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Abstract. The focus of this paper is on pre-competitive R&D 
cooperation across Europe, as captured by R&D joint ventures funded by 
the European Commission in the time period 1998-2002, within the 5th 
Framework Program. The cooperations in this Framework Program give 
rise to a collaborative network, with network nodes representing actors 
(i.e. organizations including firms, universities, research organizations 
and public agencies) and network edges representing R&D projects. 
With this construction, participating actors are linked only through joint 
projects. We formally describe and analyze the network from a social 
network perspective that shifts attention to the detection and analysis of 
the community structure within the network. Distinct communities 
within networks may be loosely defined as groups of actors such that 
there is a higher density of relations within groups than between them. In 
this study, we attempt to detect communities of actors solely on the basis 
of the relational structure within the network, and to characterize and 
differentiate the identified network communities by means of 
information-theoretic methods, community-specific profiles and the 
location of their major actors. We expect the results to enrich our picture 
of the European Research Area (ERA) by providing new insights into 
the global and local structures of R&D cooperation across Europe. 
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1  Introduction 
 
Knowledge production takes place within a complex web of interactions among firms, 

universities and research institutions (see, for instance, Fischer 2001). Long viewed as a 

temporary, inherently unstable organisational arrangement, R&D networks have become the 

norm rather than the exception in modern innovation processes (Powell and Grodal 2005). In 

the recent past, regional, national and supranational STI policies have emphasized supporting 

and fostering linkages between innovating actors (for a discussion of major international 

examples, see Caloghirou et al. 2002). At the European level, the main STI policy instruments 

are the European Framework Programmes (FPs) which promote an integrated European 

Research Area (ERA). The FPs support pre-competitive R&D projects, creating a pan-

European network of actors performing joint R&D.  

 

In this paper, we examine pre-competitive European1 R&D cooperations from a social 

network perspective. A social network perspective focuses not on the individual social actors, 

but on the broader interaction contexts within which the actors are embedded. Social network 

analysis explicitly assumes that actors participate in social systems connecting them to other 

actors, whose relations comprise important influences on one another’s behaviours. Central to 

network analysis are identifying, measuring, and testing hypotheses about the structural forms 

and substantive contents of relations among actors. This distinctive structural-relational 

emphasis sets social network analysis apart from individualistic, variable-centric traditions in 

the social sciences (Knoke and Young 2008). 

 

The importance of social network analysis rests on two underlying assumptions. First, 

structural relations are often more important for understanding observed behaviours than are 

attributes of the actors. Second, social networks affect actors’ perceptions, beliefs and actions 

through a variety of structural mechanisms that are socially constructed by relations among 

them. Direct contacts and more intensive interactions dispose actors to better information, 

greater awareness, and higher susceptibility to influencing or being influenced by others. 

Indirect relations through intermediaries also bring exposure to new ideas and access to useful 

                                                 
1  R&D networks constituted under the heading of the FPs have recently attracted a number of empirical studies. 

Scherngell and Barber (2009 and 2010) focus on the geography of pre-competitive R&D networks across 
European regions by using data on joint research projects of FP5. Breschi and Lissoni (2004) employ a social 
network perspective to analyse R&D collaborations with the objective to unveil the texture of the European 
Research Area (ERA).  
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resources that may be acquired through interactions with others. Networks provide complex 

pathways for assisting or hindering flows of information and knowledge. 

 

In this work we explore pre-competitive R&D cooperation across Europe from a social 

network perspective. We focus on a network derived from R&D joint ventures funded by the 

European Commission in the time period 1998-2002, within the 5th Framework Program 

(FP5). FP5 gives rise to a network consisting of a set of nodes or vertices representing 25,839 

formal organizations, such as firms, universities and research organizations, connected 

together by links or edges, representing cooperation in FP5 projects. The objective is to detect 

and describe the community structure of this network, using the recently introduced label-

propagation algorithm (LPA). Communities are loosely defined as partitioning the nodes or 

vertices into groups such that there is a higher density of links within them than between 

them. The definition is based on comparing intra-group density to inter-group sparseness. The 

popularity of density-based grouping is due to the likelihood that actors within communities 

share common properties and/or play similar roles within the network. This is the motivation 

for analysing network communities in general (see Fortunato 2010 for a recent review) and 

for analysing European R&D network communities in particular.  

 

The paper is organised as follows. Section 2 describes the community identification problem 

based on the concept of modularity. Section 3 introduces the LPA approach to identify 

communities in the network under consideration. The LPA was originally presented 

operationally, with communities defined as the outcome of a specific procedure. In this work, 

we consider an equivalent mathematical formulation, in which community solutions are 

understood in terms of optima of an objective function. Section 4 differentiates the identified 

communities by developing community-specific profiles using social network analysis and 

geographic visualisation techniques. Section 5 concludes with a summary of the main results, 

some policy implications and a short outlook. 

 

 
2  The community-identification problem 
 
A network of R&D cooperation can be viewed in several ways. One of the most useful views 

is as a graph consisting of vertices (nodes) and edges (links). Let V be a set of vertices, 

representing actors participating in FP5, and E be a set of vertex pairs or edges from V × V, 

representing participation in a joint FP5 project. The two sets together are a graph G=(V, E). 
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In a simple graph, all pairs {u, v}∈ E are distinct and {u, u}∉ E. Given a partition V=V1+V2 

where no edges exist between pairs of elements within V1 or V2, then G is said to be bipartite. 

 

We shall consider simple graphs on a large finite set V={1, 2, …, n}. The number of edges in 

the graph is denoted by m, the number of edges incident on a vertex i=1, …, n is called the 

degree ki. The topology of the graph is encoded in the n × n adjacency matrix A with elements 

 

1 if { , }
0 otherwise.ij

i j E
A

∈⎧
= ⎨
⎩                                                                      

 i, j=1, …, n (1) 

 

In many real world networks there are large inhomogeneities in the degrees, reflecting a high 

level of order and structure. The degree distribution is highly skewed; many vertices with low 

degrees coexist with some vertices with high degrees. The distribution of edges may be both 

globally and locally inhomogeneous, with high concentration of edges within specific groups 

of nodes, and low concentration between these groups. This feature of real world networks is 

called community structure. 

 

There are different ways to define the community-identification problem. The most prominent 

formulation is based on the concept of modularity, a measure that evaluates the quality of a 

partition of a graph into subsets of vertices in comparison to a null model. Formally, the 

modularity Q is defined as  

 

( ) ( )
,

1 ,
2 ij ij i j

i j
Q A P g g

m
δ≡ −∑  (2) 

 

with the Kronecker delta term 

 

( ) 1 if
,

0 otherwise
i j

i j

g g
g gδ

=⎧
= ⎨
⎩

 (3) 

 

where ig  and jg  denote the community groups to which vertices i and j are assigned, 

respectively, and ijP  denotes the probability in the null model that an edge exists between 

vertices i and j. Thus, the modularity Q is – up to a normalization constant – defined as the 

number of edges within communities minus those expected in the null model. 
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The standard choice of the null model is that proposed by Newman and Girvan (2004) and 

consists of a randomized version of the actual graph, where edges are rewired at random, 

under the constraint that each vertex i keeps its degree ki.  

 

Denoting ( )ijE A  by ijP  and assuming further that 

 

ij i jP p p=  (4) 
 

then  

 

.
2
i j

ij

k k
P

m
≡  (5) 

 

With this choice for ijP , the modularity becomes 

 

( )
,

1 , .
2 2

i j
ik i j

i j

k k
Q A g g

m m
δ

⎛ ⎞
≡ −⎜ ⎟

⎝ ⎠
∑  (6) 

 

The goal now is to find a division of the vertices into communities such that the modularity Q 

is high. An exhaustive search for a decomposition is out of question. Even for moderately 

large networks there are far too many ways to decompose them into communities. 

 

In this study, we account for the bipartite character of the network in question. Bipartite 

networks have additional constraints which can be reflected in the null model. For bipartite 

graphs, the null model should be modified to reproduce the characteristic form of bipartite 

adjacency matrices (see Barber and Clark 2009 for more details) 

 

( )
1 1 1 2

2 22 1

n n n n

T
n nn n

O A
A

A O
× ×

××

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (7) 

 

with 1n  and 2n  denoting the number of vertices in 1V  and 2V , respectively, and 1 2.n n n= +  

i jO ×  is the all-zero matrix with i rows and j columns. 
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3 A label-propagation algorithm for maximizing (bipartite) modularity 

 
We use a label propagation algorithm (LPA) introduced by Raghavan et al. (2007) to identify 

community groups. In this approach, community assignments are described by labels assigned 

to the network vertices. Beginning with a unique label for each vertex, labels are dynamically 

updated until a stable assignment of labels is obtained. Network communities are then taken 

to be sets of vertices bearing the same labels, with labels propagating from vertices to their 

neighbours (see Figure 1).  

 

Figure 1: Updating community assignment by propagating labels 

 

 

 

 

 

 

 

 

 

 

 

We formalize the LPA following the presentation of Barber and Clark (2009), describing the 

LPA as an optimization problem. We introduce an objective function H, which is just the 

number of edges linking vertices with the same label, i.e. in the same community group g. 

This can be expressed formally in terms of the adjacency matrix, giving  

 

'

1

arg max ( , )
n

v uv u
g u

g A g gδ
=

= ∑          (8) 

 

Label assignment corresponds to selecting a community group g for vertex v that maximizes 

H, i.e., a label that occurs most frequently among the neighbors of v. Formally, this is 
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1 1

1 ( , ).
2

n n

uv u v
v u

H A g gδ
= =

= ∑∑           (9) 

 

It may be that multiple choices of g would produce a maximal H. In such a case, a specific 

label is selected by keeping the current label if it would satisfy (8) and otherwise taking a 

label at random that satisfies (9). This excludes non-terminating cycles where a vertex varies 

between different labels satisfying (9). 

 

To put the label-update rule (9) into effect, we must also define an update schedule. A 

practical approach suggested by Raghavan et al. (2007) is to update the vertex labels 

asynchronously and in random order. Multiple updating passes are made through the vertices, 

continuing until all vertices have labels satisfying (9). This update schedule ensures 

termination of the search by eliminating cycles where two neighboring vertices continually 

exchange labels. 

 

The LPA offers a number of desirable qualities. As described above, it is conceptually simple, 

being readily understood and quickly implemented. The algorithm is efficient in practice. 

Each relabeling iteration through the vertices has a computational complexity linear in the 

number of edges in the graph. The total number of iterations is not a priori clear, but relatively 

few iterations are needed to assign the final label to most of the vertices (over 95% of vertices 

in 5 iterations, see Raghavan et al. 2007, Leung et al. 2008). 

 

A significant drawback of the LPA is that the objective function H corresponds poorly to our 

conceptual understanding of communities. In fact, the global maximum in H is trivially 

obtained by assigning the same label to all vertices, providing no information at all on 

community structure. Interesting community solutions thus must be located at local maxima 

in H, but H offers no mechanism for comparing the quality of the solutions. An auxiliary 

measure, such as the modularity Q, can be introduced to assess community quality. Using 

modularity, communities found using LPA are seen to be of high quality (Raghavan et al. 

2007); label propagation is both fast and effective. 

 

Barber and Clark (2009) have elucidated the connection between label propagation and 

modularity, showing that modularity can be maximized by propagating labels subject to 

additional constraints and proposing several variations of the LPA. In this work, we make use 
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of a hybrid, two-stage label propagation scheme, consisting of LPAr followed by LPAb (see 

Barber and Clark 2009 for details). The first stage, LPAr, is similar to the original LPA 

presented above, but with additional randomness to allow the algorithm to avoid premature 

termination. In the second stage, LPAb, constraints are imposed on the label propagation so 

that the algorithm identifies a local maximum in QB, a version of the modularity specialized to 

bipartite networks (Barber 2007).   

 
 
4  Network communities and topical differentiation 
 
In this section, we use the LPA approach to identify and differentiate communities for the 

European R&D cooperation network. We develop community-specific profiles to 

thematically characterize the network communities, and consider their spatial distribution. We 

identified 3,482 network communities. The communities vary greatly in size, as measured 

either by the number of organizations in the community or by the number of projects in the 

community (ranked by size in Figure 2). Most (2,878) communities consist of just a single 

project with some or all of the participating organizations. In contrast, 20 or more projects are 

observed in just nine communities, but they contain over a third of the organizations and over 

half of the projects present in FP5. For the rest of this paper, we will consider only these 

largest communities (see Table 1 and Figure 3). 

 
Figure 2: Rankings of communities by number of organizations 
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Thematic differentiation and characterization of the network communities 

 
The communities are identified using only the network structure, but that structure arises from 

the processes by which organizations organize projects. To gain a better understanding of the 

nature of the communities, we thus examine the properties of the constituent organizations 

and projects. We focus particularly on three characteristics: (i) the standardized subject 

indices (sometimes also referred to as keywords) assigned to the projects by the EU, (ii) the 

names of the projects, and (iii) the identity of the organizations. By considering these, we find 

a strong thematic character for the communities. We summarize the community themes 

concisely in Table 1 and provide additional details below. 

 

As a first step, we gain a basic understanding of the communities by examining their thematic 

orientation using standardized subject indices assigned to the projects in the community. 

There are 49 subject indices in total, ranging from Aerospace Technology to Waste 

Management; a complete list of subject indices is given by CORDIS (2008). Absolute counts 

of projects with a particular subject index are uninformative, as the subject indices occur with 

different frequencies in FP5 projects. More meaningful is to compare the number of projects 

Ns in a community featuring a subject index S to the number E[Ns] we would expect if the 

projects were chosen at random from FP5; differences in the values can be tested for 

statistical significance using a binomial test. In Table 1, we show the most strongly over-

represented subject indices for each community, giving the values as a ratio Rs = Ns / E[Ns] of 

actual occurrences to expected occurrences of the index. The subject indices are strongly 

suggestive of thematic differentiation between the communities, with communities apparently 

oriented towards the life sciences, transportation, electronics, and other topics. 

 

Further insight into the communities is gained by examining the project titles, allowing a 

more specific characterization of their thematic character. Particularly for the larger 

communities, the titles suggest possible community substructures of more specialized nature; 

we note the presence of such subnetworks, but do not pursue them further in this work. Using 

the standardized subject indices and the project titles, we assigned the names as shown in 

Table 1 to each community.  
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Table 1: Characterization of communities by thematic orientation 

 Rs > 5 5 ≥ Rs  >  3 3 ≥ Rs  >  1 

Life Sciences - 

Biotechnology***; Life 
Sciences***; Medicine, 
Health***; Regional 
Development*** 
 

Agriculture***; 
Food***; 
Policies***; 
Safety***; Scientific 
Research***; Social 
Aspects***; Waste 
Management*** 

Aquatic Resources Agriculture***; Resources 
of the Sea, Fisheries*** Life Sciences*** 

Economic 
Aspects***; 
Environmental 
Protection*** 

Electronics - 

Electronics, 
Microelectronics***; 
Evaluation*; 
Telecommunications*** 

Education, 
Training***; 
Forecasting***; 
Information 
Processing, 
Information 
Systems***; 
Information, 

Environment 
Earth Sciences***; 
Meteorology***; 
Standards*** 

Forecasting***; Resources of 
the Sea, Fisheries*** 

Agriculture*; 
Environmental 
Protection***; 
Measurement 
Methods**; Regional 
Development*; 
Scientific Research*; 

Sea Transport Transport*** Safety*** Environmental 
Protection*** 

Ground Transport Energy Storage, Energy 
Transport*** Fossil Fuels** 

Energy Saving***; 
Environmental 
Protection*; 
Materials 
Technology*; 
Reference 
Materials*; 
Safety***

Aerospace Aerospace Technology*** 

Energy Saving***; Energy 
Storage, Energy Transport***; 
Renewable Sources of 
Energy***; Transport*** 

Industrial 
Manufacture***; 
Information 
Processing, 
Information 
Systems***; Other 
Energy Topics** 

Information 
Processing 

Electronics, 
Microelectronics***; 
Legislation, 
Regulations***; 
Mathematics, 
Statistics***; Policies*** 

- 

Information 
Processing, 
Information 
Systems*** 

Note: Statistical difference tested using binomial tests whether Ns is different from  E[Ns] ***significant at the 0.001 
significance level, **significant at the 0.01 significance level, *significant at the 0.05 significance level 
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The largest communities show the greatest diversity in their substructure. The largest 

community, Life Sciences, shows a broad selection of topics in biotechnology and the life 

sciences, including health, medicine, food, molecular biology, genetics, ecology, 

biochemistry, and epidemiology. The second largest, Electronics, focuses principally on 

information technology and electronics, with projects in related fields dealing with materials 

science, often related to integrated circuits; projects on algorithms, data mining, and 

mathematics; and a definite subset of projects with atomic, molecular, nuclear, and solid state 

physics. The third largest community, Environment, is focused on environmental topics, 

including environmental impact, environmental monitoring, environmental protection, and 

sustainability. 

 

As communities become smaller, they also become more focused. We see, for example, three 

distinct transportation related communities. The largest of these, Aerospace, is focused on 

aerospace, aeronautics and related topics, including materials science, manufacturing, fluid 

mechanics, and various energy topics. The next, Ground Transport has projects dominated by 

railroad and, especially, automotive topics; notable subtopics include manufacturing, fuel 

systems, concrete, and pollution. The smallest transportation community, Sea Transport, is 

more specifically focused; virtually all project titles are shipping-related. The remaining 

communities, Aquatic Resources and Information Processing, are the smallest and 

thematically most uniform.  

 

Figure 3 visualizes the network of key FP5 communities. We determine the position for the 

communities using methods from spectral graph analysis, so that communities that show a 

relatively higher number of links between them are positioned nearer to each other (see Seary 

and Richards 2003). The node size corresponds to the number of organisations of the 

respective community. It can be seen that the Life Sciences and the Electronics community 

show the highest number of organizations. The Electronics community appears to have the 

highest collaboration intensity with other communities, i.e. knowledge produced in this field 

is used intensively in other fields. The Life Sciences community has a strong connection to the 

third largest community, Environment. On the left-hand the three transport related 

communities are positioned, i.e. they show relatively high inter-community collaboration 

intensity. The largest of these is Aerospace, which is closer to Ground Transport than to Sea 

Transport. The community Aquatic Resources has the strongest connection to Environment, 

while Information Processing is far from all other communities.  
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Figure 3: Community groups on the network of R&D cooperation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Node positions are determined using methods from spectral graph analysis. Positions are defined as the 
components of the two most significant eigenvectors, corresponding to the two smallest positive eigenvalues of 
the normalized Laplacian for the network (See Higham and Kibble 2004 for details). 
 
 

   

Structure and Topology of the network communities 

 

Table 2 provides an overview on some measures that characterize the structure of the eight 

FP5 communities under consideration. When we compare the communities to each other, 

some noteworthy differences in the network structure appear. As indicated in the previous 

subsection, the number of vertices, and thus the number of organizations, in a community is 

highest for the Life Sciences community and the Electronics community. Though the number 

of organisations in these two communities is nearly equal, the number of edges is markedly 

higher in the Life Sciences community than in the Electronics community, leading to a higher 

density in the Life Sciences community. The average path length also varies across the eight 

communities. It is highest for the Environment community (2.797), though it has a lower 

number of vertices than the Life Sciences and the Electronics community, i.e. from a social 

network analysis perspective, the condition for diffusion of information is better in the latter 

two communities than in the Environment community. The skewness is highest for the 

Ground Transport community showing a value of 6.739. Compared to the other communities, 

Number of organisations: 2,400 
Number of organisations: 1,200 
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Ground Transport features central hubs that are in many more projects than the other 

organizations and are of great importance for the spread of information in the network.  

 

Table 2: Properties of eight FP5 communities 

Measure Life 
Sciences  

Aquatic 
Resources Electronics Environment Sea 

Transport 
Ground 

Transport Aerospace Information 
Processing 

vertices n 2,366.000 81.000 2,307.000 1,855.000 218.000 686.000 1,146.000 40.000 

edges m 33,178.000 451.000 30,456.000 23,155.000 2,978.000 5,251.000 13,870.000 226.000 

Average path 
length  2.713 2.199 2.732 2.797 2.030 2.549 2.669 1.731 

Density 0.012 0.139 0.010 0.013 0.126 0.022 0.021 0.290 

Skewness 4.749 1.169 5.132 4.512 1.718 6.739 4.263 1.097 

Mean degree 28.046 11.136 26.403 24.965 27.321 15.309 24.206 11.300 

 
 
 
 
Spatial patterns of the network communities 

 

We next consider the spatial distribution of the eight FP5 communities. Figure 4 illustrates the 

spatial networks of the communities by aggregating individual observations on the 

organisations of a community to the regional level. The European coverage is achieved by 

using 225 NUTS-2 regions of the pre-2007 EU25 member states, as well as Norway and 

Switzerland. Note that the region-by-region community networks are undirected graphs from 

a network analysis perspective. The nodes represent regions; their size is relative to their 

degree centrality corresponding to the number of links connected to a region.  

 

The spatial network maps in Figure 4 reveal considerable differences of the spatial 

collaboration patterns across eight FP5 communities. One important result is that the region 

Île-de-France takes an important position in all communities. Furthermore, the visualization 

clearly discloses the different spatial patterns of the Transport related communities, 

Aerospace, Ground Transport and Sea Transport. Though the region Île-de-France appears to 

be the central hub in all transport-related communities, the directions of the highest 

collaboration flows from Île-de-France differ markedly. For the Sea Transport community we 

observe intensive collaborations to important sea ports in the north (Zuid Holland, Agder 

Rogeland, Denmark, Hamburg) and the south (Liguria, Lisbon, Athens), while for the Ground 

Transport community collaborations to the east and south are dominant (Lombardia, 

Oberbayern, Stuttgart). In the Aerospace community we can observe a strong localisation of 

collaborations within France and its neighbouring countries.  
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Figure 4: Spatial patterns of eight FP5 communities   
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Fig. 4 ctd.  

 

 

 

 

 

 

 

 

 

 

 

In the largest community, Life Sciences, the highest number of collaborations is observed 

between the regions of Île-de-France and Piemonte (174), while the second largest 

community, Electronics, is characterized by a very high collaboration intensity between the 

regions of Île-de-France and Oberbayern (474 collaborations), followed by Île-de-France and 

Köln (265 collaborations), and Oberbayern and Köln (157 collaborations). In the Environment 

community we find the strongest collaboration intensity between Denmark and Helsinki (131 

collaborations). In the community Aquatic Resources the regions Denmark and Agder 

Rogaland (Norway) show the highest collaboration intensity, not only between them (21 

collaborations) but also to other regions, while for the community Information Processing we 

identify Helsinki as the central region, featuring intensive collaboration with Athens, Lazio 

and Lombardia. 

 

 

5  Conclusion 
 

In this paper, we employ recently developed methods to identify communities in European 

R&D networks using data on joint research projects funded by the European Framework 

Programmes (FPs). The identification and characterisation of thematically relevant 

substructures in these networks is of crucial importance in a European policy context. The 

present study complements earlier empirical work on the structure and topology of R&D 

networks in Europe that neglected relevant substructures (see, for instance, Breschi and 

Cusmano 2004).  

Electronics Environment 
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The network under consideration in the current study consists of nodes representing 25,839 

organizations, including firms, universities and research organizations, connected together by 

joint cooperation in FP5 projects. We adopt a label propagation algorithm (LPA) for 

identifying community groups in the network under consideration. LPA is designed for 

maximizing bipartite modularity that accounts for the bipartite character of the network (see 

Barber and Clark 2009). The advantages of LPA are its conceptual simplicity, ease of 

implementation and practical efficiency.  

 

The study produces interesting results, both from a scientific point of view, and in a European 

policy context. We detect eight relevant, thematically relatively homogenous FP5 

communities providing a new view on the R&D collaboration landscape in Europe. The larger 

communities identified are Life Sciences, Electronics, and Environment. However, these may 

show further relevant substructures. As communities become smaller, they also become more 

focused. We identified three Transport related communities that are Aerospace, Ground 

Transport, and Sea Transport. The remaining communities, Aquatic Resources and 

Information Processing, are the smallest and most uniform thematically. Furthermore, the 

results of the spatial analysis clearly reveal that the geographical distribution of the 

communities varies considerably. However, the region of Île-de-France plays a central role in 

each of the detected communities.  

 

The general approach followed in this study may be extended and improved upon in several 

ways. Alternate community detection methods may be considered. More significantly, 

alternate definitions of what we mean by community may be considered, so as to investigate 

hierarchical substructures of the communities or to allow the communities to overlap and 

include the same organization. Other methods from social network analysis may be explored 

to characterize the network, and techniques from spatial analysis and econometrics may be 

applied to characterize the network as a whole and its community structure.  
 

Acknowledgements. The authors gratefully acknowledge the grant no P21450 provided by the Austrian Science 
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