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Abstract

Power laws appear widely in many branches of economics, geography, demography and other 

social sciences. In particular, the upper tail of city size distributions appear to follow power 

laws, as many researchers have shown for different countries and different periods of times. A 

crucial point in the estimation of these laws is the correct choice of the truncation point. The 

aim of this paper is to investigate how to choice this truncation point from an optimal point of 

view. A new methodology based on the Akaike Information Criterion is proposed. An 

extensive simulation study is carried out in order to prove the existence of this optimal point, 

under different assumptions about the underlying population. Several kind of populations are 

considered, including lognormal and population with heavy tails. Finally, the methodology is 

used to optimal estimation of power laws in city size data sets for Spain for several years

Key Words: Power law; Pareto distribution; Akaike information criterion; city size.

JEL Classification: C52, O18, R12. 

1. Introduction

Power laws appear widely in many branches of economics, finance, physics, computer 

science, demography and other social sciences. The upper tail of many sets of data: 

population of cities (Auerbach, 1913; Zipf, 1949; Bosker et al., 2008), personal income 

(Pareto, 1897; Clementi and Gallegati, 2005), size of firms (Axtell, 2001; Fujiwara et al., 

2004; Growiec et al., 2008) and many other examples, all appear to follow a power law 

behavior, as many researchers have shown for different countries and different periods of 

times.
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Power laws are also known as classical Pareto distributions (Arnold, 2008) or as Rank Size 

Rules (Stanley et al., 1995; Urzúa, 2000).   For example, if we sort the largest cities of any 

country by population, we ordered them by its size, then we associate each city to the number 

of the sequence obtained, its rank , and we plot the rank versus the size along the y-axis and 

the x-axis respectively on a log-log scale, we get a straight line with negative slope, 

confirming empirically that power law behavior.

Many procedures have been proposed to estimate power laws. The two most commonly used 

(Gabaix and Ioannides, 2004) are Zipf Regression (Gabaix, 1999a; Gabaix, 1999b; 

Balakrishnan et al., 2008) and Hill Estimator (Hill, 1975). Both of them have several 

problems (Gabaix and Ioannides, 2004; Bauke, 2007; Clauset et al., 2009). In this paper, we 

have chosen to follow Zipf Regression method for two reasons: first, because unfortunately 

empirical research always manage finite samples and the bad non-asymptotic properties of the 

Hill estimator can be worrisome in finite samples (Embrechts et al., 1997; Gabaix and 

Ioannides, 2004), and second, because empirical literature has provided a large list of data 

sets well described with Zipf Regression method (Rosen and Resnick, 1980; Krugman, 1996; 

Zanette and Manrubia, 1997; Brakman et al., 1999; Davis and Weinstein, 2002; Moura and 

Ribeiro, 2006; Nitsch, 2005; Soo, 2005).

Power laws are usually valid only in the upper tail. So, a crucial point in the estimation of 

power laws is the correct choice of the truncation point. With Zipf Regression method, the 

three most commonly methods used to fix the limits of the upper tail are (Cheshire, 1999): a 

fixed number of data, a fixed size threshold and a size sample above which that sample 

accounts for some given proportion of the total. A pitfall of those three methods is that all of 

them depend on the decision each researcher makes, they are not objective criteria. The aim of 

this paper is to investigate how to choose this truncation point from an optimal point of view.

The contents of this paper are as follows. In Section 2, a new methodology, based on the 

Akaike Information Criterion, is proposed to estimate power laws optimally. In Section 3, an 

extensive simulation study is carried out to prove the existence of the optimal truncation 

point, under different assumptions about the underlying population. An empirical application 

to city size, with Spanish data, is included in Section 4. Finally, some conclusions are given in 

Section 5.
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2. Choosing the truncation point optimally

Power laws are defined, in terms of cumulative distribution function (cdf), as follows

 ( ) Pr 1 , 0
x

F x X x x






 

      
 

(1)

and ( ) 0F x  if x  , where 0  is a shape parameter and  is a scale parameter. The 

parameter will be called Pareto coefficient. The Zipf's law corresponds to the choice 1  in 

Eq. (1) (see, for example, Urzúa, 2000; Fujiwara et al., 2004; Anderson and Ge, 2005). A 

generalization has been proposed by Sarabia and Prieto (2009). A random variable X with

cdf given by Eq. (1) will be represented by ( , )X Pa  � . By taking logarithms of both

sides of the Eq. (1), we obtain a linear expression in log x

   log 1 ( ) log logF x x    (2)

so, a power law with Pareto coefficient  can be seen as a straight line with negative slope 

 on a log-log plot. Also, in terms of rank, we have

    log log irank C size  (3)

where we have considered the ordered sequence of n data values of the random variable X :

       1 2 i nx x x x      , and where we have considered    i isize x ,  1rank n i  

and  log 1C n     .

A new methodology, based on the Akaike Information Criterion ( AIC ), is proposed, in order 

to choose the truncation point to estimate a power law from an optimal point of view. Akaike 

Information Criterion ( AIC ) is defined by Akaike (1974) as follows

2 log 2AIC l k  (4)

where k is the number of parameters in the statistical model and log l is the log-likelihood of 

the model evaluated at the maximum likelihood estimates. The AIC is a measure of the 

goodness of fit of an estimated statistical model and a useful tool for model selection. Let 

     1 2 nx x x   be the ordered sequence of n data values of X (a random variable with 

power law behavior in the upper tail). Let      1p p nx x x   the upper tail, defined by a 

threshold p and by a size  1N n p   . Under the assumptions that the model errors are 
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normally and independently distributed, under Zipf regression method given by ˆ ˆy X u  , 

AIC can be expressed as follows (Goldberger, 1991; Gujarati, 2005)

2 2 2 2
ˆˆ ˆ 1

ˆ
T T T n

k N k N k N
i

i p

u u y y X y
AIC e e e u

N N N






    (5)

In the particular case of power laws ( 2k  ),

4 21
ˆ

n
N

i
i p

AIC e u
N 

  (6)

The new methodology proposed to choose optimally the limit of the upper tail to estimate a 

power law is to find the value p   where Akaike Information Criterion ( AIC ) is minimum. 

argmin
optimal

p

P AIC (7)

where optimalP is the truncation point proposed. Then, the optimal size of the upper tail 

proposed to estimate a power law, optimalN , is

 1optimal optimalN n P   (8)

3. Montecarlo Simulation Study

In this section, we carry out a simulation experiment to study the performance of the proposed 

method and to prove the existence of the optimal truncation point, under different 

assumptions about the underlying population. The experiment has been designed considering 

two populations, Lognormal and Singh-Maddala, for two reasons: they are the most usual 

population in the context of this paper (urban economics, etc) and they correspond with two 

important types of tails (lognormal and heavy tail). Lognormal distribution (Johnson et al., 

1994), denoted by  2,X LN  � , is defined in terms of cumulative distribution functions 

(cdf) as follows

 
 log

( ) Pr , 0
x

F x X x x




 
     

 
(9)

and ( ) 0F x  if 0x  , where  is the standard normal cdf. SinghMaddala distribution, 

denoted by  , ,X SM a b q� , is defined in terms of cdf by (Singh and Maddala, 1976)

 ( ) Pr 1 1 , 0

q

x
F x X x x

b




  
       

   
(10)
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First, we generate R times a uniform  0,1 random sample with n values each one, taking 

300,10000R  in order to analyze the influence of the number of samples and taking 

500,1000,3000n  to analyze the influence of the sample size. Then, we generate R times a 

random sample of X with n values each one with the inverse of the corresponding cdf (Rios 

et al., 1997), taking  2,X LN  � and   , ,X SM a b q� in order to analyze the influence 

of different assumptions about the underlying population. With respect to the lognormal 

assumption, Table 1 shows the different values of the parameters ( ,  ) taken, and the 

coefficient of variation ( )CV X , mean ( )E X , standard ( )STD X values corresponding to 

them, which make 30 different simulation scenarios with R samples of n values each 

scenario.

Table 1: Design of Lognormal simulation experiment, ( )CV X , ,  , ( )E X , ( )STD X values used

( )CV X   ( )E X ( )STD X

0.1003 1.0000 0.1000 2.7319 0.2739

0.5003 1.0000 0.4726 3.0394 1.5205

1.0000 1.0000 0.8326 3.8442 3.8442

1.5001 1.0000 1.0857 4.9007 7.3515

4.9998 1.0000 1.8050 13.8601 69.2978

With respect to the SinghMaddala assumption, Table 2 shows the different values of the 

parameters ( , ,a q b ) taken, and the mean ( )E X , variance ( )VAR X , coefficient of variation 

( )CV X values corresponding to them (Kleiber and Kotz, 2003), simulating three types of 

scenarios, with infinite mean (
1

q
a

 ), finite mean and infinite variance (
1 2

q
a a

  ), finite 

mean and finite variance (
2

q
a

 ), which make 174 different simulation scenarios with 

R samples of n values each scenario.

In total, 204 different scenarios which were simulated in the ALTAMIRA node of the 

Spanish Supercomputing Network.
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Table 2: Design of SinghMaddala simulation experiment, a , q , b , ( )E X , ( )VAR X , ( )CV X values used

a q b ( )E X ( )VAR X ( )CV X

1/2 3/2 1 Inf.

1/2 2 1 Inf.

1/3 2 1 Inf.

1/3 3 1 Inf.

1/2 3 1 1 Inf. Inf.

1/2 4 1 1/3 Inf. Inf.

1/3 4 1 1 Inf. Inf.

1/3 5 1 1/4 Inf. Inf.

1/3 6 1 1/10 Inf. Inf.

1/2 5 1 1/6   0.9722 5.9161

1/2 6 1 1/10 0.1900 4.3589

1/2 7 1 1/15 0.0622 3.7417

1/2 10 1 1/36 0.0090 3.0472

1/3 7 1 1/20 0.9975 19.9750

1/3 8 1 1/35 0.1420 13.1909

1/3 9 1 1/56 0.0354 10.5356

1/3 12 1 1/165 0.0021 7.6111

2   2 1 π/4 0.3831 0.7881

2   3 1 3π/16 0.1530 0.6641

2   4 1 5π/32 0.0924 0.6192

2 6 1 63π/512 0.0506 0.5817

5 3/5 1 1.3676 0.8648 1.4892

5 4/5 1 1.1745 0.3111 0.4749

5 1 1 1.0690 0.1787 0.3954

5 2 1 0.8552 0.0615 0.2899

10 2/5 1 1.2831 0.2540 0.3928

10 3/5 1 1.1323 0.0855 0.2582

10 4/5 1 1.0607 0.0493 0.2094

10 1 1 1.0166 0.0354 0.1851
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Second, for each scenario, we calculate for each one of the R samples of that scenario, the 

value of optimalN using the new method proposed in Section 2, optimalSize which is the value of 

X in optimalP and then, the Ordinary Least Square (OLS) estimators, Ĉ and ̂ in Eq. (3). After 

that, for each scenario, we calculate the mean of the R estimators obtained, optimalN , 

optimalSize , C ,  ; the standard deviation of those estimators
optimalN , 

optimalSize , 
Ĉ

 , ̂ ; and we 

obtain the frequency histogram of those estimators. So, as result of the simulation experiment 

made, we get 204 values of optimalN , optimalSize , C ,  ; 204 values of 
optimalN , 

optimalSize , 
Ĉ

 , 

̂ ; and 204 frequency histograms; which permit us to analyze the behavior of the method 

proposed in Section 2 under different assumptions: different number of samples, different 

size of the sample and different kinds of population, and in order to prove the existence of the 

optimal truncation point. Tables 3 and 4 show the results obtained with Lognormal 

distribution. All the results and histograms obtained are available via email for those people 

interested in them.

Third, we analyze the results obtained. The most relevant are:

 Existence of the optimal truncation point, obtained by the method proposed in Section 2, 

in all the 204 simulation scenarios.

 Under changes of R : Stability of C ,  , optimalN , optimalSize and 
Ĉ

 , ̂ ,
optimalN , 

optimalSize (with exception of optimalSize and 
optimalSize in a few scenarios of SinghMaddala

simulation with ( )E X infinite).

 Under changes of n : C ,  , optimalN , optimalSize and 
optimalN , 

optimalSize , increase when n

increases; there is no relationship between changes of n and changes of 
Ĉ

 , ̂ .

 Under changes of ( ,  ) or ( , ,a b q ): Stable patterns in the changes of C ,  , optimalN , 

optimalSize and 
Ĉ

 , ̂ ,
optimalN , 

optimalSize values in agreement with the ( ,  ) or ( , ,a b q ) 

values changed.  Some examples: under lognormal assumptions, increments of coefficient 

of variation make decrements of  C , ,
Ĉ

 , ̂ , make increments of optimalSize , 

optimalSize and have no relation with optimalN ,
optimalN changes; under SinghMaddala 
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assumptions, increments of q make decrements of C , optimalN , optimalSize and 
optimalN and 

increments of  , stability of C , optimalN , under changes of a .

In summary, stability of the method proposed under changes in the number of the samples, 

under changes in the size of the sample and under different assumptions about the population, 

and existence of the optimal truncation point obtained by the method proposed in all the 

simulation scenarios.

4. An empirical application to city size

The methodology proposed can be used for optimal estimation of power laws in city size data.  

In this paper, we have considered Spanish city size data. In short term, migration is the main 

driver for city size fluctuations and Spain is the country with the biggest change in the 

international migrant stock between years 2000 and 2005 (see International Migration Wall 

Charts 2002 and 2006, Department of Economic and Social Affairs of United Nations). Data 

sets used are composed of information of the population of the Spanish cities for ten years, 

from 1998 to 2007 and dated on January 1st of each year, published by the Spanish National 

Statistic Institute (INE).

There is no agreement in the definition of a city in the literature related. We have adopted the 

definition of a city as a municipality corresponding to local administrative and jurisdictional 

entity considered by Anderson and Ge (2005).

Some relevant information about data sets used appears in Table 5. Table 6 shows the 

minimum AIC and optimalN values obtained, providing empirical evidence of the existence of 

the optimal truncation point. It can be seen that AIC is very close to zero in those points. 

Figure 1 shows, for five of the ten year considered, on the left all the values of AIC and on 

the right the values of AIC next to the optimal truncation point. Table 7 shows C and 

values obtained by Zipf Regression, using the optimal truncation points of Table 6.  Figure 2

shows graphically how Spanish city size data, in the ten years considered, are well described 

in the upper tail by a power law estimated by the method proposed in Section 2.
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Table 3: Lognormal simulation results, mean.

/n R ( )CV X C 
optimalN optimalSize

0.1003 29.1887 22.2639 97.0633 3.0076

0.5003 11.8245 4.8114 92.2233 4.5723

500/300 1.0000 9.8382 2.7690 91.4000 7.2134

1.5001 8.9885 2.0661 95.0900 9.3360

4.0998 8.2585 1.2598 93.2667 26.9000

0.1003 29.4069 22.4620 95.2007 3.0116

0.5003 11.7479 4.7783 93.9560 4.5345

500/10000 1.0000 9.6757 2.7106 94.5506 6.9330

1.5001 8.9961 2.0628 94.8192 9.5824

4.0998 8.2578 1.2587 92.9501 26.9370

0.1003 32.8920 24.8024 126.9833 3.0914

0.5003 13.1186 5.1332 135.1233 4.9327

1000/300 1.0000 10.9346 2.9300 132.1567 8.3607

1.5001 10.2189 2.2379 134.1000 11.9519

4.0998 9.3108 1.3355 141.0400 39.3109

0.1003 31.8335 23.9148 138.8054 3.0744

0.5003 13.0239 5.0818 138.2511 4.9668

1000/10000 1.0000 10.8169 2.8833 139.4899 8.1089

1.5001 10.1604 2.2152 136.9196 11.8117

4.0998 9.3221 1.3405 135.5760 38.1956

0.1003 35.2587 25.8373 246.7233 3.1663

0.5003 14.8216 5.4339 263.9733 5.6067

3000/300 1.0000 12.7447 3.1732 237.1500 10.5888

1.5001 11.9789 2.4336 237.7200 16.1167

4.0998 11.0054 1.4600 240.3000 59.7772

0.1003 35.8401 26.3118 240.0072 3.1719

0.5003 15.1222 5.5784 240.9278 5.7303

3000/10000 1.0000 12.7422 3.1774 239.4232 10.4551

1.5001 11.9937 2.4340 241.8122 16.2408

4.0998 10.9940 1.4585 242.4453 61.2042
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Table 4: Lognormal simulation results, standard deviation.

/n R ( )CV X
Ĉ

 ̂
optimalN

optimalSize

0.1003 7.8060 6.4851 55.5822 0.1516

0.5003 3.0794 1.5649 53.6610 1.1327

500/300 1.0000 2.4316 0.9046 56.1974 3.3394

1.5001 2.2716 0.7254 52.7239 5.5848

4.0998 1.8412 0.3869 54.7384 29.8910

0.1003 8.3662 6.9787 54.7430 0.1489

0.5003 2.9189 1.4920 54.2249 1.1209

500/10000 1.0000 2.3036 0.8609 54.9270 3.1394

1.5001 1.9693 0.6201 55.7112 5.8816

4.0998 1.9164 0.4109 54.4663 29.6718

0.1003 10.3587 8.5277 80.5126 0.1407

0.5003 3.3777 1.6181 75.1204 1.0481

1000/300 1.0000 2.3418 0.8262 84.1862 3.5902

1.5001 2.1532 0.6338 77.5331 7.2801

4.0998 2.1866 0.4314 87.2587 46.3137

0.1003 8.2094 6.7285 83.8760 0.1448

0.5003 3.0510 1.4938 83.7424 1.1691

1000/10000 1.0000 2.3599 0.8324 84.2074 3.5759

1.5001 2.1830 0.6385 83.4262 6.9791

4.0998 2.0288 0.4021 83.3587 42.4830

0.1003 7.1013 5.7131 165.9498 0.1373

0.5003 2.7734 1.2733 168.3849 1.2879

3000/300 1.0000 2.3787 0.7629 155.1701 4.3872

1.5001 2.1242 0.5700 155.5715 8.7128

4.0998 1.8196 0.3347 160.0925 62.2124

0.1003 8.1120 6.4902 155.6780 0.1375

0.5003 3.1347 1.4297 156.6891 1.2519

3000/10000 1.0000 2.5131 0.8136 155.9896 4.2704

1.5001 2.4948 0.6619 158.1800 9.2960

4.0998 2.0455 0.3682 158.4850 67.4772
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Table 5: Some relevant information about Spanish city size data sets used

Country Year Minimum city 

size considered

Cities considered Population considered

(People) (Number) (% of total) (Number) (% of total)

1998 26 8,027 99.12 39,851,234 99.9964

1999 26 8,030 99.12 40,200,753 99.9965

2000 25 8,039 99.20 40,498,574 99.9970

2001 24 8,049 99.28 41,115,778 99.9974

2002 23 8,054 99.33 41,836,950 99.9977

Spain 2003 22 8,056 99.35 42,716,171 99.9979

2004 20 8,070 99.52 43,197,070 99.9986

2005 19 8,074 99.57 44,108,016 99.9988

2006 18 8,077 99.59 44,708,495 99.9990

2007 17 8,087 99.70 45,200,426 99.9993

5. Conclusions

In this work, we have proposed a new methodology to choose the truncation point of the 

upper tail of a power law from a optimal point of view. The new methodology is based on 

Zipf regression method and on Akaike Information Criterion (AIC ). We have carried out a 

simulation experiment to study the performance of the proposed method and we have 

obtained two main results: first, stability of the method proposed under changes in the number 

of samples, under changes in the size of the sample and under different assumptions about the 

underlying population, and second, existence of the optimal truncation point of a power law 

obtained by the method proposed in all the different simulation scenarios. Finally, we have 

used the new methodology proposed, with Spanish city size data for ten years, from 1998 to 

2007, and we have obtained the following empirical results in all the data set used: 

graphically power law is reasonably accuracy to the real data, minimum AIC values obtained 

are very close to zero and existence of the optimal truncation point.   
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Table 6: Minimum AIC and optimalN values obtained for ten years in Spain, 1998-2007

Country Year Minimum AIC
optimalN

1998 0.004005343 729

1999 0.004072735 736

2000 0.004183031 730

2001 0.004323567 718

Spain 2002 0.004438122 675

2003 0.004554755 655

2004 0.004639344 652

2005 0.004871440 631

2006 0.005103109 632

2007 0.005165000 631

  Table 7: Ĉ and  ̂ obtained by the method of minimum AIC proposed, for ten years in Spain, 1998-2007

Country Year Ĉ ̂

1998 16.637266154 1.105718717

1999 16.673086891 1.107709287

2000 16.720934802 1.110892196

2001 16.780948539 1.114463351

Spain 2002 16.884058381 1.121690818

2003 16.951746426 1.125299404

2004 17.011058941 1.129263185

2005 17.117212268 1.136311063

2006 17.187940802 1.140825431

2007 17.271660320 1.147095898
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  Figure 1: AIC values for Spain 1998, 2001, 2003, 2005 and 2007 

(on the left all the values of AIC , on the right the values of AIC next to the optimal truncation point)
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  Figure 2: Upper tail of Spanish city size data on log-log scale 

and the corresponding power laws estimated by the method proposed (in solid lines)



15

References

Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on 

Automatic Control, 19: 716–723

Anderson G, Ge Y (2005) The size distribution of Chinese cities. Regional Science and 

Urban Economics, 35: 756-776

Arnold BC (1983) Pareto distributions. International Cooperative Publishing House, Fairland, 

Maryland

Axtell RL (2001) Zipf Distribution of U.S. Firm Sizes. Science, 293: 1818

Auerbach F (1913) Das Gesetz der Bevolkerungskonzentration. Petermanns Geographische 

Mitteilungen, 59: 74-76

Balakrishnan PVS, Miller JM, Shankar SG (2008) Power laws and evolutionary trends in 

stock markets. Economics Letters, 98(2): 194-200

Bauke H (2007) Parameter estimation for power-law distributions by maximum likelihood 

methods. The European Physical Journal B, 58(2): 167-173

Bosker M, Brakman S, Garretsen H, Schramm M (1949), A century of shocks: the evolution 

of the German city size distribution, 1925-1999. Regional Science and Urban Economics, 

38(4): 330-347

Brakman S, Garretsen H, van Marrewikj C, van de Berg M (1999) The return of Zipf: 

Towards a further understanding of the rank-size distribution. Journal of Regional Science, 

39(1): 182-213

Cheshire P (1999) Trends in sizes and structures of urban areas. In: P Cheshire, ES Mills 

Eds. Handbook of Regional and Urban Economics 3: 1339-1372, Elsevier, Amsterdam



16

Clauset A, Rohilla C, Newman MEJ (2009) Power-law distributions in Empirical Data. SIAM 

Review, 51(4): 661-703

Clementi F, Gallegati M (2005) Power law tails in the Italian personal income distribution. 

Physica A: Statistical Mechanics and its applications, 350(2): 427-438

Davis DR, Weinstein DE (2002) Bones, bombs, and break points: the geography of economic 

activity. The American Economic Review, 92(5): 1269-1289

Embrechts P, Klupperberg C, Mikosch T (1997) Modelling External Events for Insurance and 

Finance. Springer, Berlin

Fujiwara Y, Guilmi CD, Aoyama H, Gallegati M, Souma W (2004) Do Pareto-Zipf and 

Gibrat laws hold true? An analysis with European firms. Physica A: Statistical Mechanics and 

its applications, 335: 197-216 

Gabaix X (1999a) Zipfs law and the growth of cities. The American Economic Review, 89: 

129-132

Gabaix X (1999b) Zipf´s Law for Cities: An Explanation. The Quarterly Journal of 

Economics, 114: 739-767

Gabaix X, Ioannides YM (2004) The evolution of city size distributions, In Handbook of 

Regional and Urban Economics, 4: 2341-2378, JV Henderson, JF Thisse (Eds), Elsevier

Goldberger AS (1991)  A course in Econometrics. Harvard University Press, Cambridge, MA

Growiec J, Pammolli F, Riccaboni M, Stanley HE (2008) On the size distribution of business 

firms. Economics Letters, 98(2): 207-212

Gujarati DN (2005) Econometría. McGraw-Hill, México

Hill BM (1975) A simple general approach to inference about the tail of a distribution. Annals 

of Statistics, 3: 1163-1174



17

Spanish National Statistic Institute (INE), Spanish Official Municipal Registers 1998-2007, 

http://www.ine.es

Johnson NL, Kotz S, Balakrisnan N (1994) Continuous univariate distributions. John Wiley, 

NY

Kleiber C, Kotz S (2003) Statistical Size Distributions in Economics and Actuarial Sciences. 

John Wiley and Sons, New York

Krugman P (1996) The Self-Organizing Economy. Cambridge, MA: Blackwell Publishing

Moura NJJr, Ribeiro MB (2006) Zipf law for Brazilian cities. Physica A: Statistical 

Mechanics and its applications, 367: 441–448

Nitsch V (2005) Zipf zipped. Journal of Urban Economics, 57: 123-146

Pareto V (1897)  Cours d´Economie Poloitique. Rouge et Cie, Paris

Rios D, Rios S, Martin J (1997) Simulación. Métodos y aplicaciones. Ra-Ma Editorial, 

Madrid

Rosen KT, Resnick M (1980) The size distribution of cities: An examination of the Pareto law 

and primacy. Journal of Urban Economics, 8(2): 165-186

Sarabia JM, Prieto F (2009) The Pareto-positive stable distribution: a new descriptive method 

for city size data. Physica A: Statistical Mechanics and its applications, 388(19): 4179-4191

Singh SK, Maddala GS (1976) A function for the size distribution of income. Econometrica, 

44: 963-970

Soo KT (2005), Zipfs law for cities: a cross-country investigation. Regional Science and 

Urban Economics, 35(3): 239-263



18

Stanley MHR, Buldyrev SV, Havlin S, Mantegna RN, Salinger MA, Stanley HE (1995) Zipf 

plots and the size distribution of firms. Economics Letters, 49: 453-457

United Nations, Department of Economic and Social Affairs, International Migration Wall 

Charts, 2002 & 2006, http://www.un.org

Urzúa CM (2000) A simple and efficient test for Zipf's law. Economics Letters, 66: 257-260

Zanette DH, Manrubia SC (1997) Role of intermittency in urban development: a model of 

large-scale city formation.  Physics Review Letters, 79(3): 523-526

Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley Press, 

Cambridge, MA


