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Abstract: 

The classical approach to estimate spatial models lays on the choice of a 

spatial weights matrix that reflects the interactions among locations. The 

two main alternative proposals to specify the structure of these weights may 

be called exogenous and endogenous procedures. In this paper, we propose 

an intermediate solution by using entropy econometrics. The basic idea is 

that, once an exogenous weighting matrix is specified, we could modify our 

initial specification using information contained in the sample. We evaluate 

the comparative performance of this entropy-based estimation by means of 

Monte Carlo simulations and also show an illustration with an empirical 

example. 
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1. INTRODUCTION 

The selection of a specific spatial weights matrix 𝑾 is a key issue when 

estimating spatial models, but at the same time there is not a unanimous 

criterion to choose the most appropriate spatial weights for a given 

empirical application.1 Basically, there are two alternative approaches to 

the problem of the specification of spatial weights. One of the streams 

promote fixing the 𝑾 matrix exogenously to the model basing on some 

concept of geographical proximity. For example, a very simple way to 

characterize their elements wij is by defining them as binary variables that 

take value 1 when locations i and j are neighbor and 0 otherwise (depending 

on the existence or not of a common border, for example). The geographical 

distance between locations i and j can be used in a more direct way, defining 

wij as a distance decay function. Other authors prefer using some economic 

measure of distance based on interregional trade flows, income differences, 

etc.2   

 

Some other authors, on the contrary, propose the construction of 𝑾 matrices 

based on some “empirical” evidence about the variables of the model. They 

are critical of the “exogenous approach”, because the spatial lag operator 

imposed can be very different from the real spatial structure underlying in 

the data. For example, Kooijman (1976) or Boots and Dufornaud (1994) 

define as one criterion the choice of 𝑾 that maximizes the Moran statistic. 

Following a similar idea, Mur and Paelinck (2010) base their specification of 

𝑾 on the so-called complete correlation coefficients. Two papers by Getis 

and Aldstadt base their specification of 𝑾 on the values of the 𝐺𝑖
∗ local 

statistic (Getis and Aldstadt, 2004) and on the use of a multi-directional 

algorithm (Aldstadt and Getis, 2006). Bhattacharjee and Jensen-Butler 

(2006) suggest a method to estimate 𝑾 based on the real structure of the 

spatial autocovariance, while Conley (1999) proposes the direct estimation 

of the spatial autocovariances.  

                                                 

1 See Anselin (2002), page 259. 
2 Some examples of these other approaches can be found in Molho (1995), Fingleton (2001) 

or López-Bazo, Vayá and Artís (2004).  
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The literature distinguishes several spatial models depending on the 

assumptions about the way in which spatial correlation affects the 

dependent variable. Specifically, Anselin (2003) presents a wide taxonomy of 

different types of spatial models. Although it can be easily extended to other 

situations, in this paper we focus on a situation where the externalities 

spread across space through a spatial cross-regressive (SCR) structure. This 

type of model is applied when some spatial spillovers are included in the 

model, but their influence is assumed to be limited to local effects (Anselin, 

2003, page 161). In other words, these models are appropriate when some of 

the explanatory variables of the model produce spatial spillovers with a 

spatial range delimited by the location and its immediate neighbors, but not 

beyond.  

 

Traditionally, for a set of N cross-sectional data, a SCR model is written as: 

𝒚 = 𝑿𝜷 + 𝝆𝑾𝒙∗ + 𝜺 (1) 

where 𝒚 is the (𝑁 × 1) vector with the values of the dependent variable, 𝑾 is 

the (𝑁 × 𝑁) matrix of a priori spatial weights, 𝑿 is a (𝑁 × 𝐾) matrix of 

exogenous variables, 𝜷 is a (𝐾 × 1) vector of parameters to estimate and 𝜺 is 

a (𝑁 × 1) stochastic error. In addition, 𝜌 is a spatial interaction parameter 

that measures how the variable y is spatially influenced. The weighting 

matrix 𝑾 represents the spatial structure of the spillovers. 

 

In this paper we propose using Generalized Maximum Entropy (GME) 

econometrics to estimate such models. The GME approach has been applied 

recently to spatial regression models by Marsh and Mittelhammer (2004) or 

Fernandez-Vazquez et al. (2009), who estimated a first order spatial auto-

regression model using this technique. The present paper will use the GME 

technique to define spatial lag operators that can be seen to lie in an 

intermediate position between the “exogenous” and “empirical” approaches. 
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The basic idea is that we initially fix an exogenous a priori 𝑾 matrix but, 

once this is specified, we could modify our initial specification.  

The structure of the paper is the following: Section 2 provides an overview of 

the GME methodology and shows how it can be applied to the context of 

SCR models. Section 3 evaluates the relative performance of the GME 

technique using a sampling experiment under different scenarios of 

divergence between the actual spatial network and the weighting matrix 𝑾 

specified in the estimation. In section 4 we illustrate how the proposed GME 

approach can be applied to an empirical estimation problem. Finally, section 

5 presents the concluding remarks.  

 

2. GENERALIZED MAXIMUM ENTROPY ECONOMETRICS: AN OVERVIEW3 

Let us assume that a discrete random event can take K possible outcomes 

𝐸1, 𝐸2, … , 𝐸𝐾   with the respective distribution of probabilities 𝐩′ = 𝑝1, 𝑝2, … , 𝑝𝐾  

such that  𝑝𝑘 = 1𝐾
𝑘=1 . Following the formulation proposed by Shannon 

(1948), the entropy of 𝒑 is: 

𝐻 𝒑 = − 𝑝𝑘

𝐾

𝑘=1

ln⁡(𝑝𝑘) (2) 

 

The entropy function H measures the „uncertainty‟ of the outcomes of the 

event. This function reaches its maximum when 𝒑 follows a uniform 

distribution: 𝑝𝑘 =
1

𝐾
;  ∀𝑘. On the other hand, this function takes a value of 

zero (no uncertainty) when the probability of one of the outcomes goes to 

one. If some information about the variable (i.e., observations) is available, 

it can be used to estimate an unknown distribution of probabilities for a 

random variable 𝒙 that takes values 𝑥1, 𝑥2, … , 𝑥𝐾   . Suppose that there are N 

observations 𝑦1, 𝑦2, … , 𝑦𝑁   available such that: 

                                                 

3 This section summarizes the process to estimate the parameters of a linear model. See 

Golan, Judge and Miller (1996) and Kapur and Kesavan (1992) for further details. 
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 𝑝𝑘𝑓𝑛(𝑥𝑘) = 𝑦𝑛

𝐾

𝑘=1

;  ∀𝑛 (3) 

 

Where 𝑓𝑛(𝒙) is a generic function that represents the relationships between 

the random variable 𝒙 and the observed data 𝑦1, 𝑦2, … , 𝑦𝑁. In this situation, 

the ME principle can be applied to recover the unknown probabilities. This 

principle is based on the selection of the probability distribution that 

maximizes equation (2) among all of the possible probability distributions 

that fulfill (3). In other words, the ME principle chooses the “most uniform” 

distribution that corresponds with the information. The following 

constrained maximization problem is posed: 

max
𝒑

𝐻(𝒑) = − 𝑝𝑘

𝐾

𝑘=1

ln⁡(𝑝𝑘) (4a) 

subject to:   

 𝑝𝑘𝑓𝑛(𝑥𝑘) = 𝑦𝑛

𝐾

𝑘=1

;  𝑛 = 1, … , 𝑁 (4b) 

 𝑝𝑘 = 1

𝐾

𝑘=1

 (4c) 

 

In this problem, the last constraints is simply guarantees that the estimated 

probabilities add up to one, while the first N restrictions force the recovered 

distribution of probabilities to be compatible with the data for all N 

observations.  

 

The above-sketched procedure can be generalized and extended to the 

estimation of unknown parameters for traditional linear models. Let us 

suppose that the problem to face is the estimation of a linear model where a 

variable 𝒚 depends on K explanatory variables 𝑥𝑘 : 

𝒚 = 𝑿𝜷 + 𝜺 (5) 
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where 𝒚, 𝑿, 𝜷 and 𝜺 are defined exactly the same way as for equation (1). 

Each parameter 𝛽𝑘  is assumed to be a discrete random variable with 𝑀 ≥ 2  

possible realizations that are included into a „support‟ vector 𝒃′ =  𝑏1, … , 𝑏𝑀  

with corresponding probabilities 𝒑′
𝑘

=  𝑝𝑘1, … , 𝑝𝑘𝑀 . The vector b is based on 

the researcher‟s a priori belief about the likely values of the parameter. For 

the ease of exposition, it will be assumed that the M values are the same for 

every k parameter, although this assumption can easily be relaxed. Now, 

vector  can be written as:  

𝜷 =  
𝛽1

⋮
𝛽𝐾

 = 𝑩𝑷 =  

𝒃′ 0
0 𝒃′

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝒃′

  

𝒑𝟏
𝒑𝟐

⋮
𝒑𝑲

  (6) 

 

Where 𝑩 and 𝑷 have dimensions (𝐾 × 𝐾𝑀) and (𝐾𝑀 × 1) respectively. Now, 

the value of each parameter 𝛽𝑘  is given by the following expression: 

𝛽𝑘 = 𝒃′ 𝒑𝒌 =  𝑏𝑚

𝑀

𝑚=1

𝑝𝑘𝑚 ;  ∀𝑘 = 1, … , 𝐾 (7) 

For the random term, a similar approach is followed. In contrast to other 

estimation techniques, GME does not require rigid assumptions about a 

specific probability distribution function of the stochastic component, but it 

still is necessary to make some assumptions. 𝜺 is assumed to have mean 

𝐸 𝜺 = 0 and a finite covariance matrix. Basically, we represent our 

uncertainty about the realizations of vector 𝜺 treating each element 𝜀𝑛  as a 

discrete random variable with 𝐽 ≥ 2 possible outcomes contained in a convex 

set 𝒗′ =  𝑣1, … , 𝑣𝐽  , which for the sake of simplicity is assumed as common 

for all the 𝜀𝑛 . We also assume that these possible realizations are symmetric 

around zero (−𝑣1 = 𝑣𝐽 ). The traditional way of fixing the upper and lower 

limits of this set is to apply the three-sigma rule (see Pukelsheim, 1994). 

Under these conditions, vector 𝜺 can be defined as: 

𝜺 =  

𝜀1

⋮
𝜀𝑁

 = 𝑽𝑼 =  

𝒗′ 0
0 𝒗′

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝒗′

  

𝒖𝟏
𝒖𝟐

⋮
𝒖𝑵

  (8) 
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and the value of the random term for an observation n equals: 

𝜀𝑛 = 𝒗′ 𝒖𝒏 =  𝑣𝑗

𝐽

𝑗=1

𝑢𝑛𝑗 ;  ∀𝑛 = 1, … , 𝑁 (9) 

 

Consequently, model (5) can be transformed into: 

𝒚 = 𝑿𝑩𝒑 + 𝑽𝑼 (10) 

 

So we need also to estimate the elements of matrix 𝑼 (denoted by 𝑢 𝑛𝑗 ) and 

the estimation problem for the general linear model (5) is transformed into 

the estimation of 𝐾 + 𝑁 probability distributions. Therefore, the GME 

problem is written in the following terms: 

Max
𝑷,𝑼

𝐻 𝑷,𝑼 = −  𝑝𝑘𝑚

𝑀

𝑚=1

𝐾

𝑘=1

𝑙𝑛 𝑝𝑘𝑚  −   𝑢𝑛𝑗

𝐽

𝑗=1

𝑁

𝑛=1

𝑙𝑛 𝑢𝑛𝑗   (11a) 

subject to:  

𝑦𝑛 =   𝑏𝑚𝑝𝑘𝑚𝑥𝑘𝑛

𝑀

𝑚=1

+  𝑣𝑗

𝐽

𝑗=1

𝑢𝑛𝑗 ; 

𝐾

𝑘=1

 ∀𝑛 = 1, … , 𝑁 (11b) 

 𝑝𝑘𝑚 = 1

𝑀

𝑚=1

;  ∀𝑘 = 1, … , 𝐾 (11c) 

 𝑢𝑛𝑗 = 1

𝐽

𝑗=1

;  ∀𝑛 = 1, … , 𝑁 (11d) 

 

By solving this GME program, we recover the estimated probabilities that 

allow us to obtain estimates for the unknown parameters. Further details 

about the statistical properties of the GME estimator can be found in 

Appendix A. The estimated value of 𝛽𝑘  will be: 

𝛽 𝑘 = 𝒃′ 𝒑 𝒌 =  𝑏𝑚

𝑀

𝑚=1

𝑝 𝑘𝑚 ;  ∀𝑘 = 1, … , 𝐾 (12) 
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This GME procedure can be extended for estimating spatial cross-regressive 

models such as (1). Following the same procedure explained above for the 

𝛽𝑘  parameters, it will be assumed that there are 𝐿 ≥ 2 possible realizations 

for the spatial parameter  in a support vector 𝒛′ =  𝑧1, … , 𝑧𝐿 , with 

corresponding probabilities 𝒒′ =  𝑞1, … , 𝑞𝐿 . The parameter , consequently, 

can be also estimated by GME by means of this reparametrization.  

 

This idea was applied by Marsh and Mittelhamer (2004) for the case of 

spatial autoregressive models once a matrix of spatial weights 𝑾 is 

specified. Fernandez-Vazquez et al. (2009) extended this idea and proposed 

estimating all the 𝜌𝑖𝑗  elements of a matrix of spatial parameters instead of 

using a predetermined 𝑾 matrix. In this paper we suggest a solution that 

lies in an intermediate position between these two previous approaches. In 

our proposal, only one single spatial parameter  is defined, but the 

elements of a spatial weights matrix 𝑾 will be also estimated.  

 

Note that the GME can be naturally applied in this context, given that the 

elements of matrix 𝑾 are typically row-standardized and are non-negative. 

Consequently, each row of 𝑾 can be taken as a probability distribution with 

unknown elements 𝑤𝑛𝑖  to be recovered:  

𝑾 =  

0 𝑤12

𝑤21 0

 . 𝑤1𝑁

 . 𝑤2𝑁
.  .

𝑤𝑁1 𝑤𝑁2

 . .
 . 0

  (13) 

 

This means that equation (1) can be rewritten as: 

𝒚 = 𝑿𝑩𝒑 + 𝒔′𝒛𝑾𝒙∗ + 𝑽𝑼 (14) 
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Now the empirical GME program estimates K+2N+1 probability 

distributions, in the following terms: 

Max
𝑷,𝒔,𝑼

𝐻 𝑷, 𝒔, 𝑾, 𝑼 = −  𝑝𝑘𝑚

𝑀

𝑚=1

𝐾

𝑘=1

𝑙𝑛 𝑝𝑘𝑚  −   𝑢𝑛𝑗

𝐽

𝑗=1

𝑁

𝑛=1

𝑙𝑛 𝑢𝑛𝑗   

− 𝑠𝑙

𝐿

𝑙=1

𝑙𝑛 𝑠𝑙 −   𝑤𝑛𝑖

𝑁

𝑖≠𝑛

𝑁

𝑛=1

𝑙𝑛 𝑤𝑛𝑖   

(15a) 

subject to:  

𝑦𝑛 =   𝑏𝑚𝑝𝑘𝑚𝑥𝑘𝑛

𝑀

𝑚=1

+   𝑠𝑙

𝐿

𝑙=1

𝑧𝑙   𝑤𝑛𝑖𝑥𝑖
∗

𝑁

𝑖≠𝑛

 +  𝑣𝑗

𝐽

𝑗=1

𝑢𝑛𝑗 ; 

𝐾

𝑘=1

 ∀𝑛 = 1, … , 𝑁 (15b) 

 𝑝𝑘𝑚 = 1

𝑀

𝑚=1

;  ∀𝑘 = 1, … , 𝐾 (15c) 

 𝑢𝑛𝑗 = 1

𝐽

𝑗=1

;  ∀𝑛 = 1, … , 𝑁 (15d) 

 𝑤𝑛𝑖

𝑁

𝑖≠𝑛

= 1; ∀𝑛 = 1, … , 𝑁 (15e) 

 𝑠𝑙

𝐿

𝑙=1

= 1 (15f) 

 

The GME program above includes the entropy associated to the spatial 

parameter and to the weighting matrix in the objective function (15a). 

Equations (15c)-(15d) are again normalization constraints. Restriction (15b) 

forces the recovered probabilities to fit with the observations of the 

dependent variable. This GME program estimates, together with the 

parameters of the model, the elements of the matrix of spatial weights. 

These estimates (namely 𝑤 𝑛𝑖 ) are those that maximize our uncertainty 

about the 𝑾 matrix and that, simultaneously, are compatible with the 

available information. In other words, we choose as elements of the matrix 

those 𝑤 𝑛𝑖  that, being consistent with the observed data, diverge least with 

our prior assumption on 𝑾.  
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Additionally, the estimated value of the spatial spillovers will be: 

𝜌 =  𝑠𝑙𝑧𝑙

𝐿

𝑙=1

 (16) 

 

3. A NUMERICAL EXPERIMENT: ESTIMATING A SCR MODEL WITH A BINARY 

CONTIGUITY CRITERION 

In this section, the performance of the GME technique will be compared 

with other competing techniques in a scenario where the spatial structure 

that generates the data is given by a binary matrix of proximity. This type 

of contiguity criterion is relatively common in the empirical applications of 

spatial models and is very simple to define. Under this specification, the 

elements of the 𝑾 matrix are defined as the following function: 

 
𝑤𝑛𝑖 = 1 
𝑤𝑛𝑖 = 0

 

 

if locations n and i are neighbor regions 

otherwise 
 

  

We have simulated the cross-regressive model 𝒚 = 𝑿𝜷 + 𝜌𝐖𝐫𝒙∗ + 𝜺 with 

1,000 replications for a lattice of 𝑁 = 15 artificially generated locations. We 

also suppose that we have observations for T=20 time periods. In our 

experiment, the error term is generated in each simulation as a 𝑁 0,1  

distribution. Matrix 𝑿 is composed by a constant term and two independent 

variables 𝑥1 and 𝑥2 . Moreover, we assume that there is a variable 𝒙∗ that 

produces spillovers between neighbor regions. More specifically, we suppose 

that only the independent variable 𝑥2  generates these spatial externalities 

on other regions. The values for the independent variables and for the 

parameters (kept constant throughout the simulations) are: 

𝛽 =  

𝛽0

𝛽1

𝛽2

 =  
0.25
1.5
0.5

 ; 𝜌 = 0.2 (17a) 

𝑥1𝑛𝑡 ~𝑈 −10,10 ; 𝑛 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇 (17b) 

𝑥2𝑛𝑡 ~𝑈 −5,5 ; 𝑛 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇 (17c) 

𝑥𝑛𝑡
∗ = 𝑥2𝑛𝑡 ; 𝑛 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇 (17d) 
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In the experiment, the connectivity between the 15 locations is given by the 

spatial pattern contained in the matrix 𝐖𝐫, which is not necessarily equal to 

the weighting matrix used to estimate the model (𝐖). We have introduced 

the possibility of divergence between the real matrix (𝐖𝐫) and the one 

specified in the model (𝐖𝐫) assuming that 𝑤𝑛𝑖
𝑟 − 𝑤𝑛𝑖 = 𝑢𝑛𝑖 ; where 

𝑢𝑛𝑖 ~𝑁(0, 𝜎). 𝜎 is a scalar that reflects the degree of divergence between the 

real and the used spatial weighting matrices and if 𝜎 = 0 this would indicate 

that the real and the specified matrix are exactly the same. 

 

From this scenario for the sampling experiment, we compare the GME 

approach with other rival procedures. In order to apply the GME procedure 

to estimate models like (14), it is necessary to specify some support for the 

set of parameters and for the errors. For 
0
, 

1
 and 

2
 the same support 

𝒃′ =  −2,0,2  has been set. Note that although the actual values of the 

parameters are quite different among them, the support chosen contains the 

same range of possible realizations. In addition, the support is not centered 

on the true value of any of the parameters, which means that we are 

including not very good prior information for the estimation of the  

parameters. The support vector for the spatial parameter  was set as 

𝒛′ =  −1,0,1 . Finally, the support v for the error has been generated as a 

three-point vector centered about 0 following the common procedure of the 

3-sigma rule of variable y in each trial of the experiment (Pulkesheim, 1994; 

Golan, Judge and Miller, 1996).  

 

The benchmark for the comparison will be the estimation by maximum 

likelihood (ML). One basic difference is that in ML we specify a matrix 𝐖 

and we apply it directly in the estimation. In contrast, using GME we take 

𝐖 as an a priori approximation to 𝐖𝐫, but then we let the data speak for 

themselves and we could use spatial weights 𝑤 𝑛𝑖  (estimates of the elements 

on 𝐖𝐫) different from our initial assumptions. 
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Table 1 summarizes the results of this first experiment. For each one of the 

competing estimators we have computed the mean of the estimates of 
0
, 

1
 

and 
2
 throughout the 1,000 simulations (columns 1 to 3) and the empirical 

variance, the overall mean squared error of the estimates of 
0
, 

1
 and 

2
 

(MSE , column 4) and the so-called “mean squared spatial error” (MSSE, 

column 5). This measure of deviation in the estimates quantifies the 

aggregate squared differences between the actual 𝜌 and its respective 

estimate.  

<<Table 1 about here>> 

 

Each row of Table 1 contains a different value for the scalar 𝜎. As expected, 

the deviations between the actual and the estimated parameters for both 

methods increase for large values of 𝜎.  Moreover, when the matrix 𝐖 is 

correctly specified (𝜎 = 0) both GME and ML yield relative low error 

measures, although GME slightly outperforms ML.4 However, the 

performance of the two competing estimation techniques is remarkably 

different as 𝜎 grows. When the differences between the real 𝐖𝐫 and the 𝐖 

used in the estimation become larger, the GME begins to yield 

comparatively better estimates than ML. Figures 1 and 2 illustrates this 

idea both for the 𝛽 and 𝜌 parameters. 

<<Figure 1 about here>> 

<<Figure 2 about here>> 

 

This is because, in the GME, the specification of 𝐖 can be seen as an a 

priori assumption that can be modified by the information contained in the 

sample. In other words, the data in the sample help to alleviate a wrong 

assumption about 𝐖𝐫. All in all, the results suggest that with perfect 

certainty about the actual spatial network 𝐖𝐫, using the GME technique 

proposed does not imply large gains compared with ML. On the other hand, 

                                                 

4 Actually, this is the case analyzed in Marsh and Mittelhammer (2004) for SAR models. 
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if we do not have clear evidences for imposing the right structure in the 

spatial network, using a GME estimator seems to limit the estimation 

errors. 

 

4. An empirical illustration: regional spillovers from public capital 

in Spain. 

This section applies the entropy-based estimator presented previously to a 

real world example. The main objective will be to illustrate how to estimate 

the spatial spillovers present in a model such (1) for the N=15 Spanish 

inland regions (we exclude the Canary and Balearic Island in our analysis). 

The dependent variable 𝑦 𝑖𝑡  is labor productivity (gross value added per 

worker), which is assumed to depend basically on private capital per worker 

(𝑘 𝑖𝑡 ), the internal stock of public capital (𝑔 𝑖𝑡 ) and the stock of public capital 

in other regions (𝑔 𝑛𝑡 , 𝑛 ≠ 𝑖), which are spatially weighted by matrix 𝑾. The 

elements of this matrix are defined as 𝑤𝑛𝑖 = 1 when regions n and i share a 

common border and are null in any other case. In other words, we will 

assume that the stock of public capital in one region can produce changes in 

the labor productivity in adjacent regions. The specific equation to be 

estimated is: 

𝑦 𝑖𝑡 = 𝛼𝑘 𝑖𝑡 +𝛽𝑔 𝑖𝑡 + 𝜌 𝑤𝑖𝑗𝑔 𝑛𝑡

15

𝑛≠𝑖

+ 𝜀𝑖𝑡  (18) 

 

where i = 1, …, 15 (the 15 Spanish inland regions) and t = 1980,...,2000. 

Regional data on gross value added, number of workers and stock of private 

and public capital have been obtained from the BDMores database 

elaborated by the Spanish Ministry of Economy at constant prices of 1980. 

All the variables are measured in logs and expressed in differences to their 

respective regional average along the period 1980-2000 (the dots indicate 

growth rates with respect to this average).  

 

We have applied the entropy-based estimation procedure proposed in this 

paper, which requires specifying some supports for the set of parameters to 
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estimate and for the errors. For the parameters 𝛼 and 𝛽 we have considered 

the same support vector b with 3 points (−0.5,0, 0.5) for all the parameters 

included in the model. To test the sensitivity of the results to the 

specification of this support, we repeated the estimation fixing the elements 

of vector b in (−1, 0,1) and (−10, 0,10). The usual three-sigma rule applies 

for specifying the supporting vectors for the error terms in all the cases. 

 

Besides the point estimates, the GME procedure facilitates diagnosis and 

inference. In particular, it is possible to obtain standard deviation of the 

point estimates, as described in the Appendix. A global measure of goodness 

of fit has been also obtained. The results are summarized in Table 2: 

<<Table 2 about here>> 

 

The first two columns of Table 2 show the estimates for the parameters and 

the third one reports a pseudo-R2 obtained from the variance of the errors of 

the model as in Arnd et al. (2002). The results obtained under the three 

specifications for the supporting vectors would suggest a positive 

contribution of the stock of public capital to regional productivity, revealing 

also the importance of the endowment of this factor in the adjacent regions.  

The estimates of the elasticities of both own and external public capital are 

in line with those obtained in earlier works applied to Spain like, for 

example,  Mas et al. (1996, p. 645), Cantos et al. (2005, p. 42) Moreno and 

Lopez-Bazo (2007, p. 58) or Marquez et al (2009, p. 29).  

 

An interesting result comes from the estimates of the cells of 𝑾 matrix, 

which also provide information on the regional characteristics of the public 

capital spillovers. Note that, originally, the specified contiguity matrix 

assigned uniform weights to each region i that shares a common border with 

other region n. However, the GME procedure applied here allows for 

updating this initial assumption given the observed sample: some of the 

weights will be increased whereas others will be reduced. Table 3 shows, for 
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each weight in the matrix, the rate of variation from their a priori uniform 

value:5  

<<Table 3 about here>> 

 

Obviously, the row sums of these variations should equal zero in all the 

cases, since the estimates of 𝑤𝑛𝑖  must be row-standarized, but the column 

sums inform of the positive or negative update assigned to the spatial 

weights on each region. A positive column sum will indicate that the GME  

estimates assign more weight to this specific region in the generation of 

public capital spillovers than the a priori uniform specification. The opposite 

case happens when the column sum is negative. The regional distribution of 

these column sums are shown in Map 1: 

 

<<Map 1 about here>> 

 

The regions marked in green are those with a net positive update of the 

spatial weights, while those marked in brown are the regions whit a 

negative update. Even when this is a highly aggregated regional 

classification that does not allow for a detailed analysis, some geographical 

patterns can be observed in this map. All the regions located in the coast 

(with the exception of Murcia) receive larger spatial weights than originally 

assigned in the contiguity matrix, whereas the weights of the interior 

regions situated in the North of the country are reduced. This seems to 

indicate that, generally speaking, the interior Northern regions receive 

more intense public capital spillovers from the coastal regions than the 

other way around.  

 

                                                 

5 The results shown in Table 3 and Map 1 correspond to the model with the supporting 

vectors specified at the intermediate situation when 𝒃 = (−1,0, 1), but the general picture 

does not change for the other two supports. 
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5. CONCLUDING REMARKS  

The specification of the spatial weighting matrix has been a important issue 

in the field of spatial econometric analysis that has received considerable 

attention. The main problem is that there is not a unique approach to define 

the spatial weights and two alternative streams can be distinguished in the 

literature. One of the proposals supports using weighting matrices 

determined exogenously to the model, while other authors prefer to use 

some empirical evidence to specify them. This paper suggest a sort of 

intermediate way between these two proposals where the 𝑾 matrix is a 

priori specified exogenously, but in a second stage the weights are updated 

by means of the GME estimator. Focusing in the so-called spatial cross-

regressive models, a numerical experiment compares the performance of the 

proposed GME with a traditional ML estimator, and the results suggest 

that the possibility of updating the prior assumptions made in the 𝑾 matrix 

facilitates more accurate estimates. Not surprisingly, the comparative 

performance of GME gets better when the divergence between the actual 

and the a priori elements of 𝑾 grows. 

 

In spite of the encouraging results found, much wok in this line of research 

has still to be done. Note that the present version of the paper just focuses 

on the case of binary 𝑾 matrices, but the basic idea can be easily extended 

to other possible (more complex) configurations. Basing on the relationship 

between the Shanon‟s entropy measure and the Kullback divergence with 

respect to any given a priori distribution, the GME problem can be 

transformed in terms of a Generalized Cross Entropy (GCE) program in 

order to consider 𝑾 matrices different from the binary case.   
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APPENDIX A: STATISTICAL PROPERTIES OF THE GME ESTIMATOR 

The large sample properties of the ME estimators are analyzed in Golan, 

Judge and Miller (1996; chapter 6). ME estimators are shown to be 

consistent and asymptotically normal. These authors analyze also the small 

sample properties using Monte Carlo simulation. They compare numerically 

the GME estimators to traditional least squares and maximum likelihood 

estimators. Their results show a good performance in terms of the accuracy 

of the estimates. 

In order to do inference in the GME approach, the procedure suggested by 

Mittelhammer and Cardell (1997), Fraser (2000) or Golan, Perloff and Shen 

(2001) can be followed. Under some assumptions on the behavior of model   

𝒚 = 𝑿𝜷 + 𝜺  that guarantee the consistency and asymptotical normality of 

the estimator, the distribution of the estimates follows 𝜷 → 𝑁  𝜷,
𝜎𝜆

2

𝜅2
 𝑿′𝑿 −1 , 

where 𝜎𝜆
2 is the variance of the Lagrange multipliers of (13b) or (17b). It is 

possible to estimate with consistency 𝜎𝜆
2 as 𝜎𝜆

2 =
 𝜆 𝑛

2𝑁
𝑛=1

𝑁
, where 𝜆 𝑛  is the 

Lagrange-multiplier associated to observation n. 𝜅2 is a scalar related to the 

variance of the error term. The parameter 𝜅 can be estimated consistently 

as 𝜅 =
1

𝑁  𝑉𝑎𝑟 (𝑒 𝑛 )𝑁
𝑛=1

; where 𝑉𝑎𝑟 𝑒 𝑛 =   𝑣𝑗
2𝑢 𝑖𝑗

𝐽
𝑗=1  −   𝑣𝑗𝑢 𝑖𝑗

𝐽
𝑗=1  

2
. Hence, it is 

possible to estimate the variance of GME estimators and obtain the t-ratios 

as 
𝛽 

 𝑉𝑎 𝑟(𝛽 )

. 
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Table 1. Results of the numerical experiment (1,000 replications) 

  (1) (2) (3) (4) (5) 

 
Estimator 

Average  0 

True 0 = 0.25 

Average  1 

True 1 =1.5 

 2 

True 2 = 0.5 
MSE MSSE 

𝝈 = 𝟎. 𝟎𝟎 

ML  
0.246 

[0.002] 

1.497 

[0.001] 

0.490 

[0.006] 
0.008 0.006 

GME  
0.175 

[0.001] 

1.470 

[0.001] 

0.523 

[0.001] 
0.008 0.003 

𝝈 = 𝟎. 𝟎𝟓 

ML  
0.251 

[0.002] 

1.497 

[0.001] 

0.545 

0.006] 
0.010 0.008 

GME  
0.179 

[0.001] 

1.470 

[0.001] 

0.532 

[0.001] 
0.008 0.004 

𝝈 = 𝟎. 𝟏𝟎 

ML  
0.254 

[0.002] 

1.498 

[0.001] 

0.592 

[0.006] 
0.016 0.015 

GME  
0.182 

[0.001] 

1.471 

[0.001] 

0.540 

[0.001] 
0.009 0.005 

𝝈 = 𝟎. 𝟏𝟓 

ML  
0.255 

[0.002] 

1.498 

(0.001) 

0.637 

[0.006] 
0.026 0.025 

GME  
0.183 

[0.001] 

1.471 

[0.001] 

0.547 

[0.001] 
0.010 0.007 

𝝈 = 𝟎. 𝟐𝟎 

ML  
0.255 

[0.002] 

1.498 

[0.001] 

0.682 

[0.006] 
0.041 0.040 

GME  
0.184 

[0.001] 

1.471 

[0.001] 

0.555 

[0.001] 
0.010 0.008 

𝝈 = 𝟎. 𝟐𝟓 

ML  
0.255 

[0.002] 

1.498 

[0.001] 

0.732 

(0.006) 
0.061 0.060 

GME  
0.184 

[0.001] 

1.472 

[0.001] 

0.564 

([0.001] 
0.010 0.009 

The empirical variances of the estimates are shown in brackets.  

MSE= MSE 
0
 + MSE 

1
 + MSE 

2
. 
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Table 2. Estimates of the empirical model 

 (1) (2) (3) (4) 

 𝛼 𝛽 𝜌 Pseudo-R2 

𝒃 = (−0.5,0, 0.5) 
0.316** 

[0.016] 

0.084** 

[0.015] 

0.182** 

[0.018] 
0.861 

𝒃 = (−1,0, 1) 
0.413** 

[0.016] 

0.066** 

[0.015] 

0.161** 

[0.018] 
0.866 

𝒃 = (−10,0, 10) 
0.459** 

[0.016] 

0.066** 

[0.015] 

0.141** 

[0.018] 
0.866 

The standard deviation of the estimates are shown in brackets. ** means that the estimate 

differs significantly from zero at a 5% level.  

 

 

Figure 1. MSE for the 𝜷 parameters 
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Figure 2. MSE for the 𝝆 parameter 
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Table 3.  Percentage of variation between the initial and the estimated weights 

 
And Ara Ast Cant CLeon CLM Cat Val Ext Gal Mad Mur Nav BC Rio 

Andalucia 
     

4.49 
  

-2.50 
  

-2.00 
   

Aragon 
    

-1.93 8.92 1.91 7.00 
    

-1.75 
 

-14.16 

Asturias 
   

2.16 -5.59 
    

3.44 
     

Cantabria 
  

4.72 
 

-10.66 
        

5.94 
 

C. Leon 
 

-5.66 1.37 4.28 
 

2.16 
  

5.55 3.34 -2.73 
 

-2.40 3.28 -9.20 

C. La Mancha 2.63 -2.97 
  

-1.95 
  

-0.09 2.19 
 

-2.05 2.24 
   

Catalonia 
 

2.04 
     

-2.04 
       

Valencia 
     

0.07 6.24 
    

-6.31 
   

Extremadura 13.13 
   

-14.58 1.46 
         

Galicia 
  

3.13 
 

-3.13 
          

Madrid 
    

7.32 -7.32 
         

Murcia -7.88 
    

4.10 
 

3.78 
       

Navarra 
 

-0.80 
  

-2.94 
        

-4.32 8.07 

Basque Country 
   

10.53 -0.03 
       

0.82 
 

-11.32 

Rioja 
 

-10.36 
  

-1.84 
       

-0.39 12.58 
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Map 1. Net re-allocation on spatial weights by region 

 

 


