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Testing Tobler's law in spatial panels: a test for

spatial dependence robust against common

factors

Giovanni Millo

June 19, 2010

Abstract

In the spatial econometrics literature, spatial error dependence is char-
acterized by spatial autoregressive processes, which relate every observa-
tion in the cross-section to any other with distance-decaying intensity:
i.e., dependence obeys Tobler's First Law of Geography (�everything is
related to everything else, but near things are more related than distant
things�). In the literature on factor models, on the converse, the degree
of correlation between cross-sectional units depends only on factor load-
ings. Standard spatial correlation tests have power against both types of
dependence, while the economic meaning of the two can be much di�er-
ent; so it may be useful to devise a test for detecting �distance-related�
dependence in the presence of a �factor-type� one. Pesaran's CD is a test
for global cross-sectional dependence with good properties. The CD(p)
variant only takes into account p-th order neighbouring units to test for
local cross-sectional dependence. The pattern of CD(p) as p increases
can be informative about the type of dependence in the errors, but the
test power changes as new pairs of observations are taken into account.
I propose a bootstrap test based on the values taken by the CD(p) test
under permutations of the neighbourhood matrix, i.e. when �resampling
the neighbours�. I provide Montecarlo evidence of it being able to tell the
presence of spatial-type dependence in the errors of a typical spatial panel
irrespective of the presence of an unobserved factor structure.

1 Introduction

The concepts of local and global spatial dependence are cornerstones of re-
gional economics and spatial econometrics, while an ever growing strand of the
econometric literature is dedicated to the issues of estimation and testing under
cross-sectional dependence at large.

In the literature on spatial econometrics, local dependence is usually charac-
terized by moving average spatial processes, which relate every observation to
its neighbours only; global dependence by spatial autoregressive processes, which
can be shown to relate every observation in the cross-section to any other, al-
though with intensity decaying with the distance between them. In both cases,
dependence obeys Tobler's First Law of Geography, stating that
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everything is related to everything else, but near things are more
related than distant things (Tobler 1970).

In the literature on factor models, on the converse, the degree of correlation
between cross-sectional units depends on factor loadings, so distance doesn't
play any role1. Far away observations can react to a common shock in the same
way as nearby ones or not, depending on the individual loadings.

While spatial econometric models allow estimation on single cross-sections,
factor models are to be estimated on panel data. For these, estimators that are
consistent in presence of either type of dependence have been devised, so that
for the sake of estimation discriminating between the two may in some cases
not be much of a problem. Nevertheless, consistent estimators for general cross-
sectional dependence like Pesaran's CCEMG ([3]) still rely on a �biggish� time
dimension, while the ability to characterize dependence in a parsimonious way
is still essential for �small T� applications. Furthermore, the presence of spatial
dependence may be interesting in its own right for some applications: e.g., when
one is testing for spillover e�ects (say, from technology, or from economic growth
in neighbouring regions).

Standard tests like the Moran would reject the hypothesis of no spatial
correlation in presence of either, so the appropriate modeling approach would
still be ambiguous. Spatial panel estimators would also react to the presence
of a factor structure indicating a signi�cant spatial correlation SAR or SEM
term, usually with a very high coe�cient, even if these are actually absent.
It may therefore be useful to devise a test for detecting �distance-related�, or
�Tobler-type� dependence even in the presence of a �factor-type� one.

2 Cross-sectional vs. spatial dependence

It is now time to try out an operational de�nition of what we mean by �local�,
�global�, �spatial� dependence etc..

In the two relative strands of literature, the term global is used to di�er-
ent meanings. In recent work by Pesaran and Tosetti [4] dependence in spatial
processes is characterized as being distance-decaying or not in an asymptotic
fashion, introducing the concepts of cross-sectional strong dependence (CSD)
and cross-sectional weak dependence (CWD). With some exceptions, the pro-
cesses characterized by factor models and spatial models are shown to be typical
cases of, respectively, the �rst and second type. To �x ideas, I shall keep the
two mostly used, although less general, representations, identifying the factor
model

yit = Xitβ + γiµt + εit

with CSD, and the spatial (autoregressive) error model2

yit = Xitβ + uit;uit = λ(IT ⊗W )uit + εit

1Unless factor loadings themselves should be made dependent on distance, of course.
2The spatial moving average model (SMA)

yit = Xitβ + uit;uit = λ(IT ⊗W )εit + εit

would be another candidate; the dependence induced is abruptly decaying to 0 after the �rst
order of neighbourhood, so distinctions in the following would be even sharper. In a sense, to
our purpose we consider the SMA model as a �special case� of SAR, although this isn't true
from an analytical viewpoint.
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with CWD throughout the paper.

3 The CD and CD(p) tests

Pesaran ([2]) devised a test for cross-sectional dependence in the residuals of a
panel model he calls CD, which has remarkable properties in samples of any
practicallly relevant size and is robust to a variety of settings. The test is based
on averages over the time dimension of pairwise correlation coe�cients between
cross-sectional units:

CD =

√
2T

N(N − 1)
(
N−1∑
i=1

N∑
j=i+1

ρ̂ij); ρ̂ij =
∑

t eitejt

(
∑

t e
2
it)1/2(

∑
t e

2
jt)1/2

The only big drawback is that the test loses power against the alternative of
cross-sectional dependence if the latter is due to a factor structure with factor
loadings averaging zero, that is, some units react positively to common shocks,
others negatively. Apart from that, the CD test, distributed as a standard
Normal, is very �exible and can be used as a formal test or as a descriptive
statistic to assess the degree of cross-sectional dependence over the whole sample
or over subsamples, just by reducing the set of cross-sectional units over which
the test is calculated.

A variant of the CD test, called CD(p) test, takes into account an appropri-
ate subset of �neighbouring� cross-sectional units to check the null of no cross-
sectional dependence against the alternative of local cross-sectional dependence,
i.e. dependence between neighbours only. To do so, the pairs of neighbouring
units are selected by means of a binary proximity matrix much alike the one
used in spatial models. In the original paper, a regular ordering of observations
is assumed, so that the m-th cross-sectional observation is a neighbour to the
(m− 1)-th and to the (m+ 1)-th and the selector matrix is bidiagonal3.

Although for now the CD(p) test looks as the only viable alternative well
documented in the literature, nothing would prevent us from applying the rea-
soning that follows to any test statistic that allows restricting its application
to �neighbours�. One example could be the Breusch-Pagan LM test for cross-
sectional dependence and its scaled version SCLM analyzed in the same paper
([2]).

3.1 The CD(p) test on irregular grids

While in Pesaran's original paper ([2]) a regular ordering of observations was
considered, extending the CD(p) test to irregular lattices is straightforward. A
binary proximity matrix is employed as a selector for discarding the correlation
coe�cients relative to pairs of observations that are not neighbours in computing
the CD statistic. The test is de�ned as

CD =

√
T∑N−1

i=1

∑N
j=i+1 w(p)ij

(
N−1∑
i=1

N∑
j=i+1

[w(p)]ij ρ̂ij)

3In Pesaran and Tosetti ([4]) the �rst and last observations are also assumed to be neigh-
bours, so that the �linear� world of Pesaran's paper becomes a �circular� one.
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where [w(p)]ij is the (i, j)-th element of the p-th order proximity matrix, so
that if h, k are not neighbours, [w(p)]hk = 0 and ρ̂hk gets �killed�; this is easily
seen to reduce to formula (14) in Pesaran (cit.) for the special case considered
in that paper.

3.2 Recursive CD(p)

The CD(p) on orders greater than 1 simply uses higher-order proximity matri-
ces, where second-order neighbours are de�ned as neighbours of neighbours and
so on, so that an n-th order neighbour to a given region is every region that
has at most n − 1 other regions between itself and the original one, following
the �shortest� route. Of course, (n− 1)-th order neighbours also qualify as n-th
order ones, so increasing orders of proximity means progressively ��lling� the
proximity matrix, up to saturation when the order is such that every observa-
tion is the neighbour to every other one: then the only zeros left are on the main
diagonal. In �gure 1 we can see proximity matrices ��lling up� as p increases.

Figure 1: Proximity matrices of 1st, 2nd and 3rd order, US states
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So for a given set of residuals the CD(p) test must converge to CD as p
increases4 although there is no guarantee it will do so monotonically.

As the test is distributed as standard Normal irrespective of p, critical values
are the same and one might calculate it recursively on p looking for neighbour-
hood orders at which dependence becomes signi�cant, and if there are more, for
the value of p that maximizes the test statistic. In �gure 3.2 the CD(p)s for
p = 1, ... until saturation are plotted for the well-known Munnell model ([1]).
Dotted red lines are 5% critical values, the orange line is the CD test value.

Unfortunately, while recursive application of the CD(p) test indeed looks as
a useful way of heuristically assessing the pattern of cross-sectional dependence
throughout the sample, the sample size on which calculation is based is clearly
depending on p, and so will test power be.

4In the case of US 48 mainland states, the saturation point is at lag 11; for Italy's 103
provinces, it is at lag 20. Intuitively, the more the map approaches a regular grid, the lower
the saturation point; the more it approaches Pesaran and Tosetti's �circular world� the nearer
the saturation point is to N/2.
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Figure 2: Recursive CD(p) on Munnell's model
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3.3 The CD test under CSD and CWD

Under CSD the average correlation between units remains the same irrespective
of distance. Simulations in Pesaran and Tosetti show that the CD(p) test
statistic has lower values than CD if dependence is indeed CSD. The reason for
this is that under global dependence the CD(p) turns out to be based on fewer
observations (the neighbours) w.r.t. the CD, which exploits the full sample.
Thus (as observed in [2]), the CD has maximum power against CSD while under
CWD, on the converse, the CD(p) uses fewer observations, but is likely to use
those which are more strongly correlated (the neighbours), possibly o�setting
the former e�ect. Which one will prevail will depend on the degree of spatial
correlation.

In �gure 3.3 some di�erent situations are depicted, based on simulation of a
model combining a simple factor structure with loadings set equal to 1 for every
unit and a spatially autoregressive error term. The variance of the common
factor µt is set, respectively, to 0, 0.3 and 1 times that of the idiosyncratic error
in the no, �weak� and �strong� CSD cases. The values for λ are set to 0, 0.3 and
0.8 to exempli�cate no, �weak� and �strong� CWD.

So, if we assume that there is either one or the other type of dependence,
while a decreasing sequence of CD(p) tests is unambiguously indicative of a
CWD process, an increasing one might well be related to CWD with local cor-
relation approaching unity5, as well as to CSD. If both CWD and CSD coexist,
then the overall process is CSD (see Pesaran and Tosetti, [4]) but for the above
reasons the situation as regards the test should be less clear-cut. Heuristically, a
decreasing pattern for some interval should be indicative of a CWD component,
but a more formal testing procedure is warranted.

5In the simulated example, the pattern of the CD(p) statistic becomes monotonically
increasing for λ between 0.93 and 0.95.
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Figure 3: Di�erent patterns for the CD(p) test
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4 Testing the importance of ordering

We henceforth concentrate on testing whether there is a CWD component in
the spatial process at hand, irrespective of the presence of a CSD one. In
econometric terms, we test for the presence of a spatial dependence structure
allowing for a common-factor one; or, if we take the encompassing model:

yit = Xitβ + γiµt + uit;uit = λ(IT ⊗W )εit + εit

as the most general structure, we test for λ = 0.

4.1 The test

While given one set of residuals the global CD statistic is uniquely determined,
the local CD(p) is conditional on the choice of the contiguity matrix, so that

CD∗
p = CD(p,W ∗|ê)

where W ∗ is an appropriately chosen contiguity matrix. If we consider W ∗ as
random, then the relative CD(p) statistic is itself a random number.

The testing idea is of discriminating whether, among many possible random
orderings, the �true� one described by W gives rise to a signi�cantly di�erent
CD(p) statistic.

Given one set of residuals ê, one order of proximity p̄ and W the set of all
possible binary contiguity matrices W ∗ having the same number of ones as W ,6

de�ne CDp(W |ê, p̄) as the set of all CDp̄ tests associated with every possible
draw from W . Also call ¯CDp̄ = CDp(W |ê, p̄) the statistic associated to the
�true� W matrix.

Intuitively, under the null of no CWD component in the process that gener-
ated the residuals, in this setting equivalent to λ = 0, the choice of W doesn't
make any di�erence as in

eit = γiµt +B(W )−1uit

B(W )−1 = (IT ⊗ (IN − λW ))−1 reduces to the identity matrix for any W ∈ W
. Under the alternative, on the converse, the process generates errors with
stronger correlation between neighbours.

So, under the null of no CWD component, ¯CDp̄ should be interpretable as
a random draw from CDp̄(W |ê), while under the alternative it can be expected
to take more extreme values, all this irrespective of the degree of cross-sectional
correlation induced by the presence of a CSD process (here, γi 6= 0 for some i)7.

4.2 A bootstrap procedure

For all this, a non-parametric bootstrap test for spatial dependence in the error
process may be based on testing the importance of ordering: if the dependence is
CSD, then on average there will be no di�erence between the CD(p) test based

6The number of neighbours is kept constant across the di�erent W ∗ to avoid changes in
test power.

7E[CDp̄(W |ê)], on its part, should be �far� from zero if there is a CSD component in the
error process.
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on the actual proximity matrix ¯CDp = CDp(W |ê, p̄) and those based on ran-
dom orderings of the observations in space, sampled from CDp(W |ê, p̄). Thus,
for any given p̄, a testing procedure may be based on extracting the model's
residuals, computing the �true� CD(p) test and then comparing the latter with
M replications of a randomized CD(p) statistic obtained randomly selecting the
same number of �neighbours� from all regions, which is easily accomplished by
randomly sampling an appropriate number of positions to be �lled with ones in
the randomized W matrix. The pseudo-p value for M draws would then be

MCWp =
∑M

h=1 I[CDp(W ∗
h |ê) ≥ CDp(W |ê)]
M

where I[.] is such that I[TRUE] = 1, I[FALSE] = 0.
The null of no spatial dependence would be rejected at, say, 5% signi�cance

if MCW < 0.05, meaning that the actual CD(p) value were more extreme than
the 95th quantile of the distribution of randomized values.

4.3 An illustration on Munnell's model

Considering, again, Munnell's model on public capital productivity over 48
states in the USA observed on 17 years and testing for residual cross-sectional
correlation, the global CD statistic is 40.2 while the local CD(1) is 17.2. In-
creasing the contiguity order, CD(2) = 26.1, CD(3) = 32.9 and so on, in the
monotonically increasing sequence portrayed in �gure 3.2.

Although Munnell's main interest was in the signi�cance of the coe�cient
on public capital, one might also wonder whether the residuals from the es-
timated production function show evidence of spatial spillover e�ects and/or
of common factors excluded from the model speci�cation driving growth in all
states alike (in which case inclusion of time dummies could capture the e�ect)
or idiosyncratically, according to a factor structure.

Analyzing the recursive CD plot in �gure 3.2, the most likely conclusion is
that there are country-wide e�ects a�ecting every state in a non-spatial fashion,
although a spatial di�usion process with coe�cient very close to unity would
also be a possibility. But if the �rst is true, as looks very reasonable in this
setting where �scal, technological or commodity-price related shocks can a�ect
every unit irrespective of distance, is there also a spatial process in the errors?
Applying the above test procedure we get MCW1 = 0.001 most of the time8,
so as to conclude against the null of no spatial process and thus in favour of
spillover e�ects.

4.4 Montecarlo evidence on a simple model

4.4.1 Equal factor loadings

In order to have a �rst assessment of the test properties, although on one very
particular example, I simulate a simple model with 2 stationary regressors on
the same dimensions as in Munnell: 48 units and 17 time periods, according to

yit = β1x1it + β2x2it + µt + uit;uit = λ(IT ⊗W )εit + εit

8Of course the quasi-p value changes every time the distribution is resampled. Some times,
we get MCW1 = 0.002.
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i.e., the most general model in the paper with γi = 1 for all i, a very simple
factor structure equivalent to the inclusion of time speci�c �xed e�ects, varying
the ratio τ of the variance of µt to that of the idiosyncratic error εit from 0 (no
CSD component) to 0.5 and 1; and a spatial autoregressive error process with
λ ranging from 0 (no CWD component) to 0.8.

I employ two di�erent proximity matrices, one from a real-world example
and one from theoretical work: the �true� matrix for the US and the regular
matrix as in Pesaran and Tosetti (cit.) where unit n is neigbour to n− 1 and to
n+ 1, and 1 and n are set as neighbours too. The matrices are depicted below
in �gure 4, where one can see the di�erent degree of connectivity: the �true�
matrix has 214 ones, while the �circular� one has N ∗ 2 = 96.

Figure 4: �True� and �circular� proximity matrices
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The results, based on 1000 replications for the test with M = 999 draws,
are presented below in table 4.4.1 where the �rst row, corresponding to λ = 0,
shows the empirical size of the test (which should ideally be 0.05) and the others
the power of the test for di�erent combinations of λ and τ .

Test size under validity of the null is reasonably close to 5% in the �rst
experiment. Test power is always very good for λ = 0.8 and also for 0.8 > λ ≥
0.4, at least until τ < 1. Weaker spatial dependence with λ = 0.2 also gets
detected reasonably well until the common shock variance gets as big as that of
the idiosyncratic error.

In the experiment involving the regular proximity matrix the empirical power
of the test gets better, being very good even for λ = 0.2. On the other hand,
empirical size worsens, getting biased in the sense of underrejection for τ = 1.

As for the main purpose, intuitively the test appears correctly to control for
CSD dependence, albeit getting �blurred� as the variance of the common shocks
adds to that of the idiosyncratic error.

4.4.2 Random factor loadings

A more realistic experiment involved factor loadings sampled from the Uniform
distribution over the [−1, 1] interval. This experiment in turn gives satisfactory
results (see Table 4.4.2): although the heterogeneous factor loadings somehow
�blur� the situation, the empirical size is reasonably good and the empirical
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Table 1: Empirical size and power, equal factor loadings

True US
λ τ = 0 τ = 0.5 τ = 1
0 0.055 0.046 0.042

0.2 0.893 0.840 0.711
0.4 1.000 1.000 0.999
0.6 1.000 1.000 1.000
0.8 1.000 1.000 1.000

Circular
λ τ = 0 τ = 0.5 τ = 1
0 0.046 0.032 0.018

0.2 0.996 0.994 0.961
0.4 1.000 1.000 1.000
0.6 1.000 1.000 1.000
0.8 1.000 1.000 1.000

power always approaches one for λ ≥ 0.4: substantial spatial dependence is
successfully detected irrespective of the factor structure. The situation is less
optimal for very weak spatial dependence (λ = 0.2): in this case, test power
su�ers as the variance of the common factors increases towards that of the
idiosyncratic error.

Table 2: Empirical size and power, factor loadings sampled in [−1, 1]

True US
λ τ = 0 τ = 0.5 τ = 1
0 0.039 0.050 0.074

0.2 0.900 0.728 0.281
0.4 1.000 0.999 0.972
0.6 1.000 1.000 1.000
0.8 1.000 1.000 1.000

Circular
λ τ = 0 τ = 0.5 τ = 1
0 0.052 0.054 0.026

0.2 0.995 0.984 0.785
0.4 1.000 1.000 1.000
0.6 1.000 1.000 1.000
0.8 1.000 1.000 1.000

5 Conclusions

In the spatial econometrics literature, spatial error dependence is characterized
by spatial autoregressive processes, which relate every observation in the cross-
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section to any other with distance-decaying intensity, which is well exempli�ed
by Tobler's First Law of Geography: �everything is related to everything else,
but near things are more related than distant things�. In the literature on factor
models, on the converse, the degree of correlation between cross-sectional units
depends only on factor loadings, so that Tobler's Law doesn't necessarily hold.

The economic meaning of the two can be much di�erent, so that it may be
useful to devise a test for detecting �distance-related� dependence in the presence
of a �factor-type� one. I deal with the problem of statistically distinguishing the
two forms of dependence in spatial panel data. The problem is that standard
spatial correlation tests have power against both types of dependence.

My work is based on Pesaran's CD, a test for global cross-sectional depen-
dence with good properties, and in aprticular on the CD(p) variant, which only
takes into account p-th order neighbouring units to test for local cross-sectional
dependence. While the original formulation of the test is de�ned with respect
to a regular spatial pattern, I show an easy extension to irregular lattices which
makes the test operational in applied situations.

The pattern of CD(p) as p increases can be informative about the type of de-
pendence in the errors, but the test power changes as new pairs of observations
are taken into account. I show examples of typical patterns related to combi-
nations of di�erent degrees of spatial and factor dependence, concluding that
while the visual representation of recursive CD(p) tests is a useful descriptive
tool, there are situations where the conclusions to be drawn are still ambiguous.

To resolve this ambiguituy, I propose a bootstrap test based on the values
taken by the CD(p) test under permutations of the neighbourhood matrix, i.e.
when �resampling the neighbours�. I provide Montecarlo evidence of it being able
to tell the presence of spatial-type dependence in the errors of a typical spatial
panel irrespective of the presence of an unobserved factor structure. The test
shows correct empirical size and good power properties even for relatively low
degrees of spatial dependence.

Although the simulation design is very simple and more thorough investiga-
tions have to be done as regards the empirical properties of the proposed test,
the Montecarlo evidence presented in this paper is encouraging. The extension
of the simulations to less simplistic data generating processes and to di�erent
sample sizes and meighbourhood structures is left for future work.
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