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Abstract

Public acceptance has often been stated being a key factor for the successful realization of
transport projects and policies. One reason why even economically efficient projects might
not be accepted by the major part of the population could be the unequal distribution of
benefits. For instance, individuals with higher Values of Time are expected to benefit
more from user-financed improvements in the quality of service (e.g. speed) of any
transportation mode. Beyond that, the implementation of road pricing schemes is
currently being discussed to have regressive effects on the welfare distribution under
certain conditions.

In order to address these issues, microscopic multi-agent simulation presented in this
paper can be used. Policy makers are directly able to compare the impacts of different
policy schemes on the welfare distribution and can thus identify alternatives with higher
public acceptance. Generally, by using the multi-agent approach, any segregation of
individuals among any socio-demographic attribute is possible what allows a more detailed
view on the effects of a policy measure. Furthermore, in contrast to applied economic
policy analysis, this framework allows choice modeling and economic evaluation to be
realised in a consistent way.

This paper shows that (i) the inclusion of individual income in the users’ preferences
leads to a better understanding of problems that are linked to acceptability, (ii) benefits
of transport projects are likely to rise disproportionally with increasing income - both,
in terms of utility change and in terms of money -, and (iii) the simulation is already
feasible for a real-world large-scale scenario with almost two million individuals.
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1 Introduction

Policy measures in transportation planning aim at improving the system as a whole.
Changes to the system that result in an unequal distribution of the overall welfare gain
are, however, hard to implement in democratically organized societies. Studies indicate
that, e.g., tolls tend to be regressive if no redistribution scheme is considered at the same
time, and may so increase the inequality in welfare distribution (e.g. Franklin, 2006).
An option to reach broader public acceptance for such policies may be to include the
redistribution of total gains into the scheme. Hence, methods and tools are needed that
simulate welfare changes due to policies on a highly granulated level, e.g. considering each
individual of the society. With such tools, policy makers are able to consider impacts
of different proposed measures on the welfare distribution. In addition, it is possible
to estimate the level of acceptance within the society and, if necessary, to evaluate
alternatives for further discussion.

Traditional transport planning tools using the four-step process combined with standard
economic appraisal methods (e.g. Pearce and Nash, 1981) are not able to provide such
analysis. In order to bridge this gap, multi-agent microsimulations can be used. Large-
scale multi-agent traffic simulations are capable of simulating the complete day-plans of
several millions of individuals (agents) (Meister et al., 2008). In contrast to traditional
models, all attributes that are attached to the synthetic travelers are kept during the
simulation process, thus enabling highly granulated analysis (Nagel et al., 2008). Being
aware of all attributes enables the possibility to attach to every traveller an individual
utility function that is used to maximize the individual return of travel choices during
the simulation process. Another advantage of the multi-agent simulation technique is
the connection of travelers’ choices along the time axis when simulating time dependent
policies (Grether et al., 2008).

In the context of policy evaluation, simulation results can immediately be used to identify
winners and losers, since the utility scores of the individual agents are kept and can be
compared between scenarios agent-by-agent. They can also be aggregated in arbitrary
ways, based on any available demographic attributes including spatial information of high
resolution. Welfare computations, if desired, can be done on top of that, without having
to resort to indirect measures such as link travel times or inter-zonal impedances. The
usual problems when monetarizing the individual utility still apply (Bates, 2006), but at
least one of the main issues in applied economic analysis is addressed: with multi-agent
approaches, choice modeling and economic evaluation are implemented in a consistent
framework, similar to efforts to base such analysis directly on discrete choice models (de
Jong et al., 2006).

This paper shows how multi-agent approaches can be used in policy evaluation. It studies
why income should be included in utility calculations when considering issues linked with
public acceptance. Then, we describe implications on the simulation model and focus on
the measurement of welfare effects resulting from policy measures.
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The paper is organized as follows: in Sec. 2, the simulation approach and the income-
dependent utility function are introduced. Sec. 3 presents the setup for a realistic
simulation of regular workday traffic in the Zurich metropolitan area including the policy
design of a public transit price and speed increase. Sec. 4 points out the main results of
the simulation. In Sec. 5 welfare changes across the income range and resulting issues
linked to public acceptance are discussed. The paper ends with a conclusion.

2 Simulation approach

This section aims at describing the simulation approach that is used in this paper. It
then introduces the income dependent utility function.

At this point, only a brief overview of the software tool MATSim1 can be given. For
more detailed information, please refer to the Appendix or see Raney and Nagel (2006)
or Balmer et al. (2005).

2.1 MATSim at a glance

In MATSim, each traveler of the real system is modeled as an individual agent. The
approach consists of an iterative loop that has the following important steps:

1. Plans generation: All agents independently generate daily plans, that encode
among other things his or her desired activities during a typical day as well as the
transportation mode. There is always one plan for each mode.

2. Traffic flow simulation: All selected plans are simultaneously executed in the
simulation of the physical system.

3. Scoring: All executed plans are scored by an utility function which is, in this
paper, personalized for every individual by individual income.

4. Learning: Some of the agents obtain new plans for the next iteration by modifying
copies of existing plans. This is done by several modules that correspond to the
choice dimensions available: time choice, route choice and mode choice. Agents
choose between their plans with respect to a Random Utility Model (RUM).

The repetition of the iteration cycle coupled with the agent database enables the agents
to improve their plans over many iterations. This is why it is also called learning
mechanism which is described in more detail by Balmer et al. (2005). The iteration
cycle continues until the system has reached a relaxed state. At this point, there is no
quantitative measure of when the system is “relaxed”; we just allow the cycle to continue
until the outcome is stable.

1 Multi-Agent Transport Simulation, see www.matsim.org.
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2.2 Utility function

There is some agreement that income effects play an important role in transport policy
analysis, see, e.g., Herriges and Kling (1999); Kockelman (2001); Bates (1987, 2006);
Franklin (2006). The argument essentially is that monetary price changes affect different
income groups differently. This is usually addressed by including income dependent user
preferences in the utility function.

The functional form used for simulations is loosely based on Franklin (2006) and is
similar to Kickhöfer (2009). A detailed derivation of this form and the estimation of the
corresponding parameters are illustrated in Grether et al. (2009b). Hence, the utility
functions of the two transport modes car and public transit (pt) are, according to (3),
given by:

Ucar,i,j = +
1.86

h
t∗,i · ln(

tperf ,i
t0,i

) − 4.58
ci,car
yj

−0.97

h
ti,car

Upt,i,j = +
1.86

h
t∗,i · ln(

tperf ,i
t0,i

) − 4.58
ci,pt
yj

(1)

The first summand refers to (4) with βperf ,i = +1.86/h. The second and third summands
introduce mode and income dependency to the utility functions: yj stands for the daily
income of person j and ci is monetary cost for the trip to activity i. The indices car
and pt indicate the mode. Trip costs are calculated using ci,car = 0.12 CHF/km and
ci,pt = 0.28 CHF/km. While there is a forth summand for car (βtt ,car = −0.97/h),
picking up the linear disutility of travel time ti, there is no equivalent expression in the
pt utility function. Travel time in pt is nonetheless punished by the opportunity costs of
time by missing out on positive utility of an activity (βperf ,i) which also implies additional
negative utility for the car travel time.

By adding individual income to the utility function, strongly personalized preferences
are modeled. Additionally, in a real-world scenario, trip distances and daily plans do
also vary individually. Utilities are computed in “utils”; a possible conversion into units
of money or “hours of leisure time” (Jara-Dı́az et al., 2008) needs to be done separately
(see Sec. 5).

3 Scenario

The income-dependent utility function is now applied to a large-scale, real-world scenario.
The metropolitan area of Zurich, Switzerland, is used which counts about 1 million
inhabitants. The following paragraphs give a simplified description of the scenario and
focus on differences to similar simulations done by Chen et al. (2008) where a full
description for a reference scenario can be found.
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In order to obtain robust results, the correctness and plausibility of the implementation
of the income-dependent utility function was verified in a simple test scenario and then
calibrated against the reference scenario (Grether et al., 2009b).

3.1 Network and population

The network is a Swiss regional planning network that includes the major European
transport corridors. It consists of 24 180 nodes and 60 492 links.

The simulated demand consists of all travelers within Switzerland that are inside an
imaginary 30 km boundary around Zurich at least once during their day (Chen et al.,
2008; Vrtic et al., 2007). All agents have complete day plans with activities like home,
work, education, shopping, leisure, based on microcensus information (SFSO, 2000, 2006).
The time window during which activities can be performed is limited to certain hours of
the day: work and education can be performed from 07:00 to 18:00, shopping from 08:00
to 20:00, while home and leisure have no restrictions. Each agent gets two plans based
on the same activity pattern. The first plan only uses car as transportation mode, while
the second plan uses only public transit.

In order to speed up computations, a random 10% sample is taken from the synthetic
population for simulation, consisting of 181 725 agents. In this large-scale scenario, agents
can modify their plans with respect to all three choice dimensions available as described
in Sec. 2.1.

3.2 Income generation

Income is generated based on a Lorenz curve. Due to the lack of exact data the functional
form of the Lorenz curve was approximated. Then the income curve, the first derivative
of the Lorenz curve, was calculated (Kämpke, 2008).2 To generate personal incomes for
the agents, a random number between 0 and 1 is drawn from a uniform distribution. For
this number, the corresponding value on the income curve is calculated and multiplied by
the median income. Doing this for all members of the synthetic population, an income
distribution was derived, similar to the distribution in reality.

Region specific data is used for the Canton Zurich3 area. A specific median is available
for each municipality4 of the state5 For every person living in Canton Zurich area, the
municipality of the person’s home location is identified. Then, the median income of

2The Lorenz curve is L(x) ∝
∫ x

0
y(ξ) dξ. Therefore, L′(x) ∝ y(x). The correct scaling is given by the

fact that y(0.5) is the median income.
3A Swiss “Canton” is similar to a federal state
4“Gemeinde” is the next lower administrative level below “Kanton” in Switzerland, i.e. some kind of

municipality
5http://www.statistik.zh.ch/themenportal/themen/daten_detail.php?id=759, last access

30.10.2009
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this municipality is used for income calculation in conjunction with a Lorenz curve for
the Canton Zurich.6 The scenario focuses on the Zurich metropolitan area. Therefore,
the income of persons living outside the borders of Canton Zurich is computed with the
median income and the Lorenz curve of the Swiss Confederation.7 The median income
used for the Swiss Confederation is 43665 CHF per household and year.

3.3 Policy design

In order to evaluate a fictive, but realistic policy measure, the design is based on price
and travel time elasticities analysed by Cervero (1990). In his collection of different
studies, Cervero (1990) estimates travel time elasticities to be approximately double as
high as price elasticities. Therefore, the policy for this paper is designed as a combination
of the following measures:

• public transit price increase: The price of public transit, ci,pt, is raised by 20%
from 0.28 to 0.336 CHF/km.

• public transit speed increase: The speed of public transit is increased, now
taking only 1.8 (instead of 2.0) times as long as the freespeed car. This corresponds
to a speed increase of 10%.

Raising public transit prices in order to generate funds for the improvement of the quality
of service, is often discussed in the context of public transit pricing. Following Cervero
(1990), one would expect almost no shift in the modal split for the combined policy
measure.

3.4 Simulation Runs

First, a “preparatory run” is performed by running the simulation for 2000 iterations
without any policy measure. For 1000 iterations, 10% of the agents perform “time
adaptation”and 10% adapt their routes. The other 80% of the agents switch between their
existing plans, which implicitly includes mode choice as explained in Sec. 2.1. During the
second 1000 iterations, time and route adaption are switched off; in consequence, agents
only switch between existing options. In the following, the output after 2000 iterations is
refered to as the base case.

After that, the policy is introduced. It is run for another 1000 iterations, starting from
the final iteration of the base case. Again, during the first 500 iterations 10% of the
agents perform “time adaptation” while another 10% of agents adapt routes. Agents,

6http://www.statistik.zh.ch/themenportal/themen/aktuell_detail.php?id=2752&tb=4&mt=0,
last access 30.10.2009

7http://www.bfs.admin.ch/bfs/portal/de/index/themen/20/02/blank/dos/01/02.html, last ac-
cess 30.10.2009
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that neither adapt time nor route, switch between existing plans according to (5) and
thus only can switch between transport modes. As for the base case, during the final
500 iterations only a fixed choice set is available.

4 Results

The base case of the Zurich scenario exhihits a modal split of 60.9%:39.1% (car:pt).
Fig. 1a depicts the modal split in the income deciles of the population. Both modes
are used across all deciles. The highest percentage of car users can be observed from
the 3rd to the 6th decile. The policy results in a mode share of 58.5%:41.5% (car:pt).
Due to the speed and price increase of the pt, in total 2.4% of car travellers change
from car to pt. Fig. 1b presents changes to the modal split in the income deciles of the
population compared to the base case. At a quick glance one can observe that with
increasing income, more persons switch from car to pt. More precisely one can see a
break in the increasing pt shares in the 5th decile, where only 1.5 % change mode while
in the 3rd and 4th decile 1.7% change mode. Apart from this outlier the mode choice
reflects the decreasing importance of travel costs compared to travel time savings when
income increases.

Increasing utility gains of agents with higher income can also be seen in Fig. 2a that
depicts the average utility change of each population decile sorted by income. Each dot
is located in the middle of the decile and represents the average utility change per decile.
For representation purposes the dots are connected with lines. Obviously, one recognizes
raising utility gains with increasing income. In terms of utils, the slope of the curve is
slightly positive. The subsequent section will show, however, that this increase has even
stronger effects when converting utils into money.

Fig. 2b breaks the average utiltiy gains of Fig. 2a down to several groups of persons in
each decile. Recall that four groups can be identified as a result of the measure: First,
people using the car mode before and after the measure are represented by red dots.
They gain somewhat due to less car traffic on the streets resulting in less congestion and
shorter travel times. The second group are travelers that use public transit before and
after the measure and they are depicted by green dots. In all deciles travel time gains
seem to overweight the price increase as in all groups utility is increasing. Again one
can observe increasing gains in higher income decils due to the declining influence of
travel cost. A similar effect can be ovserved for the third group, i.e. people switching
from car to public transit that are shown by yellow dots. In the lower income deciles
one recognizes slight average losses that can only be explained by stochastic effects in
the simulation cycle (see Appendix). The last and fourth group consists of travelers
switching from public transit to car. They are depicted by blue dots and their switch
from pt to car results from the increased price of the public transit. Due to the lower
mode share of the car mode, some of them gain due to the reduced travel times while
other gains in this group are caused by the stochastics of the simulation.
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(a) Base Case

(b) Combined Measure

Figure 1: Modal Split over income deciles. Red bars depict car drivers, blue bars public
transit users
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(a) Average utility changes

(b) Average utility changes per group

Figure 2: Average utility changes per population decile sorted by income
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5 Discussion

In this section, an estimation about the economic benefit of the policy is conducted.
After examining the distribution of economic benefit along the income deciles of the
population, some consequences regarding the project’s public acceptance are discussed.

5.1 Economic evaluation

The overall welfare effect of the policy is calculated by the mean utility gain in the deciles
∆Ud (in terms of money) times the (always equal) number of persons in each group
n. According to (1), conversion from utility units into CHF is dependent on individual
income yj and utility changes ∆Uj:

∆Ud =
1

n

n∑
j=1

∆Uj · yj
4.58

(2)

Summing this over all ten deciles, the welfare effect of this policy is about 1.23 million CHF
per day or almost 300 million CHF per year the computed 10% sample of the Zurich
metropoltitan population (see Sec. 3.1). Thus, following standard economic evaluation
methods, the policy should be introduced if this benefit overweights its economic costs.

5.2 Public acceptance

Fig. 3 shows in blue the total daily monetarized gains over deciles of the population,
sorted by average income. The monetarized gains in every decile can be interpreted as the
total willingness to pay for the measure. The red curve tries to explain implementation
problems due to low acceptance within the society. If, in a hypothetical case, the
same daily welfare gains of 1.23 million CHF were distributed as a monetary lump-sum
payment to every member of the population, every person would gain 6.55 CHF per
day or every decile 123’000 CHF. This highlights an important implementation problem
of policy measures in democratically organized societies: almost 70% of the population
would be better off with the lump-sum payment than with the implementation of the
measure and are therefore likely to refuse the latter. Thus, if the simulation results are
correct, financing this measure with tax revenues would be more appropriate, assuming
a progressive income tax. Whereas financed by non differentiated user fees, this policy
would have regressive impact on the income distribution.

This example is meant to show some possibilities of economic policy evaluation that are
feasible with multi-agent microsimulations. Agents optimise their daily plans with respect
to individual preferences such as individual income or activity location. Still, there are
three main issues that should be addressed in the future: first, for more reliable results,
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Figure 3: Daily willingness to pay for the policy change over average income per population
decile

the survey should be designed in a way that all needed parameters can be estimated
independently. Second, public transit is assumed to be 100 % reliable, and no fluctuations
due to geographic location or line cycles are considered. In principle, using multi-agent
transport simulations, makes it possible to combine multiple demographic attributes of
the population of interest, e.g. by viewing the geospatial distribution of winners and
losers of a measure (see Grether et al., 2008). Neither the measure of this paper nor the
public transit simulation features geospatial diversity. Thus analysis in the geographic
dimension is strongly homogeneous and a spatial pattern is not visible. In case of a
policy that is targeted on some geospatial impact the multi-agent approach should give
interesting insights into geospatial distribution of gains and losses (Rieser and Nagel,
2009). Third, utility changes within the simulation are influenced by stochastic effects
in the plan selection process, especially for people that switch mode. Nonetheless, it is
shown that with this multi-agent approach, welfare computations and equity analysis
can be done on the desired level of (dis)aggregation.

12
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6 Conclusion

Standard economic policy evaluation allows the realisation of projects if the aggregated
economic benefit overweights their costs. In democratically organized societies, the
implementation of measures with regressive effects on the welfare distribution tends to
be complicated due to low public acceptance.

The microscopic simulation approach presented in this paper is capable to help designing
better solutions in such situations. In particular, it is shown that income can and needs
to be included in utility calculations for a better understanding of problems linked to
acceptability. Furthermore, in contrast to state-of-the-practice project evaluation, choice
modeling and economic evaluation are implemented in a consistent framework since the
simulation output is directly used for evaluation. Finally, and going beyond Franklin
(2006), it is shown that the approach works in a large-scale real world example for which
economic benefits are computed.
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Benjamin Kickhöfer, Dominik Grether and Kai Nagel

Appendix. Simulation details

The following paragraphs are ment to present more information about the MATSim
simulation approach that is used in this paper. Every step of the iterative loop in Sec. 2.1
is now illustrated in more detail.

Plans generation

An agent’s daily plan contains information about his planned activity types and locations,
about duration and other time constraints of every activity, as well as the mode, route,
the desired departure time and the expected travel time of every intervening trip (= leg).
Initial plans are usually generated based on microcensus information and/or other surveys.
The plan that was reported by an individual, is in the first step marked as “selected”. An
alternative plan for non-selected transportation mode(s) is constructed.

Traffic flow simulation

The traffic flow simulation executes all selected plans simultaneously in the physical
environment and provides output describing what happened to each individual agent
during the execution of its plan. It differentiates between car and public transit plans:
The car traffic flow simulation is implemented as a queue simulation, where each street
(= link) is represented as a first-in first-out queue with two restrictions (Gawron, 1998;
Cetin et al., 2003): First, each agent has to remain for a certain time on the link,
corresponding to the free speed travel time. Second, a link storage capacity is defined
which limits the number of agents on the link; if it is filled up, no more agents can enter
this link.

The public transit simulation simply assumes that travel by public transit takes twice as
long as traveling by car on the fastest route in an empty network8 and that the travel
distance is 1.5 times the beeline distance. Public transit is assumed to run continuously
and without capacity restrictions (Grether et al., 2009a; Rieser et al., 2009).

The output of the traffic flow simulation is a list that describes for every agent different
events, e.g. entering or leaving a link, arriving or leaving an activity. The events data
includes agent ID, time and location (link or node ID). It is therefore quite easy to grab
very detailed information and to calculate indicators such as travel time or costs per link
(which is used by the router), trip travel time, trip length, percentage of congestion, and
many more.

8 This is based on the (informally stated) goal of the Berlin public transit company to generally achieve
door-to-door travel times that are no longer than twice as long as car travel times. This, in turn, is
based on the observation that non-captive travelers can be recruited into public transit when it is
faster than this benchmark (Reinhold, 2006).
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Scoring plans

In order to compare plans, it is necessary to assign a quantitative score to the performance
of each plan. In this work, in order to be consistent with economic theory, a simple
utility-based approach is used. The elements of our approach are as follows:

• The total score9 of a plan is computed as the sum of individual contributions:

Utotal =
n∑
i=1

Uperf ,i +
n∑
i=1

Utr ,i , (3)

where Utotal is the total utility for a given plan; n is the number of activities, which
equals the number of trips (the first and the last activity are counted as the same);
Uperf ,i is the (positive) utility earned for performing activity i and Utr ,i is the
(usually negative) utility earned for traveling during trip i.

• A logarithmic form is used for the positive utility earned by performing an activity:

Uperf ,i(tperf ,i) = βperf · t∗,i · ln
(
tperf ,i
t0,i

)
(4)

where tperf is the actual performed duration of the activity, t∗ is the “typical”
duration of an activity, and βperf is the marginal utility of an activity at its typical
duration. βperf is the same for all activities, since in equilibrium all activities at
their typical duration need to have the same marginal utility. t0,i is a scaling
parameter that is related both to the minimum duration and to the importance
of an activity. As long as dropping activities from the plan is not allowed, t0,i has
essentially no effect.

• The (dis)utility of traveling used in this paper is estimated from survey data. The
disutility is, at this point, not uniform but dependent on the agent’s individual
income. It is therefore explained in Sec. 2.2.

In principle, arriving early or late could be punished. There is, however, no immediate
need for doing so since this is already indirectly punished by foregoing the reward that
could be accumulated by performing an activity instead (opportunity cost of time). In
consequence, the marginal utility of waiting or being late is −βperf .

The learning mechanism

A plan can be modified by various modules that correspond to different choice dimensions.
These modules are customizable, they can be independently switched on or off or even be

9Note that the terms “score” and “utility” refer to the same absolute value. “Utility” is the common
expression in economic evaluation and is therefore used in this paper.
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replaced by other modules. In this paper, three different choice dimensions are considered:
time choice, route choice and mode choice that are implemented as follows:

1. Time allocation module: This module is called to change the timing of an
agent’s plan. A simple approach is used which just applies a random “mutation” to
the duration attributes of the agent’s activities (Balmer et al., 2005).

2. Router module: The router is a time-dependent best path algorithm (Lefebvre
and Balmer, 2007), using for every link generalized costs of the previous iteration.

3. Mode choice: This choice dimension is not represented by its own module, but
instead by making sure that every agent has at least one car and at least one public
transit plan (Grether et al., 2009a; Rieser et al., 2009).

The modules base their decisions on the output of the traffic flow simulation (e.g.
knowledge of congestion) using feedback from the multi-agent simulation structure
(Kaufman et al., 1991; Bottom, 2000). This sets up an iteration cycle which runs the
traffic flow simulation with the seclected plans for the agents, then uses the choice modules
to generate new plans; these are again fed into the traffic flow simulation, etc, until
consistency between modules is reached. The feedback cycle is controlled by the agent
database, which also keeps track of multiple plans generated by each agent.

In every iteration, 20% of the agents generate new plans by copying an existing plan and
then modifying the copy in equal parts of 10% either within the time allocation or the
router module. All other agents select one of their existing plans. The probability to
change from the selected plan to a randomly chosen plan is calculated according to

pchange = min(1, α · eβ·(srandom−scurrent)/2) , (5)

where

• α: The probability to change if both plans have the same score, set to 1%

• β: A sensitivity parameter, set to 2

• s{random,current}: The score of the current/random plan

In the steady state, this model is equivalent to the standard multinomial logit model

pj = eβ·sjP
i e
β·si , where pj is the probability for plan j to be selected.

The repetition of the iteration cycle coupled with the agent database enables the agents
to improve their plans over many iterations. This is why it is also called learning
mechanism which is described in more detail by Balmer et al. (2005). As the number
of plans is limited for every agent by memory constraints, the plan with the worst
performance is deleted when a new plan is added to a person that already has reached the
maximum number of plans. The iteration cycle continues until the system has reached
a relaxed state. At this point, there is no quantitative measure of when the system is
“relaxed”; we just allow the cycle to continue until the outcome is stable.
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