 1 and for each ε > 0, there is M such that P(qn > M) < ε,
if n > n0. Then

lim
n→∞

P(Xn > qn) = 1.

Relation (2.8) now follows from Lemmas C.2 and C.3.

Lemma C.2 The statistic Λ̂N defined by (2.7) satisfies Λ̂N
P→∞.

Proof: Decompose β̂(t) as

(C.8) β̂(t) = β(t) +GN(t),

where

GN(t) =
1

2
AN

N∑
k=1

(2k −N − 1)εk(t).
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Observe that GN(t) is equal to the estimator β̂(t) under H0. Therefore, by (C.5),

N3/2GN(t)
L−→ 6

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}
def
= U(t).

Consequently, as N →∞

N3

∫
β̂2(t)dt =

∫ {
N3/2β(t) +N3/2GN(t)

}2
dt ∼

∫ {
N3/2β(t) + U(t)

}2
dt

P→∞.

More precisely,

N−3Λ̂N ∼
1

12

∫ {
β(t) +N−3/2U(t)

}2
dt

P→ 1

12

∫
β2(t)dt.

Lemma C.3 The sequence {ΛN} defined by (2.9) is bounded in probability, i.e. Op(1).

Proof: Since the λ̂j are fixed in the generation of the replications in the Monte Carlo

test, the variables Zj are independent of the λ̂j. Therefore, since EZ2
j = 1,

EΛN =
N∑
j=1

Eλ̂j.

The definition of the λ̂j as the eigenvalues of the covariance operator with ĉε(·, ·) defined
by (2.4) and (2.6) implies that

N∑
j=1

λ̂j =
1

N

N∑
n=1

||ε̂n||2 .

This is the decomposition of functional sample variance, see Horváth and Kokoszka (2012),
p. 40. Therefore, if we can show that

(C.9) lim sup
N→∞

1

N

N∑
n=1

E||ε̂n||2 <∞,

then we can conclude that lim supN→∞ EΛN <∞, which in turn implies that the sequence
{ΛN} bounded in probability.

The decomposition

(C.10) ε̂n(t) = εn(t) +
{
α(t)− α̂(t)

}
+ n

{
β(t)− β̂(t)

}
,

implies that for some constant C,

(C.11) ||ε̂n||2 ≤ C
(
||εn||2 + ||α̂− α||2 + ||n(β̂ − β)||2

)
.
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First note that

1

N

N∑
n=1

E||εn||2 = E

[∫ { 1

N

N∑
n=1

ε2
n(t)

}
dt

]

=

∫ {
E

[
1

N

N∑
n=1

ε2
n(t)

]}
dt

=

∫
Eε2

1(t)dt = E||ε1||2 <∞.

Next, observe that

1

N

N∑
n=1

E||α̂− α||2 = E||α̂− α||2

=

∫ {
E [α̂(t)− α(t)]2

}
dt

=

∫
E

[
2

N(N − 1)

N∑
k=1

(2N + 1− 3k)εk(t)

]2

dt

=
2(2N + 1)

N(N − 1)
E||ε1||2 → 0.

Similarly,

1

N

N∑
n=1

E||n(β̂ − β)||2 =
(N + 1)(2N + 1)

6
E||β̂ − β||2

=
(N + 1)(2N + 1)

6

∫ {
E
[
β̂(t)− β(t)

]2
}
dt

=
(N + 1)(2N + 1)

6

∫
E

[
6

N(N − 1)(N + 1)

N∑
k=1

(2k −N − 1)εk(t)

]2

dt

=
2(2N + 1)

N(N − 1)
E||ε1||2 → 0.

Thus (C.9) holds. Therefore supN EΛN =: CΛ < ∞, and so P(ΛN > M) ≤ M−1CΛ can
be made arbitrarily small by choosing M sufficiently large. The conclusion follows.
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C.2 Proof of Theorem 2.2

Proof of part (i): Under H0, by (C.2), (C.4) and consistency of estimated eigenfunc-

tions v̂j, (v̂j
P→ vj),〈
N

3
2

6
β̂, v̂j

〉2

L−→
〈

Γ(1, ·)− 2

∫ 1

0

Γ(x, ·)dx, vj
〉2

=

〈
∞∑
k=1

√
λkWk(1)vk − 2

∫ 1

0

∞∑
k=1

√
λkWk(x)vk, vj

〉2

=

[
∞∑
k=1

√
λk

{
Wk(1)− 2

∫ 1

0

Wk(x)dx

}
〈vk, vj〉

]2

= λj

{
Wj(1)− 2

∫ 1

0

Wj(x)dx

}2

= λjD
2
j =

1

3
λjZ

2
j ,

with the random variables Dj defined in (C.6), and Zj standard normal variables. It
follows that

T̂N =
N3

12

q∑
j=1

λ̂−1
j

〈
β̂, v̂j

〉2

= 3

q∑
j=1

λ̂−1
j

〈
N

3
2

6
β̂, v̂j

〉2

L−→
q∑
j=1

Z2
j
L
= χ2

q.

Proof of part (ii): We must show that T̂N
P→∞, if 〈β, vj〉 6= 0 for some 1 ≤ j ≤ q. It

is enough to show that

q∑
j=1

λ̂−1
j

〈
β̂, v̂j

〉2 P→
q∑
j=1

λ−1
j 〈β, vj〉

2 ,

because the right–hand side is positive. The verification of the above convergence reduces
to

(C.12)
∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣ P→ 0

and, for 1 ≤ j ≤ q,

(C.13) ||v̂j − vj||
P→ 0, λ̂j

P→ λj.

To prove relation (C.12), observe first that by decomposition (C.8),

E
∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣ = E ||GN || ≤

{
E ||GN ||2

} 1
2 =

{
E

∫
G2
N(t)dt

} 1
2

.
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To calculate the last expected value, we will use the identity

1

4
AN

N∑
k=1

(2k −N − 1)2 = 1,

which follows from algebraic manipulations. The independence of the εk thus implies that

E

∫
G2
N(t)dt =

1

4
A2
N

N∑
k=1

(2k −N − 1)2E

∫
ε2
k(t)dt = ANE ||ε||2 = O(N−3).

By Lemmas 2.2. and 2.3 of Horváth and Kokoszka (2012), relations (C.13) will follow

from ||ĉε − cε||S
P→ 0, where the subscript S denotes the Hilbert–Schmidt norm. Proposi-

tion C.1 states that, in fact, E ||ĉε − cε||2S = O(N−1). It thus extends a well–known result,
e.g. Theorem 2.5. of Horváth and Kokoszka (2012), which states that

(C.14) E

∫ (
1

N

N∑
i=1

εi(t)εi(s)− E [ε(t)ε(s)]

)2

dtds = O(N−1).

The covariance function ĉε is defined in terms of the residuals ε̂n, cf. (2.4), (2.6). Esti-
mation of the intercept and slope functions introduces many additional terms which are,
however, all asymptotically negligible.

Proposition C.1 Suppose model (2.2) holds and E ||ε||4 <∞. Then the sample covari-
ance function ĉε, defined by (2.4) and (2.6), satisfies E ||ĉε − cε||2S = O(N−1).

Proof: Observe that

E ||ĉε − cε||2S = E

∫∫ (
ĉε(t, s)− cε(t, s)

)2

dtds

= E

∫∫ {
1

N

N∑
k=1

(
ε̂k(t)ε̂k(s)− E [ε(t)ε(s)]

)}2

dtds

=
1

N2

∫∫ N∑
n,m=1

E
[(
ε̂n(t)ε̂n(s)− E[ε(t)ε(s)]

)(
ε̂m(t)ε̂m(s)− E[ε(t)ε(s)]

)]
dtds.

We will work with the following decomposition of the residuals:

ε̂n(t) = εn(t) +
{
α(t)− α̂(t)

}
+ n
{
β(t)− β̂(t)

}
= εn(t) +

2

N(N − 1)

N∑
k=1

(3k − 2N − 1)εk(t) +
6n

N(N + 1)(N − 1)

N∑
k=1

(N + 1− 2k)εk(t)

= εn(t) +
2

N(N − 1)(N + 1)

N∑
k=1

{
3(N + 1− 2n)k + (N + 1)(3n− 2N − 1)

}
εk(t)

= εn(t) +BN

N∑
k=1

CN,n,kεk(t),
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where BN = 2
N(N−1)(N+1)

and CN,n,k = 3(N + 1− 2n)k + (N + 1)(3n− 2N − 1).
Thus

ε̂n(t)ε̂n(s)− E[ε(t)ε(s)] =
(
εn(t)εn(s)− E[ε(t)ε(s)]

)
+BNεn(t)

N∑
k=1

CN,n,kεk(s)

+BNεn(s)
N∑
k=1

CN,n,kεk(t) +B2
N

N∑
i,j=1

CN,n,iCN,n,jεi(t)εj(s),

and so the expression for E ||ĉε − cε||2S , i.e.

(C.15)
1

N2

∫∫ N∑
n,m=1

E
[(
ε̂n(t)ε̂n(s)− E[ε(t)ε(s)]

)(
ε̂m(t)ε̂m(s)− E[ε(t)ε(s)]

)]
dtds

contains 16 terms. The leading term coincides with the left–hand side of (C.14):

1

N2

∫∫ N∑
n,m=1

E
[(
εn(t)εn(s)− E[ε(t)ε(s)]

)(
εm(t)εm(s)− E[ε(t)ε(s)]

)]
dtds

=E

∫∫ ( 1

N

N∑
n=1

εn(t)εn(s)− E[ε(t)ε(s)]
)2

dtds = O(N−1).

The remaining 15 cross–terms are of the order O(N−2). We will display the verification
for several of them, to illustrate the technique. It uses the independence of the εk and
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the following bounds on sums involving the coefficients CN,m,k:

N∑
n=1

CN,n,n = −N(N + 1)(N − 1),

N∑
n,m=1

CN,n,nC
2
N,m,n = O(N8),

N∑
n,m=1

∑
k 6=n

CN,n,nC
2
N,m,k = O(N9),

N∑
n,m=1

∑
k 6=n

CN,n,kCN,m,nCN,m,k = O(N9),

N∑
n,m,k=1

C2
N,n,kC

2
N,m,k = O(N11),

N∑
n,m=1

N∑
i 6=j

CN,n,iCN,n,jCN,m,iCN,m,j = O(N12),

N∑
n,m=1

N∑
i 6=j

C2
N,n,iC

2
N,m,j = O(N13),

N∑
n,m=1

N∑
i 6=j

C2
N,n,iC

2
N,m,j = O(N13).

For the cross–term involving the first and second terms, we have

∣∣∣ 1

N2

∫∫ N∑
n,m=1

E

[(
εn(t)εn(s)− E[ε(t)ε(s)]

)
BNεm(t)

N∑
k=1

CN,m,kεk(s)

]
dtds

∣∣∣
=
∣∣∣ 1

N2

∫∫ N∑
n,m=1

N∑
k=1

BNCN,m,kE
[(
εn(t)εn(s)− E[ε(t)ε(s)]

)
εm(t)εk(s)

]
dtds

∣∣∣
=
∣∣∣ 1

N2

∫∫ N∑
n=1

BNCN,n,nE
[(
εn(t)εn(s)− E[ε(t)ε(s)]

)
εn(t)εn(s)

]
dtds

∣∣∣
=

1

N2

2

N(N − 1)(N + 1)
N(N + 1)(N − 1)

∫∫ {
Eε2(t)ε2(s)−

(
E[ε(t)ε(s)]

)2
}
dtds

≤ 1

N2

∫∫
E[ε2(t)ε2(s)]dtds =

1

N2
E ||ε||4 .

25



Next, we turn to the cross–term involving second and fourth terms:

∣∣∣ 1

N2

∫∫ N∑
n,m=1

E

[
BNεn(t)

N∑
k=1

CN,n,kεk(s)B
2
N

N∑
i,j=1

CN,m,iCN,m,jεi(t)εj(s)

]
dtds

∣∣∣
≤B

3
N

N2

∣∣∣ ∫∫ N∑
n,m=1

CN,n,nC
2
N,m,nE[ε2(t)ε2(s)]dtds

∣∣∣ (k = i = j = n)

+
B3
N

N2

∣∣∣ ∫∫ N∑
n,m=1

∑
k 6=n

CN,n,nC
2
N,m,k

(
E[ε(t)ε(s)]

)2

dtds
∣∣∣ (k = n 6= i = j)

+
B3
N

N2

∣∣∣ ∫∫ N∑
n,m=1

∑
k 6=n

CN,n,kCN,m,nCN,m,kE[ε2(t)]E[ε2(s)]dtds
∣∣∣ (i = n 6= j = k)

+
B3
N

N2

∣∣∣ ∫∫ N∑
n,m=1

∑
k 6=n

CN,n,kCN,m,kCN,m,n

(
E[ε(t)ε(s)]

)2

dtds
∣∣∣ (j = n 6= i = k)

=O(N−11)O(N8)

∫∫
E[ε2(t)ε2(s)]dtds+O(N−11)O(N9)

∫∫ (
E[ε(t)ε(s)]

)2

dtds

+O(N−11)O(N9)

∫∫
E[ε2(t)]E[ε2(s)]dtds+O(N−11)O(N9)

∫∫ (
E[ε(t)ε(s)]

)2

dtds

=O(N−2)

∫∫ {
E[ε2(t)]E[ε2(s)] + 2

(
E[ε(t)ε(s)]

)2
}
dtds

=O(N−2)

∫∫
E[ε2(t)]E[ε2(s)]dtds = O(N−2)

(
E ||ε||2

)2

.

The bound for the most complex cross-term involving the fourth terms is established

26



as follows:∣∣∣ 1

N2

∫∫ N∑
n,m=1

E

[
B2
N

N∑
i1,j1=1

CN,n,i1CN,n,j1εi1(t)εj1(t)B
2
N

N∑
i2,j2=1

CN,m,i2CN,m,j2εi2(t)εj2(t)

]
dtds

∣∣∣
≤B

4
N

N2

∣∣∣ ∫∫ N∑
n,m,k=1

C2
N,n,kC

2
N,m,kE[ε2(t)ε2(s)]dtds

∣∣∣ (k = i = j = n)

+
B4
N

N2

∣∣∣ ∫∫ N∑
n,m=1

N∑
i 6=j

CN,n,iCN,n,jCN,m,iCN,m,jE[ε2(t)]E[ε2(s)]dtds
∣∣∣ (k = n 6= i = j)

+
B4
N

N2

∣∣∣ ∫∫ N∑
n,m=1

N∑
i 6=j

C2
N,n,iC

2
N,m,j

(
E[ε(t)ε(s)]

)2

dtds
∣∣∣ (i = n 6= j = k)

+
B4
N

N2

∣∣∣ ∫∫ N∑
n,m=1

N∑
i 6=j

CN,n,iCN,n,jCN,m,iCN,m,j

(
E[ε(t)ε(s)]

)2

dtds
∣∣∣ (j = n 6= i = k)

=O(N−14)O(N11)

∫∫
E[ε2(t)ε2(s)]dtds+O(N−14)O(N12)

∫∫
E[ε2(t)]E[ε2(s)]dtds

+O(N−14)O(N12)

∫∫ (
E[ε(t)ε(s)]

)2

dtds+O(N−14)O(N12)

∫∫ (
E[ε(t)ε(s)]

)2

dtds

=O(N−2)

∫∫ {
E[ε2(t)]E[ε2(s)] + 2

(
E[ε(t)ε(s)]

)2
}
dtds

=O(N−2)

∫∫
E[ε2(t)]E[ε2(s)]dtds = O(N−2)

(
E ||ε||2

)2

.
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