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ABSTRACT. The standard empirical gravity model of aggregate migration typically assumes homogeneity, 

quasi-symmetry, and (log-) linearity of bilateral relationships. However, estimation is likely to be plagued 

with severe misspecification bias if no attempt is made to control for unobserved migration selectivity and 

unmeasured spatial heterogeneity. This paper presents an alternative specification of the cross-section 

gravity model, controlling for unobserved unilateral (origin- and destination-specific) and, most 

importantly, bilateral (flow-specific) effects. Specifically, individual slopes account for correlated 

heterogeneity in the bilateral dimension, where linkage factors such as distance and previous migration 

(migrant stock) are allowed to interact with unobserved bilateral effects. This generalized gravity model is 

applied for an exploratory analysis of inter-state migration in Mexico and estimated by applying the 

Generalized Maximum Entropy method. The empirical importance of relaxing the standard assumptions is 

demonstrated by comparing the GME estimates with those obtained from OLS. Furthermore, it is found 

that variations in the unobserved individual (flow-specific) distance and migrant-stock effects account for 

30 to 45% of the variation in (log) migration flows, whereas observed socio-economic “push and pull” 

factors at origins and destinations (unemployment rates, incomes per capita, etc.) have only a small 

explanatory power of 5 to 10%. Finally, it is shown that the inclusion of bilateral fixed effects in the 

double-log form of the gravity model is instrumental in keeping with arbitrary heteroskedasticity. 
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1. INTRODUCTION 
 

Spatial patterns of aggregate migration are the result of a set of complex combinations of populations’ 

motivations and constraints that influence the size and composition of observed migration flows between 

places. Using aggregate data, however, puts obvious limits to the study of migration, since they do not tell 

us much about the characteristics of different subgroups of migrants and their distinctive spatial patterns 

of movement (who is moving to where). Yet, the gravity model of aggregate migration has been widely 

used as a baseline model for empirical studies of the determinants of migration and for simulating or 

predicting the impacts of spatial variations in policies and changes in economic, social, and other 

conditions. However, despite its long track record, the “standard” empirical gravity model suffers from 

important deficiencies when applied to aggregate migration flows and place characteristics. 

The deficiencies can be traced back to (at least) three mutually related assumptions that are typically 

utilized in empirical implementations of the gravity model, which are not firmly grounded on theory and 

do not generally match with real phenomena. First, the standard empirical gravity model assumes 

homogeneous migrant populations and perfect information. In reality, however, aggregate migration 

represents more than a simple spatial re-distribution of “homogeneous” and “perfectly informed” people. 

Reliance on such assumptions makes it hard to explain, for instance, the puzzling phenomenon of counter-

streams (or the very large volume of gross migration flows relative to net flows). Evidently, the prevalence 

of counter-streams can only be explained in a satisfactory way by making allowance for heterogeneity of 

people and places (e.g., Greenwood and Hunt, 2003) and imperfect information (e.g., Allen and Eaton, 

2005). Also, migrants may select their destinations endogenously, for reasons largely unobservable to the 

researcher (and possibly linked with observable determinants of migration). Nevertheless, most studies of 

aggregate migration would simply “brush aside” any heterogeneity, selectivity, or imperfect information 

by assuming (quite unrealistically) that these are just randomly distributed across migrant populations 

and over space and can, thus, simply be “averaged out”. Second, the standard empirical gravity model 

assumes quasi-symmetry (Bavaud, 2002). This essentially means that, say, the distance between two 

places has an equally impeding effect on migration regardless of the direction of the move. Yet, migrants 

may be more, or less, sensitive to distance in one direction than in another. For example, moving out of a 

(desolate) rural area into a (populous) urban area is something quite different from moving in the 

opposite direction, and moving in either direction likely involves distinct “types” of “qualities” of migrants. 

Hence, any sensible model of aggregate migration flows should somehow allow for asymmetry, or 

directional heterogeneity, in the deterring effect of distance, and permit observed migration flows in one 

or the other direction to reveal (in an ex-post sense) differences in motives, opportunities, and 

preferences (i.e., differences in objective function) across specific types of migrant groups (e.g., Gordon 

and Vickerman, 1982; Gordon and Molho, 1998). Millington (2000), for example, provides a good 

illustration of this point in his study of the effect of aging on the sensitivity to migration stimuli: “Taking 

any pairing of locations, the young may be moving (on net) in one direction while the old are moving in the 

other way” (p. 525). Such observations also call for employing a more generalized conception of “distance” 

in studying aggregate migration (e.g., Mueser, 1989a), in order to acknowledge that physical distance is 

likely to be perceived differently by migrant sub-populations moving in multiple directions, and that, 

therefore, aggregate migration flows are likely to be sensitive to distance at varying levels of intensity—

contingent upon differences in their age structure, educational attainment, risk profile, etc. (e.g., Schwartz, 

1973). Third, for ease of estimation, “migration costs” in the standard empirical gravity model are 

generally assumed to be a (log-) linear function of observable proxies (e.g., distance, contiguity, and 

migrant stock). This, however, is likely to impose implausibly strong regularity conditions on the data 

(constant coefficients). Therefore, a more “flexible” specification of the gravity model should be used to 

account for possible nonlinearities in the ways in which, say, distance (or any other bilateral linkage 

factor) affects current migration flows (see also, for example, Henderson and Millimet, 2008). 

Several attempts have been made in the empirical literature to “correct” for unobserved heterogeneity 

in gravity models of migration (or trade), either in a cross-sectional or a panel-data setting, by introducing  

fixed effects (FE).1 However, there appears to be little agreement as to how to actually specify the FE, while 

most attempts generally fail to account for FE in the bilateral dimension. The cross-section gravity model 

(of trade) proposed by Egger (2005) controls for unobserved effects in the unilateral (origin- and 

destination-specific) dimensions by using a “two-way” FE estimator and a Hausman-Taylor instrumental-

variables (IV) estimator. Most panel-data gravity models also tend to be limited to FE in either the 

unilateral dimensions (e.g., Zavodny, 1997; Etzo, 2008; Mayda, 2009, Warin and Blakely, 2009, Leblang et 

al. 2009; Balderas and Greenwood, 2009, all on migration) or the bilateral dimension (e.g., Cheng and 

Wall, 2005, on trade; Mayda, 2009, on migration). Two notable exceptions are the “three-way” FE gravity 

models (of trade) in Baier and Bergstrand (2007) and Grant and Lambert (2008), however at the expense 
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of “loosing” the parameter estimates associated with time-constant variables. Only two (published) 

gravity-based studies of aggregate migration can be found in the literature (as far as this author is aware 

of) that control for unobserved bilateral (flow-specific)—besides unilateral—effects, namely, the early 

study by Mueser (1989a) and the recent study by Pedersen et al. (2008). Both studies, however, suffer 

from important shortcomings. The first study actually develops a three-way FE gravity (spatial-

interaction) model avant la lettre, using a first-differencing estimator to remove time-constant 

unobserved flow effects (what Mueser calls the “spatial structure”), but symmetry of the (generalized) 

distance effects was assumed throughout (which, in fact, allowed Mueser to factor them out). The second 

study employs a General Estimating Equations (GEE) random-effects (RE) estimator, hence assuming 

away—or, rather, disregarding (see their footnote 14 on p. 1175)—any correlated heterogeneity in the 

bilateral dimension.  

Given the apparent shortcomings of these earlier approaches, the objective of this paper is to advance 

a novel three-way FE procedure as a workable solution to account for unobserved fixed heterogeneity 

along all relevant dimensions in a cross-section gravity model2—i.e., the unilateral (origin- and/or 

destination-specific) dimensions and the bilateral (flow-specific) dimension. To overcome the usual 

(identification) limitations of standard cross-sectional methods, the three-way FE approach will be 

implemented by using the Generalized Maximum Entropy (GME) methodology (Golan et al., 1996). GME 

has several advantages over earlier (traditional) approaches. First, through controlling for unobserved 

heterogeneity in the three dimensions (i, j, and ij) of the gravity equation, the proposed FE-GME estimator 

extracts the largest possible amount of information contained in the cross-sectional data and is, therefore, 

more likely to return consistent coefficient estimates, so that they are less likely to pick up unobserved 

effects. Second, it is well-known that (G)ME is able to handle “ill-posed” (underdetermined) inverse 

problems. As a result, the FE estimation can dispense with the need to “within-transform” the data—

which, in any case, would preclude the estimation of the effects of at least some important determinants of 

migration. Third, and in contrast with all other gravity models of migration found in the literature, the FE-

GME procedure allows for the provision of individual slopes on the bilateral linkage factors (distance, 

contiguity, and migrant stock), rather than just individual intercepts. What is particularly interesting 

about this approach is that it can be instrumental in “unchaining” the gravity model from its overly 

restrictive assumptions of homogeneity, quasi-symmetry, and (log-) linearity in the bilateral dimension. 

To illustrate its potentials, the three-way FE gravity model will be estimated for an exploratory 

analysis by using cross-sectional data on aggregate inter-state migration in Mexico during the period 

1995-2000.3 While a more comprehensive and substantive analysis of migration in Mexico might be of 

interest to many researchers, such an endeavor is beyond the scope of the this paper (and relegated to 

future research). Yet, despite the partial nature of the present analysis, it is found that introducing fixed 

effects in both the unilateral and the bilateral dimensions has important empirical implications and 

should, therefore, deserve attention in the estimation of cross-section (as well as panel-data) gravity 

models of aggregate migration. 

The remainder of the paper is organized as follows. Section 2 provides a brief review of the standard 

gravity model and further develops the three-way FE gravity model of aggregate migration, along with a 

brief discussion of some of its accommodating features. Section 3 presents the GME estimator used to 

overcome the “ill-posed” nature of the model. In Section 4, the FE model is applied for the exploratory 

analysis of inter-state migration in Mexico. This section begins with an overview of the variables included 

in the empirical model, presents some basic descriptive statistics and preliminary empirical observations, 

and then moves on to discuss various results from the econometric estimation. Finally, Section 5 

formulates some concluding comments. 

 

2. THE GRAVITY MODEL OF MIGRATION 
 

2.1 The standard gravity model 
 

The use of modified gravity models became common in the migration literature, beginning in the 1960s, 

by including several other variables besides those of the basic gravity model such as population sizes in 

origins and destinations and the distances between origin and destinations (e.g., Greenwood and Hunt, 

2003, p. 28). Much empirical research on aggregate place-to-place migration has involved estimating 

standard log-linearized (double-log) equations of the following form: 
 

 ln ��� = a� + 
 a�� ln 
�,�� + 
 a�� ln 
�,�� + b ln ��� + 
 c�� ��,�� + u��  

 

 

(1) 
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where ���  is the bilateral (gross) migration flow from origin i to destination j,  and u��  is an idiosyncratic 

error term. The variables 
�,�  and 
�,�  refer to population, income, unemployment rate, and other 

unilateral characteristics of origins and destinations, which are usually designated as “push” and “pull” 
factors. The variable ���  refers to geographical distance, which is typically taken as the most important 

bilateral (gravity) factor separating origins and destinations. 

Bilateral (gross) migration flows between i and j are assumed to be a positive function of net expulsion 

forces operating in the origin i (i.e., expulsion minus retention) and net attraction forces operating in the 

destination j (i.e., attraction minus repulsion), while it is inversely related to the friction caused by the 

distance between i and j. Distance is typically used as a proxy for both economic (e.g., transportation and 

information) costs and non-economic (e.g., psychic) costs of moving, where higher costs should impede 

migration between i and j (i.e., it is expected that b ≤ 0, ceteris paribus). Some researchers would further 

include a set of “preference” variables, ��,�� , such as a contiguity/common-border indicator and migrant 

stock, where the latter ideally should reflect positive “network externalities”. These bilateral linkage 

factors should facilitate migration between i and j (i.e., it is expected that c� ≥ 0, ceteris paribus). 

The standard cross-section gravity model has typically been estimated by using the convenient OLS 

estimator. However, since the explanatory variables included in Equation (1) can impossibly capture all 

the heterogeneity present in the data, the OLS estimator (and other conventional estimators, see below) 

are likely to produce biased an inconsistent results due to the likelihood of model misspecification. 

 

2.2 The three-way FE gravity model 
 

Given that the standard gravity model of aggregate migration in Equation (1) is likely to be plagued with 

several deficiencies, as already pointed out in the introductory section, a FE model eliminates the 

assumption that all determinants of migration flows are observed by the “omnipotent econometrician”. 

Specifically, the following “three-way” FE model is proposed, written (in vector form) as 
 

 ��� = a� + υ� + ω� + ���� + ���� + ������ + ϵ��  (2) 
 

where lowercase letters denote log-transformed (non-dummy) variables. Importantly, the cross-section 
gravity model takes the form of a triple-indexed (i, j, and ij) model. The unknown parameters  υ�  and ω�  

denote the unilateral two-way fixed effects associated with origin i and destination j, respectively. In other 

words, υ�  accounts for all origin-specific (i.e., destination-invariant) and ω�  for all destination-specific (i.e., 

origin-invariant) unobserved influences, which are assumed to have an intercept effect on current 

migration flows only. The vectors  ��  and  �� contain origin-i and destination-j characteristics, such that 
 

���� = "#��  #��   ⋯ #�%&
'
() 

*��*�� ⋮*�%,
-. ;    ���� = "#��  #��   ⋯ #�%&

'
() 

*��*��⋮*�%,
-. 

 

and the vector  ���  stands for the set of bilateral impediment (distance) and preference factors (contiguity, 

migrant stock), such that 
 

������ = /0��   1��   2��3 '
) λ�� η�� δ�� ,

. 

 

where λ�� , η�� , and δ��  are the individual flow-specific effects (individual slopes) of contiguity (0��), migrant 

stock (1��), and distance (2��), respectively. Assuming further that ��� = 7 + 8�� , where 9/8��3 = : by 

definition, it follows that 
 

��� = 7 + 8�� =
'
()

 λ + κ�� 
η + μ��
δ + τ�� ,

-. ;      9/8��3 = 9 ; κ��μ��τ��
? = : 

 

and substitution into Equation (2) yields 



4 

 

 ��� = a� + ���� + ���� + ���7 + υ� + ω� + ���8�� + ϵ��  (3) 
 

which includes the following “composite” error term: 
 

 ξ�� = υ� + ω� + ���8�� + ϵ��           = υ� + ω� + κ��0�� + µ��1�� + τ��2�� + ϵ��  

(4) 

 

where it is assumed that ϵ��  is uncorrelated with the fixed effects and observed variables in the model. 

The FE allow the unobserved flow-specific heterogeneity, contained in the vector  8�� , to interact with 

the observed bilateral linkage factors.4 For example, the individual effect of distance (2��) along the i-j path 

depends on the unobserved effect  τ��  (which may or may not be tied to  υ�  and/or ω�), while the 

population-averaged effect of distance is  9/δ��3 = 9/δ + τ��3 = δ + 9"τ��& = δ. Furthermore, asymmetry 

in spatial relationships requires that τ�� ≠ τ�� , κ�� ≠ κ�� , and µ�� ≠ µ�� .5 

 

2.3 Econometric implications 
 

The model presented in Equation (3) has four important and related econometric implications. First, after 

controlling for origin- and destination-fixed effects (υ� , ω�) and flow-fixed effects (8��), it is more realistic 

to maintain the hypothesis that  9"ϵ��| ��, ��, ���, υ� , ω� , 8��& = 0 and, hence, 9/���D ��, ��, ��� , υ� , ω� , 8��3 =α� + ��F� + ��F� + ���7  (see Wooldridge, 2002, 2005, in a panel-data framework).  

Second, by explicitly conditioning on 8�� , apart from υ�  and ω� , it is underscored that the dummy-

interaction terms represent unobserved heterogeneity that is non-randomly distributed as well as 

distinctively related to each one of the bilateral linkage variables. When, say, τ��  is negatively correlated 

with 2�� , OLS is likely to underestimate the (negative) effect of distance.6 

Third, the FE model deviates in a fundamental way from the conventional log-linearized version of the 

gravity model (implying common and strictly monotonic relationships). By the very nature of the varying 

slopes (���), the fixed-effects model provides a good approximation to (unspecified) “non-linear” 

relationships; that is, (i) there are as many slopes as there are individuals (migration flows), and (ii) each 
of the individual slopes is the sum of two parts, a “direct” effect (contained in 7) and an “indirect” effect 

(contained in 8��) due to omitted variables (Swamy and Tavlas, 1995). Allowing for nonlinearities makes 

the model less subject to specification errors and should, therefore, be helpful in obtaining more 

consistent estimates of the population-averaged direct effects of the bilateral linkage factors. 

Finally, the GME estimator (to be discussed shortly) used in this paper to implement the FE gravity 

model does not require any “within”-transformation of data—which would wipe out all state-specific (e.g., 

Egger, 2005) or flow-specific influences (e.g., Mayda, 2009). So, in contrast with most conventional 

approaches, FE-GME allows the recovery of the coefficients of all explanatory variables included in the 

gravity equation. 

Apart from these implications for estimation, it should be mentioned that the GME estimator applied in 

this paper is similar in kind to a dummy-variables type of estimator. As a result, the unobserved bilateral 

effects, 8�� = /κ�� , μ�� , τ��3, can be treated as parameters to estimate, rather than just “nuisance 

parameters”. The advantage of this approach is that it provides useful information on the heterogeneity of 

the effects of the bilateral linkage variables (i.e., more information can be extracted than any standard 

model would permit). In this respect, I exploit the notion that, even though the individual effects may not 

be estimable in a precise way, their distribution or variation with other variables may be informative 

(Cameron and Trivedi, 2005, p. 704).7 

 

2.4 What can be gained from introducing bilateral fixed effects? 
 

It is worth pointing to a number of ways in which the three-way FE gravity model can be helpful in 

resolving, at least partly, the problems related to spatial heterogeneity, the potential endogeneity of the 

migrant-stock variable, and the heteroskedasticity in the migration data. 

 

Spatial heterogeneity 
 

Introducing FE as related to distance can be helpful in accounting for unobserved spatial heterogeneity 

and, hence, in counteracting common criticisms concerning the inadequacy of a single physical distance 

variable to properly represent spatial relationships, particularly if the analysis works with sizeable 

geographical areas (e.g., states or countries) as migration-defining boundaries. For example, migratory 
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moves over relatively short distances between neighboring areas are said to be poorly represented by the 

distances between the areas’ centroids, which in many instances overstate the actual distances over which 

a large proportion of the moves take place. The inclusion of a contiguity (common-border) dummy would 

only partly resolve this problem, since “contiguity” signifies different things in different locations, given 

that the geographical units vary widely in size, that populations and “economic functions” are unevenly 

distributed over space within each geographical unit, etc. For example, in the case of the Mexican states, 

contiguity of Distrito Federal and the state of México does not mean the same thing as contiguity of 

Chihuahua and Durango. 

An important advantage of the proposed FE model is that it dispenses with the overly restrictive 

assumptions of constancy and symmetry of the distance and contiguity parameters. Accordingly, the flow-

specific fixed effects returned by the model may be reflective of significant unobserved (or unmeasured) 

heterogeneity of both geographical units and migrant populations. 

 

Endogeneity of the migrant stock 
 

Another problem, particularly in a cross section, is the difficulty in measuring the role of pre-existing 

migration networks, which can be important in guiding later migrants’ destination choices. Networks, 

whether family or friends, carry information about potential destinations (job opportunities, housing 

conditions, etc.), and can aid adjustment and assimilation of newcomers at the destination. Hence, the 

“cost” of moving to a particular destination is less when there is already an established network of 

previous migrants (e.g., Carrington et al., 1996). 

A common approach is to include the migrant stock as a proxy for network effects (e.g., Nelson, 1959; 

Greenwood, 1969, 1970; Levy and Wadycki, 1973; Kau and Sirmans, 1979). However, the migrant-stock 

coefficient may also reflect the effect of unobserved factors which affected previous migration and 

continue to affect current migration. This, obviously, creates an identification problem. In other words, 

current migration and migrant stock (which contains information about previous migration) may be 

jointly determined by unobserved linkage factors that have a persistent bearing on migration, being 

largely responsible for the path dependence (and self-reinforcing nature) of migratory flows. Thus, having 

the migrant-stock variable on the right-hand side of the gravity equation may imply that the convenient 

OLS estimator is subject to endogeneity bias (omitted variables). As a result, the OLS estimate of the 

migrant-stock coefficient is likely to overstate the “true” network effect.8 

To overcome this problem, attempts have been made in the literature to use both the migrant stock 

and lagged migration flows in the cross-section gravity equation, where the former is interpreted as 

capturing network externalities and the latter as controlling for “habit persistence” (e.g., Dunlevy, 1993), 

“cumulative causation” (e.g., Massey, 1990), or “herd behavior” (e.g., Bauer et al., 2007). Including lagged 

migration flows, however, reduces the gravity model to a simple partial-adjustment model, which is 

marred by several factors.9 Besides, it is surprising to see that not much progress has been made ever 

since the 1970s; in new jargon, the partial-adjustment mechanism introduced by Dunlevy and Gemery 

(1977) is now simply labeled herd behavior. So, the recent stock-flow approach appears to be just “old 

wine in new bottles”. 

Introducing fixed effects as related to migrant stock can offer an appealing alternative to including 

lagged flows in controlling for unobserved factors responsible for potential herd migration and, thus, in 

obtaining a more consistent estimate of the population-averaged network effect—to the extent that the 

effect of the migrant stock on current migration can be reasonably decomposed into two parts, a direct 

network effect, and an indirect (unobserved) herd effect captured by the flow-fixed effect. Moreover, 

introducing flow-specific effects relaxes the (unrealistic) assumption that persistence of migration is 

equally strong along all migration paths. However, there might be strong persistence along some 

“geographical channels” (e.g., Carrington et al., 1996), while persistence might be weak, or absent, along 

others—a point which has been generally overlooked in previous literature. 

 

Heteroskedasticity 
 

The heteroskedasticity problem associated with the log-linear form of the gravity model was already 

acknowledged in an early paper by Flowerdew and Aitkin (1982). More recently, Santos Silva and Tenreyo 

(2006) further pointed to the biases that may sneak in due to heteroskedasticity. Therefore, they 

recommend the use of the Poisson level specification of the gravity model. Nonetheless, I stick with the 
log-linear form, because the individual slope coefficients actually imply that the composite error term (ξ��) 

term in Equation (3) almost certainly  accounts for heteroskedasticity in the migration data. 

To get a sense of how this works, it should be noted that, ceteris paribus, observed migration flows are 
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likely to be larger between contiguous locations (0�� = 1) than between non-contiguous locations (0�� = 0), 

for higher levels of the migrant stock (1��), and/or for shorter distances (2��). Therefore, given that  ξ�� = υ� + ω� + κ��0�� + µ��1�� + τ��2�� + ϵ�� , and assuming  κ�� > 0, µ�� > 0, and τ�� < 0 (indicating “above-

average” effects), larger migration flows are likely to be associated with larger values of the composite 

error, and vice versa. Thus, the FE gravity model with individual slope coefficients on the bilateral linkage 

factors allows the error variance to be non-constant and directly related to the size of the migration flows. 

Moreover, the error variance adjusts itself “independently” of the conditional mean (i.e., without any prior 

restrictions) and, hence, makes allowance for potential over-dispersion (the occurrence of the latter is 

essentially an empirical matter, as theory generally does not provide any guidance concerning the pattern 

of the error variance and potential departures from the Poisson assumption).10 

 

3. ESTIMATION OF THE FIXED-EFFECTS GRAVITY MODEL 
 

The introduction of three-way FE into the gravity model creates a challenging estimation problem. 

Specifically, Equation (3) allows three full sets of flow-specific dummies to interact with contiguity, 

migrant stocks, and distance, besides the origin- and destination-fixed effects, which are assumed to 

absorb the unobserved heterogeneity in the cross section. This, obviously, implies that the model is over-

parameterized (i.e., the number of unknown parameters is far much greater than the number of 

observations). Therefore, “classical” estimation methods cannot be generally used to identify the 

parameters of the model. In order to “resolve” this identification problem, I use a novel FE application of 

the Generalized Maximum Entropy (GME) estimator. 

 

3.1 The Generalized Maximum Entropy estimator 
 

The literature on entropy econometrics is too vast to review here (see, for example, Golan et al., 1996; 

Golan, 2006; Golan and Maasoumi, 2008; for some interesting performance properties of GME, see Shen 

and Perloff, 2001). However, it is noteworthy to list a number of advantages that the GME method has 

over classical estimation methods, which will be fully exploited in this paper. First, GME is a shrinkage 

estimator, which brings to bear a combination of non-sample (prior) and sample information in order to 

regularize the “ill-posed” (over-parameterized) nature of the inverse problem, as illustrated by the famous 

Jaynes’ die problem (Jaynes, 1963; see also Golan et al., 1996; Paris and Howitt, 1998). Second, GME uses 

minimal distributional assumptions, whereas classical methods rely on specific asymptotic distributions 

in order to make statistical inferences. Third, earlier simulations have shown that GME outperforms many 

standard estimators (including the OLS and uninformative-prior Bayesian) in terms of mean squared 

error and average bias. Fourth, GME allows one to impose (in)equality restrictions, which do not 

compromise the estimation (and which is easy to implement). Finally, GME is generally found to be 

superior to classical estimation methods in extracting information from “noisy” data. 

For expository purposes, I present a simplified version of the three-way FE gravity model, including 

distance as the sole bilateral linkage factor: 

 

    ��� = a� + υ� + ω� + a�#� + a�#� + δ��2�� + ϵ��                         = a� + υ� + ω� + a�#� + a�#� + /δ + τ��32�� + ϵ��  

      = a� + a�#� + a�#� + δ2�� + ξ��   

(5) 

where  ξ�� ≡ υ� + ω� + τ��2�� + ϵ��  is the composite” error term, δ + τ�� ≤ 0 (i.e., migration is deterred by 

distance, ceteris paribus), and τ�� ≠ τ��  (asymmetry or directional heterogeneity). 

To implement GME, the model in Equation (5) is re-parameterized and converted into a constrained 

(primal) optimization problem, where the objective function consists of the joint entropy in Equation (6) 

below (i.e., the sum of the entropies for coefficient distributions and error distributions). This objective 

function is to be maximized, subject to the relevant data-consistency, (in)equality, and normalization 

(adding-up) constraints. 

 

Re-parameterization 
 

The constant parameters in  K = "a�, a�, a�&, the unobserved state-fixed effects /υ� , ω�3, and the individual 

flow-specific effects /δ��3 are defined as linear combinations of different sets of unknown probability 

vectors (of dimension L ≥ 2): NOP = /QOP� , … , QOPS 3,  NOT = /QOT� , … , QOTS 3U
, NOV = /QOV� , … , QOVS 3U

, NWX =/QWX� , … , QWXS 3U
,  NYZ = [QYZ� , … , QYZS \U

, N]XZ = [Q]XZ� , … , Q]XZS \U
, and a common parameter support vector  
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� = "^�, … , ^S&U.  The idiosyncratic error component, ϵ�� , is defined as a linear combination of a set (of 

dimension _ ≥ 2) of unknown probabilities  N`XZ = [Q`XZ� , … , Q`XZa \U
 and a common error support vector  �` = "^�̀, … , Qà&U. Then, the coefficients on the observables, the unobserved-heterogeneity effects, and the 

error terms are re-parameterized as a� = NOPU � , etc., υ� = NWXU � , etc., and ϵ�� = N`XZU �` , respectively.  

 

Optimization problem formulation 
 

The GME formulation of the (simplified) FE gravity model is as follows: 
 

 MaxN  d"N& = −NOPU log "NOP& − NOTU log "NOT& − NOVU log "NOV& − ∑�i�j  NυXU log "NυX&− ∑�i�j  NωZU log "NωZ& − ∑�k�j  ∑�k�j  NδXZU log "NδXZ& − ∑�k�j  ∑�k�j  N`XZU log "N`XZ& 

 

(6) 

such that ��� = /NOPU �3 + /NOTU �3#� + /NOVU �3#� + /NυXU �3 + [NωZU �\ + [NδXZU �\ 2�� + [N`XZU �`\,    ∀m, n "m ≠ n& (7)

 ∑�i�j  /NWXU �3 = 0;  ∑�i�j  [NYZU �\ = 0 (8)

 ∑�k�j  ∑�k�j [N`XZU �`\ = 0 (9)

 N]XZU � ≤ 0,    ∀m, n "m ≠ n& (10)

 

 
∑oi�S  QOPo = 1;  ∑oi�S  QOTo = 1;  ∑oi�S  QOVo = 1 ∑oi�S  QWXo = 1;  ∑oi�S  QYZo = 1,    ∀m, n ∑oi�S  Q]XZo = 1;  ∑pi�a  Q`XZp = 1,    ∀m, n "m ≠ n& 

(11)

Equation (6) represents the entropy objective, which is subject to the data-consistency constraints in 

Equation (7). The constraints in (8) and (9) preserve zero-mean origin-/destination-fixed effects and 

zero-mean realized errors, respectively. The constraint in (10) imposes a weak inequality restriction, in 

order to guarantee that all distance effects are returned as negative (or zero) values. Finally, the 

normalization constraints in (11) ensure that all probabilities add up to one. After solving the entropy 

optimization problem in (6) through (11), the parameter estimates and the error terms can be recovered 

as  aq� = NrOPU � , etc., υq � = NrWXU � , etc., and ϵq�� = Nr`XZU �` , respectively, where NrOP , etc., NrWX , etc., and Nr`XZ  are the 

corresponding estimated probabilities. 

For the “full” model, in line with Equation (3), two non-negativity constraints on the contiguity and 

migrant-stock coefficients have been added, along with two sets of “stochastic” constraints, where both 

contiguity and migrant stock are “forced” to exert opposite—compared to distance—effects, ceteris 

paribus, on migration along each path. Specifically, I experiment with the following “non-linear” 

constraints on the individual migrant-stock and contiguity slopes, respectively: 
 η�� = π��t δ�� + ν��t

,  π��t ≤ 0 

 

(12)

λ�� = π��v δ�� + ν��v ,  π��v ≤ 0 
 

(13)

Although the choice of these constraints is to a certain extent arbitrary, they are flexible enough to allow 

for a wide range of relationships.11 

Also, for simplicity, the individual flow-specific effects  ���  are estimated directly (rather than 

estimating 7 and 8��  separately), where the estimated idiosyncratic deviations (8w��) from the population-

averaged effects (7w) are simply derived as  8w�� = bbbbx �� − 9/bbbbx ��3, assuming that  7w = 9/bbbbx ��3.  Yet, it is felt that 

this procedure should not compromise the final results. 

 

Support ranges (prior/non-sample information) 
 

For the purpose of estimation, a common support vector for the coefficients is used. Since I have little 

prior knowledge about the “true” value of the coefficients, the support vector is set as  � = /-100, 1003U
 for 

both the coefficients on the observed variables and the unobserved heterogeneity effects. These 

“conservative” bounds represent a range wide enough (roughly 100 times the ranges of the magnitudes of 

the OLS estimates) to include “all possible outcomes”. Furthermore, the support vector for the error term 
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ϵ��  is defined as  �` = /-3σrm, 0, 3σrm3U
, in keeping with the widely-adopted “three-sigma” rule, where  σr}  is 

the standard deviation of the empirical distribution of the dependent variable (Pukelsheim, 1994). Finally, 

the (in)equality restrictions can also be considered as regularizing prior information.  

 

Approximate asymptotic standard errors 
 

If it can be established that the GME estimator of the (population-average) parameters contained in the 

vector K is consistent and asymptotically normally distributed, then ~�"� − 1& /Kw − K3      �     ���� �"0, �& 

(e.g., Golan et al., 2001). Let L be the number of parameters, including the intercept, then the approximate 

asymptotic covariance matrix is  �w � = [�j"j��&×�U �wj"j��&�� �j"j��&×�]��, where �wj"j��& is a diagonal matrix 

with elements  σr�XZ� = σrW� + σrY� + σrv�0�� + σrt�1��� + σr]�2��� + σr�̀ (∀m, n;  m ≠ n), and �j"j��&×� = �� �Kw⁄   is the 

gradient matrix. The approximate asymptotic standard errors are calculated as the square roots of the 

diagonal elements of matrix  �w � . It should be noted that the standard errors are calculated for the 

population-average effects of the observed unilateral push and pull factors and bilateral linkage factors 
only, whilst the individual unobserved effects are relegated to the composite error term (ξ��).  

 

3.2 Relationship with earlier entropy-based studies of migration 
 

To conclude this section, it is worth emphasizing that the GME approach applied in this paper is 

econometrically based (i.e., applied in a regression framework) and, therefore, intrinsically different from 

earlier applications of entropy/information-theoretic techniques in the migration literature. Essentially, 

earlier maximum-entropy (ME, not GME) applications were primarily concerned with recovering, 

predicting, or updating migration flows from incomplete data (e.g., “matrix balancing”), whilst mostly 

relying on the exclusive use of distance as an “explanatory” variable (e.g., Wilson, 1970; Willekens, 1977; 

Plane, 1982; Pooler, 1985; Roy, 1987; Roy and Flood, 1992). 

To exemplify my point, I refer specifically to Roy and Flood (1992). In the first part of their paper, 

bilateral migration flows are predicted for different “homogeneous” (age or skill) groups by applying 

entropy/information-theoretic techniques. In the second part of their study, a gravity model (similar to 

the standard gravity model presented in this paper) is estimated, on the basis of their predicted flows, by 

applying the convenient OLS estimator. In contrast to their study, the present paper estimates the gravity 

model directly by applying a FE-GME estimator on the basis of observed migration flows. 

 

4. EXPLORATORY EMPIRICAL ANALYSIS 
 

In this section, the three-way FE gravity model is applied for an exploratory analysis using cross-sectional 

data on inter-state migration flows (1995-2000) and migrant stocks (1995) in Mexico. The data set used is 

fairly representative of the literature on aggregate migration. Data sources are provided in Appendix A. 

In my presentation of the empirical analysis, the discussion will be grouped under the following 

headings: (1) the variables included in the empirical model; (2) basic descriptive statistics; (3) some 

preliminary empirical observations; (4) the results from the econometric estimation; (5) an analysis of the 

estimated individual bilateral effects; and (6) a look at the pattern (variable dispersion) of the composite 

residuals. 

 

4.1 Variables 
 

The dependent variable in the empirical model is defined as the natural logarithm of gross migration flows 

(MIGR), from each of the Mexican origin states i to all possible destination states j during the period 1995-

2000. This yields a total of 992 bilateral migration flows (note that the diagonal elements in the matrix of 

inter-state migration flows are set to zero). 

The gravity model includes a conventional set of (unilateral) “push” and “pull” factors at origins and 

destinations, comprising population (POP), unemployment rate (UR), Human Development Index (HDI), 

share of manufacturing in total employment (MAN), and population density (DENS). In keeping with the 

most common specification found in the literature, the model includes origin and destination populations. 

The rationale for including these variables is that they act primarily as a scale (control) variables. The HDI, 

which is a composite indicator of income (GDP per capita), health (life-expectancy rate), and education 

(literacy and school-enrollment rates), measures the general “development status” of Mexico’s states. The 

unemployment rate is intended as a measure of job opportunities, while the share of manufacturing in 

total employment is used as an indicator of job opportunities not yet sufficiently captured by the 
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unemployment rate. Population density is used as a measure of urbanization—though this variable may 

also be considered as a “catch-all” for job opportunities in the formal and informal service industry, the 

supply of a wide range of public and private amenities, etc. 

Furthermore, I include three bilateral linkage factors: distance, contiguity, and migrant stock. Distance 

(DIST) is measured as the km highway distance between the capital cities of the Mexican states, which acts 

as an impediment to inter-state migration. A contiguity or common-order indicator (CONTIG) is included 

to “correct” for potential short-distance moves between neighboring states. The migrant stock (STOCK) is 

intended to indicate the presence of pre-existing networks of “family and friends” in the destination, 

which are generally thought to facilitate inter-state migration. 

Finally, and in agreement with Greenwood and Ladman (1978) and Greenwood et al. (1981), the 

model includes U.S. border-state dummies (USB), to account for the potential maquiladora effect (e.g., 

Kohout, 2009).12 Besides, these dummy variables may also capture the possible “gateway function” of the 

U.S. border states; that is, prospective migrants to the U.S. (especially young males) may consider moving 

to the Mexican border region in preparation for migration to the U.S. (e.g., Zabin and Hughes, 1995; OECD, 

2004). Both factors make the northern border states especially attractive and are widely held responsible 

for the apparent (net) “south-north drift” of migration in Mexico. So, it is expected that these states 

experience disproportionately much in-migration and disproportionately little (internal) out-migration. 

 

4.2 Basic descriptive statistics 
 

Table 1 presents basic descriptive statistics (and data sources) for all the variables included in the 

empirical gravity model, Table 2 presents the correlations between the bilateral linkage variables, and 

Table 3 presents the cross-tabulation according to the contiguity indicator. 

What stands out from these tables is that: first, none of the potential migration flows is equal to zero, 

so that logarithmic transformation is not a problem here; second, the correlation between current 

migration and migrant stocks is only -0.207 (see further below); third, both current migration flows and 

migrant stocks are significantly stronger between contiguous states (see further below). 

Other interesting statistics (not reported in the tables) reveal the importance of counter-streams in 

Mexico; that is, for every three people moving in one direction there are roughly two people moving in the 

opposite direction, on average (i.e., net migration is about 36% of gross migration). Or, more precisely: Σ�Σ�/MIGR�� MIGR��⁄ 3/992 = 1.46, or Σ�Σ�"MIGR�� − MIGR��& Σ�Σ�"MIGR�� + MIGR��&⁄ = 0.364. Also, it was 

found that for every one person migrating from the U.S. border states into the south, there are 3.5 persons 

moving in the opposite direction. Thus, the U.S. border region has experienced substantial net in-

migration during the sample period 1995-2000. Finally, more than 50% of total inter-state migration in 

Mexico takes place between contiguous states (of which a substantial part occurs between Distrito Federal 

and the state of México). 
 

< Insert TABLE 1 about here > 
 

< Insert TABLE 2 about here > 
 

< Insert TABLE 3 about here > 

 

4.3 Some preliminary empirical observations 
 

Before turning to the results of the econometric estimation, it is worth taking a preliminary look at the 

cross-sectional relationships between current migration flows and migrant stocks, to highlight a number 

of ill-founded, though widespread, arguments about the interaction between distance (and contiguity) and 

migrant stock. 

Previous studies have found distance to be a dominant factor in shaping the spatial distribution of 

migrants. Accordingly, many researchers (quite obstinately) adhere to the idea that both current and 

previous migration flows are primarily “distance-driven”; that is, if previous migrants tended to move to 

nearby places, then current migrants also tend to move to nearby places (Greenwood, 1997, p. 666). Put 

differently, distance is strongly correlated with past migration (and, hence, the migrant stock) because it 

has been exerting a reasonably stable direct influence on migration patterns through time (Renshaw, 

1974). It has often been argued that, as a corollary, distance could simply serve as a proxy for migrant-

stock linkages, or vice versa—where some researchers would even stretch this idea to the point that it is 

useless to include both distance and migrant stock as separate explanatory variables in the gravity 

equation, contending that they are just measuring the same thing and, hence, are “substitutable” for each 

other (erroneously assuming some kind of “one-to-one” relation between distance and migrant stock). 
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However, in the case of inter-state migration in Mexico (and very likely also for migration in many 

other instances of internal an international migration), the correlation between distance and the migrant-

stock variable is rather low (-0.207), so distances and migrant stocks are far from perfectly correlated. 

Moreover, a preliminary analysis based on the weighted average distances of current migration (1995-

2000) and migrant stocks (1995) reveals that there is a systematic tendency for current migrants to move 

to more distant places than the spatial distribution of migrant stocks (past migration) would suggest, as 

shown in panel A of Figure 1. The finding that current migrants (flows) tend to be more geographically 

dispersed than migrants in the past (stocks) also suggests that Greenwood’s widely-adopted contention, 

that “If a ‘migrant stock’ (…) is not included in the model, distance reflects the importance  of relatives and 

friends” (Greenwood, 1997, p. 666), might be seriously ill-founded. An examination of panel A in Figure 1 

reveals that appreciable migratory shifts can already occur within a short (five-year) period of time. 
 

< Insert FIGURE 1 about here > 
 

Alternatively, one could argue that contiguity, rather than distance, exerts a stable direct influence on 

migration patterns through time. The cross-tabulation in Table 3 shows that both migration flows in 

1995-2000 and migrant stocks in 1995 are statistically significantly greater for contiguous states (the 

correlation is 0.411). However, again, a preliminary simple analysis based on the distribution of current 

migration and migrant stocks over contiguous vs. non-contiguous states reveals a systematic tendency of 

“flow diversion” towards non-contiguous destinations, as is shown in panel B of Figure 1.  

 

4.4 Econometric results for the gravity equation 
 

Table 4 presents the estimation results for various specifications of the gravity model. OLS estimates for 

the standard gravity model are reported in columns 1-3. GME estimates for the standard gravity model are 

given in column 4. GME estimates for three versions of the FE gravity model are provided in columns 5-7. 

The discussion of the results starts with a brief account of the OLS results. To assess the performance of 

the FE-GME estimator and to give an indicative judgment on the biases in the OLS estimates, the preferred 

FE-GME estimates in column 7 will be compared with their OLS counterparts in column 3.13 

 

< Insert TABLE 4 about here > 
 

Analysis of OLS coefficients 
 

An examination of the OLS results in columns 1-3 of Table 4 reveals that the estimates are strongly tied to 

the model specification. The inclusion of the migrant-stock variable, in particular, leads to appreciable 

changes in the magnitudes of all coefficients and even to a remarkable sign reversal of the coefficient on 

unemployment in the origin. 

Interestingly, and somewhat surprisingly, the coefficients on unemployment in the destination and HDI 

in both the origin and the destination become larger (in absolute value) after including migrant stock. This 

means that the established “Nelson-Greenwood hypothesis” (Nelson, 1959; Greenwood, 1970)—positing 

that the coefficients with the migrant-stock variable excluded should be interpreted as indicative of the 

cumulative effects of the other variables—is not generally supported by the OLS results. Besides, these 

coefficients suggest, quite unrealistically, “more-than-proportional” effects on current migration. 

After controlling for the migrant stock, the distance effect (not surprisingly) becomes appreciably 

smaller in magnitude, with a dramatic downfall from -1.100 (statistically significant at the 1% level) to -0.066 (statistically insignificant). On the other hand, the coefficient on migrant stock is 0.632 (which is 

broadly in line with values typically found in earlier empirical studies; e.g., Greenwood, 1969, 1970; Levy 

and Wadycki, 1973; Kau and Sirmans, 1979; Cushing, 1986; Bruder, 2003; Fan, 2005). Overall, the results 

seem to confirm the usual suspicion that the distance effect tends to be “eaten” by the inclusion of the 

migrant-stock variable. Given that the standard gravity model suffers from specification errors, OLS is 

likely to underestimate the distance-decay parameter and to overestimate the network effect. 

 

Analysis of FE-GME coefficients 
 

The GME estimates reported in column 4 of Table 4 echo the OLS estimates in column 3, and serve 

primarily as a general “test” of the GME estimator. The GME estimates reported in columns 5 and 6 are for 

a two-way FE model with fixed effects in the unilateral (origin and destination) dimensions and for a 

three-way FE model with symmetric fixed effects in the bilateral dimension, respectively. Finally, the GME 

estimates reported in column 7 are for the three-way FE model with asymmetric flow-fixed effects (for 
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distance, contiguity, and migrant stock).14  

Comparison of the preferred FE-GME (population-averaged) estimates in column 7 with those from 

their OLS counterparts in column 3 overwhelmingly demonstrates that it is worth applying the three-way 

FE estimator, leading to appreciable changes in all coefficients; that is, the estimates are noticeably 

sensitive to the type of FE, both quantitatively and qualitatively. If unobserved heterogeneity and 

asymmetry were unimportant, introducing fixed effects would have been unnecessary, and FE-GME and 

OLS would have yielded broadly similar results. This, obviously, is not the case. Also, all coefficients are 

indicating, more realistically, “less-than-proportional” influences on current migration. I now turn to a 

more detailed comparison of the FE-GME (column 7) and OLS (column 5) estimates, which shows 

numerous significant differences. 

Beginning with the bilateral linkage factors, the coefficient on the migrant-stock variable has been 

considerably reduced to 0.103 (though still significant at the 1% level), which is about six times smaller 

than the OLS estimate (0.632). To the extent that the unobserved bilateral flow-specific effects—besides 

the unilateral origin-/destination-fixed effects—are captured by the FE-GME estimator, this estimate may 

represent a better indicator of the existence of network effects. This finding suggests that network effects 

(corrected, at least partly, for unobserved persistency effects) are considerably less important than has 

been usually reported in the literature. Furthermore, the estimate of the contiguity effect is 0.093 (and 

statistically insignificant), which is also appreciably smaller than its implausibly large OLS counterpart 

(0.452). The coefficient implies that, on average, migration between two contiguous states is only about 

10% (=100×"e0.093-1&) higher than migration between two non-contiguous states (in OLS this is 57% 

(=100×"e0.452-1&)). The finding of a weak contiguity effect should not be surprising, though, since the 

estimate is an indicator of the average effect, which conceals variations across pairs of contiguous states 

(as will be followed up in the next sub-section). Finally, the estimate of the distance effects is -0.204, which 

is about three times larger than the OLS estimate "-0.066). Moreover, this stronger distance-deterrence 

indicator becomes statistically significant (at the 5% level) and is thus not “eaten” by the inclusion of the 

migrant-stock variable . 

 Looking at the pull factors at the destinations, the most remarkable changes can be observed for the 

unemployment rate and the HDI. The repulsion effect of unemployment is estimated at -0.259, which is 

more than five times smaller than the OLS counterpart (-1.254). The attraction effect exerted by HDI is 

0.821, which is—even though still appreciable—only 63% of the more-than-proportional effect on 

migrant arrivals suggested by the OLS estimate (1.312). The signs of the coefficients are in line with prior 

expectations and the estimates retain their statistical significance (at the 5% and 1% level, respectively). 

The changes for the other destination variables (population, share of employment in manufacturing, and 

population density) are less dramatic, but the numerical size of all coefficients generally tend to decline 

(to about 50% of their OLS counterparts). 

Striking changes can also be noticed for the push factors at the origins, which alter substantive 

inferences in a number of instances. Most notable are, again, the changes in the estimates associated with 

unemployment and HDI. Unemployment and HDI are found to have little if any influence on migrant 

departures, where the coefficients become statistically insignificant. The impact of unemployment on 

migrant departures is 0.218, which is about half the size of the OLS estimate (0.402), while the expulsion 

effect of HDI is estimated at 0.199, which is even seven times smaller (in absolute value) than the OLS 

estimate (-1.386). How can such insignificant effects be explained/interpreted? In the case of 

unemployment, the insignificant result may be indicative of the (concealed) real-world heterogeneity of 

populations. While high unemployment may “drive out” some people from their home base, others may not 

be able to afford moving to other places (i.e., potential out-migrants in high-unemployment areas may be 

stuck in a “poverty trap”). Moreover, the unemployed constitute only a relatively small proportion of the 

total population, whilst a high unemployment rate is likely to be of less importance to those individuals 

who already have a job. Thus, high unemployment rates tend to encourage out-migration of those who are 

unemployed but exert little influence on the majority of the population (e.g., Cadwallader, 1992, p. 53). In 

the case of HDI, the insignificant result may be attributed to the fact that some people living in relatively 

developed/high-income/high-literacy states may generally have low incentives to out-migrate, whilst 

others may be less reluctant to move to other places in search for more attractive job opportunities or 

more adequate living/housing conditions. 

 The coefficients on the indicator variables for the U.S. border states also illustrate the gains from 

applying the FE-GME estimator. Migrant arrivals in the northern border states are estimated to be 

approximately 62% (=100×"e0.481-1&) higher than in other states, everything else equal. The OLS 

estimator, in turn, clearly exaggerates the attraction of the northern border states, as the coefficient 

implies that the number of arrivals would be a dazzling 141% (=100×"e�.���-1&) higher than in other 

states. On the other hand, retention forces in the northern border states are found to be 20% 
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(=100×"e-0.227-1&) stronger than in other states (but only marginally significant), ceteris paribus, whereas 

OLS returns an implausible low (insignificant) estimate of 6% (=100×"e-0.058-1&) less migrant 

departures.15 

 As a final means of assessing the estimated coefficients, it is worth pointing at two observations 

regarding the FE-GME estimates in columns 5 and 6 of Table 4. First, controlling for two-way FE in the 

unilateral dimensions (column 5) appears to be just an “intermediate” step in accounting for correlated 

heterogeneity. Although most coefficients are altered in the expected directions, the high coefficient on the 

migrant-stock variable (0.769) remains particularly worrisome (which is even higher than the OLS value 

of 0.632). Second, the introduction of three-way FE in the bilateral dimension with symmetry placed on the 

individual slopes (column 6) tends to return severely crunched and mostly insignificant coefficients. Thus, 

the preferred FE-GME estimates reported in column 7 of Table 4 clearly illustrate the benefits of relaxing 

the symmetry assumption in the bilateral dimension. 

 

Variance decomposition 
 

To assess the relative importance of the various components on the RHS of the gravity equation in 

determining the (log) size of migration—i.e., the dependent variable, I present a variance analysis as in 

Abowd et al. (1999) and Combes et al. (2008). Table 5 shows the explanatory power of each RHS variable 

by reporting, for all them, the standard deviations of their effects and their correlations with the 

dependent variable. Specifically, I compute the effect of each RHS variable by multiplying its coefficient by 

its value for each observation. For example, the effect of the unemployment rate on the dependent 

variable is equal to the estimated coefficient on this variable times the unemployment rate. Then, the 

variability of the effect of each RHS variable can be calculated. When the effect of a RHS variable has a 

large standard deviation and it is highly correlated with the dependent variable, this RHS variable has a 

strong explanatory power. When, on the contrary, the effect of a RHS variable has a small standard 

deviation and a small correlation with the migration flows, this RHS variable explains only a small fraction 

of the variation in the dependent variable. 
 

< Insert TABLE 5 about here > 

 

  The results reported in Table 5 suggest that the heterogeneous parts of the distance and migrant-stock 

effects (τq��  and µq �� , respectively) are most successful in explaining the variation in observed migration 

flows. The heterogeneous component of the distance effect (τq��) has the largest explanatory power; its 

standard deviation (0.622) is closest to that of the dependent variable (1.554) and its correlation with 

migration flows is very high at 0.685 (i.e., the third highest correlation). The components of the migrant-

stock effect come second in importance; they show the highest correlations (0.715 for the “fixed” 

component, and 0.739 for the heterogeneous component), though their standard deviations are much 

lower (0.155 and 0.342, respectively).16 Not quite surprisingly, the explanatory power of the population 

variables, taken together, is also substantial, with a standard deviation of 0.695 and a correlation of 0.668 

(note that they act mainly as scale factors). Furthermore, contiguity has a relatively weak explanatory 

power, with a low standard deviation of 0.160 and a moderately high correlation of 0.481. Finally, socio-

economic variables (unemployment rate, development status, share of manufacturing, and population 

density), the U.S. border-state indicators, and the state-fixed effects all explain only a small fraction of the 

variation in observed migration flows.  

To give an idea of the importance of the varying effects of distance and migrant stock on the variation 

in migration flows, one can also examine the latter net of their heterogeneous components. The “net” (log) 

migration flows, ln MIGR��∗ , are calculated as follows: 
 

 ln MIGR��∗ = ln MIGR�� − μq �� ln STOCK�� − τq�� ln DIST��  (14) 
 

Table 6 compares variations in real/observed and “net” (log) migration flows. Depending on the 

measure of dispersion taken, the results suggest that the variations in unobserved individual (flow-

specific) distance and migrant-stock effects account for 30 to 45% of the variation in (log) migration 

flows. A similar exercise for the observed effects of socio-economic “push and pull” factors in origins and 

destinations returns an explanatory power of only 5 to 10%. 
 

< Insert TABLE 6 about here > 
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4.5 Digging deeper: determinants of the individual bilateral effects 
 

Figure 2 shows the kernel densities of the recovered individual slopes for distance (Dδx��D), contiguity (λx��), 

and migrant stock (ηq ��). An examination of the distributions reveals wide variations in the flow-specific 

effects, so the effects of the bilateral linkage factors are not homogeneous. A remarkable (though 

expected) finding is the heavily (positively) skewed distribution of the contiguity effects, with a sharp 

concentration of the mass of the distribution at a value close to zero (in fact, about 63% of the estimated 

individual contiguity effects are equal to zero).  
 

< Insert FIGURE 2 about here > 
 

Since the individual effects and their distributions are not particularly informative as such, it is more 

instructive to ask: Where do the differences in bilateral effects come from? Therefore, armed with the 

individual slopes returned by the estimated FE gravity model, I examine whether some important “driving 

forces” behind their variations can be discovered. This is accomplished by regressing the flow-specific 

effects of distance and migrant stock on a set of relational variables reflecting differences between 

Mexican states and some spatial-configuration variables (see Mueser, 1989a, for a similar exercise). 

Specifically, I use cross-state disparities in unemployment rate (∆ ln UR�� = ln UR� - ln UR�), development 

status (∆ ln HDI�� = ln HDI� - ln HDI�), and population density (∆ ln DENS�� = ln DENS� - ln DENS�). I also include 

distance (third-order polynomial), contiguity, and a “directionality” indicator as explanatory variables. 

The directionality indicator is defined as (e.g., Gabriel et al., 1993) 
 

      1,   if j is a border state and i is a non-border state  

           DIRECTji ≡  USBj - USBi =     0,   if both i and j are either border or non-border states  (15) 

   -1,   if j is a non-border state and i is a border state  

where DIRECT��  = 1 indicates migration in the south-north direction, DIRECT��  = -1 indicates migration in 

the opposite direction, and DIRECT��  = 0 indicates “intra-regional” migration. For the individual slopes of 

contiguity, the average effect on migration will be compared with the effects for those Mexican states that 

have a large metropolitan zone close to and/or straddling the common border (ZM�� = 1). 

 

Analysis of coefficients 
 

Table 7 reports both OLS (columns 1.a and 2.a) and Tobit (columns 1.b and 2.b) results for the individual 

distance and migrant-stock effects, which are left-censored given the inequality constraints (about 6% of 

the individual effects hit the zero bound). Given the partial nature of the present analysis, I start the 

discussion with some general observations and then focus only on a few striking results.17 
 

< Insert TABLE 7 about here > 
 

 The overall impression is that the results are quite satisfactory, where all coefficients are statistically 

significant (at the 5% or 1% level) and tend to have the expected sign. Moreover, the results provide 

supportive evidence of asymmetry (directional heterogeneity) of inter-state interactions. Finally, a large 

proportion of the variation in the individual effects (57% for distance, 72% for migrant stock) could be 

explained by only a limited set of variables (this, however, means, that 30-40% still remains unexplained). 

Such results are encouraging and, in a way, demonstrate that the individual effects obtained from FE-GME 

are not just “cheap talk” (or chance numbers rolling out from a gambling machine) but can, instead, be 

linked in a meaningful and informative way to the limited set of variables.  

For the individual distance effects, it is found that disparities between states in terms of unemployment 

and development status tend to have a “compensatory” effect, making migrants less sensitive to distance if 

conditions in a destination are more favorable compared to those in the origin. Furthermore, migrants 

seem to be less hindered by distance when moving from relatively low-density (rural/amenity-poor) to 

relatively high-density (urban/amenity rich) areas, in conformity with the conjecture formulated in the 

introductory section. Also, the signs of the coefficients on directionality, contiguity, and migrant stock are 

generally in line with prior expectations. 

Finally, the effect of distance varies perceptibly according to the distance travelled by migrants, as 

clearly shown in Figure 3. The signs and magnitudes of the coefficients associated with the third-order 

polynomial in distance indicate that, ceteris paribus, the impact of distance falls sharply for moves within 

a roughly 50-km radius of the home base, then increases for movements over medium-long distances up 

to about 1040 km, and further decreases again for longer-distance moves. The distance profile seems to 
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suggest (though, admittedly, only weakly) the presence of some sort of “reservation distance”, where 

people may be more reluctant to take on a costly resettlement in nearby locations. On the other hand, the 

significant decline in the deterring effect for longer-distance moves could perhaps be reflective of a 

composition effect; that is, long-distance migration flows may possibly have an age balance tended 

towards the young and/or carry higher human capital (e.g., Schwartz, 1973; Morgan and Robb, 1981; 

Schultz, 1982; Millington, 2000), containing migrants who may be primarily concerned with functional 

distance (opportunities) rather than with physical distance. Unfortunately, data limitations do not permit 

the identification of the distinctive spatial patterns of movement for different types of migrants. 
 

< Insert FIGURE 3 about here > 
 

Turning to the individual migrant-stock effects, it can be seen that the results exhibit a roughly similar 

picture. Socio-economic disparities in terms of unemployment and development status tend to lessen the 

importance of the migrant stock (migration history). Also, the distance profile of the migrant-stock effect 

turns out to be much less pronounced than for distance, as shown in Figure 3. 

Perhaps the most important finding is that the coefficient on the migrant-stock variable is negative 

(and statistically significant at the 5% level). Such an outcome is in line with Davis et al. (2002), and 

suggests that on average the marginal effect of the migrant stock (past migrants) in a given destination on 

the current inflow of “compatriots” decreases with the size of the stock, holding other things equal. This 

decreasing marginal effect of migrant stock on the size of migration flows leaves room for different (not 

mutually exclusive) interpretations. First, the size of the migrant stock in a given destination is likely to be 

reflective of the age structure of the stock of previous migrants. The intuition here is that the larger is the 

stock of previous migrants in a destination, the longer is the “migration history” and, hence, the older is 

the population of past migrants living in that destination. Then, with increasing age of the migrant stock, 

the beneficial network externalities may be subject to a “depreciation function” of some sort (e.g., Dunlevy, 

1993). Second, negative network externalities may arise due to increased competition for resources that 

might be getting in short supply (congestion effects), leading to depressed wages in a destination. Then, 

sending back information to those at home about, say, “a lack of job opportunities and poor living 

conditions” in a destination is expected to discourage further migration to that destination (e.g., Renshaw, 

1974; Bauer et al., 2002, 2007; Warin and Blakely, 2009). Third, a larger migration stock in a destination 

means that people in the sending area are becoming increasingly integrated in migration networks. Then, 

those who migrated in the past may send remittances to their family and friends at home (e.g., Boucher et 

al., 2005; Taylor et al., 2008). To the extent that these remittances improve the living conditions of those 

“left behind”, the latter may have less incentives to follow the paths of those who recently emigrated. 

Fourth, current migration flows might have been diverted from the trajectories of migrants in the past 

simply because the composition of current flows might be different from that of previous flows, where 

“new” (e.g., highly-skilled) migrants might be less driven by historical experiences in their destination 

choice and, hence, bend away from “old” migration paths. 

Furthermore, the migrant-stock effect becomes smaller with more pronounced discrepancies in terms 

of population density. This may be indicative of the fact that the attraction exerted by those destinations 

hosting a large number of previous migrants is likely to be weaker in more densely-populated areas. This 

finding is also consistent with Fussell and Massey (2004), who found that “friends-and-family” linkages 

are less pervasive in more urbanized destinations where social interactions are weaker. 

Finally, Table 8 tabulates the contiguity effects for various “types” of common borders. While the 

overall effect of contiguity is found to be weak (0.093), and not statistically significant (migration between 

contiguous states is estimated to be at best 10% higher, on average, compared to migration between non-

contiguous states), the effect for contiguous states with a metropolitan zone close to the common border 

(either in one state or in both states) is almost 17% (=100×"e0.155-1&) higher than that for non-

contiguous states. Moreover, for those contiguous states hosting a metropolitan zone straddling the 

common border, it is found that migration is about 32% (=100×"e0.276-1&) higher than migration between 

non-contiguous states, ceteris paribus. These higher contiguity effects may thus largely capture the “local 

mobility” within large metropolitan zones and/or between these metropolitan zones and their rural-

urban surroundings. 
 

<Insert TABLE 8 about here> 

 

Variance decomposition. 
 

I perform a variance decomposition, as I did before for the gravity equation. The results reported in Table 

9 suggest that migrant stock is the most important variable in the determination of the size of the bilateral 
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effects of distance and migrant stock; its standard deviation (0.052 and 0.054, respectively) is closest to 

that of the estimated bilateral effects (0.092 and 0.055, respectively) and its correlation is very high at 

0.624 and 0.774, respectively. Furthermore, spatial variables play a moderate role, particularly in the case 

of the estimated distance effects, where contiguity stands out (relatively speaking). Finally, socio-

economic differentials explain only a small fraction of the variation of the estimated individual effects. 

Interestingly, such findings raise some doubts about the importance of the “compensatory role” of socio-

economic factors in reducing migrants’ sensitivity to distance, so that internal migration in Mexico is 

unlikely to be strongly positively affected (indirectly) by, say, increasing per-capita income gaps between 

origin and destination (as in Ortega and Peri, 2009, for international migration).  

 

<Insert TABLE 9 about here> 

 

4.6 Taking a glance at the pattern of the composite residuals 
 

As a last step in the empirical analysis, it is worth eyeballing the pattern of the composite residuals 

resulting from the three-way FE model. In Figure 4, the squared values of the residuals, defined here as 

rq�� = MIGR�� − MIGR® ��̄ , where MIGR® ��̄ = MIGR® ��"eξ°XZV �⁄ &, where  ξ°�� = υq � + ωr� + κq��0�� + µq ��1�� + τq��2�� + ϵq�� , 

are plotted against the predicted flows, MIGR® ��̄ .18 
 

< Insert FIGURE 4 about here > 
 

Inspection of the pattern displayed in Figure 4 provides strong (qualitative) support for the conjecture 

that the dispersion of the composite residuals tends to increase with the level of the predicted flows. This 

illustrates that the proposed three-way FE gravity model is capable of accounting for the heteroskedastic 

nature (arbitrary variance) of the migration data in a quite satisfactory way. In other words, the FE gravity 

model in logs constitutes a viable alternative for the Poisson specification (in levels) in alleviating the bias 

that may arise from heteroskedasticity. 

 

5. CONCLUDING COMMENTS 
 

The purpose of this paper was to establish a novel fixed-effects (FE) estimator and to show its potentials 

for the estimation of generalized cross-section gravity models of aggregate place-to-place migration. The 

proposed three-way FE approach was applied for an exploratory analysis of inter-state migration in 

Mexico. To regularize the “ill-posed” (over-parameterized) nature of cross-section model, estimation was 

accomplished by using the non-classical Generalized Maximum Entropy estimator. The importance of 

introducing fixed effects was demonstrated by comparing the FE-GME estimates with those obtained from 

the convenient OLS estimator. 

The most important findings can be summarized as follows. First, it was found that accounting for 

unobserved heterogeneity in all three dimensions (i, j, and ij)—that is, relaxing the standard homogeneity 

and quasi-symmetry assumptions of the gravity model of aggregate migration—has an appreciable impact 

on the magnitudes of all estimated coefficients, whilst most of them retain their statistical significance 

and, in the end, appear to be more realistic. Second, after correcting for omitted-variables bias in the 

bilateral dimension, the estimate of the (population-averaged) elasticity of migration with respect to 

migrant stock, at around 0.10, is much lower than in previous empirical literature. Third, it is found that 

variations in the unobserved individual (flow-specific) distance and migrant-stock effects account for 30 

to 45% of the variation in (log) migration flows, whereas observed socio-economic “push and pull” factors 

at origins and destinations (unemployment rates, incomes per capita, etc.) have only a small explanatory 

power of 5 to 10%. Finally, the individual bilateral effects could also be successfully related in a 

meaningful way to existing socio-economic disparities between Mexico’s states, some relevant spatial-

configuration variables (including distance), and the size of the migrant stock, where the latter stands out. 

Within the limited frame of the empirical analysis presented in this paper, the results, however, do 

represent something of a challenge to many of the claims that have been advanced in the previous 

literature about the preeminence of distance and/or migration networks in shaping migratory patterns at 

an aggregate scale. Furthermore, the results cast a shadow of doubts over the widespread contention that 

distance and migrant stock can be used interchangeably in the gravity equation as a proxy for “family-and-

friends” linkages. Finally, the paper has shown that the three-way FE gravity model in logs is a viable 

alternative for the Poisson level specification in alleviating the problem of bias that may arise due to the 

heteroskedasticity in the migration data. The approach proposed in this paper should, therefore, deserve 

attention in the estimation of cross-section (as well as panel-data) gravity models. 
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TABLE 1: Variables and basic descriptive statistics 

Variable  Definition Mean S.D. Min Median Max 

Dependent variable MIGR�� (1000) Total number of out-migrants from origin 

state i to destination state j, 1995-2000 

3.614 16.290 0.015 0.820 448.546 

Unilateral state characteristics (“push and pull” factors) 

 POP�   
 

(POP�)  Total population, 1995 (millions) 2.847 2.439 0.375 2.142 11.750 

UR�  
 

(UR�)  Unemployment rate, average of 1990 and 

2000 

0.019 0.004 0.011 0.020 0.027 

HDI�    (HDI�)  Human Development Index = composite 

indicator including GDP per capita, life-

expectancy rate, literacy rate, and school-

participation rate, average of 1990 and 2000 

0.685 0.114 0.421 0.708 0.864 

MAN�   

 

(MAN�)  Share of manufacturing in total employment, 

1995 

0.229 0.084 0.053 0.243 0.375 

DENS�   (DENS�)  Population density, 1995 (thousands per 

square km) 

0.259 0.986 0.005 0.047 5.717 

USB�   

 

(USB�)  Dummy variable = 1 for U.S. border states, and 

0 otherwise 

0.219 — — — — 

Bilateral linkage factors CONTIG��    Dummy variable = 1 for migration flows 

between contiguous states (sharing common 

border), and 0 otherwise 

0.143 — — — — 

STOCK��  (%) Migrant stock = number of previous migrants 

from the origin state i living in the destination 

state j, divided by population in the origin 

state, 1995 

0.53 1.59 0.01 0.11 32.55 

DIST��  (1000 km) Geographical distance between states = 

km highway distance between the states’ 

capital cities 

1.370 1.077 0.033 1.056 5.961 

 

Notes: All continuous variables have been log-transformed in the empirical model. All independent variables are 

measured in 1995, hence, ante-dating “current” migration. However, data for some of the state characteristics were 

only available for the census years 1990 and 2000. The U.S. border states are defined as in Rogers et al. (2006) and 

Raymer and Rogers (2007), including Baja California Norte, Baja California Sur, Sonora, Chihuahua, Coahuila, Nuevo 

León, and Tamaulipas. 
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TABLE 2: Correlations between bilateral linkage variables 

 MIGR CONTIG STOCK DIST 

     
MIGR 1    

CONTIG 0.242*** 

(0.000) 

1   

STOCK 0.366*** 

(0.000) 

0.411*** 

(0.000) 

1  

DIST -0.130*** 

(0.000) 

-0.358*** 

(0.000) 

-0.207*** 

(0.000) 

1 

 

        Notes: Two-sided p-values are given in parentheses.  *, **, and *** 

       denote statistical significance at the 10%, 5%, and 1%, respectively. 
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TABLE 3: Cross-tabulation for contiguity 

 CONTIG = 1 CONTIG = 0 Difference 

    
MIGR (1000) 13.271 2.000 11.271*** 

(0.001) 

STOCK (%) 2.124 0.264 1.861*** 

(0.000) 

DIST (1000 km) 0.425 1.527 -1.101*** 

(0.000) 

No. of observations 142 850  

 

Notes: Two-sided p-values are given in parentheses. The statistical  significance of the difference in 

means is tested on the basis of a simple F-statistic from a parametric test (assuming unequal 

variances). *, **, and *** denote statistical significance at the 10%, 5%, and 1%, respectively. 
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TABLE 4: Estimation results from OLS and GME for standard and fixed-effects cross-section gravity model 

 Standard gravity model  Fixed-effects gravity model 

 OLS  GME  FE-GME 

(1) (2) (3)  (4)  (5) (6) (7) 

          
Constant -8.564*** 

(0.944) 

-8.709*** 

(0.892) 

-1.505** 

(0.753) 

 

 

-1.554** 

(0.723) 

 0.095 

(0.796) 

0.488 

(5.046) 

-0.091 

(1.018) ln POP�  
 

1.034*** 

(0.041) 

0.969*** 

(0.038) 

0.462*** 

(0.035) 

 0.465*** 

(0.035) 

 0.457*** 

(0.039) 

0.175 

(0.245) 

0.738*** 

(0.050) ln POP�  

 

0.808*** 

(0.040) 

0.743*** 

(0.037) 

0.729*** 

(0.030) 

 0.733*** 

(0.030) 

 0.690*** 

(0.033) 

 

0.204 

(0.208) 

0.472*** 

(0.042) ln UR�  
 

-0.534*** 

(0.156) 

-0.364** 

(0.149) 

0.402*** 

(0.118) 

 0.409*** 

(0.102) 

 0.138 

(0.113) 

-0.782 

(0.725) 

0.218 

(0.145) ln UR�  

 

-1.219*** 

(0.131) 

-1.039*** 

(0.134) 

-1.254*** 

(0.090) 

 -1.261*** 

(0.099) 

 -0.972*** 

(0.109) 

-1.517** 

(0.681) 

-0.259* 

(0.139) ln HDI�   
 

-0.218 

(0.209) 

0.234 

(0.192) 

-1.386*** 

(0.159) 

 -1.392*** 

(0.152) 

 -0.697*** 

(0.168) 

-0.843 

(1.071) 

0.199 

(0.215) ln HDI�   

 

1.085*** 

(0.203) 

1.069*** 

(0.186) 

1.312*** 

(0.131) 

 1.330*** 

(0.147) 

 0.691*** 

(0.161) 

0.162 

(1.001) 

0.821*** 

(0.204) ln MAN�   
 

-0.849*** 

(0.078) 

-0.740*** 

(0.074) 

-0.365*** 

(0.060) 

 -0.369*** 

(0.056) 

 -0.216*** 

(0.061) 

-0.421 

(0.384) 

-0.310*** 

(0.078) ln MAN�  

 

-0.521*** 

(0.079) 

-0.412*** 

(0.075) 

-0.106* 

(0.060) 

 -0.108** 

(0.055) 

 -0.136** 

(0.061) 

-0.366 

(0.377) 

-0.064 

(0.077) ln DENS�   
 

0.089*** 

(0.032) 

0.166*** 

(0.030) 

0.062** 

(0.026) 

 0.062*** 

(0.024) 

 -0.038 

(0.026) 

-0.063 

(0.159) 

0.132*** 

(0.033) ln DENS�   

 

0.033 

(0.031) 

0.109*** 

(0.028) 

0.120*** 

(0.025) 

 0.118*** 

(0.024) 

 0.086*** 

(0.026) 

0.008 

(0.157) 

0.058* 

(0.032) USB�   0.923*** 

(0.120) 

0.784*** 

(0.110) 

-0.058 

(0.090) 

 -0.060 

(0.085) 

 -0.386*** 

(0.094) 

-0.325 

(0.577) 

-0.227* 

(0.119) USB�  1.258*** 

(0.122) 

1.119*** 

(0.112) 

0.880*** 

(0.077) 

 0.876*** 

(0.080) 

 0.882*** 

(0.088) 

0.594 

(0.549) 

0.481*** 

(0.112) CONTIG��   — 1.306*** 

(0.088) 

0.452*** 

(0.073) 

 0.450*** 

(0.076) 

 0.084 

(0.084) 

0.273 

(0.478) 

0.093 

(0.100) ln STOCK��   

 

— — 0.632*** 

(0.025) 

 0.632*** 

(0.023) 

 0.769*** 

(0.025) 

0.459*** 

(0.154) 

0.103*** 

(0.032) ln DIST��   

 

-1.100*** 

(0.048) 

-0.636*** 

(0.054) 

-0.066 

(0.046) 

 -0.065 

(0.045) 

 -0.115** 

(0.050) 

-0.631** 

(0.290) 

-0.204*** 

(0.061) 

Origin-/destination- 

specific fixed effects 
No No No  No  Yes Yes Yes 

Flow-specific 

fixed effects 
No No No  No  No Yes Yes 

Quasi-symmetry Yes Yes Yes  Yes  Yes Yes No 

 R2 0.697 0.748 0.857  0.857  0.831 0.567 0.666 

 RMSE 0.861 0.786 0.592  0.592  0.642 1.520 0.961 

 

Notes: Huber/White-robust standard errors are given in parentheses for the OLS estimator; approximate asymptotic 

standard errors are given in parentheses for the FE-GME estimator. *, **, and *** denote statistical significance at the 

10%, 5%, and 1%, respectively. The R2 for the FE-GME estimator is based on the population-averaged effects only (i.e., 

the “restricted” R2, with all individual unobserved effects subtracted out) and calculated as the squared correlation 

between predicted and actual values. The FE-GME results are for error support  zzzzϵ=/-3σrm, 0, 3σrm3'
, in accordance with 

the three-sigma rule. 



TABLE 5: Summary statistics for the variance decomposition—Gravity equation 

 

Std.  

dev. 

Simple correlation with: ln MIGR�� Contiguity λx CONTIG��  κq ��CONTIG��  
Migrant 

 stock 
ηq ln STOCK��  µq �� ln STOCK�� Distance δx ln DIST��   τq�� ln DIST��  

State-fixed 

effects 
υq �  ωr� ln MIGR��   1.554 1.000 0.481 0.501 0.481 0.785 0.715 0.739 0.724 0.462 0.685 0.261 0.154 0.208 

Population 0.695 0.668 -0.186 0.151 -0.186 0.318 0.420 0.240 0.167 0.320 0.100 0.182 0.197 0.077 aqPOP,� ln POP�   0.595 0.542 -0.113 0.108 -0.113 0.275 0.433 0.176 0.063 0.228 0.008 0.141 0.235 -0.005 aqPOP,� ln POP�   0.380 0.373 -0.170 0.108 -0.170 0.152 0.092 0.164 0.207 0.228 0.170 0.113 -0.008 0.148 

Socio-economic variables 0.249 0.242 0.174 -0.066 0.174 -0.035 0.025 -0.059 -0.084 0.046 -0.107 0.301 0.062 0.328 aqUR,� ln UR�  0.048 0.191 -0.129 0.080 -0.129 0.036 0.066 0.019 0.097 0.272 0.034 -0.046 -0.086 0.009 aqUR,� ln UR�  0.057 -0.059 0.146 -0.080 0.146 -0.096 -0.158 -0.058 -0.112 -0.272 -0.051 0.226 -0.003 0.286 aqHDI,�ln HDI�   0.035 -0.099 0.131 -0.067 0.131 0.102 0.234 0.031 -0.098 -0.179 -0.061 0.063 0.121 -0.015 aqHDI,� ln HDI�  0.146 0.141 0.161 -0.067 0.161 -0.066 -0.110 -0.040 -0.098 -0.179 -0.061 0.357 -0.004 0.450 aqMAN,� ln MAN�   0.151 -0.183 0.082 -0.064 0.082 -0.117 -0.195 -0.070 -0.092 -0.276 -0.027 0.075 0.123 -0.001 aqMAN,� ln MAN�   0.031 -0.174 0.098 -0.064 0.098 -0.051 -0.040 -0.051 -0.134 -0.276 -0.074 0.032 -0.004 0.043 aqDENS,� ln DENS�   0.177 0.322 0.008 0.032 0.008 0.080 0.246 -0.003 0.016 0.379 -0.086 -0.008 -0.013 0.001 aqDENS,� ln DENS�   0.078 0.176 -0.061 0.032 -0.061 0.080 0.094 0.065 0.177 0.379 0.094 -0.012 0.000 -0.016 

US border-state indicators 0.223 0.159 0.086 -0.033 0.086 -0.088 -0.187 -0.034 -0.060 -0.149 -0.027 0.107 0.030 0.112 aqUSB,�USB�  0.094 0.075 -0.051 0.070 -0.051 -0.212 -0.171 -0.209 -0.034 0.317 -0.126 0.044 0.066 0.004 aqUSB,�USB�  0.199 0.143 0.099 -0.070 0.099 0.001 -0.129 0.061 -0.051 -0.317 0.029 0.100 0.002 0.123 

Contiguity 0.160 0.481 1.000 0.000 1.000 0.464 0.392 0.308 0.533 0.169 0.480 0.273 0.167 0.203 λx CONTIG��   0.033 0.501 0.000 1.000 0.000 0.517 0.558 0.447 0.610 0.537 0.537 -0.003 -0.004 -0.001 
κq �� CONTIG��   0.160 0.481 1.000 0.000 1.000 0.464 0.392 0.308 0.533 0.169 0.480 0.273 0.167 0.203 

Migrant stock 0.464 0.785 0.464 0.517 0.464 1.000 0.847 0.970 0.855 0.366 0.859 -0.145 -0.070 -0.128 ηq ln STOCK��  0.155 0.715 0.392 0.558 0.392 0.847 1.000 0.694 0.657 0.510 0.597 -0.059 0.097 -0.148 
µq �� ln STOCK��  0.342 0.739 0.308 0.447 0.308 0.970 0.694 1.000 0.861 0.264 0.893 -0.170 -0.139 -0.106 

Distance 0.698 0.724 0.533 0.610 0.533 0.855 0.657 0.861 1.000 0.543 0.973 -0.207 -0.178 -0.122 δx ln DIST��   0.171 0.462 0.169 0.537 0.169 0.366 0.510 0.264 0.543 1.000 0.334 -0.136 -0.066 -0.119 
τq�� ln DIST��   0.622 0.685 0.480 0.537 0.480 0.859 0.597 0.893 0.973 0.334 1.000 -0.195 -0.181 -0.104 

State-fixed effects 0.386 0.261 0.273 -0.003 0.273 -0.145 -0.059 -0.170 -0.207 -0.136 -0.195 1.000 0.602 0.788 

υq �  0.238 0.154 0.167 -0.004 0.167 -0.070 0.097 -0.139 -0.178 -0.066 -0.181 0.602 1.000 -0.017 
ωr�  0.308 0.208 0.203 -0.001 0.203 -0.128 -0.148 -0.106 -0.122 -0.119 -0.104 0.788 -0.017 1.000 
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TABLE 6: Variations in real and “net” (log) migration flows 

  Real ln MIGR��  "Net" ln MIGR�� Difference Percentage 

(Max-Min)/Min 3.806 2.038 1.768 46.5% 

(P90-P10)/P10 0.825 0.474 0.351 42.5% 

(P75-P25)/P25 0.381 0.235 0.146 38.3% 

Coefficient of variation 0.227 0.157 0.070 30.8% 
 

           Notes: The “net” (log) migration flows are calculated as in Equation (14). Max, Min, P10, P90, P25, and 

    P75 are the max, the min, the first decile, the last decile, the first quartile, and the last quartile, respectively. 
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TABLE 7: Determinants of flow-specific effects of distance and migrant stock—OLS and Tobit results 

 Distance effects  Dδx��D  Migrant-stock effects  ηq��  

 OLS 

(1.a) 

Tobit 

(1.b) 
 

OLS 

(2.a) 

Tobit 

(2.b) Constant  1.034*** 

(0.349) 

0.578 

(0.433) 

 0.504** 

(0.209) 

0.250 

(0.220) Δ ln UR��  -0.027*** 

(0.007) 

-0.029*** 

(0.008) 

 -0.012*** 

(0.004) 

-0.013*** 

(0.004) Δ ln HDI��   -0.023** 

(0.010) 

-0.024** 

(0.010) 

 -0.013** 

(0.005) 

-0.013** 

(0.005) Δ ln DENS��   -0.013*** 

(0.002) 

-0.014*** 

(0.002) 

 -0.006*** 

(0.001) 

-0.006*** 

(0.001) DIRECT��   -0.022*** 

(0.005) 

-0.024*** 

(0.005) 

 -0.010*** 

(0.002) 

-0.011*** 

(0.002) CONTIG��   -0.070*** 

(0.008) 

-0.081*** 

(0.009) 

 -0.024*** 

(0.003) 

-0.030*** 

(0.004) ln STOCK��  -0.032*** 

(0.002) 

-0.034*** 

(0.002) 

 -0.028*** 

(0.001) 

-0.030*** 

(0.001) ln DIST��   -0.605*** 

(0.164) 

-0.407** 

(0.164) 

 -0.319*** 

(0.140) 

-0.207** 

(0.101) "ln DIST��&�  0.110*** 

(0.026) 

0.081*** 

(0.031) 

 0.057*** 

(0.015) 

0.040*** 

(0.015) "ln DIST��&¹  -0.006*** 

(0.001) 

-0.005*** 

(0.002) 

 -0.003*** 

(0.001) 

-0.003*** 

(0.001) σr  — 0.063  — 0.030 

      Log-likelihood value — 1207.2  — 1924.0 º�  0.573 0.574  0.710 0.718 

No. of observations 992 992  992 992 

 

Notes: The difference variables are defined as follows: Δ ln X�� = ln X� - ln X� = ln"X� X�&⁄ . The indexes i and j of  Δ ln UR�� 

have been reversed (in accordance with anticipated movements from high- to low-unemployment areas). DIRECT��= 1 

indicates south-north directionality of migration, DIRECT��= -1 indicates north-south directionality of migration, and DIRECT��= 0 indicates intra-regional migration. The predicted values from Tobit (with left censoring) are calculated as  yq��=Φ/zq��3yq��∗ +σr½"zq��&≥0, where yq��∗ =���7w , zq��= ���7w σr⁄ , and σr is the estimated standard error of the residuals 

(Greene, 2003, p. 764). The partial effects can be calculated as  �9/yD���3 �x��,�¾ = Φ"zq��&βx�. Instead of reporting the 

McFadden Pseudo-º�, which may not be the best measure of fit, I simply calculate the º� as the square of the 

correlation between the predicted (yq��) and observed (y��) values. The Tobit estimates can be multiplied by 

appropriate adjustment factors to obtain the average partial effects (APE), which are roughly comparable to the OLS 

estimates. The APE scale factor is ���ΣÀΦ"zq��&, so the APE is  [���ΣÀΦ"zq��&]βx�. The APE factors are 0.963 and 0.945 

for distance and migrant stock, respectively. *, **, and *** denote statistical significance at the 10%, 5%, and 1%, 

respectively. 
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TABLE 8: Differences in average contiguity effects – Cross-tabulation 

 No. of observations Average contiguity effect Difference 

All contiguous states 142 0.093  

Contiguous states without/with metropolitan zone close to or straddling the common border 

  Without (ZM�� = 0) 104 0.070  

  With (ZM�� = 1) 38 0.155            0.085* 

Contiguous states without/with metropolitan zone straddling the common border 

  Without (ZM�� = 0) 128 0.073  

  With (ZM�� = 1) 14 0.276            0.203*** 

 

Notes: *, **, and *** denote statistical significance at the 10%, 5%, and 1%, respectively. The difference in means 

is tested on the basis of a simple F-statistic from a parametric test (assuming unequal variances). Identification 

of metropolitan zones in Mexico is based on SEDESOL-CONAPO-INEGI (2007). Six metropolitan zones are 

straddling seven Mexican state borders: La Laguna (Coahuila-Durango), Valle de México (D.F.-México/México-

Hidalgo), Puerto Vallarta (Jalisco-Nayarit), La Piedad-Pénjamo (Michoacán-Guanajuato), Puebla-Tlaxcala 

(Puebla-Tlaxcala), and Tampico (Tamaulipas-Veracruz). 
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TABLE 9: Summary statistics for variance decomposition—Determinants of individual bilateral effects of distance and migrant stock 

 
(A) Individual distance-deterrence effects 

 
Std.  

dev. 

Simple correlation with: Dδx��D Socio-econ. 

differentials 

αrÁÂ  
Δ ln UR�� 

αrÃÄÅ  
Δ ln HDI�� αrÄÆÇÈ  

Δ ln DENS��  αrÈÉÊËÌ  ln STOCK��  
Spatial 

variables 

αrÄÅÂÆËÉ DIRECT��  αrËÊÇÉÅÍ CONTIG��  
αrÄÅÈÉ ln DIST��(a) Dδx��D  0.092 1.000 0.117 -0.009 0.004 0.118 0.624 0.557 -0.059 0.603 0.321 

Socio-econ. differentials 0.026 0.117 1.000 0.110 0.211 0.898 -0.186 -0.124 -0.345 -0.000 -0.000 αrÁÂ Δ ln UR��  0.009 -0.009 0.110 1.000 0.153 -0.277 -0.064 -0.007 -0.018 0.000 -0.000 αrÃÄÅ Δ ln HDI��  0.006 0.004 0.211 0.153 1.000 -0.078 -0.239 0.190 0.525 0.000 0.000 αrÄÆÇÈ Δ ln DENS��  0.026 0.118 0.898 -0.277 -0.078 1.000 -0.106 -0.164 -0.456 -0.000 0.000 

Migrant stock            αrÈÉÊËÌ ln STOCK��  0.052 0.624 -0.186 -0.064 -0.239 -0.106 1.000 0.389 -0.209 0.558 0.141 

Spatial variables 0.039 0.557 -0.124 -0.007 0.190 -0.164 0.389 1.000 0.361 0.821 0.619 αrÄÅÂÆËÉDIRECT��  0.014 -0.059 -0.345 -0.018 0.525 -0.456 -0.209 0.361 1.000 -0.000 -0.000 αrËÊÇÉÅÍCONTIG��  0.028 0.603 -0.000 0.000 0.000 -0.000 0.558 0.821 -0.000 1.000 0.240 αrÄÅÈÉ ln DIST��(a) 0.018 0.321 -0.000 -0.000 0.000 0.000 0.141 0.619 -0.000 0.240 1.000 

 

(B) Individual migrant-stock effects 

 
Std. 

dev. 

Simple correlation with: 

ηq�� Socio-econ. 

differentials 

αrÁÂ  
Δ ln UR�� 

αrÃÄÅ  
Δ ln HDI�� αrÄÆÇÈ  

Δ ln DENS��  αrÈÉÊËÌ  ln STOCK��  
Spatial 

variables 

αrÄÅÂÆËÉ DIRECT��  αrËÊÇÉÅÍ CONTIG��  
αrÄÅÈÉ ln DIST��(a) 

ηq��  0.055 1.000 0.008 -0.029 -0.076 0.041 0.774 0.334 -0.114 0.565 0.029 

Socio-econ. differentials 0.012 0.008 1.000 0.130 0.271 0.875 -0.199 -0.123 -0.307 -0.000 -0.000 αrÁÂ Δ ln UR��  0.004 -0.029 0.130 1.000 0.153 -0.277 -0.064 -0.007 -0.018 0.000 -0.000 αrÃÄÅ Δ ln HDI��  0.003 -0.076 0.271 0.153 1.000 -0.078 -0.239 0.211 0.525 0.000 0.000 αrÄÆÇÈ Δ ln DENS��  0.012 0.041 0.875 -0.277 -0.078 1.000 -0.106 -0.183 -0.456 -0.000 0.000 

Migrant stock            αrÈÉÊËÌ ln STOCK��  0.054 0.774 -0.199 -0.064 -0.239 -0.106 1.000 0.091 -0.209 0.558 -0.228 

Spatial variables 0.017 0.334 -0.123 -0.007 0.211 -0.183 0.091 1.000 0.401 0.491 0.672 αrÄÅÂÆËÉDIRECT��  0.007 -0.114 -0.307 -0.018 0.525 -0.456 -0.209 0.401 1.000 -0.000 -0.000 αrËÊÇÉÅÍCONTIG��  0.011 0.565 -0.000 0.000 0.000 -0.000 0.558 0.491 -0.000 1.000 -0.180 αrÄÅÈÉ ln DIST��(a) 0.013 0.029 -0.000 -0.000 0.000 0.000 0.141 0.672 -0.000 -0.180 1.000 
 

(a)Third-order polynomial in ln DIST��
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FIGURE 1: Spatial dispersion of current out-migrants and migrant stocks 

for the individual Mexican states 

 
(A) Distance 

 
 

(B) Contiguity 
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FIGURE 2: Kernel densities of estimated individual flow-specific effects 
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FIGURE 3: Distance profiles for distance-deterrence and migrant-stock effects 

 
(A) Predicted conditional expectations 

 

 
 

(B) Predicted unconditional expectations 

 
 

 

Notes: The curves represent the predicted individual effects, based on the Tobit estimates in columns 1.b and 

2.b of Table 7, evaluated at the sample mean of migrant stocks and all other variables (except distance, of 

course) set on zero. Inflection points for the varying distance effect are 50 km and 1040 km; inflection points 

for the varying migrant-stock effect are 70 km and 620 km. The conditional expectations of  Î (i.e., 

conditional on Î > 0) are 9"Î|Î > 0, �& = �7 + σλ(�7 σ⁄ &, where λ(�7 σ⁄ & is the inverse Mills ratio. These 

expectations tell us, for given values of x, the expected values of y for the subpopulation where y is positive. 

The unconditional expectation of Î (i.e., not conditional on Î > 0) are 9(Î|xxxx& = Φ(�7 σ⁄ & ∙ 9(Î|Î > 0, �&. 
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FIGURE 4: Arbitrary variance of composite residuals 

 

 
 

Notes: On the vertical axis are the squared values of the composite residuals, which are calculated as  

rq�� = MIGR�� − MIGR® ��
¯

, where MIGR® ��
¯ = MIGR® ��(eξ°XZ

V �⁄ &, where  ξ°�� = υq� + ωr� + κq��0�� + µq��1�� + τq��2�� + ϵq��. 

On the horizontal axis are the predicted migration flows, MIGR® ��
¯ . Values in the upper 1% tails of the 

distributions have been removed from the plot. 

 

 

0
1

0
0

2
0
0

3
0
0

4
0
0

S
q

u
a

re
d

 c
o

m
p
o

s
it
e
 r

e
s
id

u
a
ls

0 10000 20000 30000 40000
Predicted migration flows



32 

 

APPENDIX A: DATA SOURCES 
 

Data have been extracted from various sources: 

 

• Data on inter-state migration and migrant stocks in Mexico are from the Censos de Población 

(INEGISIMBAD, CONAPO). 

• Data on state characteristics are taken from the Anuario Estadístico de los Estados Unidos Mexicanos 

(INEGI). 

• Data on the Human Development Index are taken from the Population Reference Bureau.  

• Highway distances between the capital cities of the Mexican states are taken from the Secretaría de 

Comunicaciones y Transportes (SCT). 
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APPENDIX B: MONTE CARLO SAMPLING EXPERIMENT 
 

To give an idea of the sampling performances of OLS and FE-GME when dealing with an endogenous 

regressor, this Appendix presents results from a small-scale Monte Carlo experiment using simulated data.  

 

Experimental design 

 

The data-generation process is assumed to be  y� = 1.0 + 0.2x�� − 0.3x�� + e� . The two covariates are 

drawn randomly from a standard normal and uniform distribution, respectively; that is,  x��  ~ �(0,1& and 

x��  ~ Ò(0,1&. The error term is drawn randomly so that the population correlation between the covariate 

x��  and the error term e�  is equal to a predetermined level. To accomplish this, I make use of the following 

result: e� = a ∙ x�� + b ∙ �(0,1&, where ρx1e = a √a� + b�⁄ . For example, with a = 1 and ρx1e= 0.8, it follows 

that  b = 0.75, so that e� = x�� + 0.75 ∙ �(0,1&. Next, the standardized values of the generated errors (ε�) 

are calculated and added to the systematic part of the data-generating process. Thus,  x� is endogenous by 

construction; that is, Cov(x�� , ε�& ≠ 0 in  y� = β� + β�x�� + β�x�� + ε� . To mimic the FE-GME estimator used 

in the main text, individual slopes on  x� are introduced; that is,  y� = β� + β��x�� + β�x�� + ε� . Note that 

this model is “ill-posed” (over-parameterized). The estimated mean (population-averaged) coefficient on  

x� resulting from FE-GME is derived as  9/βx��3 = ���Σ�i�
j βx�� , where N is the sample size. 

 

Estimation 

 

In implementing FE-GME, the parameter support is maintained at  zzzzβ=(-10, -5, 0, 5, 10&'. The error 

support is consecutively set at  �×=(-3σy, 0, 3σy&′, in keeping with the “three-sigma” rule (FE-GME3σr), and 

zzzze=(-10σy, 0, 10σy&′, which allows for a potentially reduced signal-to-noise ratio (FE-GME10σr). A total of 

100 repeated samples are created, for sample sizes equal to 100, 500, and 1000, where ÙÚ (and, hence, the 

corresponding error support) is “updated” in every sampling replication. The 100 estimates of the 

parameters are treated as random drawings from their respective sampling distributions. 

 

Results  

 

Table A.1 reports the expected values of the OLS and FE-GME parameter estimates. The latter are 

presented for different correlation levels and the two error support ranges. The results show the degree of 

bias for both estimators (recall that in a multiple-regression context it is generally impossible to sign the 

biases a priori). An examination of the limited results from the sampling experiments reveals that the 
convenient OLS estimator clearly fails when x��  and e�  are correlated, whereas the competing FE-GME 

estimator yields considerably improved estimates, particularly when the sample size increases (as could 

be expected). Also, superior performance emerges for the widened error-support range defined as ±10σy. 

Thus, “loosening” the model appears to be a better choice for this sampling experiment. For correlations 

within the 0.4-0.8 interval and � = 1000, the OLS estimate of  β� is two to four times larger than the true 

parameter, whereas the finite-sample bias (either negative or positive) from FE-GME within the same 

interval is no more than about 25%. 

 

Conclusion  

 

The results of this small-scale Monte Carlo experiment suggest that channeling the unobserved 

heterogeneity through the individual slope of the endogenous variable (x�) in a cross-section model is not 

a bad approximation, since the omitted-variables biases can be reduced to an “acceptable” level. Thus, the 

FE-GME estimator is clearly superior to the OLS estimator, particularly in the case of a relatively large 

sample (e.g., N =1000). Though one might raise the objection that the results are tied to the particular 

setup of the experiment, it is reassuring to find that the estimates reported for the “real-world” application 

in the main text are insensitive to the error-support range (and/or the parameter support space), which is 

suggestive of a robust interior solution. 
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    TABLE B.1: Expected values of OLS and FE-GME parameter estimates (100 samples) 

 Correlation (ρ
x1ε

)   

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

OLS 

� = 100         

9(βx�&  1.047 1.068 1.089 1.110 1.131 1.153 1.176 

9(βx�&  0.515 0.616 0.716 0.817 0.919 1.021 1.124 

9(βx�&  -0.270 -0.271 -0.273 -0.275 -0.278 -0.282 -0.287 

� = 500         

9(βx�&  0.998 1.002 1.006 1.010 1.015 1.019 1.025 

9(βx�&  0.499 0.600 0.700 0.800 0.900 1.001 1.101 

9(βx�&  -0.278 -0.278 -0.280 -0.281 -0.283 -0.286 -0.290 

� = 1000         

9(βx�&  0.994 0.995 0.997 0.998 1.000 1.002 1.004 

9(βx�&  0.505 0.606 0.707 0.810 0.914 1.019 1.126 

9(βx�&  -0.282 -0.283 -0.284 -0.285 -0.287 -0.289 -0.292 

FE-GMEÜσr 

� = 100         

9(βx�&  0.925 0.924 0.923 0.921 0.919 0.917 0.916 

9(βx�&  0.319 0.381 0.443 0.504 0.564 0.625 0.686 

9(βx�&  -0.148 -0.135 -0.122 -0.109 -0.097 -0.085 -0.075 

� = 500         

9(βx�&  0.979 0.977 0.976 0.974 0.972 0.970 0.968 

9(βx�&  0.322 0.384 0.445 0.506 0.565 0.624 0.682 

9(βx�&  -0.263 -0.267 -0.260 -0.257 -0.255 -0.253 -0.251 

� = 1000         

9(βx�&  0.986 0.987 0.987 0.988 0.989 0.991 0.992 

9(βx�&  0.316 0.377 0.437 0.498 0.558 0.618 0.678 

9(βx�&  -0.285 -0.288 -0.290 -0.293 -0.296 -0.300 -0.304 

FE-GMEÝ:σr 

� = 100         

9(βx�&  0.838 0.830 0.882 0.815 0.808 0.801 0.795 

9(βx�&  0.138 0.163 0.187 0.210 0.233 0.255 0.277 

9(βx�&  -0.056 -0.041 -0.027 -0.013 -0.000 0.012 0.022 

� = 500         

9(βx�&  0.934 0.927 0.920 0.912 0.905 0.898 0.892 

9(βx�&  0.140 0.166 0.190 0.214 0.237 0.260 0.281 

9(βx�&  -0.192 -0.179 -0.166 -0.154 -0.146 -0.129 -0.118 

� = 1000         

9(βx�&  0.979 0.979 0.979 0.980 0.981 0.982 0.983 

9(βx�&  0.136 0.160 0.184 0.207 0.230 0.252 0.274 

9(βx�&  -0.272 -0.274 -0.276 -0.278 -0.281 -0.284 -0.287 
 

Notes: The parameters of the data-generating process are set at  ββββ=(1.0, 0.2, -0.3&'. 
The parameter support is set at zzzzβ=(-10, -5, 0, 5, 10&'. The GME3σr results are for 

error support zzzze=(-3σry, 0, 3σry&'; the GME10σr results are for zzzze=(-10σry, 0, 10σry&'. 
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FOOTNOTES 

                                                                    

1 Some researchers have attempted to “resolve” the problem of heterogeneous people by taking into account 

differences in the profiles of the populations in the sending regions (e.g., in terms of the average educational 

attainment, or the demographic structure of a region’s population). However, such an approach, at best, only partly 

resolves the problem, given that the composition of the migrant population is likely to be noticeably different from the 

composition of the region’s population, which includes both (a minority of) “movers” and (a majority of) “non-

movers” (e.g., Shioji, 2001). 
2 Researchers may have a continued interest in the use of cross sections for several reasons. First, numerous 

practical problems could arise in attempting to conduct (dynamic) panel-data studies of migration (e.g., due to lack of 

adequate panel data on an annual basis over an extended period of time). Second, the “identifying assumption” (i.e., 

the assumption that fixed effects (α�) are time-invariant) may not be satisfied in reality, particularly if migration flows 

are observed over extended time intervals covering, say, five- or ten-year periods. In this respect, Mueser (1989b, p. 

505) already pointed out that the unobserved factors or the prospective migrants’ evaluations of those factors may 

change within the time window employed. Third, additional problems with estimating (dynamic) panel-data models 

may arise due to, for example, the assumption of constant slopes (β� = β) (e.g., Alvarez-Plata et al., 2003). Obviously, 

such assumptions are likely to impose implausibly strong restrictions on the data. 
3 Other early studies dealing with inter-state migration in Mexico include Greenwood (1978), Greenwood and 

Ladman (1978), King (1978), Greenwood et al. (1981), Gordon and Theobald (1981); Cole and Sanders (1983), and 

Fukurai et al. (1987); a more recent example is Aroca and Maloney (2005). All these studies employ the convenient 

OLS estimator. 
4 The FE gravity model is not specified as  ��� = α� + υ� + ω� + θ�� + ��F� + ��F� + ���7 + ϵ��, where each migration 

flow has its own, unique intercept to absorb all omitted flow-specific effects. With a single cross section, the individual 

flow-specific effects (θ��) cannot be disentangled from the idiosyncratic error component (ϵ��). Conversely, the 

individual flow-specific effects (8��) in Equation (3) can be isolated from the idiosyncratic error component (ϵ��). 
5 In a conceptual sense, the slopes on the bilateral linkage factors are treated as “unknown” (non-parameterized) 

functions of both observables and non-observables. For example, δ�� = δ + τ�� can be written as δ�� = ϕ(��� , ζ��&, 

where  ���  includes, say, distance and  ζ�� represents the unobserved flow-specific effect. Obviously, this means that the 

FE model differs fundamentally from a constant-parameter model with squares and interactions, where the slopes 

would differ only by observable characteristics. In the empirical application below, potential nonlinearities will be 

examined in a second stage of the analysis. 
6 A roughly similar idea can be found in Calvet and Comon (2003), where ϵ��  creates (uncorrelated) heterogeneity 

in all directions and, say, τ�� introduces (correlated) heterogeneity only along 2�� . 
7 The three-way FE gravity model could be criticized for controlling too much, in the sense that all variation in the 

data is conditioned out by the fixed effects, which could lead to excessively reduced “signals”. However, it should be 

noted that the flow-fixed effects are not treated as “standalones” (intercepts) in the gravity equation but in interaction 

with the bilateral linkage factors. 
8 Further difficulties arise because network and herd effects are likely to be complementary and reinforcing each 

other (Bauer et al., 2002). That is, if there are positive network externalities, herd effects will be more pronounced, 

leading to relatively strong persistence of migration flows (path dependency). Conversely, if there are negative 

network externalities (e.g., due to increased competition for resources that are getting in short supply in a 

destination), herd effects will be less pronounced and a tendency emerges for new migrants to move to other 

locations (path diversion). As a result, it is difficult to disentangle their individual contributions to the persistence of 

migration. If we could hold the network effects constant, then any remaining difference would have to be due to the 

herd behavior, and vice versa. However, such an exercise is not possible in practice. Important in the context of the 

present analysis is that the unobserved bilateral effects are thus likely to be positively correlated with the (observed) 

levels of migrant stock.  
9 First, a partial-adjustment model may be plagued with the problem of “dominant variables”, where the lagged-

flow variable accounts for so much of the variation in the dependent variable that the influence of the other variables 

in the model can no longer be properly estimated (e.g., Kau and Sirmans, 1979). Second, it is likely to be inappropriate 

to force an identical lag structure on all explanatory variables (e.g., Dunlevy and Gemery, 1977). By implication, the 

adjustment coefficient just represents a compounded effect which cannot be meaningfully traced to any underlying 

factor and, thus, leaves room for many different interpretations. Third, the herd effect, which is supposed to be 

captured by the adjustment coefficient, is proportional to the size of the previous migration flow, whereas it appears 

more reasonable to assume that path dependency is likely to be subject to a “depreciation function” of some sort 

(Dunlevy, 1993). Finally, entering lagged flows in the gravity equation often appears to be treated more as a 

“technical” control for data problems rather than being motivated by some theoretical considerations. 
10 The use of the log-linear form of the gravity model, rather than the Poisson (level) form, is thus by no means 

intended as a critique or rejection of the latter. In fact, the point is that it is simply not necessary to use a Poisson form 

to “correct” for heteroskedasticity (see below in the empirical section). 
11 It was found that the estimated coefficients of the push and pull factors in origin and destination are insensitive 

to variations in the specification of the stochastic constraints. Even though the mean (population-average) coefficients 

on the bilateral variables showed some numerical instability, the conclusions were not altered in a qualitative sense. 
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12 Although Mexico has witnessed a growing decentralization of maquiladora jobs in the 1980s and 1990s, 

scattering from the U.S. border states into central Mexico, these jobs are still heavily concentrated along the U.S. 

border. Using data from INEGI, Jones (2001) reported that, in 1998, the U.S. border states were still hosting about 

84% of the maquiladora jobs in Mexico. 
13 The GME estimation is implemented by using the non-linear optimization CONOPT3 solver of the GAMS 

software package. A limited version of the GME procedure is also available in the SAS software package (see, for 

example, SAS Institute, 2004), but was not considered suitable for the FE application. 
14 The FE-GME results are for the error support defined as  zzzzϵ=/-3σrm, 0, 3σrm3

'
, in accordance with the three-sigma 

rule. To test the robustness of the estimates, the model was also run by using different parameter supports, ranging 

from (-10, 10) to (-1000, 1000), and a widened error support vector defined as zzzzϵ=/-10σrm, 0, 10σrm3
'
, to allow for a 

potentially reduced signal-to-noise ratio. It was found that the results are not sensitive to changes in the setup of the 

estimation process, so the FE-GME estimator appears to return a robust “interior solution”. Such a finding should not 

be surprising, though, given the large number of observations (N = 992). In Appendix B to this paper, I present a 

small-scale Monte Carlo experiment to illustrate the finite-sample properties of the FE-GME estimator in the case of an 

endogenous regressor. 
15 In passing, it can be noted that the relative impacts of population in origin and destination have been reversed, 

where the first is 0.738 (in OLS this is 0.462) and the second is 0.472 (in OLS this is 0.729). Accordingly, migration 

appears to be more “driven” by the origin population than by the destination population. Although theory generally 

does not provide any guidance as to what should be the relative magnitudes of these coefficients, it is felt that these 

changes are in the expected direction. For example, the larger is the origin population, the larger is the number of 

people “at risk” of migration, whereas the role of the size of the destination population is more difficult to understand 

(Schultz, 1982, p. 560)—unless being a proxy for unmeasured factors attracting migrants (Mueser, 1989b, p. 504). 
16 Note that the heterogeneity components of the distance and migrant-stock effects (τq�� and µq�� , respectively) 

display a very high correlation at 0.893. 
17 Given that the exact value of the individual bilateral effects are unknown, these “second-stage” regressions 

cannot be directly estimated by OLS or Tobit, but generally requires the application of some type of feasible 

generalized least squares (FGLS) estimator (see, for example, Combes et al., 2008). This issue, however, is beyond the 

scope of the present paper.  
18 Thus, the error variance is a quadratic function of the conditional mean, but the proportionality factor is 

arbitrarily related to the composite error term ξ��  (arbitrary variance function); that is,  á[M��|�] = ϕ/ξ��3µ"���7&�. 

This is a generalization of Case 3 in Santos Silva and Tenreyo (2006, p. 647), in which the log-linear model is 

consistent for the slope parameters. 

 


