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Abstract

The aim of this work is to test empirically the validity of Gibrat’s Law in the
growth of cities, using data for all the twentieth century of the complete distri-
bution of cities (without any size restrictions) in three countries: the US, Spain
and Italy. For this we use different techniques (parametric and non-parametric
methods), obtaining mixed evidence, being the time horizon considered the key
issue. In the short term, considered decade by decade, we find that growth was
divergent in all three countries. Despite this, the distribution of growth in the
cities can be approached as a lognormal. In the long term, first panel data unit
root tests confirm the validity of Gibrat’s Law in the upper tail distribution and,
second, we find evidence in favour of a weak Gibrat’s Law (size affects the vari-
ance of the growth process but not its mean) when using non-parametric methods

which relate the growth rate to city size.
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1 Introduction

The relationship between the growth rate of a quantifiable phenomenon and its initial
size is a question with a long history in statistics: do larger entities grow more quickly,
or more slowly? On the other hand, perhaps no relationship exists and the rate is in-
dependent of size. A fundamental contribution to this debate is that of Gibrat (1931),
who observed that the distribution of size (measured by sales or the number of employ-
ees) of firms could be approximated well with a lognormal, and that the explanation
lay in the growth process of firms tending to be multiplicative and independent of their
size. This proposition became known as Gibrat’s Law and prompted a deluge of work
exploring the validity of this law for the distribution of firms (see the surveys of Sutton
(1997) and Santarelli et al. (2006)). Gibrat’s Law establishes that no regular behaviour
of any kind can be deduced between growth rate and initial size.

The fulfilment of this empirical proposition also has consequences for the distribution
which follows the variable; in the words of Gibrat (1931) himself “the law of propor-
tionate effect will therefore imply that the logarithms of the variable will be distributed
following the (normal distribution)”. Some years later, Kalecki (1945), in a classi-
cal article, tested this statistical relationship between lognormality and proportionate
growth under certain conditions, consolidating the conceptual binomial Gibrat’s Law —
lognormal distribution.

In the field of urban economics, Gibrat’s Law, especially since the 1990s, has given
rise to numerous empirical studies contrasting its validity for city size distributions,
arriving at a majority consensus, though not absolute, that it holds in the long term.
Gibrat’s Law presents the added advantage that, as well as explaining relatively well the
growth of cities, it can be related to another empirical regularity well known in urban
economics, Zipf’s Law, which appears when the so-called Pareto distribution exponent
is equal to the unit'. The term was coined after a work by Zipf (1949), which observed
that the frequency of the words of any language is clearly defined in statistical terms
by constant values. This has given rise to theoretical works explaining the fulfilment
of Gibrat’s Law in the context of external urban local effects and productive shocks,
relating them with Zipf’s Law and associating them directly to an equilibrium situation.
These theoretical works include Gabaix (1999), Duranton (2006, 2007), and Cérdoba
(2008).

'If city size distribution follows a Pareto distribution, the following expression can be deduced:
InR=a—0>-InS, where R is rank (1 for the biggest city, 2 for the second biggest and so on), S is the
size or population and a and b are parameters, this latter being known as the Pareto exponent. Zipf’s
Law is fulfilled when b equals the unit.



Returning to the empirical side, there is an apparent contradiction in these studies,
as they normally accept the fulfilment of Gibrat’s Law but at the same time affirm that
the distribution followed by city size is a Pareto distribution, very different to the log-
normal. Recently, Eeckhout (2004) was able to reconcile both results, by demonstrating
(as Parr and Suzuki (1973) affirmed in a pioneering work) that, if size restrictions are
imposed on the cities, taking only the upper tail, this skews the analysis. Thus, if
all cities are taken, it can be found that the true distribution is lognormal, and that
the growth of these cities is independent of size. However, to date, Eeckhout (2004)
is the only study to consider the entire city size distribution. But this is a short term
analysis®, when the phenomenon under study (Gibrat’s Law) is, by definition, a long
term result.

The aim of this chapter is to test empirically the validity of Gibrat’s Law in the
growth of cities, using data for all the twentieth century of the complete distribution of
cities (without any size restrictions or with no truncation point) in three countries: the
US, Spain and Italy. The following section offers a brief overview of the literature on
Gibrat’s Law and cities and the results obtained. Section 3.3 presents the databases,
with special attention to the US census.

From the results we deduce that, when we consider the complete distribution of
cities in the short term (section 3.4), a tendency to divergence is seen. However, the
empirical evidence (section 3.5) shows that this does not impede city size distribution
being adequately approximated as a lognormal distribution. Finally, in section 3.6 a
long term viewpoint is taken. Panel data unit root tests confirm the validity of Gibrat’s
Law in the upper tail distribution (section 3.6.1), and we find evidence in favour of a
weak Gibrat’s Law (size affects the variance of the growth process but not its mean)
when using non-parametric methods which relate growth rate with city size (section

3.6.2). The chapter ends with our conclusions.

2 Gibrat’s Law for cities. An overview of the liter-

ature

In the 1990s numerous studies began to appear which empirically tested the validity of
Gibrat’s Law. Table 2 shows the classification of all the studies on urban economics that

we know of. While the countries considered, the statistical and econometric techniques

2Eeckhout (2004) takes data from the United States census of 1990 and 2000, possibly because they
are the only ones to be available online. Levy (2009), in a comment to Eeckhout (2004), and Eeckhout
(2009) in the reply, also consider no truncation point, but only for the 2000 US Census data.
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used and the sample sizes are heterogeneous, the predominating result is the acceptance
of Gibrat’s Law.

Thus, both Eaton and Eckstein (1997) and Davis and Weinstein (2002) accept its
fulfilment for Japanese cities, although they use different sample sections (40 and 303
cities, respectively), and time horizons. Davis and Weinstein (2002) affirm that long-
run city size is robust even to large temporary shocks and, in studying the effect of
Allied bombing in the Second World War, deduce that the effect of these temporary
shocks disappears completely in less than 20 years.

Brakman et al. (2004) come to the same conclusion when analysing the impact
of the bombardment on Germany during the Second World War, concluding that, for
the sample of 103 cities examined, bombing had a significant but temporary impact on
post-war city growth. Nevertheless, nearly the same authors in Bosker et al. (2008)
obtain a mixed result with a sample of 62 cities in West Germany: correcting for the
impact of WWII, Gibrat’s Law is found to hold only for about 25% of the sample.

Meanwhile, both Clark and Stabler (1991) and Resende (2004) also accept the hy-
pothesis of proportionate urban growth for Canada and Brazil respectively. The sample
size used by Clark and Stabler (1991) is tiny (the 7 most populous Canadian cities),
although the main contribution of their work is to propose the use of data panel method-
ology and unit root tests in the analysis of urban growth. This is also the methodology
which Resende (2004) applies to his sample of 497 Brazilian cities. However, Henderson
and Wang (2007) strongly reject Gibrat’s Law and a unit root process in their worldwide
data set on all metro areas over 100,000 from 1960 to 2000.

For the case of the US, there are also several works accepting statistically the fulfil-
ment of Gibrat’s Law, whether at the level of cities (Eeckhout, 2004, is the first to use
the entire sample without size restrictions), or with MSAs (Ioannides and Overman,
2003, whose results reproduce Gabaix and Ioannides, 2004). Also for the US, however,
Black and Henderson (2003) reject Gibrat’s Law for any sample section, although their
database of MSAs is different® to that used by Ioannides and Overman (2003).

Other works exist rejecting the fulfilment of Gibrat’s Law. Thus, Guérin-Pace (1995)
finds that in France for a wide sample of cities with over 2,000 inhabitants during the
period 1836-1990 there appears to be a fairly strong correlation between city size and

growth rate, a correlation which is accentuated when the logarithm of the population is

3The standard definitions of metropolitan areas were first published in 1949 by what was then
called the Bureau of the Budget, predecessor of the current Office of Management and Budget (OMB),
with the designation Standard Metropolitan Area. This means that if the objective is making a long
term analysis it will be necessary to reconstruct the areas for earlier periods, in the absence of a single
criterion.
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considered. This result goes against that obtained by Eaton and Eckstein (1997) when
considering only the 39 most populated French cities. Soo (2007) and Petrakos et al.
(2000) also reject the fulfilment of Gibrat’s Law in Malaysia and Greece, respectively.

For the case of China, Anderson and Ge (2005) obtain a mixed result with a sample
of 149 cities of more than 100,000 inhabitants: Gibrat’s law appears to describe the
situation well prior to the Economic Reform and One Child Policy period, but later
Kalecki’s reformulation seems to be more appropriate.

What we wish to emphasize is that, with the exception of Eeckhout (2004), none of
these studies considers the entire distribution of cities, as all of them impose a truncation
point, whether explicitly, by taking cities above a minimum population threshold or
implicitly, by working with MSAs*. This is usually due to a practical reason of data
availability. For this reason most studies focus on analysing the most populous cities, the
upper tail distribution. There are two very reasonable justifications for this approach.
First, the largest cities represent most of the population of a country. And second, the
growth rate of the biggest cities has less variance than the smallest ones (scale effect).

However, it should be pointed out that any test done on this type of sample will be
local in character, and the behaviour of large cities cannot be extrapolated to the entire
distribution. This type of deduction can lead to erroneous conclusions, as it must not
be forgotten that what is being analysed is the behaviour of a few cities, which as well
as being of a similar size, can present common patterns of growth. Therefore, we might
conclude that Gibrat’s Law is fulfilled when in fact we have focused our analysis on a

club of cities which cannot be representative of all urban centres.

3 The databases

We use city population data from three countries: the US, Spain and Italy. The US is
an extremely interesting country in which to analyse the evolution of urban structure,
as it is a relatively young country whose inhabitants are characterised by high mobility.
On the other hand we have the European countries, with a much older urban structure
and inhabitants who present greater resistance to movement; specifically, Cheshire and
Magrini (2006) estimate mobility in the US is fifteen times higher than in Europe.

Considering these two types of country gives us information about different urban

“In the US, to qualify as a MSA a city needs to have 50,000 or more inhabitants, or the presence
of an urbanised area of at least 50,000 inhabitants, and a total metropolitan population of at least
100,000 (75,000 in New England), according to the OMB definition. In other countries similar criteria
are followed, although the minimum population threshold needed to be considered a metropolitan area
may change.



behaviours, as while Spain and Italy have an already consolidated urban tissue and new
cities are rarely created (urban growth is produced by population increase in existing
cities), in the US urban growth has a double dimension: as well as increases in city
size, the number of cities also increases, with potentially different effects on city size
distribution. Thus, the population of cities (incorporated places) goes from representing
less than half the total population of the US in 1900 (46.99%) to 61.49% in 2000; at
the same, time the number of cities increases by 82.11%, from 10,596 in 1900 to 19,296
in 2000.

The data for the US we are using are the same as those used by Gonzalez-Val (2010).
Our database, created from the original documents of the annual census published by
the US Census Bureau (www.census.gov), consists of the available data of all incor-
porated places without any size restriction, for each decade of the twentieth century.
The US Census Bureau uses the generic term "incorporated place" to refer to the gov-
ernmental unit incorporated under state law as a city, town (except in the states of
New England, New York and Wisconsin), borough (except in Alaska and New York),
or village, and which has legally established limits, powers and functions.

The number of cities (in brackets) corresponding to each period is: 1900 (10,596
cities), 1910 (14,135), 1920 (15,481), 1930 (16,475), 1940 (16,729), 1950 (17,113), 1960
(18,051), 1970 (18,488), 1980 (18,923), 1990 (19,120), and 2000 (19,296).

Two details should be noted. First, that all the cities corresponding to Alaska,
Hawaii, and Puerto Rico for each decade are excluded, as these states were annexed
during the 20th century (Alaska and Hawaii in 1959, and the special case of Puerto
Rico was annexed in 1952 as an associated free state), and data are not available for
all periods. Their inclusion would produce geographical inconsistency in the sample,
which would not be homogenous in geographical terms and thus could not be compared.
And, second, for the same reason we also exclude all the unincorporated places (con-
centrations of population which do not form part of any incorporated place, but which
are locally identified with a name), which began to be accounted after 1950. However,
these settlements did exist earlier, so that their inclusion would again present a problem
of inconsistency in the sample. Also, their elimination is not quantitatively important;
in fact, there were 1,430 unincorporated places in 1950, representing 2.36% of the total
population of the US, which by 2000 were 5,366 places and 11.27%.

For Spain and Italy the geographical unit of reference is the "municipality" and the
data come from the official statistical information services. In Italy this is the Servizio
Biblioteca e Servizi all'utenza, of the Direzione Centrale per la Diffusione della Cultura

e dell’informazione Statistica, part of the Istituto Nazionale di Statistica (www.istat.it),



and for Spain we have taken the census of the Instituto Nacional de Estadistica’, INE
(www.ine.es). The de facto resident population has been taken for each city.

We have taken the data corresponding to the census of each decade of the 20th
century. For Italy data for the following years have been considered (in brackets, the
number of cities for each year): 1901 (7,711), 1911 (7,711), 1921 (8,100), 1931 (8,100),
1936 (8,100), 1951 (8,100), 1961 (8,100), 1971 (8,100), 1981 (8,100), 1991 (8,100), and
2001 (8,100). No census exists in Italy for 1941, due to its participation in the Second
World War, so we have taken the data for 1936. For Spain the following years are
considered: 1900 (7,800), 1910 (7,806), 1920 (7,812), 1930 (7,875), 1940 (7,896), 1950
(7,901), 1960 (7,910), 1970 (7,956), 1981 (8,034), 1991 (8,077), and 2001 (8,077).

4 Gibrat’s Law in the short term

In this section we offer a first approach to the behaviour of city growth from a short
term perspective, i.e., considering each decade individually. Following Gabaix and
Ioannides (2004), Gibrat’s law states that the growth rate of an economic entity (firm,
mutual fund, city) of size S has a distribution function with mean and variance that
are independent of S. Therefore, if S;; is the size of city ¢ at the time ¢ and g is its
growth rate, then S; = S;;_1 (1 + ¢g). Taking logarithms and considering additionally
that the rate could depend on the initial size, we have the following general expression

for the growth equation®:

In Sy —In Sy = p+ BInSy—1 + us, (1)

where pr = In (1 + g) and u;; is a random variable representing the random shocks which
the growth rate may suffer, which we shall suppose to be identically and independently
distributed for all cities, with F (u;) = 0 and Var (uy) = o2 Vi, t. If = 0 Gibrat’s

Law holds and we obtain that growth is independent of the initial size.

>The official INE census have been improved in an alternative database, created by Azagra et al.
(2006), reconstructing the population census for the twentieth century using territorially homogeneous
criteria. We have repeated the analysis using this database and the results are not significantly different,
so we have presented the results deduced from the official data.

6The size of a city can be defined, according to the literature, in three ways: in levels ( Sj), in

relative values (£, S; being the mean size) or in shares (Sgt ). The crucial parameter in (1) is 3,

Sy

which determines whether Gibrat’s Law holds. The specification (1) in logs makes the estimation of 3
robust to the three different definitions of city size.

"Taking logarithms we reduce the distortions that may occur in the mean and variance of the growth
rate due to changes in the variable.



In such case (6 = 0), it is easy to prove that the expected value of the size of city
¢ at the time ¢ depends only on the number of periods which have passed and on the
size in the first period:

E(InSy) = p-t+1n S, (2)

while the variance would be given by:
Var (InSy) =t - o (3)

Consequently, the mean grows over time, and variance does too. The increased
variance over time is consistent with the prediction of a Brownian motion: proportionate
growth leads to a lognormal distribution with a standard deviation that is increasing
in time ¢?.

We adopt the Eaton-Eckstein terminology of convergent, parallel, vs. divergent city
growth processes. Remember that if 8 = 0 city growth is parallel, as it does not depend
on initial size. Thus, if the estimation of [ is significantly different to zero we will reject
the fulfilment of Gibrat’s Law. In the case of being greater than zero, we will have
divergent growth, because city growth would depend directly and positively on initial
size. A sustained process of divergent growth of this kind would result in an increasingly
asymmetrical distribution, with small cities getting further and further away from large
ones. Finally, if § is negative, urban growth would be convergent, as the growth-size
ratio would be negative; a larger initial population would mean less growth and vice
versa, so that in the long term the distribution would tend to be concentrated around a
median value. It is simple to prove that when 3 # 0 the expressions (2) and (3) change,

becoming

% + (B + 1) In S, (4)

2
Var (InSy) = o? - —(ﬁtl) — 1,
7 +25

and it can be demonstrated (see Appendix) that when ¢ > 1 and growth is divergent

E(lIlSZt) = u-

()

(8 > 0) the variance in (5) grows even faster than that in (3), while if city growth were
convergent ( < 0) the variance in (5) would be less than that in (3).

The first result we wish to present is the estimation of equation (1). We will focus
on the analysis of the estimation of parameter 3, as whether Gibrat’s Law is fulfilled
or not depends on its significance and its sign. Table 4 shows the results of the OLS
estimation of 3 for each decade in the three countries considering all the cities, without

size restrictions. The results of these regressions are usually heteroskedastic, so we have



calculated the t-ratios using White’s (1980) Heteroskedasticity-Consistent Standard
Errors.

The first conclusion we obtain is that when the entire sample of cities is considered,
B is always significantly different to zero, for any period and in the three countries.
This result is robust as, while the literature usually admits the possibility of occasional
deviations from Gibrat’s Law in the short term (with some periods in which urban
growth may be convergent or divergent), we are rejecting the fulfilment of Gibrat’s Law
for each decade of the 20th century and for three nations. But the really surprising
finding is that, despite their different urban structures and histories, the estimated
parameter is always positive (except in the period 1970-1980 in the US) for the three
countries, so that all of them exhibit divergent behaviour throughout the 20th century.

The only exception to this process of divergence is the estimation obtained for the
US in the decade 1970-1980. The fact that this parameter is negative shows that during
this decade the most populous cities grew more slowly. However, this result is atypical,
and reflects two demographical circumstances in the United States during this period.
First, between 1960 and 1990 there was a decline in the growth of the total population
of the US, going from a growth rate of 18.5% in 1950-1960 to 9.8% in 1980-1990%.
Then, that the total population grew by only 11.4% in 1970-1980, the third lowest
growth rate in the history of the US since the first census was published in the late
18th century. And in this context of low growth of the total population, the percentage
of urban population also fell (understood now as the percentage of the population
associated with incorporated places), going from 64.51% of the total population in 1970
to 61.78% in 1980, which is by far the biggest fall in the 20th century. The fact that
our estimation of [ is negative would reflect that the cities in the upper half of the
distribution experienced the highest fall in their growth rate.

We have obtained that, in the short term, the city growth process was divergent in
the three countries. However, this conclusion can change in the long term. But before
we will analyse in section 3.5 the consequences on city size distribution of the divergent

tendency we have observed.

8Source: http://www.census.gov/population/censusdata/table-4.pdf.
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5 What about city size distribution? Lognormality

1s maintained

In the section above, it has been shown that the overall result in the short term when
the whole distribution is used is divergence. Also, as > 0, the variance grow more
than linearly (equation (5)), so that the growth process would be explosive, generating
a city size distribution increasingly asymmetrical. But our results show that the growth
process lead to a lognormal distribution with a standard deviation that is increasing in
time ¢ (as a Brownian motion would predict) in the three countries.

We carried out the Wilcoxon’s lognormality test (rank-sum test), which is a non-
parametric test for assessing whether two samples come from the same distribution. The
null hypothesis is that the two samples are drawn from a single population, and therefore
that their probability distributions are the same, in our case, the lognormal distribution.
Wilcoxon’s test has the advantage of being appropriate for any sample size. The more
frequent normality tests —Kolmogorov-Smirnov, Shapiro-Wilks, D’Agostino-Pearson—
are designed for small samples, and so tend to reject the null hypothesis of normality
for large sample sizes, although the deviations from lognormality are arbitrarily small.

Table 5 shows the results of the test. The conclusion is that the null hypothesis of
lognormality is accepted at 5% for all periods of the 20th century in Spain and Italy. In
the US a temporal evolution can be seen; in the first decades lognormality is rejected
and the p-value decreases over time, but from 1930 the p-value begins to grow until
lognormal distribution is accepted at 5% from 1960 onwards (the same conclusion is
reached by Gonzélez-Val (2010) through a graphical examination of the adaptive kernels
corresponding to the estimated distribution of different decades). In fact, if instead of
the 5% we take a significance level of the 1%, the null hypothesis would only be rejected
in 1920 and 1930.

However, the shape of the distribution in the US for the period 1900-1950 is not
far from lognormality, either. Figure 1 shows the empirical density functions estimated
by adaptive Gaussian kernels for 1900 and for 1950 (the last year in which lognormal-
ity is rejected). The motive for this systematic rejection appears to be an excessive
concentration of density in the central values, higher than would correspond to the
theoretical lognormal distribution (in black). Starting in 1900 with a very leptokurtic
distribution, with a great deal of density concentrated in the mean value, from 1930
(not shown), when the growth of urban population slows, the distribution loses kurtosis
and concentration decreases, accepting lognormality statistically at 5% from 1960.

To sum up, both the test carried out and the visualisation of the estimated empirical
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Figure 1: Comparison of the estimated density function (In scale) and the theoretical
lognormal in black (US).

density functions seem to corroborate that city size distribution can be approximated
correctly as a lognormal (in Spain and Italy during the entire 20th century, and in the
US for most decades, depending on the significance level), despite the urban growth
was divergent every decade over the entire 20th century for the three countries (with
the single exception of the period 1970-1980 in the US).

6 Gibrat’s Law in the long term

In this section, we change our temporal perspective to the long term (the entire twen-

tieth century). In order to carry out this analysis, we transform city population (S;)

to city relative size (s;), defined as s; = i—’t’f = %, as in a long term temporal
=3 Sit
i=1

perspective of steady state distributions it is necessary to use a relative measure of size.

This approach is more interesting, as the phenomenon under study (Gibrat’s Law)
is, by definition, a long term result. For this we combine parametric methods (the
panel dimension of our data has been exploited in order to test for a unit root) with
non-parametric ones, enabling us to study the relationship of growth and the variance

of growth with city size.
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6.1 Parametric analysis: panel unit root testing

Clark and Stabler (1991) suggested that testing for Gibrat’s Law is equivalent to testing
for the presence of a unit root. This idea has also been emphasized by Gabaix and
Ioannides (2004), who expect “that the next generation of city evolution empirics could
draw from the sophisticated econometric literature on unit roots”. In line with this
suggestion, most studies now apply unit root tests (see Table 2).

Some authors (Black and Henderson, 2003; Henderson and Wang, 2007; Soo, 2007)
test the presence of a single root by proposing a growth equation similar to our equation
(1), which they estimate using panel data. Nevertheless, as pointed out by Gabaix and
Ioannides (2004) and Bosker et al. (2008), this methodology presents some drawbacks.
First, the periodicity of our data is by decades, and we have only 11 temporal obser-
vations (decade-by-decade city sizes over a total period of 100 years), when the ideal
would be to have at least annual data. And second, the presence of cross-sectional
dependence across the cities in the panel can give rise to estimations which are not
very robust. It has been well established in the literature that panel unit root and
stationarity tests that do not explicitly allow for this feature among individuals present
size distortions (Banerjee et al. 2005).

Therefore, we use one of the tests especially created to deal with this question
when testing unit root. Pesaran’s (2007) test for unit roots in heterogeneous panels
with cross-section dependence is calculated on the basis of the CADF statistic (cross-
sectional augmented ADF statistic). To eliminate the cross dependence, the standard
Dickey-Fuller (or Augmented Dickey-Fuller, ADF) regressions are augmented with the
cross section averages of lagged levels and first-differences of the individual series, such
that the influence of the unobservable common factor is asymptotically filtered.

The test of the unit root hypothesis is based on the t-ratio of the OLS estimate of
b; (E) in the following cross-sectional augmented DF (CADF) regression:

Ay = a; + byir—1 + Cil—1 + di Ay + €. (6)

We will test for the presence of a unit root in the natural logarithm of city relative
size (y; = Ins;) taking this into account. The null hypothesis assumes that all the
series are non-stationary, and Pesaran’s CADF is consistent under the alternative that
only a fraction of the series is stationary.

However, the problem with Pesaran’s test is that it is not designed to deal with
such large panels (22,078 cities in the US, 8,077 in Spain and 8,100 in Italy), especially

when so few temporal observations are available (N — oco,T = 11). For this reason,
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we must limit our analysis to the largest cities (although the next section offers a long
term analysis of the entire sample).

Table 6.1 shows the results of Pesaran’s (2007) test, both the value of the test
statistic and the corresponding p-value, applied to the upper tail distribution until the
500 largest cities in the initial period have been considered. All statistics are based on

univariate AR(1) specifications including constant and trend.

Table 4: PANEL UNIT ROOT TESTS, PESARAN’S CADF STATISTIC

Cities (N) Us Spain Italy
50 | -0.488 (0.313) | -0.915 (0.180) | 4.995 (0.999)
100 | 0.753 (0.774) | 0.050 (0.520) | 5.983 (0.999)

(0.774)
200 1.618 (0.947) | -2.866 (0.002) | -1.097 (0.136)
500 1.034 (0.849) | -12.132 (0.000) | 5.832 (0.999)

Note: test-statistic (p-value)

Pesaran’s CADF test: standarized Ztbar statistic, Z [f]
Variable: Relative size (in natural logarithms)

Sample size: (N, 11)

The null hypothesis of a unit root is not rejected in the US or Italy for any of
the sample sizes considered, providing evidence in favour of the long term validity of
Gibrat’s law. Spain’s case is different, as when the sample size is more than the 200
largest cities, the unit root is rejected, indicating a relationship between relative size

and growth rate even for the largest cities.

6.2 Non-parametric analysis: kernel regression conditional on
city size

This section on the nonparametric analysis follows closely the analysis in Ioannides and

Overman (2003), and Eeckhout (2004). It consists of taking the following specification:
9i =m(s;) + €, (7)

where g; is the growth rate (Ins; —Ins; ;) normalised (subtracting the mean and
dividing by the standard deviation) and s; is the logarithm of the i-th city relative
size. Instead of making suppositions about the functional relationship m, m (s) is
estimated as a local mean around the point s and is smoothed using a kernel, which is

a symmetrical, weighted and continuous function around s.
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To analyse all the 20th century we build a pool with all the growth rates between two
consecutive periods. This enables us to carry out a long term analysis. The Nadaraya-

Watson method is used, exactly as it appears in Hiirdle (1990), based on the following

expression”:

nt i Ky (s — si) g;
m(s) = —— ; (8)
n=1> Kp(s—s;)

=1

where K, denotes the dependence of the kernel K (in this case an Epanechnikov) on
the bandwidth h. We use the same bandwidth (0.5) in all estimations in order to allow
comparisons between countries.

Starting from this calculated mean m (s), the variance of the growth rate g; is also

estimated, again applying the Nadaraya-Watson estimator:

Y K (s — ) (g0 — 11 ()
5_2 (8) — =1 — . (9)
nt Y K (s — si)

=1

The estimator is very sensitive, both in mean and in variance, to atypical values.
For this reason we decide to eliminate from the sample the 5% smallest cities, as they
usually have much higher growth rates in mean and in variance. This is logical; they are
cities of under 200 inhabitants, where any small increase in their population becomes
very large in percentage terms.

Gibrat’s Law implies that growth is independent of size in mean and in variance.
As growth rates are normalised, if Gibrat’s Law in mean were strictly fulfilled, the
nonparametric estimate would be a straight line on the zero value. Values different
from zero involve deviations from the mean. In turn, the estimated variance of the
growth rate would also be a straight line in the value one, which would mean that the
variance does not depend on the size of the variable analysed. To be able to test these
hypotheses, we have constructed bootstrapped 95-percent confidence bands (calculated
from 500 random samples with replacement).

Figure 2 shows the nonparametric estimates of the growth rate of a pool for the
entire 20th century for the US (1900-2000, 152,475 observations), Spain (1900-2001,
74,100 observations) and Italy (1901-2001, 73,260 observations). For the US the value

9The calculation was done with the KERNREG2 Stata module, developed by Nicholas J. Cox,
Isaias H. Salgado-Ugarte, Makoto Shimizu and Toru Taniuchi, and available online at:
http://ideas.repec.org/c/boc/bocode/s372601.html.
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zero appears always inside the confidence bands, so that it cannot be rejected that
the growth rates are significantly different for any city size. For Spain and Italy the
estimated mean grows with the sample size, although it is significantly different to zero
only for the largest cities!. One possible explanation is historical: both Spain and Italy
suffered wars on their territories during the 20th century, so that for several decades,
the largest cities attracted most of the population'!. Therefore, we find evidence in
favour of Gibrat’s Law for the US throughout all the 20th century. Also for Spain and
Italy, although the largest cities would present some divergent behaviour.

Figure 2 also shows the nonparametric estimates of the variance of growth rate of
a pool for the entire 20th century for the US, Spain and Italy. As expected, while
for most of the distribution the value one falls within the confidence bands, indicating
that there are no significant differences in variance, the tails of the distribution show
differentiated behaviours. In the US the variance clearly decreases with the size of the
city, while in Spain and Italy the behaviour is more erratic and the biggest cities also
have high variance.

Our results, obtained with our sample of all incorporated places without any size
restriction, are similar to those obtained by Ioannides and Overman (2003), with their
database of the most populous MSAs. To sum up, the nonparametric estimates show
that while average growth seems to be independent of size in the three countries (al-
though in Spain and Italy the largest cities present some divergent behaviour), variance
in growth does depend negatively on size: the smallest cities present clearly higher vari-
ance in all three countries (although in Spain and Italy the behaviour is more erratic

and the biggest cities also have high variance).

10Tn the case of Spain, this divergent behaviour could be the explanation for the rejection obtained
in the previous section of the null hypothesis of a unit root.

"'This result can be related with the “safe harbour effect” of Glaeser and Shapiro (2002), which is
a centripetal force which tends to agglomerate the population in large cities when there is an armed
conflict.
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This points to Gibrat’s Law holding weakly (growth is proportional on average but
not in variance). Gabaix (1999) contemplates this possibility, that Gibrat’s Law might
not hold exactly, and examines the case in which cities grow randomly with expected
growth rates and standard deviations that depend on their sizes. Therefore, the size of

city ¢ at time ¢ varies according to'?:

ds,

? = U (St) dt +o (St) dBt,
t

where i (S) and 02 (S) denote, respectively, the instantaneous mean and variance of
the growth rate of a size S city, and B, is a standard Brownian motion. Cérdoba (2008)
also introduces a parsimonious generalization of Gibrat’s Law that allows size to affect
the variance of the growth process but not its mean.

Nevertheless, we must distinguish between the American and European cases, as
Gibrat’s Law assumes a fixed and invariant number of locations. The number of cities
remains constant in Spain and Italy, but this is not true for the US; from the beginning
of the period considered to the end, the number of cities doubles. And while a Brownian
motion can be adjusted to include new entrants, the distribution from which the entrants
are drawn and the magnitude of entrants will affect the distribution. In particular, in the
presence of a drift (as in this case where there is average city growth), the distribution
from which new entrants are drawn is unlikely to be stationary if one wants to obtain
the result that growth is proportionate.

Figure 3 shows the nonparametric estimates of the growth rate and its variance
from a pool for the entire 20th century for the US (1910-2000, 59,865 observations)
considering only the new entrant cities since 1910. Bootstrapped 95-percent confidence
bands are also presented. The estimations show how the cities entering the sample from
1910 usually had growth rates higher on average and in variance than the average of
the entire sample (dotted blue line), although the bands do not allow to reject that
they are significantly different. The differences in variance indicate that part of the
increased variance at the bottom of the size distribution can be explained by the cities

which entered the distribution throughout the twentieth century.

2Equation (11) in Gabaix (1999).
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2000]

Figure 4: Empirical density functions of the new entrants.

Moreover, the Figure 4, representing the empirical estimated distributions of entrant
cities in 1910 and 2000 (normalized by the average size of the cohort of the entire
distribution), shows the change in distribution of entrant cities. Starting from a very
leptokurtic distribution in 1910 (more leptokurtic than the distribution of the whole

sample) concentration decreases until the 2000 distribution, very close to a lognormal.

7 Conclusions

This chapter contributes to the literature empirically testing the validity of Gibrat’s
Law in the growth of cities using data of the complete distribution of cities (without
any size restrictions) for all the twentieth century in three countries: the US, Spain and
Italy. To do so, we use different techniques (parametric and non-parametric methods),
obtaining mixed evidence. Our results confirm that, as Gabaix and Ioannides (2004)
suggest, Gibrat’s law for means holds only as a long-run average.

In the short term, considered decade by decade, we find that growth was divergent
in all three countries. Despite being three countries with very different urban structures
and histories, we find a positive relationship between the growth rate of cities and their
initial size throughout the 20th century (except in the period 1970-1980 in the US).
However, the empirical evidence shows that this does not impede city size distribution
being approximated as a lognormal distribution.

In the long term, panel data unit root tests confirm the validity of Gibrat’s Law in
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the upper tail distribution. The use of non-parametric methods which relate the growth
rate with city size through the estimation of local means enable us to observe that, in
the long term, the evidence in favour of a weak Gibrat’s Law increases (size affects the
variance of the growth process but not its mean).

The case of the US is different because number of cities doubles over the twentieth
century. The new entrant cities present higher growth rates on average and in variance
than the average for the whole sample, although we cannot reject that they are sig-
nificantly different. The differences are greater in variance, indicating that part of the
increased variance at the bottom of the size distribution can be explained by the cities

which entered the distribution throughout the twentieth century.
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Appendix: Variance and city growth processes

We have two expressions (3 and 5):
Var (InSy) =t- o2, (3)

2
Var (InSy) = o? - % (5)

If Gibrat’s Law is fulfilled (5 = 0), and applying L’Hopital’s rule we obtain that (5)
converges to (3): élir(l) (02 : %) = % = to?.
Let’s see what happens if 5 > 0 or f < 0:

_ .02_02,@"‘1)%_1: o 2 _ 2t _
3)-(5) =t T FICED) [t (8% +26) = (B+1)" +1]
= m[f(ﬁ)]-

Considering time t as a continuum beginning in zero, the expression between brackets
f(B) is only defined if —1 < . Also, if 5 > 0 then 6(2—12) > 0, while if -1 < <0
then m < 0.

Therefore, to find out the total sign of the difference (3)-(5) we must study the
behaviour of the function f (8) =t (8* + 28)— (8 + 1)*+1. The maximum or minimum
of this function is given by:

d _

POy =n@+1-@+1"") -0
from which we deduce that at the extreme 1 = (8 + 1)*72, which means that f () is
maximum or minimum in 8 = 0. In order to know if § = 0 is a maximum or a minimum

we obtain the second order condition:

a*f (B)
dj3?

and evaluate the sign in § =0: f"(8=0)=4t(1 —t) <0 as long as t > 1.

Thus, we already know that the function f (/) is concave and reaches its maximum

— (B =2t(1—(2t—1)(5+1)*7?),

in 8 =0 as long as t > 1. Considering that f (0)=0, this function always takes negative
values except in the maximum.

The final sign of the difference (3)-(5) will be (maintaining the conditions —1 <
and t > 1):
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2

1. When § > 0, we have seen that m > ( is fulfilled and city growth is divergent.
The variance of the cities will is higher than if Gibrat’s Law were fulfilled:(3)<(5).

2. When 8 < 0, city growth is convergent. The variance of the cities is lower than
if Gibrat’s Law were fulfilled: (3)>(5).

3. When 5 =0, (3)=(b).
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