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Abstract

This paper aims to analyze whether the existing logistics platforms network in Spain affects 

Spanish transport demand by using a spatial framework. In particular, we use demand for 

transport to export goods to other Spanish regions as a proxy for logistics infrastructure 

demand in Spain. Then, we obtain data for trade flows between regions (NUTS2) in the year 

2007. We also obtain data about the number and area of logistics platforms existing in each 

Spanish region to proxy for the transportation network structure in Spain. In a first step, we 

construct weight matrixes considering first-order contiguity and we obtain that spatial 

dependence is significant in a spatial econometric model of commodity flows (LeSage and 

Polasek, 2008). Secondly, we incorporate logistics network structure dependence into the 

model so that the spatial lags measure the impact and significance on trade flows from all 

origins to all destinations by considering the importance of logistics performance in the 

neighboring regions. Finally, we perform the analysis for different economic activities. The 

results obtained provide evidence about the role of the location of logistics platforms for 

satisfying existing demand for transport structure in the Spanish regions.

Keywords: Spanish regions, inter-regional trade, logistics platforms.

JEL classification: R12, R23, R48

1. Introduction

The aim of this study is to define a regression-model-based gravity model to explain trade 

flows between Spanish regions, incorporating, in addition to the characteristics of each region, 

information on transport infrastructure and logistics. Using a spatial autoregressive model, we 

considered the spatial connection between each of the regions, taking into account the spatial 

dependence between the origin and destination flows. This paper extends the procedure 

followed by LeSage and Polasek (2008), including weight matrixes based on the logistics 

performance in neighboring regions. This framework allows nearby regions to enter into the 

determination of the spatial lags, with the weight assigned increasing directly with the 

neighbors' logistics performance.



According to LeSage and Pace (2008) the magnitude of trade flows will be assessed according 

to three types of spatial weight matrixes between origin and destination regions. These spatial 

weights can be used in the family of spatial econometric models popularized by Anselin 

(1988) to estimate the relative strength of these three types of spatial connectivity relations 

between origin regions, such as A, and destination regions (Z). First, origin-based dependence

(when trade flows between region A (origin) and Z (destination) must be accompanied by 

similar flows between A's neighboring regions Z). Second, destination-based dependence

(when trade flows between region A and Z must be accompanied by similar flows between 

region A and Z's neighboring regions and, third, origin-destination dependence (when trade 

flows between region A and Z must be accompanied by similar flows in A's neighboring 

regions and Z's neighboring regions.

Our focus is on extending gravity equations and considering some of the characteristics of the 

origin and destination regions, such as GDP, employment and size and the effects of trade 

flows between neighboring regions. In this sense, and following the literature on spatial 

autoregressive models, we use two different geographical continuity concepts. On the one 

hand, we consider only geographical criteria, thus being contiguous regions. On the second 

hand, we also consider the presence of logistics platforms, i.e. the regions adjacent to A that 

also have logistics platforms.

Previous research has shown that there is spatial correlation in heavily broken down

geographical data (LeSage and Polasek 2008). LeSage and Llano (2006) find that accounting 

for heterogeneity across regions produce efficient parameter estimation for the characteristics 

parameters in a gravity framework which accounts for spatial dependence by using 18 Spanish 

regions (NUTS2). In the present paper, we estimate spatial autoregressive models and we go 

further in analyzing different sectors. We expect to obtain a pattern in commodity trade flows 

making it possible to determine the needs of transport and logistics infrastructure

improvements, by following a spatial pattern in accordance with the structure of territory and 

the type of economic sector.

The rest of the paper is organized as follows. Section two describes the model. Section three 

outlines data, sources and variables used in the present study. The empirical analysis is 

performed in section four. Finally, section five contains the conclusions.

2. The spatial econometric flow model

The model introduced by LeSage and Pace 2008 is based on spatial auto-regressive models of 

the form appearing in equation (1):

� = ����� + ���� � +�����+∝ +���� + ���� + �� + � (1)



The dependent variable represents an n by n square matrix of interregional flows from each of 

the n origin regions to each of the n destination regions, where each of the n columns of the 

flow matrix represents a different destination and the n rows reflect origins. In order to 

explain the model and the dependent variable, y, we generate an n2 by 1 vector by stacking the 

columns of the matrix. If we consider a model with 4 regions, the flow matrix would be 

represented as in table 1.

Table 1: Elements of the trade flow matrix

y11 y12 y13 y14

y21 y22 y23 y24

y31 y32 y33 y34

y41 y42 y43 y44

Table 2: Data organization

Dyad 
label

ID 
origin

ID 
destination

Origin 
explanation 

variables 

Destination 
explanation 

variables

Distances

Y

1 2 3 1 2 3

1 1 1 y11 a11 a12 a13 b11 b12 b13 d11

2 2 1 y21 a21 a22 a23 b11 b12 b13 d21

3 3 1 y31 a31 a32 a33 b11 b12 b13 d31

4 4 1 y41 a41 a42 a43 b11 b12 b13 d41

5 1 2 y12 a11 a12 a13 b21 b22 b23 d12

6 2 2 y22 a21 a22 a23 b21 b22 b23 d22

7 3 2 y32 a31 a32 a33 b21 b22 b23 d32

8 4 2 y42 a41 a42 a43 b21 b22 b23 d42

9 1 3 y13 a11 a12 a13 b31 b32 b33 d13

10 2 3 y23 a21 a22 a23 b31 b32 b33 d23

11 3 3 y33 a31 a32 a33 b31 b32 b33 d33

12 4 3 y43 a41 a42 a43 b31 b32 b33 d43

13 1 4 y14 a11 a12 a13 b41 b42 b43 d14

14 2 4 y24 a21 a22 a23 b41 b42 b43 d24

15 3 4 y34 a31 a32 a33 b41 b42 b43 d34

16 4 4 y44 a41 a42 a43 b41 b42 b43 d44

The purpose of flow models is to explain variation in the magnitude of flows between each 

origin-destination pair. In this model we introduce three continuity spatial matrixes reflecting 



the three types of spatial connectivity. Taking into account the trade flows between A and B, 

matrix Wo (origin-based) captures the spatial relationship between the trade of regions 

neighboring A and B. Matrix Wd reflects the trade between A and regions neighboring B, and 

Wwconsiders the trade between regions neighboring A and regions neighboring B.

As in LeSage and Pace 2008, the model's matrixes are defined as 1) �� = �� ∗ �, where W

(Anselin, 1988) represents an n by n spatial weight matrix based on a neighbor’s criteria as a 

geographical continuity. Non-zero values for elements i, j denote that zone i is a neighbor to 

zone j, and zero values denote that zones i, j are not neighbors. The elements on the diagonal 

are zero to prevent an observation from being defined as a neighbor to itself. The Wo matrix 

forms an N by 1 vector containing a linear combination of flows that explain origin-based 

spatial dependence. Similarly, 2) �� = � ∗ �� captures destination-based spatial dependence 

and 3) �� = �� ∗ �� reflects the interaction of both origin-based and destination-based 

spatial dependence. 

The spatial lag vector ��� would be constructed by averaging flows from neighbors to the 

origin region, and the parameter ρ1 would capture the magnitude of impact from this type of 

neighboring observation on the dependent variable vector y. The spatial lag vector �� � would 

be constructed by averaging flows from neighbors to the destination region and parameter ρ2

would measure the impact and significance on flows from origin to all neighbors to the 

destination region. It seems plausible that forces leading to flows from an origin region to a 

destination region would create similar flows to neighboring destination. Finally, the third 

spatial lag in the model ��� is constructed using an average over all neighbors to both the 

origin and destination regions.

Estimating parameters ρ1, ρ2 and ρ3 provides an inference of relative importance of the three 

types of spatial dependence between the origin and destination regions. LeSage and Pace 

(2004) argue that the model can give a rise to a family of other models by establishing a 

number of restrictions. They defined nine different models derived by placing various 

restrictions on the parameters ρi. In this paper we have estimated the models with the 

following restrictions: ρ2= ρ3=0, ρ1= ρ3=0 and ρ1= ρ2=0. As LeSage and Pace (2008) point 

out, the specifications are based on single weight matrixes and allow the use of existing 

algorithms for maximum likelihood (Pace and Barry, 1997), Bayesian (LeSage, 1997) or a 

generalized moment estimation moment (Prucha and Kelejian 1999).

As in gravity models (Bergstrand, 1985 and 1989; Deardorff, 1995), X’s matrix captures the 

characteristics of origin and destination regions that could influence bilateral trade, as well as 



distance between the main city of origin-destination regions. Each variable produces an n2*1 

vector with the associated parameters in origin, βi, and destination, βj.  

LeSage and Polasek (2006) introduce an additional point of view into this model, modifying 

the spatial weight matrix considering the geographical criteria together with accessibility. In 

this sense, the authors consider the transportation routes that pass into these regions. In the 

present paper, and following the accessibility criteria, we have modified the spatial matrix, 

adding logistics platforms. We consider that the magnitude of trade flows depends on the 

facilities to transport commodities, so in order to modify the W matrix we have considered 

two criteria - geographical continuity and the presence of logistics platforms in regions.   

We have information about both the number and size of logistics platforms in every Spanish 

region. Considering these variables, we have constructed an indicator that measures 

connectivity, i.e. importance logistics infrastructures in terms of number and area, between the 

origin and destination regions. In this case, if regions i, j have a good logistics infrastructure 

and share a border, the matrix element is near 1; if they border one another but the logistics 

infrastructure is poor, the matrix element is near zero and if they do not border one another the 

matrix element is zero. 

3. Data, sources and variables

In order to apply equation (1), we generate a dataset with total commodity flows transported 

between 15 Spanish regions, during the year 2007. The regions were based on the NUTS-2 

and the interregional trade flow matrixes (considering road, rail and air transport) have been 

supplied by C-Interreg.1 We used 18 origin-destination matrixes (origin in rows, destinations 

in columns); two with total trade flows in value and in tonnes and the others correspond to the 

activity branches shown in table (3).

As explanatory variables used to construct the matrixes X0 (origin) and Xd (destination) we 

used the log of area in each region, the log of GDPpc2 in each region and the log of 

employment in each region. To measure the distance between origin and destination we have 

used the distance between regional capitals in km. The Spanish Statistical Institute (INE) has 

been the source of information and, as for the dependent variables, the dates refer to 2007. 

                                                                           
1 We are grateful to Carlos Llano for data availability.
2 When regressions for different sectors are run, the GPNpc considered is agricultural or industrial respectively



Table 3: Activity branches.

Source: INE (2010)

As LeSage and Polasek (2008) note, one of the main problems with this kind of models is the 

dimension of the matrix. We have worked with 15 regions, so the weight matrix is 225 rows 

and 225 columns, but the Wo, Wd and Ww matrixes dimension are considerably higher, thus 

being 50,625 rows and 50,625 columns. It is important to note that the increased level of 

disaggregation creates a problem with the size of the database; according to LeSage and Pace 

(2004) that problem is minimized by replacing the determinant of matrixes Wo, Wd, Ww with 

the determinant of matrix W.

We have modified the weighting matrixes (W) by introducing infrastructure and logistics 

characteristics. In particular, we have considered the number and the size of logistics 

platforms in each region to proxy for the quality and level of logistics factors between the 

origin region and destination region. Therefore, we have constructed a connectivity index as 

expressed in equation (2): 

��������� =
�

�
�

������ �������

������� � �������
�

���������������

�����������������

�
+

����� ��������

������� � �������
�

������� ��������

�����������������

�
� (2)

We have applied two different weight matrixes, thus being the W matrix (constructed by 

using a geographical criterion based on a first-order contiguity) and Wm matrix (constructed 

by using both the geographical and the connectivity index criteria), so we substitute the non-

Branch Description

R1- AA,BB- Agriculture, forestry and fishing

R2- CA,CB- Mining and quarrying

R3- DA- Food Industry

R4- DB- -Textile and clothing

R5- DC- Leather and Footwear Industry

R6- DD- Manufacture of wood and cork

R7- DE- Paper, printing and graphic arts

R8- DG- Chemical Industry

R9- DH- manufacture of rubber and plastic products

10- DI- industry, non-metallic mineral products

R11- DJ- Basic metals and fabricated metal products

R12- DK- Manufacture of machinery and mechanical equipment

R13- DL- electrical equipment, electronic and optical

R14- DM- Manufacture of transport equipment

R15- DN- Diverse industries

R16- DF, EE- energy industry, power distribution, gas and water



zero values from the W matrix for the values of connectivity index, thus considering the 

spatial distribution of logistics infrastructures in trade flows.

The modified spatial matrix (Wm) has been constructed taking into account two elements, as 

in the W matrix, the first-order geographical continuity and second is the index connectivity 

between the origin and destination (Iconectij), so we substitute the non-zero values from W 

matrix form the connectivity index in the Wm matrix, thus considering the logistics

performance in trade flows.

4. Empirical analysis

4.1. Descriptive analysis

First of all, we represent a map of Spain showing regions containing the total trade flows, as 

export-trade and (figure 1) as import-trade (figure 2). The areas where the most important 

trade flows are concentrated are identified with dark color (Darker blue colors reflect lower 

levels of flows while lighter blue colors indicate higher flow levels). These maps represent 

total trade flows, so the analysis should be carried out from a general point of view. 

Figure 1—Spanish regions (NUTS 2) by export intensity.3

                                                                           
3 These maps are constructed by setting flows within regions to zero values to emphasize interregional flows.
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Figure 2—Spanish regions (NUTS 2) by import intensity

The maps (figure 1 and 2) are quite similar. The Spanish regions with the greatest export 

intensity are Castile la Mancha, Castile León, Catalonia and Valencia and regions with the 

greatest import intensity are Madrid, Castile La Mancha, Catalonia and Valencia.

Figure 3—Spanish regions (NUTS 2) size of logistics platforms

Figures 3 and 4 show the connectivity index but taking into account only one component, size 

and number of platforms, respectively. Finally, figure 5 shows the map of the connectivity 

index from equation (2) and which has been used in matrix the modified matrix (Wm).

31938.8 - 53099.4
16726.2 - 31938.8
10018 - 16726.2
6176.1 - 10018

TOTAL TRADE (tonnes) 2007

Deviation from the mean[+]
Deviation from the mean[-]

CONNECTIVITY INDEX (SIZE OF PLATFORMS)



Figure 4—Spanish regions (NUTS 2) 

Figure 5—Spanish regions (NUTS 2) - Connectivity index

In Figure 5, the regions containing the highest logistics performance index values are dark 

orange. As already noted, this example illustrates a case where a clear differentiation can be 

made between regions in terms of logistics performance. This should provide a good test of 

whether explicitly incorporating such prior information into the spatial connectivity structure 

of the model results in substantial differences in the estimates and inferences.

Examining the maps in Figures 1 and 2 in conjunction with that of the logistics network in 

Figure 5, it is clear that the level of flows in origin and destination regions that have more 

developed logistics networks is higher than for regions with less developed logistics networks.

Deviation from the mean[+]
Deviation from the mean[-]

CONNECTIVITY INDEX (NUMBER OF PLATFORMS)

Deviation from the mean[+]
Deviation from the mean[-]

CONNECTIVITY INDEX



Second, to analyze whether the inter-regional trade values are based on the locations where 

they are measured, we use Moran's I measure of spatial autocorrelation. In order to do so, we 

use the spatwmat command in STATA to generate the three weight matrixes based on the 

locations in our data (first-order contiguity: Wo, Wd, Ww) and the spatgsa command in 

STATA to calculate Moran's I measure.  Our results show that we can reject the null 

hypothesis that there is zero spatial autocorrelation present in the trade variable, both when it 

is measured in values as well as in tonnes.

Table 4. Moran's I measure of spatial autocorrelation. First-order contiguity.

Trade values Trade weights/tonnes

Wo 0.345*** (7.107) 0.432*** ( 8.890)

Wd 0.478*** ( 9.822) 0.411*** ( 8.460)

Ww 0.041** ( 1.823) 0.150*** (6.151)

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z- statistics are given in brackets. Moran's I 

measure of spatial autocorrelation is calculated for the natural logarithm of exports in value (millions euros) from region i 

(origin) to j (destination) – Column 1 - as well as for the natural logarithm of exports in (thousands of tonnes) – Column 2. 

Data is for the year 2007.

Thirdly, we also analyze the existence of spatial autocorrelation when we include the 

transportation network and logistics infrastructure in the weighting matrixes. We find that 

spatial autocorrelation exists in origin (Wo), destination (Wd) and in the interaction between 

origin and destination (Ww), as we reject the null hypothesis that there is zero spatial 

autocorrelation in the three cases.

Table 5. Moran's I measure of spatial autocorrelation. First-order contiguity and logistics 

platforms.

Trade values Trade weights/tonnes

Wo_connect 0.359*** (6.831) 0.468*** (8.889)

Wd_connect 0.493*** (9.431) 0.420*** (8.049)

Ww_connect 0.059** (2.128) 0.205*** (7.059)

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in brackets. Moran's I measure 

of spatial autocorrelation is calculated for the natural logarithm of exports in value (millions euros)  from region i (origin) to j 

(destination) –Column 1 - as well as for the natural logarithm of exports in thousands of tonnes Column 2-. Data is for the 

year 2007.

These results point towards the importance of considering a framework where spatial 

dependence is taken into account. In the next section, we will illustrate this aspect of model 

specification using our sample data for the 15 Spanish regions.



4.2. Main results

In order to analyze the spatial dependence of inter-regional Spanish trade flows, we estimate 

equation (1) using commodity flows transported between 15 regions in Spain during the year 

2007. The regions were based on the NUTS2 regions.4 The flows used represent the value in 

euros (millions) and tonnes  (thousands), with the source of the data being Interreg. As in 

LeSage and Polasek (2008), the interregional flow magnitudes were transformed using logs.          

The algorithms used to produce the estimates were those described in LeSage and Pace (2005)

and LeSage and Polasek (2008), which involve maximizing the log-likelihood function 

concentrated with respect to parameters β and σ in the model. This results in a three-parameter 

optimization problem involving the parameters ρ1; ρ2; ρ3.

Two variants of the model were estimated, one based on the spatial weight structure proposed 

by LeSage and Pace (2005) and another which reflects the logistics performance in Spanish 

regions discussed in Section 2. The first approach relied on a matrix W based on the first-

order contiguous neighboring regions as the basis for constructing the weight matrixes Wo; 

Wd; Ww used by the model. The second approach relied on a matrix W which considers 

logistics performance in conjunction with the restriction that only first-order neighbors are 

included in the formation of the spatial lags. This will result in a direct relationship between 

increased numbers of the nearest neighbors and the performance of the logistics segments that 

go to form the spatial lag variables. 

As explanatory variables used to form the matrixes Xo and Xd, we use the log of area in each 

region; the log of employment and the log of GDP per capita. A vector of (logged) distances 

between the capital of each region was also included as an explanatory variable, along with an 

intercept vector.

We would expect that employment would show a positive sign, leading to higher levels of 

commodity flows (values and weights) in both the origin and destination regions. The 

coefficient estimate on distance should be negative, indicating a decrease of commodity flows 

with distance, whereas the impact of area and GPD is ambiguous.

Our estimate focuses on comparing the model based on spatial weights constructed from first-

order contiguity relationships and the model based on logistics network structure.

On the one hand, the left part of Table 6 (Models 1-6) presents the results obtained when 

using the spatial weights constructed from first-order contiguity relationships. Models 1, 2 and 

                                                                           
4 Andalusia, Aragon, Asturias, Cantabria, Castile and León, Castilla-la-Mancha, Catalonia, Valencia, 
Extremadura, Galicia, Madrid, Murcia, Navarre, Basque Country, La Rioja. The Canary Islands and the Balearic 
Islands, Ceuta and Melilla are not considered. We are considering the interregional trade in the peninsula and the 
effect of trade with bordering regions, so in this case the island have not bordering regions.



3 show the obtained results when the dependent variable is trade in value, and they separately 

include origin (ρ0), destination (ρd) and origin-destination (ρw) lags, respectively. Models 4-6 

show the results obtained when the dependent variable is trade in weights. On the other hand, 

the right-hand part of Table 6 (Models 7-12) presents the results obtained when using the 

spatial weights constructed from both the first-order contiguity relationships and the logistics 

network structure.5

Table 6 shows that the explanatory variables show the expected sign and are significant in all 

cases. Additionally, Table 6 presents the parameter estimates for both the first-order 

contiguity-based spatial weight model (left part) and for the modified model (right part). From 

the two models we see a similar pattern of values when the variable is measured in values: ρ1 

<0, ρ2 >0 and ρ3 <0, although ρ1 is positive signed when running the regressions with the 

dependent variable in tonnes. Although destination dependence has the expected sign in all 

cases, it is only significant in the contiguity model since the spatial lags are not significant in 

the model constructed by considering logistics performance in neighboring regions. For the 

dependent variable in weight ρ1, ρ2, ρ3 are positive signed in all cases, although they are only 

significant at origin dependence. Otherwise spatial dependence is not significant in the 

modified model. 

In order to improve our understanding of the results obtained, we go further by running 

different regressions for exports (in thousands of tonnes) included in different economic 

activities, as we believe the problem may arise from aggregation bias.

                                                                           
5 When estimates are run for different sectors, the effect of both per capita GDP and surface are found to be 
ambiguous. This is probably due to the fact that the GDP for agriculture and industry is included in the different 
agriculture and industry branch regressions respectively. These results are available upon request from the 
authors.



Table 6: Estimates from the contiguity-based spatial model (m1-m6) and the modified logistics model (m7-m12)

Exports in Value Exports in Tonnes Exports in Value Exports in Tonnes

Variable m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

Origin area 0.50*** 0.50*** 0.51*** 0.50*** 0.47*** 0.48*** 0.50*** 0.50*** 0.51*** 0.48*** 0.48*** 0.47***

(4.93) (5.03) (4.99) (4.80) (4.60) (4.66) (5.00) (4.94) (5.07) (4.638) (4.62) (4.60)

Origin GDPpc 2.56*** 2.20*** 2.55*** 1.57*** 1.54*** 1.59*** 2.59*** 2.42*** 2.55*** 1.51*** 1.63*** 1.57***

(5.40) (4.51) (5.37) (3.27) (3.11) (3.31) (5.46) (4.93) (5.40) (3.12) (3.31) (3.26)

Origin employment 0.34*** 0.29*** 0.34*** 0.27*** 0.28*** 0.28*** 0.34*** 0.33*** 0.34*** 0.28*** 0.29*** 0.28***

(5.26) (4.39) (5.26) (4.16) (4.04) (4.16) (5.24) (4.89) (5.18) (4.24) (4.28) (4.25)

Destination area 0.40*** 0.43*** 0.40*** 0.37*** 0.36*** 0.37*** 0.41*** 0.40*** 0.41*** 0.36*** 0.36*** 0.36***

(3.98) (4.24) (3.98) (3.57) (3.50) (3.58) (4.02) (3.95) (4.04) (3.48) (3.51) (3.49)

Destination GDPpc 1.49*** 1.44*** 1.46*** 0.83* 1.01** 1.06** 1.57*** 1.47*** 1.32*** 0.89* 1.00* 1.00**

(3.00) (3.03) (3.02) (1.66) (2.06) (2.16) (3.15) (3.06) (2.70) (1.76) (2.03) (1.99)

Destination employment 0.40*** 0.39*** 0.39*** 0.37*** 0.41*** 0.40*** 0.41*** 0.40*** 0.37*** 0.39*** 0.40*** 0.41***

(5.60) (6.00) (6.00) (5.16) (6.11) (6.10) (5.98) (6.09) (5.69) (5.58) (6.06) (6.05)

Distance -0.78*** -0.87*** -0.80*** -1.21*** -1.14*** -1.10*** -0.75*** -0.82*** -0.80*** -1.18*** -1.12*** -1.13***

(-5.30) (-6.24) (-5.73) (-8.21) (-7.97) (-7.77) (-5.08) (-5.84) (-5.84) (-7.98) (-7.84) (-8.01)

Constant term -15.38*** -14.31*** -15.11*** -7.17*** -7.53** -9.02** -15.82*** -14.86*** -13.98*** -6.94** -7.67* -7.46*



(-4.60) (-4.33) (-4.35) (-2.12) (-2.22) (-2.55) (-4.68) (-4.43) (-4.08) (-2.02) (-2.26) (-2.13)

ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3

-0.02 0.14** -0.02 0.11* 0.02 0.16 -0.05 0.05 -0.11 0.06 -0.03 -0.01

(-0.23) (2.46) (-0.21) (1.63) (0.3) (1.42) (-0.83) (1.03) (-1.51) (1.05) (-0.57) (-0.11)

Observations 210 210 210 210 210 210 210 210 210 210 210 210

Log likelihood -299.59 -296.67 -299.6 -302.39 -303.67 -302.71 -299.28 -299.09 -298.49 -303.16 -303.55 -303.71

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in brackets.



4.3 The logistics network neighborhood model for agricultural and industrial sectors

Turning attention to the logistics modified model, we see a pattern of estimates for ρ1; ρ2; ρ3 

where all three parameters are positive. This should not be surprising, since the spatial lags for 

the origin and destination (associated with parameters ρ1 and ρ2) average over neighboring

regions on the logistics network which should be positively associated with the level of 

commodity flows. The significance of the spatial lags varies by sectors, whereas ρ1 and ρ2 are 

positive and significant in sector 1; they are not significant for the other agricultural activities. 

In addition, the spatial lag for the interaction term averages covering neighbors to the origin 

and neighbors to the destination that are also on the network is not significant in any of the 

cases.6

Table 7: Estimates from the logistics spatial model. Agriculture sectors (R1, R2, R3)  

ρ1 ρ2 ρ3

R1 0.14** 0.11* 0.04

(2.09) (1.81) (0.41)

R2 0.05 0.04 -0.05

(0.59) (0.53) (-0.36)

R3 0.05 0.02 -0.01

(1.38) (0.81) (-0.17)

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in brackets.

Table 8 shows that ρ1; ρ2; ρ3 are positive for most economic activity industrial exports. 

However, the spatial lag is only significant for the case of the exports included in R5, R6, R7, 

R13 and R15. There is a consistent pattern of parameter ρ2 being more times significant than 

ρ1 in a number of sectors (R6, R7), suggesting that neighbors of the destination region in the 

logistics model represent the most important determinant of higher levels of industrial

commodity flows between O-D pairs.

Table 8: Estimates from the logistics spatial model. Industrial sector (R4-R15)  

                                                                           
6 The results for the other explanatory variables are available upon request from the authors.

ρ1 ρ2 ρ3

R4 0.05 0.02 -0.03

(1.58) (0.65) (-0.54)

R5 0.26*** 0.26*** 0.54***

(3.43) (3.36) (4.54)

R6 -0.1 0.18** 0.06

(-0.92) (2.08) (0.41)

R7 0.06 0.11*** -0.03

(1.02) (2.7) (-0.48)

R8 -0.05 0 0.06

(-1.05) (-0.04) (1.04)

R9 -0.03 0.09 0.18



Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in brackets.

5. Conclusions

The aim of this study was to focus in the spatial (geographical) model determined by 

commodity flow interregional trade, highlighting the spatial dynamic synergies generated

between neighboring regions to the origin region, and neighboring regions to the destination 

region. In a spatial model in which the results are related to the regional characteristics, the 

spatial unit chosen is crucial. This paper has opted for NUTS-2, being aware of the biases to 

which breakdowns can lead. The analysis was made at sectoral level (15 branches) in order to 

capture any sectoral differences. There are regions where agriculture is more important, while 

others are more dedicated to manufacturing activities, specifically the Basque Country or 

Madrid ahead of Andalusia or Murcia. In this  case, analyzing the spatial dependence in 

different sectors is of great interest. 

The results have thus revealed a spatial pattern, but also the limitations of the level of 

territorial breakdown chosen, Autonomous Communities (NUTS-2) are a basic unit too large 

and heterogeneous to be treated as a whole, especially in some cases, such as Andalusia, 

Castile la Mancha or Castile León. It is necessary to reduce the spatial level and consider a 

smaller basic unit area. In further research, we aim to reduce the geographical scale to 

provincial level (NUTS-3), as well as improving the connectivity index.

For the Spanish case, our results show that, at total values and tonnes of commodities moved 

from one region to another, spatial dependence is only significant when the weight matrixes 

are constructed as first-order continuity. However, spatial dependence is not significant when 

the weight matrixes are constructed using both contiguity and connectivity measures. These 

results support the hypothesis that the way in which the weight matrixes are constructed is of 

great importance. Our results support the idea that sectoral breakdown levels also have to been 

taken into account in order to capture spatial dependence.

(-0.34) (1.22) (1.41)

R10 -0.1 -0.05 0.04

(-1.46) (-0.77) (0.39)

R11 -0.02 -0.03 0.06

(-0.68) (-0.99) (1.36)

R12 0.06 -0.19 -0.11

(0.45) (-1.31) (-0.44)

R13 0.14* 0.14** 0.09

(1.78) (2.01) (0.73)

R14 0.05 0.02 -0.03

(1.58) (0.65) (-0.54)

R15 0.26*** 0.26*** 0.54***

(3.43) (3.36) (4.54)
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