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Abstract

We study nonlinear income taxation in a Roy model in which agents’ productivity is sector-

specific. We show that when income taxes can be sector-specific, the Diamond-Mirrlees theorem

(according to which the second-best displays production efficiency) fails: social welfare (be

it Rawlsian or Weighed Utilitarian) can be increased by assigning some agents to their least

productive sector. By sacrificing production efficiency, the planner incurs second-order losses in

total output, but obtains a first-order reduction in the informational costs of redistribution. The

same result obtains when the government is constrained to a uniform income tax schedule, as

long as sales taxes can be made sector-specific. In this latter case, our result also implies failure

of the Atkinson-Stiglitz theorem (according to which, when preferences over consumption and

leisure are separable, as they are in our economy, the second-best can be implemented with zero

sales taxes).
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1 Introduction

Following the seminal contribution of Diamond and Mirrlees (1971), production efficiency is often

thought as a key property of optimal tax systems. The celebrated Diamond-Mirrlees theorem shows

that when the government can use differentiated linear taxes on all factors (input and output), the

economy should lie at the production efficient frontier. Strikingly, at the optimum, distortions in

consumption produced by income taxation do not translate into distortions in production. This

result has important consequences for the design of tax systems. For instance, the Diamond-Mirrlees

theorem provides an intellectual justification for opposing the taxation of intermediate goods, as

well as the use of differential sales taxes, or sector-specific income tax deductions. Such taxes would

create a wedge between productivities and wages across sectors, thus leading to distortions on the

allocation of labor across sectors, and undesirable violations of production efficiency.

This paper revisits the optimality of production efficiency in a Roy (1951) model in which

agents’ productivity is sector-specific. Agents compare wage levels and the tax burden across oc-

cupations, and then choose which sector to work in along with their labor supply. To isolate the

impact of taxation on the production side of the economy, we assume that the goods produced

in different sectors are perfect substitutes. The technology on each sector is described by a rep-

resentative firm with a linear production function, which rules out general equilibrium effects or

externalities across sectors. Accordingly, in our model, the notion of production efficiency coincides

with that of occupational-choice efficiency: Agents should join the sector in which their hour of

work is more productive. The government wishes to implement a second best redistributive tax

system à la Mirrlees (1971) using a rich set of non-linear incomes taxes possibly complemented by

differential sales taxes. We allow the government’s welfare objective to be Rawlsian or Concave

Utilitarian.

We first study the general case in which the government can use a sector-specific non-linear

income tax schedules (in which case sales taxes are redundant). The government can observe the

income and the sector chosen by each individual, but cannot control the individual’s choice of labor

supply or the sector of employment. Accordingly, the government maximizes welfare subject to

the usual intensive-margin incentive constraints associated with the choice of labor supply by each

individual, as well as an extensive-margin incentive constraint associated with the choice of sector

by each individual. The multi-dimensionality of each agent’s productivity plays a key role in the

extensive margin constraint, as the agent’s occupational choice is determined by how the agent’

skill differential across sectors compares to the difference in the tax burden across sectors.

Our first contribution is in developing a methodology for solving multi-dimensional screening

problems governed by intensive-margin (labor supply) and extensive-margin (sector choice) deci-

sions. Namely, we proceed by first solving a primal problem, where the occupational choice rule

(which determines sector choice as a function of the worker’s productivity profile) is held fixed, and

the tax system is chosen to maximize welfare subject to implementing that occupational choice rule



(as well as satisfying the intensive-margin incentive constraints). Next, we solve a dual problem,

where the tax schedule in a given sector is held fixed, and the tax schedule in the other sector (as

well as the occupational choice rule) are chosen to maximize welfare.

The solution to the primal problem delivers a Mirrlees tax formula generalized to a multi-

sector economy with endogenous occupational choice and multi-dimensional types. As in Mirrlees

(1971), Diamond (1998), and Saez (2001), the tax schedule balances efficiency and redistributive

considerations. Efficiency concerns are captured by elasticity (or behavioral) effects, that measure

how individuals adjust labor supply in response to higher marginal taxes. Redistributive concerns

are captured by a direct (or mechanical) effects, that measure how an increase in the marginal tax in

a given income bracket increases tax collection in all higher income brackets. Our characterization

reveals how the government optimally balances intensive-margin distortions in labor supply across

sectors, as a function of the occupational choice rule to be implemented. In particular, we show

that, depending on the occupational choice sought by the government, negative marginal taxes

naturally arise at the optimum.

In turn, the solution to the dual problem delivers an Euler equation that determines the optimal

allocation of agents across sectors. At the optimum, the marginal loss in tax revenue due to

migration of workers across sectors equalizes the marginal gains from tailoring tax schedules to the

distribution of productivities in each sector (“tagging”). Importantly, under sector-specific income

taxation, the Diamond-Mirrlees theorem (according to which the second-best displays production

efficiency) fails: social welfare is increased by assigning some agents to their least productive sector.

The key to understanding this result is that, because the distribution of agents in each sector is

endogenous, the informational costs of redistributions can be affected by the tax system employed

by the government. As we show, by sacrificing production efficiency, the planner incurs second-order

losses in total output, but obtains a first-order reduction in the informational costs of redistribution.

Our analysis shows that familiar insights from the standard Mirrlees model regarding the

taxation of top earners are robust to multi-dimensional environments where occupational-choice

distortions are present. Namely, when the support of productivities is bounded, the agents with

the highest productivity on both sectors face zero marginal income taxes (revealing that distortions

in occupational choice do not translate into distortions in labor supply). In turn, when the support

of productivities is unbounded, we show that marginal tax collection vanishes at the top of the

income distribution.

Next, we consider the (perhaps more realistic) scenario in which the government is not able to

tax labor income using a sector-specific schedule, but can levy different sales taxes across sectors.

Indirect taxation in the form of sales taxes is an imperfect substitute for direct sector-specific

income taxation, as it uniformly affects the wages earned in equilibrium by all agents (regardless of

their income). Most importantly, our methods are flexible enough to accommodate such constraints

in the set of tax instruments available to the government.

When only sales taxes can be made sector-specific, we specialize the Mirrlees formula discussed
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above to show how sales taxes and income taxation optimally allocate intensive-margin distortions

across sectors. Moreover, we show that production inefficiency is, as in the general case, a robust

feature of the second-best. In this latter case, our analysis implies the failure of the Atkinson-

Stiglitz theorem (according to which, when preferences over consumption and leisure are separable,

as they are in our economy, the second-best can be implemented with zero sales taxes). Intuitively,

sales taxes are useful by distorting equilibrium wages and indirectly reducing the informational

costs of redistribution.

The rest of the paper is organized as follows. Below, we close the introduction by briefly

reviewing the most pertinent literature. Section 2 describes the model. Section 3 characterizes

optimal sector-specific income tax schedules. Section 4 contains results for economies where only

sales taxes can be sector-specific. Section 5 discusses a few extensions and concludes.

1.1 Related literature

Our paper contributes to the literature on optimal taxation theory in the tradition of Mirrlees

(1971). Our analysis is directly related to fundamental results in this literature. First, Diamond

and Mirrlees (1971) show that the second-best optimum exhibits production efficiency in a general

equilibrium setting where the government can use (linear) taxes on all inputs and outputs, and

firms can be taxed in a lump-sum fashion.1 In turn, Atkinson and Stiglitz (1976) show that

differentiated sales taxes across goods are detrimental to welfare, provided the government can use

a non-linear income tax schedule and preferences are weakly separable between consumption and

leisure.2 These results were first challenged by Naito (1999), who considers a two-sector model in

which two goods are produced using skilled and unskilled labor in different intensities. Naito shows

that a tax/subsidy on one good, implicitly creating a subsidy to low-skilled labor, is always desirable

provided the government can use a non-linear income tax. This indirect form of wage subsidy (as

opposed to a subsidy on total labor income) allows the government to ease redistribution without

affecting incentive constraints. This result comes from the fact that the high skilled individuals

cannot effectively claim the low skilled wage. Later, Saez (2004) discusses this assumption and

argues that, in the long run, individuals choose their occupation (say, skilled or unskilled). As a

consequence, the optimality of production efficiency and of uniform sales taxes is restored.

In turn, Saez (2002) derives the optimal tax system in a setting where labor supply responses

involve an intensive margin (high or low-paying occupations) as well as an extensive margin (par-

ticipation into the labor force). One important assumption in Saez (2002, 2004) is that every two

workers are equally productive in all occupations, but differ in their tastes for each occupation

(including tastes for not working). By contrast, in the spirit of Roy (1951), we assume that workers

have heterogenous skills across occupations (extensive margin), and make intensive-margin choices

1See Hammond (2000) for a generalization of this result that allows for asymmetric information about workers’

skills and nonlinear taxation.
2See Boadway (2012) for a unified treatment of these results.
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within occupation (i.e., hours of work).

To the best of our knowledge, only Rothschild and Scheuer (2013, 2014) analyze optimal non-

linear taxes in a Roy model with multiple occupations. They consider a very general production

function allowing for spillovers and externalities between sectors, but assume uniform taxation

(i.e., all workers face the same income tax schedule, and sale taxes are not allowed to be sec-

tor specific). The focus of their work is on the interplay between uniform income taxation and

spillovers/externalities across sectors. By contrast, we rule out spillovers/externalities across sectors

and focus on the role of differential taxation in reducing the informational costs of redistribution.

Related, Scheuer (2014) studies the role of differential taxation in a model in which individuals

can choose between becoming workers or entrepreneurs. Each individual has the same skill in

both occupations, but faces a cost of setting up a firm that enters additively in the agent’s utility

function. In this setting, production efficiency is optimal when the government can use differential

income taxation, or when income taxation is uniform and the production function is linear (as

assumed in the present paper).

Our paper is also related to the literature on “tagging,” initiated by Akerlof (1978) and further

developed by Cremer et al. (2010) and Mankiw and Weinzierl (2010) in the context of optimal

non-linear income taxation. The idea of “tagging” is that the Government can increase efficiency

and redistribute more by conditioning income taxes on observable characteristics, such as age, sex,

or height. A fundamental difference with respect to our paper is that, in this literature, the tagging

variable is exogenous (agents’ cannot respond by changing sex, age, or height). In contrast, in our

economy, workers are able to migrate across sectors in response to differential taxation (i.e., the

tagging variable is endogenous).3

Allowing for endogenous occupational choice naturally leads to a multi-dimensional screening

problem. Solving such problems is often challenging, as one cannot determine from the outset

the direction in which incentive constraints bind (see Rochet and Choné (2003) and references

therein). In our setting, the multi-dimensionality of workers’ productivities only affects sector-choice

(extensive-margin) decisions. This allows us to employ the primal-dual approach described above,

which treats in isolation the role of taxation in shaping labor supply decisions and occupational

choices, bringing considerable tractability to the analysis.

As our analysis reveals, the multi-dimensionality of workers’ types has important implications

for the design of optimal tax systems. Other recent studies share a similar view: Choné and

Laroque (2010) study the optimality of negative marginal taxes in a model where workers have a

bi-dimensional type comprising a skill level and an outside option (that determines participation in

the labor force). More recently, Golosov et al. (2013) study optimal non-linear income and capital

taxes in a model where individuals differ both in their skills and in their time preferences.

3The possibility of endogenous tagging is discussed but not solved in the seminal contribution of Akerlof (1978).
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2 Model and Preliminaries

2.1 Set-up

We consider an economy with a unit-mass continuum of agents and two sectors indexed by j ∈ {a, b}.
For simplicity, the goods produced in the two sectors are assumed to be perfect substitutes, and

their prices are normalized to one. Each agent chooses which sector to work in, and the number of

hours (or effort) to supply in the chosen sector. The productivity of an agent in sector j ∈ {a, b}
is denoted by nj ∈ N ≡ (n, n), where n > 0, n ∈ R++ ∪ {+∞} and n > n. An agent’s type

is thus given by the vector n ≡ (na, nb) describing the agent’s productivity in each of the two

sectors. Each agent’s type is an independent draw from a distribution F with support N ≡ N2.

We assume that F is absolutely continuous with respect to the Lebesgue measure and denote by

Fj its marginal distribution with respect to the j-dimension (with bounded densities fj). The

conditional distributions are denoted by Fj|k, for j, k ∈ {a, b}, j �= k (with bounded densities fj|k).

An agent with productivity nj supplying hj ∈ R+ hours in sector j ∈ {a, b} produces njhj

units of effective labor. The income generated by this agent is then yj = wjnjhj , where wj ∈ R+ is

the wage per unit of effective labor.

The government taxes labor income according to the (possibly) non-linear sector-specific tax

schedule Tj(yj). Each agent’s utility is quasilinear in consumption so that the utility of an agent

of type n supplying hj hours in sector j is:

wjhjnj − Tj(wjhjnj)− ψ (hj) , (1)

where ψ (h) is the disutility of labor, which is assumed to take the isoelastic form ψ (h) = h
1
ξ ,

with ξ ∈ (0, 1). The elasticity of labor supply with respect to wages is then equal to ξ
1−ξ , which is

increasing in ξ.

The production side in each sector is described by a representative neoclassical firm with linear

technology:

Xj = Fj(Lj) = Lj

where Xj is the amount of good-j produced and where Lj is the amount of effective labor hired by

the firm. Firm j’s profits are then equal to

πj = (1− wj − τj)Lj , (2)

where τj is the sales tax rate on good j. The wage rates w ≡ (wa, wb), the agents’ labor supply

in the two sectors, and the labor demand from the two representative firms are all simultaneously

determined in equilibrium, as explained below.

2.2 Taxation equilibrium

The occupational choice of each agent is described by the occupational choice rule C : N → {a, b}.
This rule specifies for each type n = (na, nb) ∈ N the sector in which the agent works. In turn, the
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labor supply schedules hj : Nj → R+ determine the amount of labor supplied as a function of the

agent’s productivity, with the domain Nj of the function hj denoting the set of productivity levels

of those agents working in sector j.

Hereafter we will refer to an allocation as a triple (C, ha, hb). Implicit in the above definition is

the assumption that the amount of labor supplied by each agent working in each of the two sectors

is independent of the agent’s productivity in the other sector. This assumption is without loss of

generality, as it will become clear from the analysis below.

Next, we define a tax system T ≡ {Ta, Tb, τa, τb} as a collection of sector-specific income tax

schedules Tj : R+ → R along with sector-specific sales taxes (or, alternatively, subsidies) τj ∈ R.

An allocation (C, ha, hb) is said to be implementable at the wage rates w if there exists a tax system

T such that the following conditions jointly hold.

The first condition is a consistency property requiring that the domain Nj of each labor supply

function hj coincides with the set of productivity levels of those agents working in sector j, as

determined by the occupational choice rule C. That is,

Na = {na ∈ N : ∃nb ∈ N such that C(na, nb) = a}

and symmetrically for sector b.

The second condition is the usual incentive compatibility condition on the intensive margin of

labor supply. To describe this condition, let

ũj(nj) ≡ max
h

{wjhnj − Tj(wjhnj)− ψ(h)} for all nj ∈ N. (3)

and

uj(nj) ≡ wjhj(nj)nj − Tj(wjhj(nj)nj)− ψ(hj(nj)) for all nj ∈ Nj . (4)

This condition then requires that ũj(nj) = uj(nj) for all nj ∈ Nj .

In order to relate labor supply schedules and marginal taxes, it is convenient to consider the

first-order condition associated with (3), which has to be satisfied at any interior point where the

schedule Tj is differentiable:

wjnj − ψ′ (hj(nj)) = wjnjT
′
j(wjhj(nj)nj). (5)

The third condition is an incentive compatibility condition on the extensive margin of occupa-

tional choice. It requires that each agent working in sector j would not be strictly better off by

working in sector k �= j:

C(n) = j ⇒ ũj(nj) ≥ ũk(nk) for all n ∈ N.

The forth and last condition requires that by employing the effective labor

Lj =

ˆ
{n:C(n)=j}

hj(nj)njdF (na, nb)

each firm j = a, b maximizes profits (2). We combine the above conditions into the definition of a

taxation equilibrium.
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Definition 1 (Taxation Equilibrium) A taxation equilibrium E ≡ (C, ha, hb, T ,w) consists of an

allocation (C, ha, hb), a tax system T , and a pair of wage rates w such that the following conditions

jointly hold:

1. The allocation (C, ha, hb) is implementable at the wage rates w by the tax system T ;

2. The tax system T satisfies the Government budget constraint, i.e.,

∑
j∈{a,b}

ˆ
{n:C(n)=j}

(Tj(wjhj(nj)nj) + τjhj(nj)nj) dF (na, nb) ≥ G, (6)

where G is the exogenous government budget requirement.

It is convenient to define the indirect utility of an agent with type n under the taxation

equilibrium E ≡ (C, ha, hb, T ,w) as

U(n; E) ≡ max
j∈{a,b}

{uj(nj)} ,

where the schedules uj are given by (4).

The government chooses a taxation equilibrium E ≡ (C, ha, hb, T ,w) to maximize some welfare

function. We focus on two common specifications. The first is a Rawlsian objective, which consists

in the utility of the worst-off individual:

ΦR [U(·; E)] ≡ min
n∈N

{U(n; E)} .

The second welfare function is a generalized Utilitarian one, which consists in a concave transfor-

mation of the agents’ utilities:

ΦCU [U(·; E)] ≡
ˆ
n∈N

φ (U(n; E)) dF (n),

where φ is a strictly increasing and weakly concave function.

We will use the index x = R (alternatively, x = CU) to refer to the Rawlsian (alternatively,

Concave Utilitarian) welfare objective. We will say that a taxation equilibrium is x-optimal if it

solves the respective x-problem and refer to the tax system associated with an x-optimal taxation

equilibrium as an x-optimal tax system. For future reference, we define the indicator function 1CU
x ,

which equals zero if x = R and one if x = CU .

2.3 Implementability

The next lemma characterizes the set of implementable allocations for given wage rates.

Lemma 1 (Implementability) The allocation (C, ha, hb) is implemented at the wage rates w by

the tax system T if and only if the following conditions jointly hold.
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1. For every j ∈ {a, b}, the income schedule yj(nj) ≡ wjhj(nj)nj is weakly increasing over Nj.

Moreover, the indirect utility schedule uj(nj) is Lipschitz continuous over Nj with derivative

equal to

u′j(nj) = ψ′ (hj(nj))
hj(nj)

nj
for almost every nj ∈ Nj . (7)

2. The occupational choice rule C can be described by an absolutely continuous and weakly in-

creasing threshold function c : N → N̄ such that C(na, nb) = a if nb < c(na) and C(na, nb) = b

if nb > c(na).
4 Furthermore, the threshold function c is such that c(na) = n if C(na, nb) = b for

all nb ∈ N , c(na) = n if C(na, nb) = a for all nb ∈ N , and otherwise solves ua(na) = ub(c(na)).

3. For every j ∈ {a, b}, wages are given by

wj = 1− τj . (8)

Condition (7) is the standard envelope formula that relates the agents’ indirect utilities to their

payoff-maximizing labor supply in each sector. Part 2 establishes that any occupational choice

rule can be described by a weakly increasing threshold function c that maps na into the sector-

b productivity threshold c(na) such that an agent with type n = (na, c(na)) ∈ N is indifferent

between working in one sector or the other. Finally, Condition (8) is the standard labor market

clearing condition: because the technology is linear, labor markets clear if and only if the marginal

product of labor in each sector, net of sales taxes, equals its marginal cost. Accordingly, sales taxes

affect equilibrium wages in a one-to-one fashion.

Because the payoff from working in a given sector strictly increases with the agent’s productivity

in that sector, the threshold c(na) strictly increases in na at any interior point (i.e., at any point

where c(na) ∈ N). We refer to the graph of c as the locus of indifferent types. The next remark

shows how the envelope condition (7) can be used to relate the occupational choice rule to the labor

supply schedules in the two sectors.

Remark 1 Let E = (C, ha, hb, T ,w) be a taxation equilibrium in which the occupational choice rule

C is described by the threshold function c. For almost every point na ∈ N such that c(na) ∈ N , the

function c is strictly increasing and satisfies the following differential equation:

ψ′ (ha(na))
ha(na)

na
= c′(na)ψ

′ (hb(c(na)))
hb(c(na))

c(na)
. (9)

Equivalently, using the isoelastic specification of the disutility of labor, the labor supply schedules

are such that, for almost every na ∈ N such that c(na) ∈ N ,

hb(c(na)) = Jc[na]ha(na), (10)

4The notation N̄ denotes the closure of the set N , i.e., N̄ = [n, n̄].
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where the operator Jc is defined by

Jc[n] ≡
(

c(n)

nc′(n)

)ξ

. (11)

To get more intuition, it is worth rewriting the differential equation (9) in terms of marginal tax

schedules. Assuming that income tax schedules are differentiable, we can combine the first-order

condition of problem (3) with condition (9) to obtain that

c′ (na) =
u′a(na)

u′b (c (na))
=

waha (na) [1− T ′
a (ya (na))]

wbhb (c (na))
[
1− T ′

b (yb (c (na)))
] . (12)

Accordingly, the slope of the threshold function c describes by how much the productivity in sector b

must increase following an increase in the productivity in sector a for an agent to remain indifferent

as to which sector to work in. This slope is related to the ratio of the marginal net incomes in the

two sectors evaluated along the locus of indifferent types.

2.4 Distribution of Productivities

A key feature of the model is that the distribution of productivities within each sector is endogenous

(as agents choose in which sector to work in response to the tax system). It is convenient to describe

these distributions in terms of the threshold function c associated with the occupational choice rule

C. In order to do so, we choose sector labels in the following way. We call sector a the sector (if

one exists) for which there is a productivity threshold n′′
a ∈ N such c(na) = n̄ for all na ≥ n′′

a.

In words, all agents whose sector-a productivity is above n′′
a work in sector a, irrespective of their

sector-b productivity. If no sector satisfies this property, the choice of labels is arbitrary.5

It is also convenient to define the threshold n′
a ∈ N̄ such that c(na) > n if and only if na > n′

a.
6

We will then say that the occupational choice rule C is admissible if its associated threshold function

c is absolutely continuous and strictly increasing over a set (n′
a, n

′′
a), equal to n for all na < n′

a and

equal to n̄ for all na > n′′
a.

Next, let Ga(na|c) denote the mass of agents working in sector a whose productivity does not

exceed na, as determined by the occupational choice rule corresponding to the threshold function

c. This is given by

Ga(na|c) ≡
ˆ na

n

ˆ c(na)

n
f(ña, ñb)dñbdña =

ˆ na

n
fa(ña)Fb|a(c(ña)|ña)dña

with density ga(na|c) ≡ fa(na)Fb|a(c(na)|na).

Denoting by

c−1(nb) ≡ inf{na ∈ N : c(na) ≥ nb}
5For example, consider the threshold function c(n) = n. In this case, no sector satisfies the property described

above, and the choice of labels is arbitrary.
6We let n′

a = n if {na ∈ N : c(na) = n} = ∅.
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Figure 1: The threshold function and its induced distributions of productivities. The shaded area

corresponds to the set of types whose mass is G(na|c), while the dotted lines illustrate the sets of

types associated with the densities ga(na|c) and gb(c (na) |c), respectively.

the generalized inverse of the threshold function c, we then have that the mass of agents working

in sector b whose productivity does not exceed nb is given by

Gb(nb|c) ≡
ˆ nb

n

ˆ c−1(nb)

n
f(ña, ñb)dñadñb =

ˆ nb

n
fb(ñb)Fa|b(c

−1(ñb)|ñb)dñb.

with density gb(nb|c) = fb(nb)Fa|b(c
−1(nb)|nb).

For future reference, it is also useful to define the distribution

G(na|c) ≡ F (na, c (na)) = Ga(na|c) +Gb(c (na) |c)

In words, G(na|c) is the measure of types with side-a productivity less than na and side-b produc-

tivity less than c (na). We can then write the density of G(na|c) as

g(na|c) = ga(na|c) + c′ (na) gb(c (na) |c).

Figure 1 illustrates the concepts presented above.

2.5 Characterization Procedure

We now describe how to find the x-optimal taxation equilibria, both for x = R and x = CU .

The characterization below proceeds in two steps. In the first step, we fix an arbitrary admissible

occupational choice rule C and find the taxation equilibrium that maximizes the government x-

objective among those that implement C. We refer to this problem as the primal problem:

Px
1 (C) : max

(ha,hb,T ,w)
Φx [U(·; (C, ha, hb, T ,w))] s.t. (C, ha, hb, T ,w) is a taxation equilibrium.

11



Clearly, the x-optimal taxation equilibrium Ex = (Cx, hxa, h
x
b , T x,wx) must be such that the quadru-

ple (hxa, h
x
b , T x,wx) solves Px

1 (Cx).

In the second step, we complete the characterization by considering a dual of problem to

Px
1 (C). In this dual problem, which we call Px

2 (ha), we fix some implementable sector-a labor

supply schedule ha and find the taxation equilibrium that maximizes the government’s x-objective

among those that implements ha:

Px
2 (ha) : max

(C,hb,T ,w)
Φx [U(·; (C, ha, hb, T ,w))] s.t. (C, ha, hb, T ,w) is a taxation equilibrium.

Clearly, the x-optimal taxation equilibrium Ex = (Cx, hxa, h
x
b , T x,wx) must be such that the

quadruple (Cx, hxb , T x,wx) solves Px
2 (h

x
a). As a consequence, the x-optimal taxation equilibrium

Ex must satisfy the necessary optimality conditions associated to both problems Px
1 and Px

2 .

2.6 Production Efficiency

We conclude this section by defining production efficiency. The definition below adapts the usual

definition to the environment studied in this paper.

Definition 2 (Production Efficiency) The equilibrium E = (C, ha, hb, T ,w) exhibits production

efficiency if and only if, holding fixed the labor supply of each worker (as specified by the equilibrium

E), there exists no reallocation of workers across sectors that yields a higher aggregate output. This

is the case if and only if the threshold function c associated with the equilibrium occupational choice

rule C is such that c(na) = na for all na ∈ N .

This definition is thus the standard one in public economics; simply notice that, in this economy,

fixing the supply of inputs and changing their usage across firms/sectors is equivalent to holding

fixed the labor supply (i.e., hours of work) of each individual and changing his occupation.

3 Sector-Specific Income Taxation

We now characterize properties of optimal tax systems when the Government is able to employ

sector-specific income tax schedules. It should come as no surprise that the ability to tailor income

taxes to occupational choice renders sales taxes redundant.

Remark 2 (Effective Tax Schedules) Let E = (C, ha, hb, T ,w) be a taxation equilibrium. There

exists another taxation equilibrium Ê = (C, ha, hb, T̂ , ŵ) implementing the same allocation (C, ha, hb)
as in E and such that

1. the tax system T̂ = (T̂a, T̂b, τ̂a, τ̂b) satisfies

T̂j (y) = τjy + Tj ((1− τj) y) , all y ∈ R+, (13)

12



and

τ̂j = 0, j = a, b,

2. wages are given by

ŵj = 1, j = a, b,

3. all agents’ payoffs under Ê are the same as under E.

Hereafter, we refer to (T̂a, T̂b) as the “effective tax schedule” of the tax system T .

Intuitively, if the government has enough flexibility to design sector-specific income tax sched-

ules, it can then always replicate the effects of sales taxes with appropriately chosen income taxes.

As a consequence, it is without loss of generality to consider taxation equilibria where τa = τb = 0.

To lighten notation, in the remainder of this section, we thus drop the wage pair w from the

description of taxation equilibria, and write the latter as E = (C, ha, hb, , T ), with the implicit

understanding that w = (1, 1).

Below, we will thus characterize x-optimal taxation equilibria in terms of their effective tax

schedules (and drop the qualification “effective” to lighten the exposition). For simplicity, and

following the literature, we will abstract from bunching and corner solutions; that is, we will

restrict attention to economies in which the optimality conditions described below identify income

schedules yj(nj) that are nondecreasing and such that yj(nj) > 0 for all nj ∈ Nj (equivalently,

hj(nj) > 0 for all nj ∈ Nj).

3.1 Optimal marginal tax rates

Denote by mj (nj) ≡ φ′ (uj(nj)) /λ the ratio of social marginal utility of all individuals with pro-

ductivity nj working in sector j to the marginal value of public funds for the government. The next

proposition derives a necessary condition for problem Px
1 (C), showing how to compute x-optimal

marginal tax rates implementing some admissible occupational choice rule C.

Proposition 1 (Generalized Mirrlees Formula) Let c be the threshold function corresponding

to the admissible occupational choice rule C. The x-optimal tax system implementing the choice

rule C satisfies the following generalized Mirrlees formula for almost any na ∈ (n′
a, n

′′
a):

ξ
T ′
a(ya(na))

1− T ′
a(ya(na))

naga(na|c)︸ ︷︷ ︸
Ea(na)

+ ξ
T ′
b(yb (c(na)))

1− T ′
b(yb(c(na)))

c(na)gb(c(na)|c)︸ ︷︷ ︸
Eb(c(na))

=

ˆ n

na

[
1− 1CU

x ma (ña)
]
g(ña|c)dña︸ ︷︷ ︸

D(na)

. (14)
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For na > n′′
a, marginal taxes satisfy the standard Mirrlees formula:

ξ
T ′
a(ya(na))

1− T ′
a(ya(na))

nafa(na) =

ˆ n

na

[
1− 1CU

x ma (ña)
]
fa(ña)dña (15)

Proposition 1 generalizes the Mirrlees formula to a multi-sector economy with endogenous

occupational choice and multi-dimensional types. To obtain some intuition, suppose the government

were to increase marginal taxes in sectors a and b by one dollar at income levels ya(na) and yb(c(na)).

This perturbation has two effects. The first one is the “direct effect”, D(na), represented by the

integral in the right-hand-side of (14). This effect captures the additional tax revenue collected

from all agents in sectors a and b whose incomes are above ya(na) and yb(c(na)), respectively. Note

that, for such agents, the change in tax schedules is equivalent to the introduction of a lump-sum

tax equal to one dollar, given that, for such agents, labor supply is unaffected by the local increase

in the marginal tax rates at the lower income levels. When the planner’s objective is Rawlsian, the

direct effect thus coincides with the total measure of those agents in sector a whose productivity

exceeds na and of those agents in sector b whose productivity exceeds c(na) (recall the definition

of the density function g(·|c) in Section 2.4). When, instead, the planner’s objective is Concave

Utilitarian, the gains of raising this extra money from such agents must be discounted by the

reduction in these agents’ utility, as captured by the terms mj (nj) = φ′ (uj(nj)) /λ.

The second effect is the “elasticity effect”, which accounts for the intensive-margin distortions

at the income levels ya(na) and yb(c(na)) that result from the higher marginal tax rates. This

effect corresponds to the sum of the terms Ea(na) and Eb(c(na)) in the left-hand-side of (14). To

understand these terms, note that the densities of those agents working in sector a with productivity

na and of those agents working in sector b with productivity c(na) are given by ga(na|c) and

gb(c(na)|c), respectively. Next note that the terms ξ T ′
1−T ′n in Ea(na) and Eb(c(na)) capture the loss

in tax revenues from those agents whose incomes are ya(na)) and yb(c(na)), due to the reduction in

these agents’ labor supply.7 Figure 2 illustrates the effects discussed above by indicating the sets

of agents affected by each of these effects.

Next, consider agents with productivity na ∈ (n′′
a, n̄) and recall that these agents are better off

working in sector a than in sector b, irrespective of their sector-b productivity. For these agents,

marginal taxes are given by the standard Mirrlees formula (15); this is because, for such agents,

the extensive-margin incentive constraint associated with occupational choice is non-binding.

Note that the generalized Mirrlees formula (14), when combined with the incentive-compatibility

constraint for occupational choice (12), pins down the marginal tax rates (and hence the labor sup-

ply) along the locus of indifferent types. Because the labor supply (and utility) of any agent whose

type does not belong to this locus coincides with that of some type belonging to this locus, Propo-

sition 1 delivers a complete characterization of the x-optimal taxation equilibrium implementing

the choice rule C.
7See Saez (2001) for an interpretation of the terms ξ T ′

1−T ′ n in terms of behavioral elasticities.
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Figure 2: The sets of types affected by the elasticity and direct effects from the generalized Mirrlees

formula (14).

More interestingly, Condition (12) determines the ratio of marginal taxes between sectors,

while the generalized Mirrlees formula (14) determines their total magnitudes (as implied by the

direct effect D(na)). Accordingly, the solution to the primal problem shows how the government

optimally balances intensive-margin distortions in labor supply across sectors, as a function of the

occupational choice rule to be implemented.

The next corollary shows how the marginal taxes in turn depend on the distribution of pro-

ductivities and on the shape of the occupational choice rule.

Corollary 1 (Sign of Marginal Taxes) Let c be the threshold function corresponding to the

admissible occupational choice rule C. Under the x-optimal taxation equilibrium implementing C,
the marginal income tax rates are such that, for any na < n′′

a,

sign
{
T ′
a(ya(na))

}
= sign

{
ξ−1

´ n
na

[
1− 1CU

x ma (ña) g(ña|c)
]
dña

c(na)gb(c(na)|c)
+ 1− c′(na)Jc[na]

}
. (16)

In the standard Mirrlees model, marginal taxes are everywhere positive. This is true in our

model if the choice rule C induces production efficiency, in which case 1 − c′(na)Jc[na] = 0. This

conclusion, however, is not necessarily true when production efficiency does not hold.

To get some intuition, consider a planner with a Rawlsian objective who wants to implement

the linear occupational choice rule c(na) = ρna, with ρ > 1.8 This rule reflects the desire to induce

certain individuals to work in sector a, despite being more productive in sector b. According to

Corollary 1, the marginal tax rate for those agents in sector a with income ya(na) is negative if and

8As will be clear in the next section, linear occupational choice rules play an important role when the government

does not have the flexibility to employ sector-specific income tax schedules.
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only if

ξ−1 1−G(na|c)
ρnagb(ρna|c)

+ 1 < ρ.

The above inequality holds when ξ is high, in which case the elasticity of labor supply is high.

Intuitively, as one can see from Condition (12), to induce an agent whose productivities are (na, ρna)

to favor sector a over sector b, despite being more productive in sector b, the government must either

subsidize sector a by setting T ′
a(ya(na)) negative, or penalize sector b by setting T ′

b(yb(c(na)))

sufficiently high. When the elasticity of labor supply is high, setting a high marginal tax rate

T ′
b(yb(c(na))) in sector b has a large negative impact on production due to its distortions on labor

supply. At the optimum, the government then prefers to subsidize sector a by setting a negative

marginal tax rate at income level ya(na).

3.2 Optimal occupational choice rule

We now turn to the dual problem Px
2 (ha), where the side-a labor supply schedule ha is held fixed,

and the side-b labor supply hb (or equivalently, the occupational choice rule C) is chosen to maximize

the planner’s x-objective. This is the subject of the next proposition. Let

εyb(nb) ≡
dyb(nb)

dnb

nb

yb(nb)

denote the elasticity of income with respect to productivity, in sector b.

Proposition 2 (Occupational Choice) The x-optimal tax system implementing the side-a labor

supply schedule ha satisfies the following integral-form Euler equation at every point na ∈ (n′
a, n

′′
a):

1CU
x Wb(c(na)) = Rb(c(na)) +Ma(na) + Eb(c(na))(1− T ′

b(yb(c(na)))yb(c(na))︸ ︷︷ ︸
continuity correction: Δb (c(na))

(17)

where

Wb(c(na)) ≡
ˆ c(na)

n
mb (nb)

[
1− T ′

b(yb(nb))
]
yb(nb)dGb(nb|c) (18)

is the “welfare effect,”

Rb(c(na)) ≡
c(na)ˆ

n

[
1− T ′

b(yb(nb))εyb(nb)
]
yb(nb)dGb(nb|c) (19)

is the “revenue collection effect,”

Ma(na) ≡
naˆ

n′
a

[Ta(ya(ña))− Tb(yb(c(ña)))] c(ña)f(ña, c(ña))dña (20)

is the “migration effect,” and Eb(c(na)) is the elasticity effect described in (14).
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The proof in the appendix provides a formal analysis of the dual problem Px
2 (ha), and employs

variational techniques to establish the necessity of the Euler equation. To help intuition, we present

below an heuristic derivation for Condition (17).

Heuristic Derivation of the Euler Equation. To understand the Euler equation (17),

consider a particular class of incremental tax reforms, which we call payroll tax reforms. Such

reforms consist in introducing a new payroll tax that withholds a fraction α > 0 of the sector-

b workers’ income and taxes the residual income (1 − α)yb according to the original income tax

schedule Tb. Formally, an α-payroll-tax reform applied to all income levels up to yb(c(na)) implies

the following effective tax schedule in sector b:

Tα
b (y) ≡

{
αy + Tb ((1− α)y) if y < yb(c(na))

Tb (y) if y ≥ yb(c(na)).
(21)

Now, let (C, hb, T ) be a solution to problem Px
2 (ha), where ha is an implementable labor supply

schedule. To simplify the exposition, let us consider the case where C(n, n) = a.9 Optimality implies

that no incremental payroll tax reform increases the government’s x-objective. Accordingly, let Tb

be the sector-b tax schedule under the tax system T and consider “perturbing” Tb by means of an

α-payroll-tax reform up to income level yb(c(na)). Under the effective tax schedule Tα
b , any worker

in sector b with productivity nb < c(na) obtains a payoff

hbnb − ψ(hb)− Tα
b (hbnb) = (1− α)hbnb − ψ(hb)− Tb ((1− α)hbnb) . (22)

As one can see from (22), the problem faced by an agent with productivity nb < c(na) under

the α-payroll-tax reform Tα
b is the same as the problem that an agent with sector-b productivity

(1 − α)nb would have faced under the original tax schedule Tb. This implies that, under Tα
b , the

indirect utility uαb of each agent with sector-b productivity nb is given by

uαb (nb) ≡
{

ub ((1− α)nb) if nb < c(na)

ub (nb) if nb ≥ c(na).
(23)

where ub is the indirect utility function under the original tax schedule Tb. As a consequence, the

occupational choice rule under the perturbed schedule Tα
b , which we denote by Cα can be described

by a threshold function cα that is a linear transformation

cα(ña) =
1

1− α
c(ña) (24)

of the threshold rule c under the original schedule Tb, for any ña < na.

Remarkably, as we show below, the Euler equation (17) accounts for the gains and losses of

α-payroll-tax reforms up to each income level yb(c(na)) (for short, α-reforms). Hereafter, we discuss

each of these effects.

9The heuristic derivation can be easily adapted for the case where C(n, n) = b.
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• Welfare effect. The first effect is the impact of the reform on the agents’ utility. From

(23), it is easy to see that, at α = 0, the marginal effect of an α-reform up to income level

yb(c(na)) on the indirect utility of any worker whose sector-b productivity is nb < c(na) is

equal to −nbu
′
b (nb). When the government’s objective is concave-utilitarian, the importance

assigned to this effect, adjusted for the opportunity cost of raising money, is given by

−m (nb)u
′
b (nb)nb = −m (nb)

[
1− T ′

b(yb(nb))
]
yb(nb),

where the equality follows from the incentive-compatibility constraint (7) along with the

first-order condition (5). Integrating the expression above for all nb < c(na) leads to the

welfare effect Wb(c(na)) in the Euler equation, as defined in (18). In the case of a Rawlsian

government, this effect is zero, given that the effect of tax reforms on the indirect utility of

all agents but the worst-off individuals are disregarded by the planner.

• Revenue collection effect. The second effect is the impact of the reform on the tax revenues

collected by the government. From the definition of the perturbed tax system in (21), it is

easy to see that, under the α-payroll-tax reform, the tax revenue collected from each agent

working in sector b with productivity nb < c(na) is given by

αnbh
α
b (nb) + Tb ((1− α)nbh

α
b (nb)) (25)

= αnbhb((1− α)nb) + Tb ((1− α)nbhb((1− α)nb)) ,

where hαb is the sector-b labor supply schedule under Tα
b , and where the equality in (25)

follows from the fact the labor supply of each agent with productivity nb < c(na) under the

schedule Tα
b coincides with the labor supply of an agent with productivity (1 − α)nb under

the original schedule Tb. Differentiating the right-hand-side in (25) with respect to α and

evaluating the expression at α = 0, we obtain that the marginal effect of the reform on the

revenues collected from each agent whose sector-b productivity is nb < c(na) is equal to[
1− T ′

b(yb(nb)εyb(nb)
]
yb(nb).

Integrating the expression above for all nb < c(na) leads to the revenue collection effect R(na)

in the Euler equation, as defined in (19).

• Migration effect. The third effect accounts for the fact that agents change occupation in

response to the tax reform. Differentiating equation (24) with respect to α and evaluating

the derivative at α = 0, we have that the occupational choice rule shifts at a rate c (ña), at

each productivity level ña < na in response to an incremental α-reform. Accordingly, for any

ña < na, the mass of agents whose sector-a productivity is ña and who change occupations is

given by c(ña)f(ña, c(ña)). As a consequence, the impact on tax revenues from the migration

of these agents is equal to

[Ta(ya(ña))− Tb(yb(c(ña)))] c(ña)f(ña, c(ña)).
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Figure 3: The figure illustrates the types affected by the welfare, revenue collection, migration,

and continuity correction effects discussed in the main text. The dotted curve corresponds the

occupational choice rule under the α-payroll tax reform.

Integrating the above expression for all ña < na leads to the migration effect in the Euler

equation, as defined in (20).

• Continuity correction. Finally, consider the last term in the right-hand side of the Euler

equation (17), Δb (c(na)). As can be seen from equation (23), an α-reform leads to a sector-

b indirect utility schedule that has a (single) discontinuity point at c(na). Indeed, uαb (·) is

continuous at any nb < c(na) and at any nb > c(na), but

lim
nb→c(na)−

uαb (nb) = ub((1− α)c(na)) < ub(c(na)) = lim
nb→c(na)+

uαb (nb),

for any α > 0. Accordingly, for an α-reform to lead to an implementable allocation, it has to

be coupled with transfers to sector-b agents with productivities in a neighborhood of c(na),

so as to restore the continuity of the indirect utility schedule. For incremental α-reforms (i.e.,

α ≈ 0) only sector-b agents with productivity c(na) need receive such transfers. In order to

reduce the indirect utility of those agents whose sector-b productivity is equal to c(na) to its

“continuity level” limnb→c(na)− uαb (nb), the planner charges a lump-sum tax to such agents

equal to the extra taxes that these agents would pay were they subject to the reform. This

lump-sum charge is the term Δb (c(na)) in the right-hand side of the Euler equation (17).

It is equal to the product of (a) the elasticity effect Eb(c(na)) (capturing the foregone tax

revenues per unit of marginal-tax increase) and (b) the change in marginal taxes that such

agents would face were they also subject to the reform. At α ≈ 0, the change in marginal

taxes faced by such agents is approximated (up to second-order effects) by their variation in
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indirect utility, which is equal to [1− T ′
b(yb(c(na)))] yb(c(na)), as shown in the derivation of

the Welfare effect.

Figure 3 illustrates the sets of types affected by each of the effects discussed above.

Note that the welfare, revenue collection, and continuity correction effects account for net

impact of perturbing the sector-b tax schedule on the utilities and tax revenues from sector-b

workers. As such, taken together, these effects measure the marginal gain of better tailoring the

taxation of sector-b workers to the distribution of productivities on that sector (tagging). The

marginal gains from tagging, at the optimum, equalize the marginal losses due to the migration of

workers across sectors (as captured by the migration effect).

3.3 On the optimality of production inefficiency

Using the characterization in the previous two propositions, we can now establish two key properties

of optimal taxation equilibria. To this end, the following definition is instrumental.

Definition 3 (Non-generic Distributions) The distribution of productivities F is non-generic

if there exists δ > 0 such that

fa(n)Fb|a(n|n) = δfb(n)Fa|b(n|n) for almost every n ∈ N. (26)

The distribution F is generic if the above property does not hold.

Note that symmetric distributions, i.e., those for which F (na, nb) = F (nb, na), are non-generic

(as they satisfy the Condition in (26) with δ = 1). The next proposition shows that production

inefficiencies are a robust feature of optimal taxation equilibria.

Proposition 3 (Equilibrium Properties) Let E = (C, ha, hb, T ) be any x-optimal taxation equi-

librium. The following properties hold under E.

1. If the distribution of productivities F is generic, then production efficiency fails: there exists

a subset of N (of positive Lebesgue measure) such that

c(na) �= na.

2. The marginal tax collection vanishes at the top of the distribution, in each sector:

lim
nj→n

T ′
j(yj(nj))gj(nj |c) = 0 (27)

for j = a, b.
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Part 1 of the proposition shows that, whenever the distribution of productivities is generic

in the sense of Definition 3, then any x-optimal taxation equilibrium fails to satisfy production

efficiency. Below we sketch the main idea — the details are in formal proof in the Appendix.

Sketch of the Proof of Proposition 3 - Part 1. Let E be an x-optimal taxation equilibrium and

suppose that it satisfies production efficiency. Then let c denote the threshold function associated

with the efficient occupational choice rule C and recall that the latter coincides with the identity

function, that is, c(n) = n for all n ∈ N (in which case the choice of sector labels is arbitrary).

Conditions (5) and (9) then imply that the income and tax schedules must coincide in the two

sectors. Let these schedules be y(·) and T ′(·), respectively. Proposition 2 then implies that, for

every n ∈ N and any j ∈ {a, b}, the following condition must hold:

1CU
x Wj(n) = Rj(n) + Ej(n)(1− T ′(y(n))y(n),

where the welfare, revenue, and elasticity effects are evaluated at the equilibrium schedules y(·),
T ′(·), and c(·).

Differentiating the equation above with respect to n for j = a, b leads to two linear ho-

mogenous differential equations in gb(n|c) and ga(n|c), respectively, with boundary conditions

ga(n|c) = gb(n|c) = 0. Because these homogenous differential equations are identical, the Picard-

Lindelof theorem implies that their solutions must satisfy

ga(n|c) = δgb(n|c) for all n ∈ N. (28)

Under production efficiency, ga(n|c) = fa(n)Fb|a(n|n) and gb(n|c) = fb(n)Fa|b(n|n). For (28) to

hold, it must then be the case that the distribution of productivities is non-generic. Q.E.D.

Intuitively, the densities fj(n)Fj|k(n|n), for j, k ∈ {a, b} k �= j, capture the informational costs

of redistribution in the two sectors. Whenever such costs differ across the two sectors, the plan-

ner can improve upon any equilibrium satisfying production efficiency by distorting occupational

choice away from c(n) = n. Doing so yields a first-order reduction in the informational costs of

redistribution and only a second-order efficiency loss from the misallocation of talent across the

two sectors (as the migration effect is zero under the efficient occupational choice rule). At the

optimum, the planner then distorts occupational choice up to the point where the marginal losses

in tax revenue due to the migration effect are equalized to the marginal gains from tailoring the

tax schedule in each sector to the endogenous distribution of talent (tagging), as required by the

Euler equation (17).

Turning to Part 2, the result in the proposition says that, under any x-optimal taxation equilib-

rium, marginal tax collection vanishes at the top. This is either because top earners face vanishing

marginal tax rates (which happens when the support of the productivity distribution is bounded,

i.e. n̄ < ∞, and the density is bounded away from zero in a neighborhood of (n̄, n̄)), or because the
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density of top earners vanishes (when n̄ = ∞, marginal taxes do not necessarily vanish at the “top”,

but (27) necessarily holds). The result thus extends familiar findings on the taxation of top earners

(e.g., Mirrlees (1971), Diamond and Mirrlees (1971), Saez (2002), among others) to the economy

with multi-dimensional productivity and endogenous occupational choice under examination here.

In particular, when n̄ < ∞, Proposition 3 reveals that distortions in occupational choice do not

translate into distortions in labor supply for those agents at the top of the income distribution in

each of the two sectors.

4 Sales Taxes under Uniform Income Taxation

The results above are developed under the assumption that the government can employ sector-

specific income tax schedules. While this possibility appears plausible (e.g., business owners face a

different tax schedule than earners whose income comes through wages), it is worth investigating

the validity of the above results in settings in which the government is unable to use sector-specific

income tax schedules, so that Ta = Tb. In this case, the tax treatment of the two sectors can differ

only through the sales taxes τa and τb, which we now reintroduce (recall that these taxes play no

role when income taxation is allowed to be sector-specific).

The next lemma shows how the restriction to uniform income taxation translates into a restric-

tion over the effective tax schedules. This lemma will allow us to employ the general methodology

developed in the previous section to the case of uniform income taxation.

Lemma 2 (Effective Tax Schedules) Let E = (C, ha, hb, T ,w) be a taxation equilibrium with

tax system T = {T, T, τa, τb} featuring uniform income taxation.

1. There exists another taxation equilibrium Ê = (C, ha, hb, T̂ , ŵ), implementing the same allo-

cation (C, ha, hb) as E, such that the tax system T̂ employs no sales taxes in either sector (i.e.,

τ̂a = τ̂b = 0 and ŵ = (1, 1)) and its effective tax schedules satisfy the following constraint:

T̂a(y) = α(τa, τb) · y + T̂b ((1− α(τa, τb)) · y) for all y ∈ R+, (29)

where

α(τa, τb) ≡
τa − τb
1− τb

.

2. For any taxation equilibrium Ê = (C, ha, hb, T̂ , ŵ) where τ̂a = τ̂b = 0, ŵ = (1, 1) and the tax

schedules (T̂a, T̂b) satisfy (29), there exists another taxation equilibrium E = (C, ha, hb, T ,w)

featuring uniform income taxation and sales taxes (τa, τb) that implements the same allocation

(C, ha, hb) as in Ê.

The result in the lemma says that equilibrium outcomes sustained with uniform income taxation

but sector-specific sales taxes can always be sustained as equilibrium outcomes with no sales taxes
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and sector-specific income taxation. The opposite is not generally true. Because sales taxes are

linear in output, the planner’s problem when only sales taxes can be made sector-specific is more

constrained than when income taxes can be sector-specific. In particular, when only sales taxes

can be made sector specific, the effective tax schedules must satisfy the additional constraint (29).

Interestingly, this constraint reveals that the effective tax schedule in sector a is an α(τa, τb)-payroll

tax reform of the sector-b tax schedule up to the highest income level.

To characterize the x-optimal taxation equilibria under uniform income taxation, we then

proceed as in the previous section, but now impose that the effective tax schedules satisfy the

constraint in (29). In particular, we start by identifying necessary and sufficient conditions for the

implementability of a given occupational choice rule C under uniform income taxation. We then

proceed by solving problem Px
1 (C), which delivers the x-optimal (effective) income tax schedules

among those implementing the desired occupational choice rule C. We then translate the optimal

effective tax schedules into their corresponding sales and income tax schedules. Finally, we look

at the dual problem Px
2 (ha) where we derive the x-optimal taxation equilibrium implementing the

sector-a labor supply schedule ha. To this end, the following lemma is instrumental.

Lemma 3 (Sales Taxes and Occupational Choice) Consider a taxation equilibrium Ê =

(C, ha, hb, T̂ , ŵ) in which the tax system T̂ employs no sales taxes in either sector (i.e., τa = τb = 0

and ŵ = (1, 1)). The income tax schedules (T̂a, T̂b) satisfy Condition (29) if and only if the occu-

pational choice rule C can be described by a threshold function of the form

c(na) = (1− α(τa, τb))na (30)

at every point where c(na) ∈ N .

Together, Lemmas 2 and 3 imply that any occupational choice rule sustained with uniform

income taxation must be described by a linear threshold function. The linearity of threshold

functions follows from the fact that, when income is taxed uniformly across sectors, the only

instruments that can possibly create heterogeneity in the effective tax schedules are the sales taxes.

Because the latter are linear in output (and hence in income), so are the corresponding occupational

choice rule sustained in equilibrium, irrespective of the shape of the common income tax schedule

T .

For convenience, we will choose sector labels such that τa ≤ τb. This is the same labeling

convention of subsection 2.4, where sector a was chosen to be the sector for which there is a

productivity threshold n′′
a ∈ N such that c(na) = n̄ for all na ≥ n′′

a; that is, all agents whose

sector-a productivity exceeds n′′
a work in sector a, irrespective of their sector-b productivity.

The next proposition provides a partial characterization of the properties of optimal taxation

equilibria by fixing the occupational choice rule and then deriving the tax system that maximizes

the government’s objective subject to implementing the desired occupational rule.
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Proposition 4 (Generalized Mirrlees Formula: Sales Taxes) Let c be the linear threshold

function associated with the occupational choice rule C. The x-optimal tax system implementing

the choice rule C satisfies the following generalized Mirrlees formula for almost any na ∈ (n′
a, n

′′
a)

ξ
T ′(ya(na)) +

τa
1−τa

1− T ′(ya(na))
naga(na|c) + ξ

T ′(yb(c(na))) +
τb

1−τb

1− T ′(yb(c(na))
c(na)gb(c(na)|c)

=

ˆ n

na

[
1− 1CU

x ma (ña)
]
g(ña|c)dña. (31)

and the following Mirrlees formula

ξ
T ′
a(ya(na)) +

τa
1−τa

1− T ′
a(ya(na))

nafa(na) =

ˆ n

na

[
1− 1CU

x ma (ña)
]
fa(ña)dña

for any na ≥ n′′
a.

Proof of Proposition 4. The generalized Mirrlees formula (31) follows from Proposition 1

by observing that, under uniform labor income taxation, the effective marginal tax rates in sectors

a and b are equal to τa + T ′(y)(1− τa) and τb + T ′(y)(1− τb), respectively. Q.E.D.

The idea behind the formula in (31) parallels the one behind the generalized Mirrlees formula

in (14): at the optimum, marginal taxes balance redistributive and efficiency considerations, as

captured by the elasticity and direct effects identified in Proposition 1.

Notice that the formula in (31) does not pin down a unique tax system. As discussed in

Remark 2, the government can change sale taxes across sectors and adjust the common income tax

schedule in a way that leaves the effective tax schedules unchanged. Yet, the equilibrium allocation

is unique. Accordingly, and similarly to the previous section, the generalized Mirrlees formula

(31), together with Condition (12), determines how the government optimally balances intensive-

margin distortions in labor supply across sectors, as a function of the occupational choice rule to

be implemented.

We now turn to the dual problem Px
2 (ha), which consists in finding the taxation equilibrium that

maximizes the government’s objective, among those that implement a given sector-a labor supply

schedule ha, but now imposing that the tax system satisfy uniform income taxation (equivalently,

restricting the effective tax schedules to satisfy constraint (29)).

Proposition 5 (Occupational Choice: Sales Taxes) Suppose the government is constrained

to tax labor income homogeneously across sectors. The x-optimal tax system implementing the labor

supply schedule ha satisfies the following condition

lim
nb→n̄

{
1CU
x ·Wb (nb)−Rb (nb)

}
= lim

na→n̄
1−τb
1−τa

Ma (na) (32)

where Wb, Rb, and Mb are, respectively, the welfare, the revenue collection, and the migration effects

defined in Proposition 2, evaluated at the occupational choice rule (30).
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Figure 4: The dotted line corresponds the occupational choice rule after the α-payroll tax reform.

The set of types affected by each of the welfare, revenue collection and migration effects are indicated

above.

The formula in (32) is closely related to the general Euler condition (17) of Proposition 2.

The intuition for this formula can thus be obtained by considering α-payroll tax reforms similar to

those considered in the previous section, but now applied to all individuals in sector b. The reason

why the welfare, revenue collection, and migration effects must now be evaluated over all sector-

b productivity levels is the limited flexibility of the government’s tax instruments under uniform

income taxation. In particular, the fact that sales taxes impact uniformly all income levels precludes

the possibility of restricting the α-payroll reform to a subset of the income levels in sector b. As

one should expect, this implies that the x-optimal tax system under uniform income taxation is in

general welfare-inferior to the x-optimal tax system with sector-specific income taxation. Moreover,

(32) displays no continuity correction, given that any α-payroll-tax reform up to the highest income

level generates no discontinuities in the schedule of indirect utilities. Figure 4 illustrates the sets

of types affected by each of the effects discussed above.

Under uniform income taxation, the migration effect in condition (32) can be expressed in

familiar terms. Using Lemma 2, this effect equals

lim
na→n̄

1−τb
1−τa

M (na) = (τa − τb) · lim
na→n̄

1−τb
1−τa

ˆ na

n
ya(ña)c(ña)f(ña, c(ña))dña,

which is simply the loss in the collection of sales taxes among all individuals that migrate from

sector b to sector a as the wedge τa − τb decreases.

Finally, as in the case of differential taxation, production efficiency generically fails under x-

optimal taxation equilibria. To see why, consider a planner whose objective is Rawlsian. Suppose

there exists an x-optimal taxation equilibrium featuring production efficiency. It then follows from
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the Mirrlees formula (31) that10

ξ
T ′(y(n))

1− T ′(y(n))
n =

1− F (n, n)

fa(n)Fb|a(n|n) + fb(n)Fa|b(n|n)
, (33)

where y(n) is the income schedule, which is common to the two sectors. Importantly, the marginal

tax schedule T ′(·) only depends on the “diagonal” distribution F̂ (n) ≡ F (n, n) (whose density is

the denominator in the right-hand side of the equality above). By contrast, the characterization of

Proposition 5 implies that the “off-diagonal” densities fi(n)Fi|j(n|n) satisfy
ˆ n̄

n

[
1− T ′(y(n))εy(n)

]
y(n)fj(n)Fk|j(n|n)dn = 0

for all j, k ∈ {a, b} with k �= j. The equality above can be satisfied by both fa(n)Fb|a(n|n) and

fb(n)Fa|b(n|n) only in knife-edge cases, such as when the distribution F is non-generic (in the sense

of Definition 3).

The above result thus contrasts with the Atkinson-Stiglitz theorem, according to which, when

preferences over consumption and leisure are separable, as they are in our economy, the second-

best can be implemented with zero sales taxes. The reason why this theorem does not hold in the

economy under examination here is that, when occupational choice is endogenous, the informa-

tional costs of redistribution are also endogenous and can be effectively manipulated by differential

taxation. When the government is unable to levy sector-specific income taxes, sector-specific sales

taxes then become strictly optimal.

5 Discussion and Conclusions

This paper studies optimal differential taxation in a setting in which agents’ productivity is sector-

specific and in which agents choose which sector to work in. We show how properties of optimal

taxation equilibria can be identified by first considering a primal problem, where the occupational

choice rule (describing the allocation of workers across sectors) is held fixed, and where the govern-

ment chooses a tax system to maximize welfare subject to implementing that occupational choice

rule. Next, one considers a dual problem, where the labor supply of a given sector is held fixed, and

where the government chooses a tax system, along with an occupational choice rule, to maximize

welfare subject to implementing that labor supply schedule. A welfare-maximizing taxation equi-

librium, comprising a tax system, an occupational choice rule, and a collection of sector-specific

labor supply schedules, must be a solution to each of the above problems.

The primal-dual approach described above delivers a number of important insights. First, it

delivers a formula for marginal tax rates that generalizes the well-known Mirrlees formula to a

10That τa = τb in the formula in (33) is without loss of generality. In fact, given any taxation equilibrium E
featuring (a) uniform income taxation, (b) production efficiency, and (c) τa = τb �= 0, there exists another taxation

equilibrium E ′ also featuring (a) and (b) in which τa = τb = 0 and such that the allocation implemented under E ′ is

the same as under E . This follows directly from the result in Remark 1.
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multi-dimensional setting with endogenous occupational choice. This generalization shows how

the government optimally balances intensive-margin distortions in labor supply across sectors, for

any desired occupational choice rule. The formula shows that, for certain occupational choice

rules sought by the government, negative marginal taxes may be optimal. The approach also

delivers an Euler equation that determines the optimal allocation of agents across sectors. We

provide an heuristic derivation of this equation using an important class of tax perturbations which

we labelled payroll-tax reforms. Most importantly, this Euler equation reveals that, under sector-

specific income taxation, the Diamond-Mirrlees theorem (according to which the second-best entails

production efficiency) fails: social welfare can be increased by inducing certain agents to work in

the sector in which they are least productive. Intuitively, by sacrificing production efficiency,

the planner incurs second-order losses in total output, but obtains a first-order reduction in the

informational costs of redistribution. The same logic applies when the government is constrained

to a uniform income tax schedule, as long as sales taxes can be made sector-specific. In this latter

case, the analysis shows the failure of the Atkinson-Stiglitz theorem (according to which, when

preferences over consumption and leisure are separable, as they are in our economy, the second-

best can be implemented with zero sales taxes).

Our analysis is conducted in the context of a multi-sector economy where workers choose their

occupation in response to the tax system. One alternative, and equally appealing, application of our

results pertains to the design of tax systems in a federation of states. In this application, the type of

each worker describes his productivity in the different member states. That a worker’s productivity

varies across geographical areas may reflect technological, cultural, and linguistic differences across

member states. After observing the tax schedules and the wages in each member state, workers

decide where to locate themselves, taking into account their differences in productivities.

The planner’s problem studied in this paper (with either a Rawlsian or Concave Utilitarian

objective) coincides with the problem of a federal authority designing the tax system of each of

its member states so as to maximize aggregate welfare over the entire federation. Our results can

then be directly applied to this problem, and imply that differential tax treatments across member

states are a robust feature of the optimal centralized tax system.11

Another application of the methods developed in the present paper pertains to the design of

optimal tax systems in economies with a large informal sector. Economies plagued by a large

degree of informality in the labor market display a somewhat extreme form of differential taxation:

Workers in the formal sector face income taxes, while workers in the informal sector are able to

evade such taxes. Yet, wages in both sectors are affected by sales taxes (and other forms of indirect

11For models of competing tax authorities, see Hamilton and Pestieau (2005) and the references therein. In

these models, it is typically assumed that workers are (i) equally productive in the various member states, and (ii)

heterogenous in their mobility cost, which determines their location choice. In this setup, the centralized optimum

always exhibits production efficiency. By contrast, the richer heterogeneity considered in the present paper reveals

that differential taxation is a robust feature of centralized optimal tax systems.
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taxation), which are typically easier to enforce than income taxes.12 More broadly, the interplay

between tax enforceability and occupational choice, and its implications for the design of optimal

tax systems, is an exciting topic for future research.

Applying the optimal tax formulas obtained in the present paper to quantitative exercises

is non-trivial, but of first-order importance. The main difficulty pertains to the multi-variate

distribution of skills that governs the workers’ sectorial choices. Estimating such distribution in a

Roy model is subject to well-known identification problems (see Heckman and Honore (1990) and

the references therein). Yet, obtaining reliable estimates of this distribution is essential given that

the sign and magnitude of the optimal tax wedges across sectors naturally depend on the migration

patterns of workers across occupations.

Finally, the methods developed in this paper can be applied to other multi-dimensional screen-

ing problems in which agents face rival choices. For example, in the context of nonlinear pricing,

consider a car seller designing price-quality schedules for various car categories (sport, SUV, family,

minivans). Buyers, given their preferences for each category and the price-quality schedules offered

by the seller, then decide which type of car to buy and then select, within the chosen category, the

desired model (identified by a combination of price and quality).

12Indeed, that sales taxes are easier to enforce than income taxes is widely recognized as a justification for the

heavy reliance on such taxes (as well as other modes of indirect taxation) in underdeveloped countries.
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6 Appendix: Omitted Proofs

Proof of Lemma 1. Part 1. For necessity, let ûj(y;nj) ≡ y − Tj(y) − ψ (y/(wjnj)) denote the

utility that an agent with productivity nj obtains by generating income y in sector j. Because the

function satisfies the strict increasing difference property, the optimal income choice yj(nj), and

hence the supply of effective labor njhj(nj), must be weakly increasing over Nj . Next note that

ûj(y;nj) is differentiable and Lipschitz continuous in nj . Standard envelope theorems (e.g., Milgrom

and Segal (2002)) then imply that the value function uj(nj) = maxh{wjhnj−Tj(wjhnj)−ψ (h)} =

maxy{ûj(y;nj)} must be Lipschitz continuous over N with derivative equal to

u′j(nj) = ψ′
(
ŷj(nj)

wjnj

)
ŷj(nj)

wjn2
j

for almost every nj ∈ N , where ŷj : N → argmaxy

{
y − Tj(y)− ψ( y

wjnj
)
}
is an arbitrary selection.

Using the fact that, for any nj ∈ Nj ,

hj(nj) =
ŷj(nj)

wjnj

for some selection ŷj(·), we then arrive to the result in Part 1. Sufficiency follows from standard

arguments (e.g., in Milgrom (2004)).

Part 2. We establish necessity first. Because uj is absolutely continuous and strictly increasing,

j = a, b, any occupational choice rule C must be described by an absolutely continuous and weakly

increasing threshold function c : N → N̄ such that C(na, nb) = a if nb < c(na) and C(na, nb) = b if

nb > c(na). Furthermore at any point na ∈ N in which c(na) ∈ N , the threshold c(na) must satisfy

ua(na) = ub(c(na)). Sufficiency follows by construction, after noting that ua and ub are strictly

increasing in na and nb, respectively.

Part 3. That Condition (8) is necessary and sufficient for the labor market to clear follows

directly from the fact that the production function exhibits constant returns to scale. Q.E.D.

Proof of Remark 1. Because ua and ub are Lipschitz continuous and strictly increasing, for

almost every na ∈ N such that c(na) ∈ N , condition u′a(na) = u′b(c(na))c
′(na) must hold. Using

Condition (7), we then have that, for almost every na ∈ N such that c(na) ∈ N , Condition (9)

must hold. Q.E.D.

Proof of Remark 2. From Condition (8), under the original tax system T , wages are given by

wj = 1− τj . Faced with these wages, under the original tax system, the optimal choice of effective

labor ĥ = nh for an agent with sector-j productivity nj who chooses to work in sector j is given by

argmax
ĥ

{
(1− τj)ĥ− ψ(ĥ/nj)− Tj

(
(1− τj)ĥ

)}
.
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Under the new tax system T̂ , wages are equal to ŵj = 1, j = a, b, and the optimal choice of effective

labor by the same agent working in sector j is given by

argmax
ĥ

{
ĥ− ψ(ĥ/nj)− T̂j(ĥ)

}
= argmax

ĥ

{
ĥ− ψ(ĥ/nj)− τj ĥ− Tj

(
(1− τj)ĥ

)}
.

It is then easy to see that the original allocation (C, ha, hb) can be implemented under the wages

ŵ = (1, 1) by the new tax system T̂ . It is also easy to see that all agents’ payoffs (as well as the

government’s tax income) under Ê are the same as under E . Q.E.D.

Proof of Proposition 1. The government’s problem consists in choosing labor supply schedules

ha : Na → R+, hb : Nb → R+ along with tax schedules Ta : R+ → R and Tb : R+ → R so as to

maximize its x-objective:13

1CU
x

ˆ
Na

φ(ua(na))dGa(na|c) + 1CU
x

ˆ
Nb

φ(ub(nb))dGb(nb|c) + [1− 1CU
x ]ua(n

′
a),

where

uj(nj) = hj(nj)nj − ψ (hj(nj))− Tj(njhj(nj)) for every nj ∈ Nj , j = a, b

subject to (i) the budget constraint:

ˆ
Na

Ta(naha(na))dGa(na|c) +
ˆ
Nb

Tb(nbhb(nb)))dGb(nb|c) ≥ G,

(ii) the labor-supply incentive-compatibility constraints:

u′a(na) = ψ′ (ha(na))
ha(na)

na
for almost every na ∈ Na,

u′b(nb) = ψ′ (hb(nb))
hb(nb)

nb
for almost every nb ∈ Nb,

(iii) the occupational-choice incentive-compatibility constraints:

hb(c(na)) = Jc[na]ha(na), for all na ∈ (n′
a, n

′′
a),

and (iv) the monotonicity constraints

yj(nj) = hj(nj)nj nondecreasing over Nj , j = a, b.

As mentioned in the main text, hereafter, we proceed by abstracting from the monotonicity con-

straints (iv), which is consistent with the practice commonly followed in the literature.

Using the fact that (i) for any na ∈ (n′
a, n̄),

Ta(naha(na))) = ha(na)na − ψ (ha(na))− ua(na),

13Note that, in case of a Rawlsian objective, i.e., for x = R, the lowest-utility agent is always an agent whose

sector-a productivity is n′
a.
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along with the fact that (ii) for nb ∈ Nb, hb(nb) = Jc[c
−1(nb)]ha(c

−1(nb)) and ub(nb) = ua(c
−1(nb)),

it follows that

Tb(nbhb(nb)) = hb(nb)nb − ψ (hb(nb))− ub(nb)

= Jc[c
−1(nb)]ha(c

−1(nb))nb − ψ
(
Jc[c

−1(nb)]ha(c
−1(nb))

)
− ua(c

−1(nb)).

Using the definition of the density

g(na|c) = ga(na|c) + c′ (na) gb(c (na) |c)
= fa(na)Fb|a(c(na)|na) + c′ (na) fb(c(na))Fa|b(na|c(na)),

we can then rewrite the government’s problem as that of choosing functions ua : Na → R, ha :

Na → R+ so as to maximize
ˆ
Na

{
1CU
x φ(ua(na))g(na|c) + [1− 1CU

x ]fa(na)ua(n
′
a)
}
dna (34)

subject to the budget constraint
ˆ
Na

{
[ha(na)na − ψ (ha(na))− ua(na)] fa(na)Fb|a(c(na)|na)

}
dna (35)

+

ˆ
Na

{
[Jc[na]ha(na)c(na)− ψ (Jc[na]ha(na))− ua(na)] c

′(na)fb(c(na))Fa|b(na|c(na))
}
dna,

≥ G

and the IC constraints

u′a(n) = ψ′ (ha(na))
ha(na)

na
for almost every na ∈ Na.

This is a standard optimal control problem with control variable ha and state variable ua. The

Hamiltonian associated to this problem is:

H = 1CU
x φ(ua(na))g(na|c) + [1− 1CU

x ]fa(na)ua(n
′
a)

+ λ
{
[ha(na)na − ψ (ha(na))− ua(na)] fa(na)Fb|a(c(na)|na)

}
+ λ {Jc[na]ha(na)c(na)− ψ (Jc[na]ha(na))− ua(na)} c′(na)fb(c(na))Fa|b(na|c(na))

+ μ(na) · ψ′ (ha(na))
ha(na)

na
− λG,

where λ is the Lagrange multiplier associated to the common budget constraint (35) and where μ

is the co-state variable associated with the law of motion of ua. The transversality conditions are:

μ(n′
a) = μ(n̄) = 0. (36)

From the Pontryagin Maximum Principle,

μ′(na) = − ∂H

∂ua
=

[
λ− 1CU

x φ′(ua(na))
]
g(na|c). (37)
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Integrating the right-hand side of (37) and using the transversality condition (36) we have that

μ(na) = −λ

ˆ n

na

[
1−ma(ña)1

CU
x

]
g(ña|c)dña, (38)

where we used the definition of

ma(na) ≡
φ′ (ua(na))

λ
.

Furthermore, for any na such that ha (na) > 0, the following first order condition must hold:

∂H

∂ha
= λ

[
na − ψ′ (ha(na))

]
fa(na)Fb|a(c(na)|na)+

λ
{
Jc[na]c(na)− ψ′ (Jc[na]ha(na)) Jc[na]

}
c′(na)fb(c(na))Fa|b(na|c(na))+

μ(na)
ψ′ (ha(na)) + ψ′′ (ha(na))ha(na)

na
= 0 (39)

Combining (38) with (39) and using the definitions of the densities

ga(na|c) = fa(na)Fb|a(c(na)|na) and gb(c(na)|c) = fb(c(na))Fa|b(na|c(na))

we obtain that:

[
na − ψ′ (ha(na))

]
ga(na|c) +

{
Jc[na]c(na)− ψ′ (Jc[na]ha(na)) Jc[na]

}
c′(na)gb(c(na)|c) (40)

=

{
ψ′ (ha(na)) + ψ′′ (ha(na))ha(na)

na

}ˆ n

na

[
1−ma(ña)1

CU
x

]
g(ña|c)dña

From (5),

nj − ψ′ (hj(nj)) = T ′
j(yj(nj))nj , j = a, b

and

ψ′ (ha(na)) + ψ′′ (ha(na))ha(na)

na
=

ψ′ (ha(na))

na

{
1 +

ψ′′ (ha(na))ha(na)

ψ′ (ha(na))

}
=

[
1− T ′

a(ya(na))
]
ξ−1,

where ya(na) = naha(na). Hence, for any na > n′′
a = c−1(n̄), the optimality condition (40) can be

rewritten as the usual Mirrlees condition

ξ
T ′
a(ya(na))

1− T ′
a(ya(na))

nafa(na) =

ˆ n

na

[
1− 1CU

x ma(ña)
]
fa(ña)dña, (41)

where we also used the fact that, for na > c−1(n̄), ga(na|c) = fa(na). Next, consider any na ∈
(n′

a, n
′′
a). Using the fact that Jc[na]ha(na) = hb(c(na)), equation (40) can be rewritten as

T ′
a(ya(na))

1− T ′
a(ya(na))

naga(na|c) +
T ′
b(yb(c(na)))

1− T ′
a(ya(na))

Jc[na]c
′(na)c(na)gb(c(na)|c) (42)

= ξ−1

ˆ n

na

[
1−ma(ña)1

CU
x

]
g(ña|c)dña.
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From Condition (9) we have that, for any na ∈ (n′
a, n

′′
a),

c′(na) =
ψ′ (ha(na))

ha(na)
na

ψ′ (hb(c(na)))
hb(c(na))
c(na)

,

which, using (5), can be rewritten as

c′(na) =
[1− T ′

a(ya(na))]ha(na)[
1− T ′

b(yb(nb))
]
hb(c(na))

. (43)

Replacing (43) into (42) and using again the fact that Jc[na]ha(na) = hb(c(na)), we then have that,

for any na ∈ (n′
a, n

′′
a),

ξ
T ′
a(ya(na))

1− T ′
a(ya(na))

naga(na|c) + ξ
T ′
b(yb(c(na)))

1− T ′
b(yb(c(na)))

c(na)gb(c(na)|c) (44)

=

ˆ n

na

[
1− 1CU

x ma(ña)
]
g(ña|c)dña.

Combining the results establishes the proposition. Q.E.D.

Proof of Corollary 1. From (14), we have that

T ′
a(ya(na))

1− T ′
a(ya(na))

M =
ξ−1
´ n
na

[
1− 1CU

x ma (ña)
]
g(ña|c)dña

c(na)gb(c(na)|c)
− T ′

b(yb (c(na)))

1− T ′
b(yb(c(na)))

=
ξ−1
´ n
na

[
1− 1CU

x ma (ña)
]
g(ña|c)dña

c(na)gb(c(na)|c)
+ 1− c′(na)Jc[na]

1

1− T ′
a(ya(na))

,

where

M ≡ naga(na|c)
c(na)gb(c(na)|c)

> 0,

and where the second equality uses Condition (12). Rearranging, we have that

T ′
a(ya(na))

{
M +

ξ−1
´ n
na

[
1− 1CU

x ma (ña) g(ña|c)
]
dña

c(na)gb(c(na)|c)
+ 1

}

=
ξ−1
´ n
na

[
1− 1CU

x ma (ña) g(ña|c)
]
dña

c(na)gb(c(na)|c)
+ 1− c′(na)Jc[na].

Because the term in curly brackets is strictly positive, the above condition implies the result in the

corollary. Q.E.D.

Proof of Proposition 2. Fix the sector-a labor supply schedule ha (with domain Na). The

planner’s problem is as in the proof of Proposition 1, except that the control policies are now (i)

the threshold function c : N → N̄ defining the occupational choice rule, with c continuous over

N , strictly increasing over (n′
a, n

′′
a) for some n′′

a ≤ n̄, and such that c(na) = n for all na ≤ n′
a

and c(na) = n̄ for all na ≥ n′′
a, (ii) the sector-b labor supply schedule hb : Nb → R+, and the tax

schedules Tj : R+ → R, j = a, b.
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The planner’s problem can be conveniently rewritten by letting

Rx
j (nj) ≡ 1CU

x φ (uj (nj)) + λ {hj(nj)nj − ψ (hj(nj))− uj (nj)} , (45)

denote the value the planner assigns to the utility of an agent whose sector-j productivity is nj ,

adjusted for the opportunity cost or raising funds from the agent, where λ is the multiplier associated

with the government’s budget constraint. The planner’s problem can then be reformulated as

consisting in choosing a threshold function c : N → N̄ satisfying the properties above, along with

a sector-b labor supply schedule hb : Nb → R+ and a pair of utility functions ua : Na → R,

ub : Nb → R that jointly maximize

∑
j=a,b

n̄ˆ

n

Rx
j (n) gj(n|c)dn+ [1− 1CU

x ]ua(n
′
a) (46)

subject to the incentive compatibility constraints for labor supply

u′a(na) = ψ′ (ha(na))
ha(na)

na
for almost every na ∈ Na, (47)

u′b(nb) = ψ′ (hb(nb))
hb(nb)

nb
for almost every nb ∈ Nb, (48)

and the occupational choice constraint

hb(c(na)) = Jc[na]ha(na),

for all na ∈ (n′
a, n

′′
a) where n′′

a = c−1(n̄).

Using the fact that, for any nb ∈ int (Nb),

hb(nb) = Jc[c
−1(nb)]ha(c

−1(nb)), (49)

and

ub(nb) = ua(c
−1(nb)), (50)

along with the change in variables nb = c(na), we have that the planner’s objective can be rewritten

as
n̄ˆ

n′
a

[
Rx

a (na) ga(na|c) + R̂x
b (na|c) gb(c(na)|c)c′(na)

]
dna + [1− 1CU

x ]ua(n
′
a) (51)

where, for any na ∈ (n′
a, n

′′
a),

R̂x
b (na|c) = Rx

b (c(na))

= 1CU
x φ (ub(c(na))) + λ {hb(c(na))c(na)− ψ (hb(c(na)))− ub (c(na))}

= 1CU
x φ (ua (na)) + λ {Jc[na]ha(na)c(na)− ψ (Jc[na]ha(na))− ua (na)}

34



and R̂x
b (na|c) = 0 if na ≥ n′′

a.

The planner’s problem can then be thought of as choosing (i) a scalar ua(n
′
a), and (ii) an

absolutely continuous function c : N → N̄ , strictly increasing over (n′
a, n

′′
a) for some 0 ≤ n′

a and

n′′
a ≤ n̄ and satisfying c(na) = 0 if na ≤ n′

a and c(na) = n̄ if na ≥ n′′
a, so as to maximize (51).

Given ua(n
′
a), because ha : (n′

a, n̄) → R+ is fixed, the function ua : (n′
a, n̄) → R is then uniquely

determined by (47). The labor supply schedule hb : Nb → R+ and the utility schedule ub : Nb → R

are then given by (49) and (50), respectively. Finally, the tax schedules in the two sectors are given

by

Tj(njhj(nj))) = hj(nj)nj − ψ (hj(nj))− uj(nj), j = a, b.

As a first step, let us fix the scalar ua(n
′
a) — and hence the entire utility function ua : (n′

a, n̄) →
R — as well as the thresholds n′

a and n′′
a and then look at the optimality conditions for the threshold

function c : [n′
a, n

′′
a] → N̄ . To ease the exposition, let R̃x

b : R3 → R be the function defined by

R̃x
b (na, c, J) ≡ 1CU

x φ (ua (na)) + λ {Jha(na)c− ψ (Jha(na))− ua (na)} , (52)

and denote by ∂R̃x
b /∂na, ∂R̃

x
b /∂c, and ∂R̃x

b /∂J its partial derivatives. Then, for any na ∈ [n′
a, n̄],

let J : R3 → R be the function defined by

J(n, c, c′) =
( c

nc′

)ξ
, (53)

and note that, for na ∈ (n′
a, n

′′
a), J(na, c(na), c

′(na)) = Jc[na] = (c(na)/ (na · c′(na)))
ξ . Hereafter,

we then denote by Jn, Jc, and Jc the partial derivatives of J with respect to n, c and c′, respectively.

Finally, note that the densities

ga(na|c) ≡ fa(na)Fb|a(c(na)|na) =

ˆ c(na)

n
f(na, x)dx (54)

and

gb(c(na)|c) = fb(c(na))Fa|b(na|c(na)) =

ˆ na

n
f(x, c(na))dx (55)

depend on the entire function c only through the value that this function takes at na. In other

words, ga(na|c) and gb(c(na)|c) can be thought of as functions of na, and c(na). This means that

the optimality conditions for the threshold function c can be obtained as a solution to a calculus

of variations problem with control c and objective

n′′
aˆ

n′
a

[
Rx

a (na) ga(na|c) + R̃x
b

(
na, c(na), J(na, c(na), c

′(na))
)
· c′(na) · gb(c(na)|c)

]
dna+[1−1CU

x ]ua(n
′
a).

Dropping the arguments from R̃x
b and J to facilitate the writing, we then have that, at any
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na ∈ (n′
a, n

′′
a), the point-wise Euler equation of this problem is given by

Rx
a (na) f(na, c(na)) +

∂R̃x
b

∂c
c′(na)gb(c(na)|c) +

∂R̃x
b

∂J
Jcc

′(na)gb(c(na)|c) + R̃x
b c

′(na)
∂

∂c
[gb(c(na)|c)]

=
d

dna

[
∂R̃x

b

∂J
Jc′c

′(na)gb(c(na)|c) + R̃x
b gb(c(na)|c)

]
. (56)

Use (55) to note that the fourth term of the left-hand-side of (56) can be developed as follows:

R̃x
b c

′(na)
∂

∂c
[gb(c(na)|c)] = R̃x

b c
′(na)

(ˆ na

n

∂

∂nb
f(x, c(na))dx

)

= R̃x
b

d

dna
[gb(c(na)|c)]− R̃x

b f(na, c(na))

=
d

dna

[
R̃x

b gb(c(na)|c)
]
− dR̃x

b

dna
gb(c(na)|c)− R̃x

b f(na, c(na)). (57)

Substituting (57) into (56) and simplifying, we can rewrite the point-wise Euler equation (56)

as follows[
Rx

a (na)− R̃x
b

]
f(na, c(na)) +

∂R̃x
b

∂c
c′(na)gb(c(na)|c) +

∂R̃x
b

∂J
Jcgb(c(na)|c)c′(na)−

dR̃x
b

dna
gb(c(na)|c)

=
d

dna

[
∂R̃x

b

∂J
Jc′c

′(na)gb(c(na)|c)
]
. (58)

Multiplying both sides of (58) by c(na) and rearranging terms, we obtain that

[
Rx

a (na)− R̃x
b

]
f(na, c(na))c(na) +

∂R̃x
b

∂c
c′(na)c(na)gb(c(na)|c)−

dR̃x
b

dna
c(na)gb(c(na)|c)

=
d

dna

[
∂R̃x

b

∂J
Jc′c

′(na)gb(c(na)|c)
]
c(na)−

∂R̃x
b

∂J
Jcgb(c(na)|c)c(na)c

′(na). (59)

Next, note that, for any na ∈ (n′
a, n

′′
a),

Jc = Jc(na, c(na), c
′(na)) = ξ

(
c(na)

nac′(na)

)ξ−1 1

nac′(na)
= ξJ

1

c(na)
,

Jc′ = Jc′(na, c(na), c
′(na)) = −ξ

(
c(na)

nac′(na)

)ξ−1 c(na)

nac′(na)

1

c′(na)
= −ξJ

1

c′(na)
.

Note that the expressions above are always well-defined, as c′(na) > 0 for all na ∈ (n′
a, n

′′
a) (by

virtue of (12)).

Replacing these expressions into the right-hand side of (59), we obtain that for any na ∈
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(n′
a, n

′′
a), the right-hand side of the Euler equation becomes

d

dna

[
∂R̃x

b

∂J
Jc′c

′(na)gb(c(na)|c)
]
c(na)−

∂R̃x
b

∂J
Jcgb(c(na)|c)c(na)c

′(na)

= −ξ

{
d

dna

[
J
∂R̃x

b

∂J
gb(c(na)|c)

]
c(na) + J

∂R̃x
b

∂J
gb(c(na)|c)c′(na)

}

= −ξ
d

dna

[
J
∂R̃x

b

∂J
gb(c(na)|c)c(na)

]
. (60)

Substituting (60) into (59), we then have that, for any na ∈ (n′
a, n

′′
a), the Euler equation

becomes[
Rx

a (na)− R̃x
b

]
f(na, c(na))c(na) +

∂R̃x
b

∂c
c′(na)c(na)gb(c(na)|c)−

dR̃x
b

dna
c(na)gb(c(na)|c)

= −ξ
d

dna

[
J
∂R̃x

b

∂J
gb(c(na)|c)c(na)

]
(61)

Integrating (61) from n′
a to na ∈ (n′

a, n
′′
a) we then obtain that

ˆ na

n′
a

[
Rx

a (ña)− R̃x
b (ña)

]
c(ña)f(ña, c(ña))dña (62)

+

ˆ na

n′
a

∂R̃x
b (ña)

∂c
c(ña)c

′(ña)gb(c(ña)|c)dña −
ˆ na

n′
a

dR̃x
b (ña)

dna
c(ña)gb(c(ña)|c)dña

= −ξJ(na)
∂R̃x

b (na)

∂J
gb(c(na)|c)c(na) + lim

na→n′
a

ξJ(na)
∂R̃x

b (na)

∂J
gb(c(na)|c)c(na)

where we have highlighted the dependence of R̃x
b and of J on ña to avoid possible confusion.

Consider the second term in the right-hand side of (62). This term is zero if n′
a = n, as in this

case

lim
na→n

gb(c(na)|c) = lim
na→n

fb(c(na))Fa|b(na|c(na)) = 0,

and all remaining terms are bounded. When n′
a > n, the optimal choice of n′

a implies that the

following transversality condition holds:

lim
na→n′

a

ξJ(na)
∂R̃x

b (na)

∂J
gb(c(na)|c)c(na) = 0,

which is exactly the second term in the right-hand side of (62).

We now express each term in (62) as a function of the income tax schedules. By definition of

Rx
a (ña) and R̃x

b (ña) in (45) and (52), the first term in (62) is simply:

ˆ na

n′
a

[
Rx

a (ña)− R̃x
b (ña)

]
c(ña)f(ña, c(ña))dña

= λ

ˆ na

n′
a

[Ta(ya(ña))− Tb(yb(c(ña)))] c(ña)f(ña, c(ña))dña. (63)
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The second term in (62) is obtained by differentiating (52) with respect to c, which yields

ˆ na

n′
a

∂R̃x
b (ña)

∂c
c(ña)c

′(ña)gb(c(ña)|c)dña =

ˆ na

n′
a

λJ(ña)ha(ña)c(ña)c
′(ña)gb(c(ña)|c)dña

= λ

ˆ na

n′
a

yb(c(ña))c
′(ña)gb(c(ña)|c)dña = λ

ˆ c(na)

c(n′
a)

yb(nb)gb(nb|c)dnb. (64)

where the last equality follows from changing the variable of integration from ña to nb (using the

relation nb = c(na)).

The third term in (62) is obtained by totally differentiating (52) with respect to na, which gives

ˆ na

n′
a

(
dR̃x

b (ña)

dna
c(ña)gb(c(ña)|c)

)
dña

=

ˆ na

n′
a

{
d

dna

[
1CU
x φ (ua (ña)) + λTb(yb(c(ña))

]}
c(ña)gb(c(ña)|c)dña

=

ˆ na

n′
a

{
1CU
x φ′ (ua (ña))u

′
a (ña) + λT ′

b(yb(c(na))
dyb(c(ña))

dnb
c′(ña)

}
c(ña)gb(c(ña)|c)dña

=

ˆ na

n′
a

{
1CU
x φ′ (ua (ña))ψ

′ (hb(c(ña)))hb(c(ña))

+λT ′
b(yb(c(na))

dyb(c(ña))
dnb

c(ña)

}
c′(ña)gb(c(ña)|c)dña

=

ˆ na

n′
a

{
1CU
x φ′ (ua (ña)) [1− T ′

b(yb(c(ña)))] yb(c(ña))

+λT ′
b(yb(c(na))

dyb(c(ña))
dnb

c(ña)

}
c′(ña)gb(c(ña)|c)dña

where the last two equalities use (5), (7), and (9). Changing again the variables of integration using

the relation nb = c(na), we then obtain that the third term in (62) is equal to

ˆ na

n′
a

(
dR̃x

b (ña)

dna
c(ña)gb(c(ña)|c)

)
dña

=

ˆ c(na)

c(n′
a)

{
1CU
x φ′ (ub (nb))

[
1− T ′

b(yb(nb))
]
+ λT ′

b(yb(nb))εyb(nb)
}
yb(nb)gb(nb|c)dnb,

where

εyb(nb) ≡
dyb(nb)

dnb

nb

yb(nb)

Finally, the right-hand-side in (62) is obtained by differentiating (52) with respect to J which

yields

∂R̃x
b

∂J
= λha(na)

[
c(na)− ψ′ (J(na)ha(na))

]
= λha(na)c(na)T

′
b(J(na)ha(na)c(na)).

We then have that the right-hand-side in (62) can be rewritten as

−ξJ(na)
∂R̃x

b (na)

∂J
gb(c(na)|c)c(na) = −ξλyb(c(na))T

′
b(yb(c(na)))gb(c(na)|c)c(na)

= ξ
T ′
b(yb (c(na)))

1− T ′
b(yb(c(na)))

c(na)gb(c(na)|c) ·
{
(1− T ′

b(yb(c(na))))yb(c(na)
}
. (65)
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Substituting (63)-(65) into (62) and rearranging yields (17). Q.E.D.

Proof of Proposition 3 The proof has two parts, each establishing the result in the corre-

sponding part in the proposition.

Part 1. We establish the result by showing that, when the distribution is generic, a taxation

equilibrium sustaining production efficiency (that is, inducing an efficient occupational choice) fails

to satisfy the necessary optimality conditions, as implied by (17), over a positive measure set of

types. To see this, first use (5) and (9) to observe that, in any equilibrium sustaining production

efficiency, ha(n) = hb(n) = h(n) for all n ∈ N. Then use (7) and (12) to verify that, in any such

equilibrium, Ta(y) = Tb(y) = T (y) and hence ua(n) = ub(n) = u(n) for all n ∈ N .

Next, observe that, for production efficiency to be optimal, the Euler equations in Proposition

2 must hold for each sector. Using the symmetry properties described above, we can rewrite these

equations, for any n ∈ N, as follows

1CU
x

ˆ n

n
m (ñ)

[
1− T ′(y(ñ))

]
y(ñ)dGb(ñ|c) =

ˆ n

n

[
1− T ′(y(ñ)εy(ñ)

]
y(ñ)dGb(ñ|c) (66)

+ ξT ′(y(n))y(n)ngb(n|c)

1CU
x

ˆ n

n
m (ñ)

[
1− T ′(y(ñ))

]
y(ñ)dGa(ñ|c) =

ˆ n

n

[
1− T ′(y(ñ)εy(ñ)

]
y(ñ)dGa(ñ|c) (67)

+ ξT ′(y(n))y(n)nga(n|c)

where we used he fact that n′
a = n′

b = n (which also implies that ga(n|c) = gb(n|c) = 0) along with

the fact that, for all n ∈ N, c(n) = n, ma(n) = mb(n) = m(n), εya(n) = εyb(n) = εy(n) with

εy(n) ≡
dy(n)

dn

n

y(n)
and y(n) = nh(n).

Note that the Lagrange multiplier on the planner’s budget constraint is the same in both equations.

The two Euler equations (66) and (67) define two linear homogenous differential equations in

gb(n|c) and ga(n|c), respectively, with boundary conditions ga(n|c) = gb(n|c) = 0. Because these

homogenous differential equations are identical and the usual Lipschitz conditions hold (as implied

by Lemma 1), the Picard-Lindelof theorem implies that their solutions must satisfy gb(n|c) =

δga(n|c) for some δ. Because production efficiency implies that

gb(n|c) = fb(n)Fa|b(n|n) and ga(n|c) = fa(n)Fb|a(n|n)

for all n ∈ N , we then conclude that, for production efficiency to be optimal, there must exist δ > 0

such that, for all n ∈ N

fb(n)Fa|b(n|n) = δfa(n)Fb|a(n|n).

As a consequence, for any generic F , any x-optimal taxation equilibrium entails production

inefficiency for a positive-measure subset of types.
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Part 2 . Consider the calculus of variations problem described in the proof of Proposition 2 with

objective function (51). The optimal choice of n′′
a implies that the following transversality condition

holds:

lim
na→n′′

a

ξJ(na)
∂R̃x

b (na)

∂J
gb(c(na)|c)c(na) = 0.

By the arguments in the proof of Proposition 2, this condition is equivalent to

0 = lim
na→n′′

a

Eb(c(na))(1− T ′
b(yb(c(na)))yb(c(na)) = lim

nb→n̄
nbyb(nb)T

′
b(yb(nb))gb(nb|c).

Because nbyb(nb) is strictly increasing and positive, it then follows that condition (27) has to hold

for sector b. Finally, that condition (27) holds for sector a follows from the standard Mirrlees

formula (15). Q.E.D.

Proof of Lemma 2. Part 1 . Recall the definition of “effective income tax schedules”, as

given in (13). Using the fact that labor income taxes are uniform across the two sectors, we then

have that, for any y ∈ R+, and any τa, τb < 1,

T̂a (y) = τay + T ((1− τa) y)

T̂b

(
1− τa
1− τb

y

)
= τb

1− τa
1− τb

y + T ((1− τa) y) .

Combining the two expressions above with the result in Remark 2 leads to the result in the lemma.

Part 2 . Let the tax schedule T be such that, for any y,

τay + T ((1− τa)y) = T̂a(y).

Together with Condition (29), the equation above implies that

τby + T ((1− τb)y) = T̂b(y).

The result then follows from the fact that the tax system T = (T, T, τa, τb) induces the same

effective labor tax schedules and the same occupational choices as T̂ . Q.E.D.

Proof of Lemma 3. Under the tax system T̂ , the utility that an agent with productivity na

obtains by working in sector a is given by

ua(na) = max
h

{
nah− ψ(h)− T̂a(nah)

}
= max

h

{
(1− α)nah− ψ(h)− T̂b ((1− α)nah)

}
= ub((1− α)na),

where the equality follows from the fact that the tax system satisfies Condition (29). This in turn

implies that, for any na for which c(na) ∈ N,

c(na) = (1− α)na
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thus establishing the result. Q.E.D.

Proof of Proposition 5. Note that, with uniform labor income taxation and our convention

about the labeling of the two sectors (which consists in assuming that τa ≤ τb), n
′
a = n. From

the proof of Proposition 4 observe that, for any pair of effective tax schedules T̂a and T̂b that are

consistent with uniform labor income taxation (that is, that satisfy Condition (29)), there exist

infinitely many combinations of sale taxes τa, τb along with a common labor income tax schedule

T such that the effective income tax schedules corresponding to the system T = (τa, τb, T, T ) are

T̂a and T̂b. In deriving the optimality conditions below, for convenience we will set the sale tax in

sector b to τb = 0. Once these conditions are identified, we will show how they can be expressed for

arbitrary combinations of τa and τb.

Following arguments similar to those in the proof of Proposition 2, the dual problem Px
2 (ha)

can be recast as consisting in choosing a level of utility ua(n) ≥ 0, along with a sale subsidy τa ≤ 0

so as to maximize
ˆ n

1−τa

n
1CU
x φ (ua(na)) [ga(na|c) + (1− τa)gb((1− τa)na|c)] dna +

ˆ n

n
1−τa

1CU
x φ (ua(na)) fa (na) dna

+ [1− 1CU
x ]ua(n)

subject to the budget constraint

ˆ n
1−τa

n
[(1− τa)naha(na)− ψ (ha(na))− ua (na)] [ga(na|c) + (1− τa)gb((1− τa)na|c)] dna+

ˆ n

n
1−τa

[(1− τa)ha(na)na − ψ (ha(na))− ua (na)] fa (na) dna + τa

ˆ n̄

n
naha(na)ga(na|c)dna ≥ G

where

ua(na) = ua(n) +

naˆ

n

ψ′ (ha(ña))
ha(ña)

ña
dña (68)

is determined by (7) and where the densities under the occupational choice rule corresponding to

the sale tax τa are given by

ga(na|c) = fa(na)Fb|a((1− τa)na)|na) (69)

and

gb(nb|c) = fb(nb)Fa|b((1− τa)
−1nb)|nb). (70a)

Note that in writing the above program, we used the fact that, for any na ∈
(
n, n

1−τa

)
, (i) c(na) =

(1 − τa)na, (ii) hb(c(na)) = hb((1 − τa)na) = ha(na), and (iii) yb(c(na)) = c(na)hb(c(na)) = (1 −
τa)naha(na). We also used the fact that, once ua(n) and τa are chosen, because ha is given, the

common labor income tax schedule T is then given by

T ((1− τa)naha(na)) = (1− τa)naha(na)− ψ(ha(na))− ua(na)

41



for all na ∈ N . To put it differently, once ua(n) is chosen, different choices of the sale tax τa

translate into different common income tax schedules T while leaving the sector-a effective tax

schedule

T̂a(ya(na)) ≡ τaya(na) + T ((1− τa)ya(na)) = ya(na)− ψ

(
ya(na)

na

)
− ua(na)

fixed, for any level of effective income y = ya(na) = naha(na), na ∈ Na. This also means that the

budget constraint in the above program can be rewritten as

ˆ n
1−τa

n
[naha(na)− ψ (ha(na))− ua (na)] ga(na|c)dna +

ˆ n̄

n
1−τa

[naha(na)− ψ (ha(na))− ua (na)] fa(na)dna

+

ˆ n
1−τa

n
[(1− τa)naha(na)− ψ (ha(na))− ua (na)] (1− τa)gb((1− τa)na|c)dna ≥ G

Then, for any na ∈ Na let

Rx
a (na) ≡ 1CU

x φ (ua (na)) + λ [ha (na)na − ψ (ha (na))− ua (na)] , (71)

while for any na ∈
(
n, n

1−τa

)
let

R̂x
b (na|c) ≡ Rx

b (c(na)) (72)

= 1CU
x φ (ub(c(na))) + λ {hb(c(na))c(na)− ψ (hb(c(na)))− ub (c(na))}

= 1CU
x φ (ua (na)) + λ {Jc[na]ha(na)c(na)− ψ (Jc[na]ha(na))− ua (na)}

= 1CU
x φ (ua (na)) + λ [ha (na) (1− τa)na − ψ (ha (na))− ua (na)] ,

where λ is the Lagrangian multiplier associated with the government’s budget constraint. The

Lagrangian for the above program then becomes

ˆ n̄

n
Rx

a (na) ga(na|c)dna +

ˆ n
1−τa

n
R̂x

b (na|c) (1− τa)gb((1− τa)na|c)dna

+ [1− 1CU
x ]ua(n)− λG

Fixing ua(n), we then have that the first order condition with respect to τa is

d

dτa

ˆ n̄

n
Rx

a (na) ga(na|c)dna

+
d

dτa

ˆ n
1−τa

n
R̂x

b (na|c) (1− τa)gb((1− τa)na|c)dna = 0. (73)
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The latter condition can be rewritten as

d

dτa

ˆ n̄

n
Rx

a (na) ga(na|c)dna+ (74)

+
n̄

1− τa
R̂x

b

(
n̄

1− τa
|c
)
gb(n̄|c)

+

ˆ n
1−τa

n
R̂x

b (na|c)
d

dτa
{(1− τa)gb((1− τa)na|c)} dna

+

ˆ n
1−τa

n

dR̂x
b (na|c)
dτa

(1− τa)gb((1− τa)na|c)dna = 0.

Consider the first term in (74) and note that it is equal to

d

dτa

ˆ n̄

n
Rx

a (na) ga(na|c)dna =
d

dτa

{ˆ n
1−τa

n
Rx

a (na) ga(na|c)dna +

ˆ n̄

n
1−τa

Rx
a (na) fa(na)dna

}
(75)

=

ˆ n
1−τa

n
Rx

a (na)
d

dτa
[ga(na|c)]dna

= −
ˆ n

1−τa

n
Rx

a (na)naf(na, (1− τa)na)dna

where we used the fact that ga(na|c) = fa(na) for all na ≥ n
1−τa

along with (69).

Next, consider the third term in (74) and use (70a) to note that

d

dτa
{(1− τa)gb((1− τa)na|c)} = − d

dna
[nagb((1− τa)na|c)] + naf (na, (1− τa)na) .

The the third term in (74) is thus equal to

ˆ n
1−τa

n
R̂x

b (na; c)
d

dτa
{(1− τa)gb((1− τa)na|c)} dna

= −
ˆ n

1−τa

n
R̂x

b (na; c)
d

dna
[nagb((1− τa)na|c)] dna +

ˆ n
1−τa

n
R̂x

b (na; c)naf (na, (1− τa)na) dna

Now observe that

−
ˆ n

1−τa

n
R̂x

b (na; c)
d

dna
[nagb((1− τa)na|c)] dna

= −
[
R̂x

b (na; c)nagb((1− τa)na|c)
] n

1−τa

n

+

ˆ n
1−τa

n

d

dna

[
R̂x

b (na; c)
]
nagb((1− τa)na|c)dna

= − lim
na→n̄

na

1− τa
R̂x

b

(
na

1− τa
|c
)
gb(na|c)

+

ˆ n
1−τa

n

{[
1CU
x φ′ (ua(na))− λ

]
u′a (na) + λ

[
h′a (na)na (1− τa) + ha (na) (1− τa)− ψ′ (ha (na))h

′
a (na)

]}
·

· nagb((1− τa)na|c)dna
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where the first equality follows from integration by parts, whereas the third equality follows from

the fact that gb((1− τa)n|c) = 0 along with the fact that

d

dna

[
R̂x

b (na; c)
]
=

[
1CU
x φ′ (ua(na))− λ

]
u′a (na)

+ λ
[
h′a (na)na (1− τa) + ha (na) (1− τa)− ψ′ (ha (na))h

′
a (na)

]
.

We conclude that the third term in (74) is thus equal to

ˆ n
1−τa

n
R̂x

b (na; c)
d

dτa
{(1− τa)gb((1− τa)na|c)} dna (76)

= − lim
na→n̄

na

1− τa
R̂x

b

(
na

1− τa
|c
)
gb(na|c)

+

ˆ n
1−τa

n

{[
1CU
x φ′ (ua(na))− λ

]
u′a (na) + λ

[
h′a (na)na (1− τa) + ha (na) (1− τa)− ψ′ (ha (na))h

′
a (na)

]}
·

· nagb((1− τa)na|c)dna

+

ˆ n
1−τa

n
R̂x

b (na; c)naf (na, (1− τa)na) dna.

Finally, consider the forth term in (74). Differentiating (72) with respect to τa, we can show

that this term is equal to

ˆ n
1−τa

n

dR̂x
b (na; c)

dτa
(1− τa)gb((1− τa)na|c)dna (77)

= −λ

ˆ n
1−τa

n
ha (na)na(1− τa)gb((1− τa)na|c)dna.

Substituting (75), (76) and (77) into (74) and simplifying, we obtain that the optimality con-

dition can be rewritten as

ˆ n
1−τa

n

{[
1CU
x φ′ (ua(na))− λ

]
u′a (na) + λ

[
h′a (na)na (1− τa)− ψ′ (ha (na))h

′
a (na)

]}
· (78)

· nagb((1− τa)na|c)dna

=

ˆ n
1−τa

n

{
Rx

a (na)− R̂x
b (na; c)

}
naf(na, (1− τa)na)dna

Using the fact that

Rx
a (na)− R̂x

b (na; c) = λ[T̂a(ya(na)− T̂b(yb(c(na)))]
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we then have that (78) can be rewritten as

1CU
x

ˆ n
1−τa

n
ma (na)u

′
a (na)nagb((1− τa)na|c)dna (79)

+

ˆ n
1−τa

n

{
−u′a (na) + h′a (na)na (1− τa)− ψ′ (ha (na))h

′
a (na)

}
nagb((1− τa)na|c)dna

=

ˆ n
1−τa

n
[T̂a(ya(na)− T̂b(yb(c(na)))]naf(na, (1− τa)na)dna

where we used the fact that ma (na) ≡ φ′(ua(na))
λ .

Using (5) and (7), we can then rewrite the first integral in (79) as follows:

1CU
x

´ n
1−τa
n ma (na)u

′
a (na)nagb((1− τa)na|c)dna

= 1CU
x

´ n
1−τa
n ma (na) [1− T ′((1− τa)ya(na))] (1− τa)ya(na)gb((1− τa)na|c)dna

(80)

where ya(na) = naha(na) is the effective labor supply by an agent working in sector a with produc-

tivity na.

Likewise, using (5) and (7), we can rewrite the second integral in (79) as follows:

ˆ n
1−τa

n

{
−u′a (na) + h′a (na)na (1− τa)− ψ′ (ha (na))h

′
a (na)

}
nagb((1− τa)na|c)dna (81)

=

ˆ n
1−τa

n

{
−[1− T ′((1− τa)ya(na))](1− τa)ha(na)

+h′a (na)na (1− τa)− [1− T ′((1− τa)ya(na))]na(1− τa)h
′
a (na)

}
·

· nagb((1− τa)na|c)dna

Using the fact that

y′(na) = ha(na) + h′a(na)na.

we can rewrite (81) as follows:

ˆ n
1−τa

n

{
−1 + T ′((1− τa)ya(na))

y′a (na)na

ya(na)

}
(1− τa)ya(na)gb((1− τa)na|c)dna

We conclude that (79) can be rewritten as

1CU
x

ˆ n
1−τa

n
ma (na)

[
1− T ′((1− τa)ya(na))

]
(1− τa)ya(na)gb((1− τa)na|c)dna (82)

=

ˆ n
1−τa

n

{
1− T ′((1− τa)ya(na))

y′a (na)na

ya(na)

}
(1− τa)ya(na)gb((1− τa)na|c)dna

+

ˆ n
1−τa

n
[T̂a(ya(na)− T̂b(yb(c(na)))]naf(na, (1− τa)na)dna
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Changing the variable of integration to nb = (1− τa)na, and multiplying both sides by (1− τa) we

can then rewrite (82) as

1CU
x

ˆ n

n(1−τa)
mb (nb)

[
1− T ′(yb(nb))

]
yb(nb)gb(nb|c)dnb (83)

=

ˆ n

n(1−τa)

{
1− T ′(yb(nb))εyb(nb)

}
yb(nb)gb(nb|c)dnb

+

ˆ n
1−τa

n
[T̂a(ya(na)− T̂b(yb(c(na)))](1− τa)naf(na, (1− τa)na)dna

where we used the fact that, for any na ∈
(
n, n

1−τa

)

εyb(c(na)) ≡
y′b (c(na)) c(na)

yb(c(na))
=

y′a (na)na

ya(na)

Using the definition of “welfare effect”, “revenue collection effect”, and “migration effects” we have

that (83) can be rewritten as

lim
nb→n̄

{
1CU
x ·Wb (nb)−Rb (nb)

}
= lim

na→n̄
1−τb
1−τa

Ma (na) ,

where the functionals above are evaluated at the threshold function c(na) = (1− τa)na.

Finally, after reintroducing τb by eliminating the normalization to τb = 0, and replacing 1−τa
1−τb

na

for (1− τa)na, we obtain the formula in the proposition. Q.E.D.
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