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Abstract 

Spatial interaction models commonly partition the study area into a number of zones and 

model the interaction between all zone pairs. For many applications this implies that the 

computational demands, both in terms for processing time and memory allocation, are 

quadratic to the number of zones. These practical implications compel modellers to reduce 

the number of zones and trade accuracy for efficiency. This paper presents an approach to 

modelling spatial interaction to reduce the computational demands while maintaining 

accuracy. The main idea is to create for each zone a set of clustered zones that it interacts 

with. The degree of clustering of interacting is governed by the error caused by aggregation. 

Areas with strong spatial interaction are modelled at high detail whereas the precision for 

weak interactions is lower. For the same number of zones the interaction will be based on a 

considerably smaller number of zone-pairs. In a typical model where interaction diminishes 

with distance, each zone interacts with small zones close by and increasingly large 

aggregated zones at further distances. The new adaptive zoning approach is applied on a 

doubly constrained distribution model of commuting in England. The case highlights the 

model modifications necessary to work with the adaptive zoning systems as well as the trade-

off in efficiency and accuracy that it entails. It appears that the number of zone pairs can be 

reduced by 95% whilst maintaining a fine granularity. 

1 Introduction 

In modelling spatial economic interactions such as embodied in the movements of people and 

goods, the study area is usually subdivided into geographic units, i.e. zones, to represent the 

origin, destination and any stop-over locations. In most cases, model precision tends to 

improve as the study area is subdivided into increasingly small zones. Smaller zones however 
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come at the cost of increased run-time. In practice the modeller often has to compromise on 

the resolution or the geographic coverage, which impinge upon model accuracy and 

applicability.  

Current trends in spatial economic interactions are calling for larger study areas and finer 

spatial details: As transport and telecommunications improve, the realm of spatial interaction 

continues to expand. Furthermore, the rapid expansion in e-monitoring of the movements of 

goods and people is offering ever-increasing amount of spatial details. The combined impact 

is a strong need for spatial economic modelling to expand coverage whilst capturing local 

details. 

In this paper we report the development of an innovative zoning methodology for spatial 

economic modelling. The basic idea is to use more detailed zoning where interaction is 

stronger, e.g. at shorter distance or between higher density areas. Instead of a single zonal 

division for the whole study area, the zoning scheme consists of one specific zonal division 

for each respective location (atomic zone) in the study area adapted to the interaction flows to 

and from that location. Incorporating this adaptive zoning scheme improves the scaling 

behaviour of spatial interaction and choice models, as the number of interactions per zone is 

no longer equal to the number of zones, but - depending on the precise nature of the 

interaction - logarithmic to it instead.  

This paper first details the proposed methodology to arrive at the intended zoning system. The 

driving thrust is to minimize the expected error due to aggregation, subject to a limitation of 

computing resources. Subsequently, the new zoning system is applied on a common doubly 

constrained spatial interaction model that requires some modifications in order to function in 

combination with the new adaptive zoning system.  

In theory, such a targeted application of computing power leads to higher precision at smaller 

cost. The adaptive zoning system however also introduces its own complexities that we 

explore by applying the model on an actual (albeit simplified) case of modelling the trip 

distribution for commuting in England on the basis of UK CENSUS 2001 data. In the 

discussion and conclusion we reflect on the merits of the zoning system for this particular 

model as well as the perspectives for further integration in spatial interaction models with a 

focus on transport modelling.  
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2 Methodology 

2.1 Terminology 

Zones at the finest level are atomic zones; these cannot be subdivided. Clustered zones are 

amalgamations of atomic zones and other clustered zones. The top zone consists of all zones 

and thereby covers the model area. The zones making up a clustered zone are called its child 

zones and the clustered zone is their parent zone. All zones, except the top zone, have exactly 

one parent zone. A neighbourhood is a configuration of atomic zones and clustered zones that 

is focused on one particular atomic zone. Each atomic zone has one neighbourhood.  

The methods will be explained by means of an artificial example. The atomic zones in the 

example are arranged in a regular grid of 20 * 20 cells. For illustration purposes, two cases 

are considered, one in which the cells have a uniform population density, and one where the 

density varies such that there are two urban centres separated and surrounded by a ‘green belt’. 

Distances between zones are Euclidean. 

  
Uniform density Variable density Legend (density) 

Figure 1. Atomic zoning systems used for illustration 

2.2 Zonal hierarchy generation 

There is a considerable literature on methods for grouping geographically detailed data into 

and making use of methods of clustering (Slater 1976) or optimization (Openshaw 1977). 

Clustering methods are defined by their clustering algorithm. For instance, nearest 

neighbouring clustering iteratively merges region pairs that are the closest of all pairs. 

Optimization methods are defined by their objective, which is to optimize particular 

characteristics. Duque et al. (2007) provide a review of clustering methods. Typically the 

methods aim to achieve high within-region homogeneity and high compactness. The work of 

Slater (Slater 1976; Slater 1987) details methods for hierarchical regionalization on the basis 

of links (primarily migration patterns) between zones.  
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For the first prototype a straightforward joining method is used. Starting point for this method 

is a distance matrix for all zone pairs and a vector of sizes (e.g. population) for each zone. 

Iteratively pairs of zones are joined on the basis of a criterion that combines distance and size. 

The criterion of distance follows from our overall objective to reduce the error caused by 

zonal aggregation and the consideration that this error is caused by the discarding of 

variations in distances within a zone. A zone with shorter internal distances will also have less 

internal variation in distances to other zones and hence cause less error. The criterion of zone 

size has another objective, in the following section we will explain how neighbourhoods of 

zones are created by selecting zones of different sizes as a function of their distance to the 

neighbourhood centre. The hierarchy of zones will over a more spatially balanced pallet of 

zone sizes if the aggregation aims to keep zone sizes equal. The combined criterion takes the 

following form: 

    ij ij i jc d s s  (1) 

Where, cij is the cluster criterion for zones i and j, dij is a measure of distance between zones i 

and j, si and sj are the sizes of zones i respectively j  

Upon joining, the distance matrix and size vector need to be adjusted; the two zones are taken 

out and a new amalgamated zone is introduced. The method for amalgamation that we 

applied for the distance matrix is the weighted pair-group method using arithmetic averages 

(WPGMA) (Sneath and Sokal 1973).  
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Where I is the amalgamated parent of zones i. 

WPGMA does not cover intrazonal distance, i.e. the average distance from a location within a 

zone to another location within the zone, as it does not affect the cluster process. We will use 

self-distance later on however, in order to estimate aggregation errors. Therefore we use the 

following amalgamation rule for intrazonal distances 



 

5 

 

 
 

2

  
 


 

 




i i ii i i

i I i I
II

i i
i I i I

s s d d
d

s s
 (4) 

Amalgamation of zone sizes is simple summation: 

 


I i
i I

s s  (5) 

The process of finding the pair of zones with the lowest value for the criterion cij and 

amalgamating the corresponding zones is iterated until only one zone remains, which is the 

top zone.  

When applying the aggregation algorithm on the illustration zones, a complication arises; 

because of the regular nature of the grid and the uniform density there are many pairs of zones 

scoring equally on the cluster criterion. Two different kinds of tiebreaking were used; random 

and north-west first. Even though this situation may not arise in reality, it indicates the role of 

path dependency in the formation of clusters. Figure 2 shows the results of the aggregation 

algorithm. 

2.3 Neighbourhood generation 

Neighbourhoods are derived with a view to minimize the error given the number of 

interactions. We try to achieve this by selecting interacting zones such that the error is 

distributed evenly. The rationale is to prevent spending computation time on levels of 

precision that are lost elsewhere. The algorithm for selecting interacting zones starts at 

clustered zone at the coarsest level of aggregation and incrementally breaks the zone with the 

smalles associated error into smaller zones, until the neighbourhood has the required number 

of zones. Note that even though this is a sensible heuristic approach, it is not guaranteed to 

arrive at the optimal solution. 
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200 Aggregation steps 300 Aggregation steps 380 Aggregation steps 395 Aggregation steps 

Uniform density north-west first tie-breaking 

 
Uniform density, random tie breaking 

 
Variable density, north-west first tie-breaking 

 

Variable density, random tie-breaking 

Figure 2. Aggregation results, for both demonstration cases, using two types of tie-breaking 

The neighbourhood generation takes two inputs. The first is the hierarchy as derived in the 

hierarchy generation. The second input is the function estimating the aggregation error for 

interaction between two zones. The appropriate form of this function depends on the model 

that is being used. For now, we are assuming a typical gravity based spatial interaction model 

of the following form: 

  ijd
ij i jt s s e  (6) 

Furthermore, we are assuming that the error in di,j is equal to the average intrazonal distance: 
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where ijd estimates the error in distance due to aggregation. 

The derivative of the interaction with respect to distance is used to estimate the error: 

    1
          ij ijij ij ijd dd d d

ij i j i j i jt s s e s s e s s e e  (8) 

where ijt estimates the error in trips due to aggregation. The interpretation of this equation is 

that the estimated error is a function of the relative error  1  ijde  and the strength of the 

interaction which is a function of distance and size. 

2.4Figure 3 shows the results of the neighbourhood algorithm for neighbourhoods of three 

atomic zones on the map. Note that there are two variables driving the size of the clustered 

zone in the neighbourhood; first there is distance: closer zones are smaller, second is the 

density: denser zones are smaller. 

2.4 Crooked matrices and how to use them 

Applying the neighbourhood for transport demand modelling will lead origin-destination (OD) 

matrices that have a non traditional form. Traditionally OD matrices tabulate interactions 

between all (atomic) zones in a system. In the proposed method, either the origins or the 

destinations are expressed as aggregated clusters. We call such matrices crooked matrices 

because they summarize the whole system of flows between origins and destinations, but not 

in the intuitive symmetrical form that we are used to. The matrices are sparse because every 

atomic zone only interacts with a limited set of clustered zones (its neighbourhood). Figure 4 

illustrates the form of the new crooked matrices. 
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Uniform density north-west first tie-breaking 

 

Uniform density, random tie breaking 

 

Variable density, north-west first tie-breaking 

  

Variable density, random tie-breaking 

Figure 3. Results from the neighbourhood algorithm for three atomic zones (the atomic zone is coloured 

blue) 
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b. Crooked matrix variant 1: Atomic origins 
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c. Crooked matrix variant 2: Atomic destinations 
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Figure 4. Schematic representation of both traditional and proposed OD matrices 

The sparse matrix of atomic zone – clustered zone interaction can pose model complications 

because of its underlying hierarchy and multi-scale character. Meaningful analysis will 

require some model adaptations. Without loss of generality, this paper uses clustered zones 

for destinations and atomic zones for origins (i.e. Figure 4(b)).  
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2.5 Adapting the doubly constrained spatial interaction model 

2.5.1 Background 

A commonly used spatial interaction model is the doubly constrained spatial interaction 

model.  We incorporate adaptive zoning in this model because it presents a simple case for 

developing a methodology that can be applied to more complex spatial economic models. 

Inputs to this model are a matrix of prior distribution of interactions (probabilities) between 

zone pairs, a vector of constraints for interaction origins (row totals) and a vector of 

constraints for interaction destinations (column totals). The model finds balancing factors, 

one for each row and each column to satisfy the constraints.  

The model takes the following form: 

 ij i j ijT a b P  (9) 

where Tij is the interaction from i to j, P is the prior distribution and  balancing factors ai and 

bj are chosen such that the following constraints are met: 

 ij i
j

T R  (10) 

 ij j
i

T C  (11) 

where Ri is the constraint for the i-th row and Cj is the constraint for the j-th column.  

Balancing factors are typically found by applying a Furness iteration that iteratively applies 

the following equations: 
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In this paper the prior distribution will be based on the gravity model also applied in the step 

of neighbourhood generation (section 2.3). Thus: 

 ,
 ijd

i j i jP s s e  (13) 

The challenge that arises in a system with zones aggregated to different degrees is twofold:  
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1. The values of balancing factors for clustered zones are not independent of balancing 

factors of their children, but instead are a function of those. 

2. Interaction with clustered zones leaves undetermined how strong the interaction 

between atomic zones is. We worked out two mechanisms of dealing with this: 

a. The extra degree of freedom relaxes the system and there will be a range of 

values for balancing factors that satisfies the constraints. In order to arrive at a 

unique solution an additional objective function will need to be formulated.  

b. Alternatively, it is possible to disaggregate totals from clustered zones to 

aggregated zones and still apply constraints at the level of atomic zones. The 

advantage is that the system is fully determined again and has a unique 

solution. 

2.5.2 The parent-child relationship of balancing factors 

Our purpose of clustering zones is to trade precision for computation time. It therefore is 

imperative that the behaviour of a clustered zone is equivalent to the combined behaviour of 

its children. In statistical mechanics this would be called a mean field approximation. 

This would require the following condition to hold: 

 iJ ij
j J

T T


  (14) 

We are assuming that iJ ijd d , which is sensible because proximity is one of the conditions 

for clustering. 

Following through we get 
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 (15) 

In words, the balancing factor for a clustered zone is the size-weighted average of its 

children’s balancing factors.  
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2.5.3  Relaxed constraints and objective function 

By modelling interactions between atomic zones and clustered zones the nature of the 

constraints changes as well as the number of constraints. As we are clustering destinations 

and not origins, the constraints for origins remain the same: 

  ij i
j

T R  (16) 

For the clustered zones the constraints are different, because at any given clustering it is 

undetermined how much of the constraint is met at higher degrees of clustering. As a 

consequence the constraints for atomic zones become inequalities, rather than equalities: 

 ,  i j j
i

T C  (17) 

For clustered zones constraints follow from aggregation: 

 


J j
j J

C C  (18) 

 iJ ij J
i j J

T T C
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 
  

 
  , or (19) 

 


 J J j j J
j J

b w b w C  (20) 

where j i ij
i

w a P to simplify the notation. 

Only at the level of the whole model area is there a hard constraint: 

 T ij j j
i j j

C T b w    (21) 

where T is the index of the top zone, corresponding to the whole model area. 

The relaxation of constraints means that there no longer is a unique solution. In order to arrive 

at a well-determined system we add the objective to minimize the effect of the balancing 

factor: 

   2
1 *J J

J

obj b w   (22) 

2.5.4 A system of equations 

The relations specified in the previous two sections (in particular equations 15, 20 and 21) can 

be summarized in a system of equations in the following form: 
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where vj,J is introduced for convenience, it equals 1 if zone j is directly or indirectly a child of 

zone J. m is the number of atomic zones, and n is the total number of atomic and cluster 

zones .  

The system of equations it linear, furthermore the objective function is quadratic (and convex), 

which means that the problem is a standard Quadratic Programming problem(Gould and Toint 

2010). Conventionally the objective function is given in the following form:  

   1

2
T Tf x x Qx C x   (24) 

Following that notation: 
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 (25) 

There are several methods of solving this type of system that are offered as part of various 

software packages. (. In this paper we used the library COPL_QP because it is well suited for 

large problems as well as sparse matrices (Zhang and Ye 1998) in the course of development 

we have also successfully used Excel Solver and QuadProg++, obtaining identical results for 

a simple test case. 
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2.5.5 Alternative approach 

An alternative approach to relaxing the constraints is to assume that the arrivals in a clustered 

zone are distributed relative to size. This is equivalent to the assumption made before that 

ij iJd d j J   . We then get  
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 (26) 

which brings the system back to a system of equalities, where the value of each bj is 

independent of all others.  

3 Test case 

In order to evaluate the loss of accuracy due to the aggregations of the adaptive zoning system 

this paper will apply it on a simple test case, which nevertheless has a reasonably large 

number of zones. The doubly constrained distribution model is applied on commuting 

patterns in the area of England as measured by the UK Census of 2001 at the level of 

Standard Table Wards (ST Wards). The data used is Table W201 available from Centre for 

Interaction Data Estimation and Research (http://cider.census.ac.uk ). ST Wards are the most 

detailed geography at which CENSUS commuting data is made available. ST Wards 

correspond to UK electoral wards, except that some small electoral wards have been 

aggregated to protect the anonymity of their inhabitants. In total there are 7932 ST Wards in 

England and the commuting matrix (commutes into and out from the England are 

conveniently ignored). The constraints for commutes into and out from each ST Ward are 

derived directly from the table. One complication in the data is the Small Cell Adjustment 

Method (SCAM) that is applied on the matrix before releasing it in order to prevent a breach 

of confidentiality. Commuting flows between ST Wards of exactly 1 or 2 persons have been 

reassigned to either 0 or 3 persons using an unspecified procedure by the UK’s Office of 

National Statistics. As the current case is merely for testing and demonstration no further 

attention is paid to the effect of SCAM. 
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A second data source used is UK Borders (http://edina.ac.uk/ukborders/) , which disseminates 

digital UK boundary datasets. From this service we obtained the boundaries of all ST Ward in 

England and using ArcGIS 9.3 we calculated the coordinates of the (area weighted) centre of 

each ST Ward. Finally distances between ST Wards were calculated as the Euclidean distance 

between their centroids. Of course these are gross simplifications and today’s interaction 

models apply more advanced methods of establishing the zone centre, for instance 

incorporating population patterns and road networks and tend to express the distance between 

zones in terms of generalized transport costs rather than Euclidean distance. For the purpose 

of the testing and demonstrating it is not opportune however to introduce further complexities. 

4  Results 

4.1 Calibrating β 

The first step of the analysis is to find the β parameter by means of calibration. In a simple 

bracketing optimization β is found to optimize the correspondence between mean trip distance 

in reality and in the fully detailed distribution model. The resulting value for β is 0.1437 km-1 

and is input to hierarchy and neighbourhood generation. The mean trip distance is 13 km. 
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Figure 5. Six levels of aggregation in the hierarchy of zones. In each aggregation step two zones are 

amalgamated, therefore the number of levels of aggregation is identical to the number 

of atomic zone (7932). 
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Figure 6. Six neighbourhoods 
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4.2 Adaptive zoning 

4.1Figure 5 shows a sample of the aggregated zones. The zone sizes are relatively even 

distributed, although areas with high job densities, i.e. cities and towns have smaller zones 

than others. The neighbourhoods are presented in 4.1Figure 6. it shows the neighbourhood for 

six different ST Wards, for reference the wards are named after close-by settlements. All 

neighbourhoods have the distinctive pattern of small zones close-by and larger zones further 

away. The gradient from small to large zones is more abrupt than in the synthetic case 

presented before, reflecting the steep decline in trip numbers with distance. The figure also 

illustrate that larger clustered zones make part of the neighbourhood of multiple atomic zones. 

The neighbourhood of Chichester is distinct from the other neighbourhood in having a large 

clustered zone close-by in its neighbourhood.  

4.3 Distribution models 

To make the results from the fully detailed distribution model and the adoptive zoning based 

distribution model comparable, the trips to the clustered zones are disaggregated to atomic 

zones on the basis of their respective sizes. Therefore three trip matrices are available for 

comparison, the table with observed trips (from CENSUS), the trip matrix from the fully 

detailed distribution model and the disaggregated trip matrix from the adapted zoning based 

model. The stopping criterion for the neighbourhood generation is such that each of the 7932 

ST Wards has 333 neighbours, reducing the number of zone pairs by more than 95%. 

Mean trip distance was calculated for all matrices (Table 1) and showed that the mean trip 

distance of the fully detailed model corresponds to the census data (because it was calibrated 

to that effect). The mean trip distance in the adaptive zoning based model is almost 30% 

longer.  

Table 1. Mean trip distance for models and data 

Trip matrix Mean trip distance 

CENSUS 13 km 

Fully detailed 13 km 

Adaptive zoning  18 km 

 

Further analysis focuses on the distribution of trips over different distances. In order to 

compare the fully detailed distribution model and the adapted zoning based model the trip-

distance distribution was calculated. From these results it appears that the adaptive zoning 
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model follows the fully detailed model closely, except for the very large distances. Moreover 

the discrepancy between the models and data is plotted against trip distance as well as the 

disagreement between the two models. From these results it appears that the difference 

between the two models is very small in relation to the disagreement with the data (Figure 7) 

 

Figure 7. Trips and trip differences by distance 

5 Discussion 

The close agreement in trip distribution between the fully detailed model and the 

disaggregated model is promising. The results imply that the number of zone pairs can be 

drastically reduced without severely affecting the accuracy of the results. It must be noted 

though that at the further distances the match is not as strong and even though this concerns 

relatively small numbers of trips, these correspond to considerable distances travelled because 

of the long trip distances. This explains the strong disagreement over mean trip distance 

between the fully detailed and the adapted zoning based model, indicating a possible bias. A 

bias due to aggregation and the location of zone centroids could be expected. We placed the 

centroids in the geographical centre of zones and did not account for the fact that the trip-

weighted centre is rather closer to the origin zone of the trip (as there are more trips at short 

distances than at longer distances). This bias would be to the contrary of our results, which 

show too many long distance trips, rather than too few. A better explanation probably is the 

disaggregation of trips in clustered destination zones to atomic destination zones that does not 

take into account the direction from which the trips are coming, in other words the far lying 

atomic zones are weighted equally to close-by atomic zones, leading to an overestimation of 

the far lying ones.  
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The layout of the neighbourhood of Chichester points to a weakness in the method. It appears 

that Chichester is positioned near the edge of two large aggregated clusters. The cluster to the 

East is disaggregated to a fine level of detail in the neighbourhood generation. The cluster to 

the West is not,. A probable explanation is that the centroid of the large cluster to the West is 

relatively far away from Chichester. The estimated error thus is relatively small. In reality 

Portsmouth, a major employment centre lies within the large aggregated zone close-by to 

Chichester, but its proximity is effectively not accounted for. It's an indication that the 

function for estimating error needs to be refined, for instance by including a term for either 

the variability or centrality of the activity pattern in the zone.  

In order for the doubly constrained model to work with the adaptive zoning system it was 

necessary to modify the model. This is not a trivial task and we identified two places in the 

model where an aggregation or disaggregation step would suffice. By aggregating the 

constraints the demands on the model become relaxed, there is no longer a single solution and 

therefore the optimal solution within a solution space is sought instead. Although the system 

of equations that results is a standard QP problem, for which libraries are available it is rather 

more complex than Furness iteration that is used for traditional zoning systems. The 

alternative is to disaggregate the modelled trip ends in order to meet the constraints at the 

level of atomic zones. Although much simpler, this method has the disadvantage of rather 

slow convergence, compared to the model on the basis of the traditional zoning system. In 

effect, the new model outperforms the existing one in terms of memory use and storage, but 

not necessarily in terms of processing time. In the current implementation the model on the 

basis of clustered zoning requires longer computation time by a factor 4, but the data 

structures for the adaptive zoning based model have not been optimized yet, which means that 

the prototype implementation suffers the disadvantage of the overhead of clustered zones, 

without fully benefitting from the advantage of much sparser matrices. 

The processes of hierarchy generation and neighbourhood generation are by large driven by a 

strong logic towards minimizing error. The methods are heuristic in nature however and it 

might be worthwhile to pursue a system of formal error minimization. Rather than finding a 

set of neighbourhoods that can reasonably expected to introduce only small aggregation errors 

it would be grand to have a rigid theoretic model. Such a system would be useful for the task 

of generating an adaptive zoning scheme, but also for many other model design questions. It 

may be a Holy Grail and warrant many years of research but the results of this paper do 
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suggest that estimations of modelling error can be an integration mechanism for complex, 

multi-criteria model design problems.  

The model in this paper is static in nature and used under well-known conditions. In practice 

it is likely that conditions are now know a-priori.  For instance, this paper estimated the β 

parameter on the basis of the fully detailed model. In a more realistic scenario the fully 

detailed model would not be available and β could only be estimated by means of the adaptive 

zoning system. At the same time, generating the adaptive zoning system requires the β 

parameter for estimating errors. As a solution, the modeller has to either accept a discrepancy 

between the β parameter underlying the model and the zoning system or come up with an 

iterative system. 

A similar problem occurs in dynamic models, for instance migration and land use models. 

From one time-step to the next circumstance will be different as will the best matching zoning 

system. A further development may be towards adaptive dynamic zoning systems in which 

zoning systems are not developed offline in a pre-processing step, but instead as online part of 

the model; each change of circumstances can be cause for a newly generated adaptive zoning 

system. We already considered this dynamic application by making the neighbourhood 

generation a process of disaggregation, rather than aggregation. Distances, error estimates, etc. 

only need to be calculated down to the granularity required by the model and not at finer 

levels. 

Distribution is only one step in classical transport model. Other steps include trip production 

and attraction, modal split and assignment. As the constraints for the distribution are given at 

the level of atomic zones, the process of production and attraction can remain the same. 

Modal split can take place on the basis of interaction between atomic zones and their 

neighbour zones without difficulty. One complication of modelling model split is that the 

distance, or rather the disutility of travel in terms of generalized cost, between zones differs 

between modes generating one adaptive zoning system for all modes would be sub-optimal 

for the individual modes, but a separate adaptive zoning system for each mode would 

significantly complicate the modal split. The assignment step is the most computing intensive 

step of most transport models. In this step trips between zones are assigned to individual road 

segments taking into account the generalized cost of traversing these segments, Most 

transport models also incorporate the effect of transport intensity on travel speed. In order for 

the assignment models to benefit from the adaptive zoning system care must be taken to the 
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direction in which the transport is assigned to the road (i.e. building routes starting from the 

clustered zone or starting from the atomic zone). The nature of assignment models is such that 

the cost of building routes from one zone to a number of other zones is primarily a function of 

the distance to the furthest zone (and not as one might assume the number of zones). 

Assigning transport starting from the atomic zone and building routes to all the neighbour 

zones would as a consequence not lead to significant efficiency gains. On the other hand 

starting at the neighbouring zone and building links to all zones of which it is a neighbour can 

be expected to make considerable efficiency gains. The crux is that large clustered zones are 

neighbours of atomic zones at large distances, whereas small clustered zones are only 

neighbours of atomic zones at small distances. There are many small clustered zones and only 

a few large clustered zones, so there are many low cost assignments to be made and only a 

few high cost assignments.  

6 Conclusion 

This paper has demonstrated how an adaptive zoning system can drastically reduce the 

number of interacting zone pairs in spatial interaction models while maintaining the original 

granularity. Thus the incorporation of this system can potentially reduce the running time of 

existing spatial interaction models, or offer an extended scope for modelling, e.g. a larger 

geographic area with a more extensive segmentation of spatial activities (such as required for 

energy demand analysis and accounting in mega-city regions), whilst maintaining the existing 

running time. Both could open avenues for systematic analysis, including calibration, 

validation, sensitivity analysis and scenario analysis.  

Any advance however is subject to the adjustability of the model at hand. Modification is 

required, first of all such that it produces valid results using the more complex zoning 

structure and furthermore such that it actually reaps the potential benefits of the reduced 

number of zone pairs. The doubly constrained distribution model that served as a test case in 

this paper made clear that these are non-trivial matters. Essentially the adjusted model has a 

dual geography of atomic zones at the one hand and clustered zones at the other. Several steps 

may be identified where it is possible to ‘break into’ the original model and by means of 

aggregation of atomic zones or disaggregation of clustered zones reconcile the two 

geographies.  
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Finally, there is the famous 80-20 rule, which says that 80% of resources are spent on 20% of 

the problem. Substantial advances in computation time are only achieved when optimizations 

address the actual calculation bottlenecks. In the case of transport modelling ‘distribution’ - 

addressed in this paper - is a crucial step, but not the bottleneck. The true bottleneck is 

‘assignment’, the process of attributing trips between zones to individual road segments in the 

transport network. This naturally is where we will devote our attention next. 

Besides spatial interaction modelling of various kinds we see scope for several other 

applications. In particular, reducing the search space for complex optimization problems such 

as location-allocation modelling (Fotheringham, Densham et al. 1995), aggregating spatial 

interaction data at optimal granularity while protecting confidentiality (Martin 2000; Martin, 

Nolan et al. 2001; Young, Martin et al. 2009), as a means of geovisualization when the spatial 

distribution of zone sizes corresponds to the spatial distribution of the underlying patterns. 
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