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ABSTRACT 

 

More competitive regions tend to present higher level of economic growth, with 

positive reflexes on social aspects. The different economic performances observed 

among regions are explained mainly by the spatial concentration of the economic 

activities. This paper aims to analyze the influence of space on the regional 

competitiveness in manufacturing in Brazil. Data for 137 regions in the period 2000-

2006 is used. In each region we have one representative firm for four sectors defined by 

technological intensity.  We estimate stochastic frontiers to calculate regional 

efficiency, and the efficiency results are then used in Markov Spatial Transition 

Matrices to analyze the transition of regions between efficiency levels, considering their 

local spatial context. We found that a good neighborhood (more competitive neighbors) 

increases the probability of improving the relative efficiency of a region (pull effect). 

We also found that a bad neighborhood (less competitive) increases the probability of 

losing relative efficiency (drag effect). In quantitative terms, we found that the pull 

effect is stronger than the drag effect. 

 

 

 

 

 

 



1. INTRODUCTION 

Regional dynamic is influenced by spatially specific economic and social aspects, such 

as human and natural resources and politic and economic environments. The different 

economic performances observed among the regions can be explained, in parts, by the 

spatial concentrations of economic activities, particularly in the manufacturing sector. 

When analyzing the tendencies of the manufacturing sector, we are looking for 

indications of the future regional growth. According to Baldwin and Martin (2003), 

forces that stimulate the location of an industry have great possibilities to promote the 

physical and human capital accumulation in the region. The Spatial Economy literature 

considers the study of externalities and their transmission through space which are 

essential to understanding the agglomeration of people and activities. Therefore, in 

studying the different productive patterns of regions, it is important to consider the 

spatial distribution of productivity and to measure how the productive level of the 

neighborhood affects the productive efficiency of a region. 

 

Among the economic activities, we chose to study manufacturing, disaggregated into its 

sectors. As Rezende and Tafner (2005) argue, innovation is an important variable 

influencing productivity, and technological advantages constitute the basis for the 

competitiveness of more developed economies. It is expected that the presence of high 

technology sectors in the productive structure of a country increases the probabilities of 

economic and social growth. 

 

This paper investigates how the productive efficiency of a region can be affected by the 

performance of its neighbors, focusing on Brazilian manufacturing. The paper is 

organized as follows. After this introduction, the next section describes the database. 

Section three presents the methodology to obtain the productive regional efficiency 

estimates, using stochastic frontiers. It also explains the Spatial Markov Chain 

methodology used to obtain probabilities of changing the relative efficiency situation, 

conditioned on the efficiency levels of the neighborhood. Section four discusses the 

empirical results, and section five concludes the paper. 

 



2. DATA 

The database is composed of manufacturing firms in Brazil. The data source is the 

annual manufacturing survey (Pesquisa Industrial Anual) developed by IBGE, the 

Brazilian Statistics Office (PIA). We use an unbalanced panel with three dimensions: a) 

temporal: annual observations from 2000 to 2006; b) geographical: 137 regions (meso 

regions); sectoral: four sectors defined on the basis of technological intensity
1
: high 

(HI), medium-high (MHI), medium-low (MLO) and low (LO). We use value added as 

the output of firms. The inputs are labor (annual average of employees) and stock of 

capital. All the monetary variables were deflated by the sector IPA-OG index
2
.  

 

Since confidentiality rules prevent access to data for individual firms, we use a data 

base specially organized on-demand by IBGE for this study, aggregating the data of 

output and inputs to the region level. Therefore, we have one representative firm for 

each region, in each sector, which is constituted by the average of all corresponding 

firms. Since we have 137 regions and 4 sectors, the maximum number of firms in the 

sample is 548. Figure 1 shows the regional distribution of value added in 2006. Regions 

in white were excluded from the sample, since they had zero or very low number of 

manufacturing plants. A careful study of outliers led to the elimination of some cases 

(region x sector) with evident data problems. 

 

 

 

 

 

 

 

 

 

 

 

                                                
1
 Based on spending in R&D and other technological variables, as prepared by De Negri and Salerno 

(2005), following the OCDE framework. Details in Appendix 1. 
2 

FGV data (www.fgvdados.br) 

 



 

Figure 1– Regional Distribution of Value Added, 2006 

 

 

 

 

 

3. METHODOLOGY 

3.1 Stochastic Frontier 

The Spatial Markov Chain (SMC) will be calculated using estimates of productive 

efficiency obtained from the estimation of stochastic frontiers of production. Assuming 

certain technology of production, points in the frontier show situations in which it is not 

possible to increase output without using more inputs. Then, points below the frontier 

characterize technical inefficient firms and the distance to the frontier is a measure of 

this inefficiency (AFRIAT, 1972; AIGNER; CHU, 1972; AIGNER et al, 1977; 

MEEUSEN; Van Den BROECKER, 1977). 

We will use the Battese and Coelli (1995) specification of stochastic frontiers, in which 

the production function is simultaneously estimated with the inefficiency function, 

which can use exogenous variables that do not belong to the output-input relationship 

(BATTESE; COELLI, 1995; KUMBHAKAR; LOVELL., 2000; GARDINER et al., 

2004). The model can be written as: 
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Table 1 shows the results of the stochastic frontier estimation, with pooled data (each 

region represented by 4 firms, one for each technology intensity sectors).  

 

Table 1 - Results of the Stochastic Production Frontier Estimation 

 Coefficient t stat. Significance 

Constant 2.7637 28.69 *** 

Ln(employees) 0.3303 15.87 *** 
Production 

Function 
Ln(capital stock) 0.6981 90.463 *** 

     

Constant -8.5300 -2.53 ** Inefficiency 

Function Tendency -1.2632 -2.66 *** 

 σ2 4.7057 2.83 *** 

 γ 0.9771 109.08 *** 

 Iterations 35 

 LR test (3) 236.21 

 N 2352 

 I 337 

 T 7 

Significance degrees: * 10%, ** 5%, *** 1%. 

                                                

3
 Other specifications were considered, with weaker results. 

 



 

The stochastic frontier methodology gives one estimate of efficiency to each sector, 

region and time. Therefore, it is necessary to aggregate the results obtaining a measure 

of regional efficiency. For that, we applied a system of grades. This system considers 

the performance of a sector in a region and the role of each sector in the global 

production of the region. To obtain a high grade, it is necessary that the region be 

efficient in sectors of high importance for its productive structure. The total grade of the 

region is given by the weighted average of the grades of the sectors (based on the 

efficiency estimates) and the participation of each sector in its productive structure. 

Grades were computed for each year, and the final grade is the arithmetic average of all 

grades received from 2000 to 2006. The ranking and evolution of the productive 

efficiency of the regions are computed in the Appendix 2. 

 

 

3.2 Spatial Markov Chain 
 
Rey (2001) explores the Markov spatial transition matrixes when analyzing how the 

American income distribution evolved on time and space.  The Spatial Markov Chains 

are constructed to evaluate how the efficiency of the neighborhood influences the 

efficiency in a particular region. The Spatial Markov Chains produce results on the 

frequency of transitions among classes (or states) considering the spatial dependence in 

this process. The SMC methodology is a fusion of two theories: i) the Markov chains 

which analyses the dynamic of processes and ii) the Spatial Econometrics (ROSS, 1996; 

ANSELIN, 1988). The “Markov Chain” stochastic process specifies that, given the 

present and past states, any future state of a region is only dependent on the present 

state. The methodology specifies a vector of states that represents the probabilities of 

changing among the k classes of efficiency presented by the regions in some year.  

 

Once the dynamic of the transition process is considered, it is necessary to include the 

influence of the spatial dependence. The Moran’s I statistic, used to analyze spatial 

autocorrelation, is given by the expression below. 
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Where: wir is the element of line i (region) and column r (other regions) of a W spatial 

matrix
4
; y is the productive efficiency of the region; and y  is the mean of the 

productive efficiency. We use a Queen type of a binary spatial matrix of a first order 

contiguity. This means that, considering a region in line i of the matrix, all the columns 

assume value equal to one if they are neighbors of i (if they have a common border with 

the i region) and zero otherwise. 

 

However, the Moran’s I ignores the possibility of local instabilities, since it calculates a 

global indicator. The LISA (Local Indicator of Spatial Analysis) is a local index that 

identifies the presence of spatial agglomerations and calculates an indicator to each 

location, and verifies its significance through similar values with the analyzed region. 

The LISA is given by the expression below
5
. 
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Where the variables are the same as defined by the Moran’s I. LISA analyzes the state 

of a region in relation to the total space, given the state of its neighbors. As so, it is a 

relative measure that classifies each region in one of the four kinds of behaviour: HH 

(LL) when the value of the region and its neighbors is high (low), and LH (HL) when 

the value of the region is low (high) and its neighbors is high (low). 

 

We allow that all the regions to change to different states of efficiency, always 

maintaining the same spatial structure. The SMC shows how this changing process 

occurs, considering spatial and dynamics aspects. Each element of the SMC matrix 

                                                
4 Each line and column of the W matrix represents a region. Each cell assumes a value depending of the 

relation between the region in line i and the regions of the column r to this line. If the regions of the line 

and column are neighbors, the cell assumes a value different from zero.  
5
 According to Anselin (1995), a LISA indicator should satisfy two propositions. Firs, it gives an 

indication of the extension of the spatial agglomeration (cluster) to each observation and similar values to 

its neighborhood and second, the sum of the LISAs of all the observations should be proportional to a 

global indicator of spatial association. 



indicates the probability that a region belonging to the a state in period t can move to a 

b state in period t+1, given the state of its neighbors. 

 

The first step is to decide the number of classes in which the productive efficiency is 

evaluated. The probability of transition among classes is conditional to the initial 

efficiency class of the neighbors resulting in the transition spatial matrix of Markov 

(REY, 2001). If there exists k classes of efficiency, the matrix dimension will be k x k x 

k (the possible initial and final states of the region and the possible states of the 

neighbors). Therefore, the SMC studies the dynamics of the transition among states in 

two moments in time, considering the spatial characteristics of the regions. 

 

The efficiency state of the neighbors is calculated using a W matrix of spatial weights 

and the result is divided according to the number of the k classes chosen. If four classes 

are assumed, we obtain four different behaviors to the regions: HH, HL, LH and LL. 

The Table 2 exemplifies a case of SMC considering k=2 and two moments in time to 

(initial) e t1 (final). 

 

Table 2 - Spatial Markov Matrix - Example 

 State T1 

Spatial Dependence to L H 

L PLL/L PLH/L 

L 
H PHL/L PHH/L 

L PLL/H PLH/H 

H 
H PHL/H PHH/H 

 

Each cell of the matrix indicates probabilities of transition among states. The first cell, 

PLL/L, indicates the probability of a region that has low efficiency in t0 (PLL/L) to stay in 

the same state in t1 (PLL/L), given that its neighbors have low efficiency (PLL/L). The 

probability PLH/L from the first row and second column indicates the probability of a 

region that has low efficiency in t0 (PLH/L) to move to a higher efficiency state in t1 

(PLH/L), given the low efficiency state of its neighbors (PLH/L). This means that the 

region is successful, since not only enhanced its efficiency in relation to the mean, but 

also did this involved in a low efficient environment. It is possible to apply this analysis 

in time, substituting successively the t0 e t1 periods and calculating the corresponding 

probabilities. 



 

We decided to perform a more detailed analysis, defining four classes (k=4): from the 

mean to one standard deviation (H), higher than one standard deviation (HH), from the 

mean to less than a standard deviation (L) and lower than a standard deviation (LL).  

 

Since we are dealing with neighborhood, it is important to include all the regions in the 

analysis, even if they do not have efficiency estimates (regions whit absence of some 

sector). To consider these observations, the SMC is modified to include an extra class, 

comprising the zero-cases. Thus, instead of dealing with k=4 classes, we use k+1=5 

classes. The regions characterized by the absence of a sector are denominated NaN (not 

a mumber). The rest of them are calculated as explained above, using the mean and 

standard deviation
6
. If the entire neighborhood is NaN, the spatial dependence also 

assumes NaN. But if just one neighbor is different from NaN, we use the spatial 

dependence estimate of the efficiency. NaN in t0 e t1 indicates that the sector is absent in 

the region for both periods, while NaN in the spatial dependence means that the sector 

is absent in the neighborhood of the region. 

 

 

4. EMPIRICAL RESULTS 

 

The transition spatial Markov matrix is analyzed considering the productive efficiencies 

estimated in the previous section. The results are presented in Table 3. The first column 

is an indicator of the line of the matrix, and it is designed to facilitate the location of the 

results explained in the text. In the SMC methodology, the transition of efficiency states 

it is considered between two consecutives moments in time. Hence, if the period is from 

2000 to 2006, there are six possible transitions. To each pair of years, we compute the 

transition cases. The same behavior case of the next consecutive pair of years is 

summed, and then we calculate the probabilities. Therefore, with n region, k classes and 

t years, there are (t-1)*k*n possible cases of transitions.
 7
 

 

                                                
6
 The mean and the standard deviation are calculated ignoring the NaN observations. 

7 At most, there are 137 regions and five sectors (HI, MHI, MLO, LO and absence of a sector NaN). From 

2000 to 2006, we have t-1=6. Therefore, it is possible to obtain, at most, 137*5*6= 4110 cases of 

transitions.  



Table 3 shows the number of cases of a certain kind of transition. For example, line 9 

indicates the probability of transition of a region that started t0 with H efficiency, to 

move to the other classes of efficiency, given that it is surrounded by LL neighbors. 

Considering the pairs of consecutive years from 2000 to 2006, there are 54 cases (line 9 

column 4) of regions that presented this type of behavior. The same logic is repeated to 

the tables in Appendix 3, which show the results for each sector of technology intensity. 

The lines 1 to 5, 6, 11, 16 and 21 and the NaN column are not of interest to the analysis 

because they show cases where there is not an indication of productive efficiency (they 

are all NaN cases). The main diagonal (in yellow) represents situations where there is 

no relative change in the efficiency of the regions. 

 

Table 3 – SMC Matrixes – pooled data 

t1 Line 
t0 

Neighborhood 

condition 

Num. 

Cases NaN LL L H HH 

1 NaN 397 1.0000 0.0000 0.0000 0.0000 0.0000 

2 LL 8 0.0000 0.5000 0.2500 0.2500 0.0000 

3 L 8 0.0000 0.2500 0.2500 0.5000 0.0000 

4 H 60 0.0000 0.0167 0.0667 0.9000 0.0167 

5 HH 

NaN 

4 0.0000 0.0000 0.0000 0.7500 0.2500 

6 NaN 135 0.9926 0.0074 0.0000 0.0000 0.0000 

7 LL 69 0.0000 0.6957 0.2319 0.0725 0.0000 

8 L 47 0.0000 0.3191 0.3404 0.3404 0.0000 

9 H 54 0.0000 0.0741 0.1852 0.6852 0.0556 

10 HH 

LL 

10 0.0000 0.1000 0.0000 0.4000 0.5000 

11 NaN 199 0.9899 0.0101 0.0000 0.0000 0.0000 

12 LL 114 0.0088 0.5877 0.3070 0.0965 0.0000 

13 L 153 0.0000 0.1961 0.4706 0.3333 0.0000 

14 H 264 0.0000 0.0379 0.2008 0.7235 0.0379 

15 HH 

L 

23 0.0000 0.0000 0.0000 0.3043 0.6957 

16 NaN 551 0.9964 0.0018 0.0000 0.0018 0.0000 

17 LL 85 0.0000 0.4118 0.2941 0.2706 0.0235 

18 L 189 0.0000 0.1217 0.4286 0.4444 0.0053 

19 H 825 0.0012 0.0206 0.1103 0.8412 0.0267 

20 HH 

H 

73 0.0000 0.0411 0.0000 0.5342 0.4247 

21 NaN 40 1.0000 0.0000 0.0000 0.0000 0.0000 

22 LL 3 0.0000 0.0000 0.6667 0.3333 0.0000 

23 L 5 0.0000 0.2000 0.4000 0.4000 0.0000 

24 H 17 0.0000 0.0000 0.1176 0.8235 0.0588 

25 HH 

HH 

3 0.0000 0.0000 0.0000 0.3333 0.6667  
 

Lines 6 to 10 represent regions whose neighbors have very low productive efficiency 

(LL). Lines 11 to 15 represent cases of L neighbors; lines 16 to 20 represent neighbors 

with efficiency between the mean up to one standard deviation (H); lines 21 to 25 

represent neighbors with efficiency beyond one standard deviation (HH). In general, the 



yellow cells hold the larger values of the lines, meaning that inertia (that is, probability 

of the region to stay in the same class of efficiency) is very high. Table 4 shows the 

probability of the regions to stay in the same class of efficiency, independently of their 

neighborhood
8
. The probability of staying in the same class is high, especially for 

regions classified as H-efficient. 

 

Table 4 – Probability of staying in the same class of efficiency 

 LL L H HH 

All sectors 0.4238 0.4099 0.7684 0.5718 

High Intensity 0.3929 0.4170 0.7712 0.0000 

Medium High 0.3684 0.5588 0.5962 0.2322 

Medium Low 0.4560 0.4045 0.8174 0.3250 

Low Intensity 0.4513 0.4532 0.7122 0.6699  
 

Table 5 summarizes the simulated SMC matrixes. We count all the cases of getting 

better and worse. Then, considering the cases of regions that could get better, we 

counted the ones that actually did get better. Dividing the two values, we obtained the 

probability of the region to achieve a better class of efficiency (and the same logic is 

applied to the worsen cases, mutatis mutandis). 

 

The next step is to consider all the cases of regions whose neighbors were classified in 

better classes of efficiency and, among these, count the cases of regions that enhanced 

their situation. We calculate the probability of moving to better classes of efficiency, 

given that the region is surrounded by higher efficiency neighbors (the same logic is 

applied to the worsen cases, mutatis mutandis). 

 

 

 

 

 

 

 

 

 

                                                
8
 We obtained the values of table 4 by calculating the mean of the inertial behavior for all classes of 

efficiency of their neighbors. 



Table 5 – Results of the SMC matrixes 

Getting better      

 

 

 

 

Cases of 

regions that 

could get 

better 

Cases of 

regions that 

got better 

Probability 

of getting 

better 

Cases of 

regions with 

better 

neighbors 

Cases of 

regions with 

better 

neighbors and 

that got better 

Probability of 

getting better 

with better 

neighbors 

All sectors 1.825 310 0.1699 413 187 0.4528 

High Intensity 314 57 0.1815 86 33 0.3837 

Medium High 292 50 0.1712 70 32 0.4571 

Medium Low 576 97 0.1684 143 59 0.4126 

Low Intensity 633 113 0.1785 166 72 0.4337 

       

       

Getting worse      

 

 

 

 

Cases of 

regions that 

could get 

worse 

Cases of 

regions that 

got worse 

Probability 

of getting 

worse 

Cases of 

regions with 

worse 

neighbors 

Cases of 

regions with 

worse 

neighbors and 

that got worse 

Probability of 

getting worse 

with worse 

neighbors 

All sectors 1.663 311 0.1870 471 146 0.3100 

High Intensity 299 57 0.1906 89 28 0.3146 

Medium High 268 50 0.1866 82 15 0.1829 

Medium Low 529 92 0.1739 169 48 0.2840 

Low Intensity 591 115 0.1946 187 60 0.3209  

 

In general, the probability of a region deteriorating its efficiency situation is higher than 

the probability of getting better: 18.7% versus 17.0%. But, if regions are surrounded by 

neighbors with better efficiency, they have 45.3% chances of getting better (almost 

three times more than when the neighborhood is not considered). This result is higher 

than the probability of a region to get worse if it is surrounded by neighbors with worse 

efficiency (31.0%), meaning that bad neighborhood almost doubles the chances of 

failure. Therefore, we conclude that the pull effect (that is, the effect of a good 

neighborhood in enhancing efficiency) is higher than the drag effect (effect of a bad 

neighborhood in retracting the efficiency) 

  

Some sectoral patterns are observed in the simulation by technological intensity sector. 

The probability of getting better is higher in the High Intensity sector, while the 

probability of getting worse is higher in the Low Intensity sector. Besides, this sector 

seems to be the more negatively influenced by the neighbors, since it is the one that has 

the largest probability of getting to a worse efficiency if it is surrounded by less efficient 

neighbors; the probability of the High Intensity sector is almost the same. The most 

successful sector, when surrounded by more efficient neighbors, is the Medium High 



Intensity sector, which also presents low relative probability of getting worse when 

surrounded in a less efficient neighborhood. 

 

These results show that the neighborhood has an important influence in the regions’ 

efficiency and that the pull effect is bigger than the drag effect. This pattern is 

maintained to all 4 sectors. The difference between these effects is larger for the 

Medium High Intensity (0.27 pp), indicating that this is the sector with lower instability 

in relation to the possibility of its regions to beneficiate from the pull effect. With less 

than half of the value, it is followed by the Medium Low Intensity and Low Intensity 

sectors (0.13 and 0.11 pp, respectively). 

 

 

5. CONCLUSION 

 

In this paper we analyzed how the efficiency of a region can be affected by the state of 

efficiency of its neighborhood. To do so, we first obtained the efficiency estimates by 

applying the stochastic frontier methodology to the manufacturing data in Brazil. The 

regional efficiency was explored through the effect of the proximity of a region to a 

good or bad neighborhood, using the Spatial Markov Chain methodology. 

 

The most important conclusion is that we could obtain a measure that indicates that the 

neighborhood affects the performance of the regions. When the analysis does not 

consider the neighborhood, there is a higher probability of the regions to get worse. But 

when they are surrounded by a good neighborhood (of high efficiency), they have 

almost three times more chances of getting a better performance. On the other hand, the 

bad neighborhood enhances almost two times the chances of failure. This indicates that 

the pull effect (good neighborhood enhancing the efficiency) is bigger than the drag 

effect (bad neighborhood decreasing the efficiency), since regions with more efficient 

neighbors have 45.3% of chances to increase their efficiency, while regions with less 

efficient neighbors have 31.0% of chances to decrease their efficiency. 

  

This pattern is maintained to all the levels of technology intensity sectors. The 

difference between the effects is bigger for the Medium High Intensity sector (0.27 pp), 



indicating that it is the sector with less instability when beneficiating of the pull effect. It 

is followed by the Medium Low and Low Intensity sectors. 

 

The most successful sector when surrounded by efficient neighbors is the Medium High 

Technology Intensity sector. The regions with Low Intensity sector seems to be the 

most negatively affected by their neighbors, since it is the sector with higher probability 

of getting worse if surrounded by less efficient neighbors. 
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Appendix 1 – Classification of the technological intensity sectors 
 

Classification CNAE 1.0 Code (IBGE) 

35 (Other Vehicles) 

33 (Medical and hospital equipments) 

31(Electrical equipments) 

322, 323 (Electronic equipments) 

30 (Computer hardware equipments) 

29 (Machines and equipments) 

341 to 343, 345 (Vehicles) 

 

 

High technology intensity 

232 (Oil refinery) 

24 (Chemical products) 

321(Basic electronic products) 

211 (Cellulose and paper plant) 

16 (Tobacco)  

344 (Vehicles accessories) 

 

Medium-High technology 

intensity 

369 (Diverse products) 

25 (Rubber and plastic products) 

28 (Metal products) 

27 (Steel) 

212 to 214 (Paper and packages) 

26 (Products of on metal minerals) 

Medium-Low technology 

intensity 

19 (Leather and shoes) 

17 (Textile)  

15 (Food and Beverages) 

361 (Furniture products) 

18 (Clothes and accessories) 

20 (Wood products) 

22 (Edition and printing) 

 

Low technology intensity 

231, 233, 234 (Alcohol and nuclear energy) 

 



Appendix 2 – Evolution (%) of the efficiency by mesoregion from 2000 to 2006 

 

Mesoregion 
Position 

2001 

Position 

2006 

Evolution 

(%) 
 Mesoregion 

Position 

2001 

Position 

2006 

Evolution 

(%)  
Mesoregion 

Position 

2001 

Position 

2006 Evolution (%) 

PA 1505 1 1 0.00  BA 2907 33 33 7.00  TO 1701 91 71 45.85 

BA 2901 1 1 0.00  SC 4201 17 34 -6.31  SC 4202 45 72 -24.07 

RJ 3304 1 1 0.00  PA 1506 71 35 60.84  PE 2603 93 73 49.51 

MT 5102 1 1 0.00  SP 3511 46 36 7.67  RS 4303 50 74 -15.76 

GO 5202 1 1 0.00  ES 3203 68 37 52.19  PR 4109 54 75 -15.49 

GO 5204 89 1 173.59  SP 3512 41 38 5.16  RS 4301 43 77 -28.58 

RO 1102 102 1 400.00  MS 5002 84 39 75.02  PR 4106 39 78 -29.98 

BA 2905 13 2 10.61  SP 3513 4 40 -29.87  MT 5101 57 79 -17.07 

MT 5105 16 3 13.76  CE 2303 47 41 2.24  SP 3510 60 80 -18.17 

AM 1303 3 4 -0.23  BA 2906 11 42 -24.68  PI 2202 99 81 65.54 

MA 2101 10 5 4.13  MG 3106 88 43 81.38  BA 2903 73 82 -2.97 

AL 2702 7 6 -0.34  SP 3501 32 44 -11.19  RS 4304 34 83 -42.37 

MG 3107 44 7 35.11  PB 2503 92 45 92.07  SE 2803 87 84 8.14 

MG 3105 56 9 59.78  SP 3502 49 46 5.54  SC 4203 67 85 -17.30 

PR 4110 23 10 14.52  SC 4205 21 47 -18.26  RN 2404 80 86 2.94 

SP 3507 2 11 -6.84  MA 2102 58 48 14.63  AC 1202 103 87 100.00 

RJ 3305 38 12 30.45  RS 4302 27 49 -18.38  CE 2301 18 89 -51.04 

SP 3506 66 13 76.37  PE 2605 72 50 43.56  SE 2802 52 90 -33.33 

ES 3201 53 14 49.19  AL 2703 28 51 -18.84  PR 4101 69 92 -14.61 

RJ 3306 6 15 -5.83  SP 3504 62 52 12.11  PR 4102 82 93 0.00 

PA 1503 64 16 64.91  RN 2402 76 53 42.65  RS 4306 83 94 0.00 

RJ 3302 74 17 101.28  SP 3503 59 54 8.29  PR 4104 61 95 -33.05 

MS 5003 96 18 183.43  SP 3505 42 55 -12.10  RS 4307 86 96 -7.13 

MG 3108 19 19 6.34  GO 5205 14 56 -31.32  MS 5004 24 97 -55.65 

DF 5301 25 20 6.63  RO 1101 1 57 -40.00  MG 3111 48 98 -48.81 

SP 3509 9 21 -7.94  SC 4206 77 59 37.81  PR 4103 55 99 -45.93 

SP 3515 35 22 15.75  MG 3109 63 60 9.06  PB 2504 97 100 2.89 

SC 4204 15 23 -2.22  MG 3112 70 61 27.51  MG 3102 90 102 -23.08 



Mesoregion 
Position 

2001 

Position 

2006 

Evolution 

(%) 
 Mesoregion 

Position 

2001 

Position 

2006 

Evolution 

(%)  
Mesoregion 

Position 

2001 

Position 

2006 Evolution (%) 

PR 4105 20 24 4.52  ES 3204 65 62 9.20  PE 2604 94 103 -23.63 

RJ 3301 30 25 6.34  MT 5104 40 63 -18.73  SP 3514 22 104 -69.50 

ES 3202 8 26 -13.50  RJ 3303 5 64 -40.99  CE 2302 36 105 -71.92 

PA 1501 79 27 100.00  GO 5203 51 65 -7.81  CE 2305 31 106 -73.53 

PA 1502 1 28 -20.00  MG 3103 100 66 118.94  RN 2401 95 107 -38.87 

PB 2501 37 29 12.68  MG 3110 85 67 39.45  RN 2403 1 108 -80.00 

BA 2904 75 30 82.95  MG 3101 98 68 95.34  MG 3104 81 111 -50.00 

GO 5201 1 31 -20.00  SP 3508 12 69 -40.30  PR 4108 78 112 -52.39 

RS 4305 26 32 0.78  PR 4107 29 70 -32.30  MT 5103 101 113 -4.37  



Appendix 3 – Spatial Markov Chain Matrixes 

 
High Technology Intensity  Medium High Technology Intensity 

t1 

t0 

Spatial 

Dependence 

Num. 

Cases NaN LL L H HH 

NaN 198 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 7 0.0000 0.8571 0.1429 0.0000 0.0000 

L 13 0.0000 0.0769 0.5385 0.3846 0.0000 

H 21 0.0000 0.0000 0.2381 0.7143 0.0476 

HH 

NaN 

1 0.0000 0.0000 0.0000 1.0000 0.0000 

NaN 38 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 0 0.0000 0.0000 0.0000 0.0000 0.0000 

L 7 0.0000 0.1429 0.7143 0.1429 0.0000 

H 7 0.0000 0.0000 0.2857 0.5714 0.1429 

HH 

LL 

1 0.0000 0.0000 0.0000 1.0000 0.0000 

NaN 64 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 7 0.0000 0.5714 0.2857 0.1429 0.0000 

L 25 0.0000 0.0400 0.4800 0.4800 0.0000 

H 65 0.0000 0.0154 0.2154 0.7231 0.0462 

HH 

L 

4 0.0000 0.0000 0.0000 1.0000 0.0000 

NaN 163 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 16 0.0000 0.5000 0.3750 0.1250 0.0000 

L 57 0.0000 0.1579 0.4737 0.3684 0.0000 

H 124 0.0000 0.0403 0.1129 0.7903 0.0565 

HH 

H 

5 0.0000 0.0000 0.0000 1.0000 0.0000 

NaN 5 1,0000 0,0000 0,0000 0,0000 0,0000 

LL 2 0,0000 0,5000 0,5000 0,0000 0,0000 

L 0 0,0000 0,0000 0,0000 0,0000 0,0000 

H 4 0,0000 0,0000 0,0000 1,0000 0,0000 

HH 

HH 

0 0,0000 0,0000 0,0000 0,0000 0,0000  

t1 

t0 

Spatial 

Dependence 

Num. 

Cases NaN LL L H HH 

NaN 157 1,0000 0,0000 0,0000 0,0000 0,0000 

LL 5 0,0000 0,4000 0,2000 0,4000 0,0000 

L 7 0,0000 0,1429 0,2857 0,5714 0,0000 

H 20 0,0000 0,1000 0,1500 0,7500 0,0000 

HH 

NaN 

0 0,0000 0,0000 0,0000 0,0000 0,0000 

NaN 45 0,9778 0,0222 0,0000 0,0000 0,0000 

LL 4 0,0000 0,5000 0,5000 0,0000 0,0000 

L 4 0,0000 0,2500 0,5000 0,2500 0,0000 

H 8 0,0000 0,1250 0,1250 0,7500 0,0000 

HH 

LL 

0 0,0000 0,0000 0,0000 0,0000 0,0000 

NaN 115 1,0000 0,0000 0,0000 0,0000 0,0000 

LL 14 0,0000 0,5000 0,3571 0,1429 0,0000 

L 17 0,0000 0,4118 0,2941 0,2941 0,0000 

H 57 0,0000 0,0175 0,0702 0,8772 0,0351 

HH 

L 

7 0,0000 0,0000 0,0000 0,5714 0,4286 

NaN 177 0,9887 0,0056 0,0000 0,0056 0,0000 

LL 19 0,0000 0,4737 0,1579 0,3684 0,0000 

L 34 0,0000 0,1176 0,4412 0,4412 0,0000 

H 132 0,0076 0,0227 0,1515 0,7576 0,0606 

HH 

H 

6 0,0000 0,1667 0,0000 0,3333 0,5000 

NaN 3 1,0000 0,0000 0,0000 0,0000 0,0000 

LL 0 0,0000 0,0000 0,0000 0,0000 0,0000 

L 2 0,0000 0,0000 1,0000 0,0000 0,0000 

H 1 0,0000 0,0000 1,0000 0,0000 0,0000 

HH 

HH 

0 0,0000 0,0000 0,0000 0,0000 0,0000  



(cont.) Spatial Markov Chain Matrixes 

Medium Low Technology Intensity Low Technology Intensity 

t1 

t0 

Spatial 

Dependence 

Num. 

Cases NaN LL L H HH 

NaN 30 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 0 0.0000 0.0000 0.0000 0.0000 0.0000 

L 0 0.0000 0.0000 0.0000 0.0000 0.0000 

H 6 0.0000 0.0000 0.0000 1.0000 0.0000 

HH 

NaN 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

NaN 41 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 16 0.0000 0.6875 0.1875 0.1250 0.0000 

L 8 0.0000 0.1250 0.6250 0.2500 0.0000 

H 19 0.0000 0.0000 0.0526 0.8947 0.0526 

HH 

LL 

5 0.0000 0.2000 0.0000 0.4000 0.4000 

NaN 60 0.9833 0.0167 0.0000 0.0000 0.0000 

LL 32 0.0000 0.5313 0.3438 0.1250 0.0000 

L 51 0.0000 0.1765 0.4706 0.3529 0.0000 

H 102 0.0000 0.0196 0.2059 0.7353 0.0392 

HH 

L 

10 0.0000 0.0000 0.0000 0.5000 0.5000 

NaN 77 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 38 0.0000 0.6053 0.2632 0.1053 0.0263 

L 67 0.0000 0.0746 0.5224 0.3731 0.0299 

H 237 0.0000 0.0295 0.0970 0.8397 0.0338 

HH 

H 

25 0.0000 0.0400 0.0000 0.5600 0.4000 

NaN 4 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 1 0.0000 0.0000 0.0000 1.0000 0.0000 

L 0 0.0000 0.0000 0.0000 0.0000 0.0000 

H 5 0.0000 0.0000 0.0000 0.8000 0.2000 

HH 

HH 

0 0.0000 0.0000 0.0000 0.0000 0.0000  

t1 

t0 

Spatial 

Dependence 

Num. 

Cases NaN LL L H HH 

NaN 12 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 0 0.0000 0.0000 0.0000 0.0000 0.0000 

L 0 0.0000 0.0000 0.0000 0.0000 0.0000 

H 0 0.0000 0.0000 0.0000 0.0000 0.0000 

HH 

NaN 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

NaN 18 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 15 0.0000 0.7333 0.2000 0.0667 0.0000 

L 24 0.0000 0.2083 0.5000 0.2917 0.0000 

H 17 0.0000 0.1176 0.3529 0.4706 0.0588 

HH 

LL 

4 0.0000 0.2500 0.0000 0.0000 0.7500 

NaN 54 0.9815 0.0185 0.0000 0.0000 0.0000 

LL 63 0.0000 0.6508 0.2222 0.1270 0.0000 

L 42 0.0000 0.3095 0.4048 0.2857 0.0000 

H 91 0.0000 0.0440 0.1648 0.7473 0.0440 

HH 

L 

11 0.0000 0.0909 0.0000 0.4545 0.4545 

NaN 39 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 19 0.0526 0.4211 0.2105 0.1579 0.1579 

L 76 0.0000 0.0921 0.4079 0.4737 0.0263 

H 278 0.0000 0.0072 0.1151 0.8309 0.0468 

HH 

H 

40 0.0000 0.0500 0.0500 0.4250 0.4750 

NaN 22 1.0000 0.0000 0.0000 0.0000 0.0000 

LL 1 0.0000 0.0000 1.0000 0.0000 0.0000 

L 2 0.0000 0.0000 0.5000 0.5000 0.0000 

H 5 0.0000 0.0000 0.2000 0.8000 0.0000 

HH 

HH 

1 0.0000 0.0000 0.0000 0.0000 1.0000  
 


