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The Estimation of Spatial
Autoregressive Models with
Missing data of the Dependent
Variables

Matthias Koch
Matthias.Koch@wu.ac.at

Abstract

This paper focuses on several estimation methods for spatial
autoregressive (SAR)- models in case of missing observations in
the dependent variable. First, we show with an example and
then in general, how missing observations can change the model
and thus resulting in the failure of the "available" estimation
methods. To estimate the SAR- model with missings we propose
di¤erent estimation methods, such as GMM, NLS and OLS. Some
of the estimators are based on a model approximation. A Monte
Carlo Simulation is conducted to compare the di¤erent estimation
methods in their diverse numerical and sample size aspects.

1 Introduction

...Finance, market values of sold properties to unsold properties. (To
turn a blind eye on this problem will result in biased estimators)...
...Our focus is on spatially dependent models where we treat unob-

served market transactions as missing data in the dependent variable.
Le Sage 2004 provided a framework for this problem via Maximum Like-
lihood Estimations. The main problem with Maximum Likelihood Esti-
mations is that one must assume the correct Distribution (Outliers are
di¤erent handled weather you use a t- distribution or a Normal distrib-
ution)...
...Another advantage is that one can derive unbiased estimators which

are less computational expensive than estimators based on maximum
likelihood....

2 Spatial Dependence and Missing data

In this section we will focus how on the one hand missing data e¤ect a
spatial autoregressive (SAR) model and on the other how one can derive
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estimators without assuming the speci�c distribution of the error term.
In the latter we will examine di¤erent details of the estimators...

2.1 Subsection

First we will start with an example to illustrate the e¤ect of missing data
of the dependent variable on the estimation of a spatial autoregressive
process. We will assume that the spatial dependence is represented by
an one forward one behind neighboring pattern. That means we will
have an almost complete sparse matrixW except that we will have ones
in the upper an lower diagonal. Therefore our data generating process
is represented by (1).

Y =�0WY +X�0+" where "i � i:i:d:(0; �20) (1)

whereX is a n�k dimensional matrix of exogenous variables. Assume
now that the third entry of Y is not observed. Y will in general denote
the observed data, or in that special case: Y =

�
y1; y2; y4; ::: yn

�0
. In

the appendix it is shown that the data generating process will now be
represented by (2)1

Y=�0W1Y+X1�0+
X3�0
1� �20

+�0
W2Y +X2�0

1� �20
+�20

W3Y

1� �20
+" (2)

Observe that we no longer have a linear Model and that the "i are
no longer independent and identically distributed. It is intuitively clear
that by simly ignoring missing data in the dependent variable is like
substituting Y=�0WY+X�0+e" for (2), where X =

�
x01;x

0
2;x

0
4; :::x

0
n

�0
,

e"i � i:i:d:(0; �20) and W =

�
W2;2 02;n�3
0n�3;2Wn�3;n�3

�
. Therefore, if �0 6= 0

one is not surprised that the ignoring of missing dependent variables
causes a biased estimation, since one is no longer estimating the true
data generating process.
If theW-matrix is sparse like in this case, one might use the following

approach: Classify all the yi of the data generating process into one
of the following three sets: "fMissingg", "fBorderg" and "fInsideg".
The "fMissingg"-set is selfexplaining. The "fBorderg"- set contains all
the obeserved yi that have a missing observation as neighbour and the
"fInsideg" set contains the remaining yi that are not elements of the
sets Missing or Border. Let YI := yi 2 fInsideg and YB := yi 2
fBorderg then one can rewrite the data generating process for YI with

1For the de�nition of X1;X2;X3;W1;W2;W3 and " see the Appendix
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the following equation: YI = �0
�
WI;IWI;B

��YI

YB

�
+XI�0+"I , where

WI;I ,WI;B represent the neighbouring pattern of the set fInsideg and
between fInsideg and fBorderg. The XI and "I contain the xi and
"i of the corresponding yi 2 fInsideg. This approach is only practical
if a small part of the data set is unoberserved or the missing data is
spatially clustered. The estimations are always based on the samplesize
jfInsidegj. In this paper we assume that one observes xi for every yi
and as result our estimations are based on the samplesize jfInsidegj+
jfBordergj.
2.1.1 Formalization of missing data

As we have seen before solving the data generating process with missing
observations can be complicated it seems feasible to try a more formal
approach. First some notation:
Let N denote the sample size of the unobserved data. n denotes

the sample size of the observed dependent variables. We assume that
n is a function of N and that limN!1 n(N) = 1 in order to derive
asymptotic properties of our estimators. That means the observed data
sample approaches in�nity if the unobserved data sample approaches
in�nity. Furthermore we assume that our true data generating process
is sorted in a way that the �rst n observations are observed and the
other N � n represent the unobserved.
We now can de�ne the observation matrix Sn which extracts the

observed y from the vector Y: Sn:=
�
In�n 0n�(N�n)

�
. This de�nition

yields that Yn = SnYN . Therefore, the true data generating process for
Y is:

Yn= Sn (IN � �0WN)
�1XN�0+Sn (IN��0WN)

�1 "N (3)

where "i � i:i:d:(0; �20). One can see that (3) is for yi a nonlinear
function in �0 and therefore one can no longer use directly linear esti-
mation methods to �nd estimators for �0 :=

�
�00; �0

�0
. The next section

derives estimators based on the generalized method of moments, non-
linear least squares and ordinary least squares. Of course it is possible
to estimate (3) with Maximum Likelihood if one for example assumes
that the "i are independent normal distributed2. One has to point out,
that the only way to estimate (3) for huge data sets (N > 5000) is to

2One simple mehtod is to maximize the log likelihood:max�;�;�2 ln(L(�;�; �2))

where L(�;�; �2) = 1

(2��)
n
2 �j
MLj

1
2
exp

�
� 1
2

�
Y��

�0

�1ML

�
Y��

��
; 
ML = S(I �

�W)�1(I� �W0)�1S0�2 and � = S(I� �W)�1X�
This likelihood has some numerical di¤uclties. To programm the Likelihood

Method eviciently see LeSage 2004
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use approximations for (IN � �0WN)
�1. We will use a �nite Neumann

series to �nd approximations for (IN � �0WN)
�1.

2.2 Estimation Methods
2.2.1 Model Assumptions3

1. Let �0 =
�
�00 �0

�0 2 �, where � is a compact contiguous subspace
of Rk�(�1; 1). We call � the parameter space of our SAR- model.

2. For every N : kWNk1 = 1, where kWNk1 = max
j2f1;:::;Ng

�
NP
i=1

jwj;ij
�

and wj;i 2WN . (The weigh matrixWN is maximum absolute row
sum normalized.4)

3. Let E [X0
N�N ] = 0 . The sequence xi 2 R1�k is an identically and

independently distributed random vector with �nite mean.

4. rank(X) = k and for every i 2 f1; :::;max(m(n); z)g : rank(Wi
NXN) =

k

2.2.2 Model Approximation

To derive di¤erent estimators for (3), namely two di¤erent GMM- Esti-
mators (GMM-e and GMM-a), two NLS estimators (NLS-e and NLS-a)
and one estimator based on OLS we use for the GMM-a, NLS-a and
OLS estimators a model approximation. Like noted before, if one wants
to estimate (3) for huge data sets at some point an approximation for
(IN � �WN)

�1 will be needed. In that light we suggest to use the Neu-
mannseries not in the estimator itself but use an approximation for the
data generating process like (4).

Yn � eYn = Sn

m(n)X
k=0

�k0W
k
NXN�0+Sn (IN��0WN)

�1 "N (4)

where m(n) is N ! N : n 7! m(n) and lim
n!1

m(n) = 1. The prop-
erty of m(n) that lim

n!1
m(n) = 1 is necessary to derive the asymptotic

3For more detatiled Assumptions of the data generating process see Appendix
4The main idea is to have a prameterspace where (IN��0WN )

�1 is bounded in
row and couloumn sums... see Prucha 200X page X.
For the simplicity of the proofs we also assume that for every N : kWNk1 = 1.

This may seem strong but all proofs will also work as long as kWNk1 <1.
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distribution of the di¤erent estimators. In other words we need m(n) to
grow as the sample size grows. One can show that the approximation
has an maximum error �(�0) for every yi of: j�(�0)j � kxm�m

j�0jm(n)+1
1�j�0j

where � := max1�i�n fjyi � eyijg ; xm = max1�i�n;1�j�k(jxi;jj); �m =

max1�j�k(
���(�0)j���). Since j�0j < 1 is assumed, the model error will always

decrease exponentially withm(n) since, �(�0) � c exp (ln(j�0j) (m(n) + 1))
where c = kxm�m

1�j�0j
2 R and ln(j�0j) < 0. Therefore, an adequate high

m(n) leads to negligible small errors �(�0).
In practice we de�ne a numerical maximum relative error (condition,

eps = 10�2 in our MC- simulation) for the model approximation like it is
common in numerical mathematics. Then we guess �m as a upper limit
for �0. For example we say that �0 < �m = 0:5. With �m and eps it is
possible to �nd anm(n) that will lead to the postulated model accuracy.
The model approximation leads to an estimator b� and if b� is smaller than
�m our guess for �m was good, otherwise we have to estimate the model
again and take a higher value for �m like �m = :75.

2.2.3 GMM- Estimation

Now we derive two estimators which are based on the GMM- method.
One Estimator (GMM-e) will use the true data generating process (3)
and one that will use the approximation stated in (4) (GMM-a). Both
estimators are based on the following moment condition E[g] = 0, where

g =
�
g00; g

0
1; ::: g

0
z

�0
where gi =

1

n

�
SnW

i
NXN

�0
"n, z � 1; z < m(n) (5)

and "n = Sn (IN��WN)
�1 ". The GMM- condition ful�lls E[gi] = 0 for

every 1 � i � z. Since z � 1 we have to estimate (k+1) parameters with
(z+1)k linear independent moment conditions. Therefore, our estimator
is overidenti�ed. This means that we need a 2-step procedure. In the
�rst step we minimize g0g to get an estimator for �0. Regardless which
model we are using (the true or approximate), we have to minimize g0Ag
in a second step, whereA is a positive de�nite matrix. In order to get an
asymptotic e¢ cient estimators for �0 one might use A = 
�1

0;gmm, since

0;gmm=V ar(g) for the true model.


0;gmm =
�20
n2

0BBB@
X
0
n�0;nXn X

0
n�0;nWXn ::: X

0
n�0;nWzXn

WX
0
n�0;nXn WX

0
n�0;nWXn ::: WX

0
n�0;nWzXn

: :

WzX
0
n�0;nXn :: ::WzX

0
n�0;nW

zXn

1CCCA
(6)

5



where�0;n = Sn (IN��0WN)
�1 (IN��0W0

N)
�1 S0n,WiXn = SnW

i
NXN and

0 � i � z. As usual when using GMM- methods one will use the esti-
mator from step1 to calculate 
0;gmm.
There are two reasones why one can use 
�1

0;gmm as weighting matrix
for the moment conditions of the GMM-a estimator. First, since the
e¢ ciency proof for GMM-estimators only holds asymptoticly it doesn�t
matter wheather the exact or the approximate model was used due to
the assumption that both models are asymptoticly aquivalent. Second,
we noted that the we will use a m(n) so high, that the approximation
error is negliable small. Therefore, the di¤erence between V ar(g) for
the approximate and the true model should be negliable small.

GMM- exact- estimator The Appendix shows that if one uses for
"n = "n(�; �) = Yn�Sn (IN � �WN)

�1XN�
5 which is based on the

true model stated in (3), the �rst minimization step yields a consistent
estimator for �0:

step 1: b�1 = argmin
�2�

g(�)01g(�)1 (7)

step 2: Now one uses the estimator b�1 from (7) to calculate b
gmm
and minimize (8)

b�2 = argmin
�2�

g(�)01
b
�1
gmmg(�)1 (8)

The appendix shows that the estimators obtained by (8) have the fol-
lowing asymptotic distribution:

n�1=2
�b�2 � �0� � N �0; (G0

0
0;gmmG0)
�1
�
where G0 =

@g1
@�0

j�=�0 (9)

with @g1;i
@�0 j�=�0 =

�1
n

 
WiX

0
nSn (IN��0WN)

�1XN

WiX
0
nSn (IN��0WN)

�2WNXN�0

!
.

5If one would use instead of "n(�; �) = Yn�Sn (IN � �WN )
�1
XN� the smaller

"Inner"- "n(�; �)- vector "I(�; �) = YI � �
�
WI;IWI;B

��YI

YB

�
�XI�, then one

could solve the minimization problem analytically and would derive an instrumental
variable estimator.
Futhermore if one assumes that Sn = In (the case of no missings) then one can

write instead of the highly nonlinear "n(�; �) = Yn� (In � �Wn)
�1
Xn� a linear

equivalent "n(�; �) = Yn � �WnYn � Xn� solve the GMM- minimization prob-
lem analytically and get the instrumential variable estimator proposed by Kelejian,
Prucha [1998].
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GMM- approx- estimator: The Appendix shows that if one uses for

"n(�; �) = Yn�Sn
m(n)X
k=0

�kWk
NXN� the approximation model proposed

in (4) the �rst minimization step yields an consistent estimator for �.

step 1: b�1 = argmin
�2�

g(�)02g(�)2 (10)

Now one uses the estimator b�1 from (10) to estimate b
gmm and minimize
(11)

b�2 = argmin
�2�

g02b
�1gmmg2 (11)

The appendix shows that the estimator obtained by (11) has the follow-
ing asymptotic distribution:

n�1=2
�b�2 � �0� � N �0; (G0

0
0;gmmG0)
�1
�
where G0 =

@g2
@�0

j�=�0 (12)

@g1;i
@�0 j�=�0 =

�1
n
WiX

0
nSn

0@0@m(n)X
j=0

�j0W
j
NXN

1A0

;

0@m(n)X
j=1

j�j�10 Wj
NXN�0

1A01A0

One should note that as N approaches in�nity @g2
@�0 =

@g1
@�0 and there-

fore both estimators have the same asymptotic distribution. Addition-
ally observe that the asymptotic distribution of the approximate esti-
mator (GMM-a) is essentially the same as the asympto tic distribution
of the exact estimator (GMM-e) if one uses in the exact estimator the
�nite Neumannseries instead of (IN � �0WN)

�1.

2.3 NLS- estimation
An other possibility to derive an estimator for the models (3) and (4)

is to use the nonlinear least squares method. This method, like the
GMM- Estimator needs no assumption about the actual distribution
of the error term. Similar to the GMM- Estimator we will derive two
di¤erent estimators, one based on (3) and one on (4). Like in the GMM
case we call them NLS-e and NLS-a. Both estimators are based on the
following minimization problem:

b� = argmin
�2�

"n
0
"n where "n depends on the chosen model (13)
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2.3.1 NLS- exact- estimator

The appendix shows that the minimization of (13) where "n(�; �) =
Yn�Sn (IN � �WN)

�1XN� yields a consistent estimator for �0 =
�
�00 �0

�
.

It is also shown that this estimator has the following asymptotic distri-
bution:

n�1=2
�b� � �0� D! N

�
0;A�1

0 B0A
�1
0

�
(14)

with B0 = D0�0D
0
0, �0 = �

2
0SnGN (�0)G

0
N (�0)S

0
n,

D0 =
�1
n

�
X0
NGN (�0)

0 S0n
�00X

0
NGN (�0)

0 S0n

�
, A0 = nD0D

0
0

where GN (�) = GN (�)WNGN (�) and GN (�) = (IN � �WN)
�1.

In practice one will use the estimators from (13) for �0 and �0.

2.3.2 NLS- approximate- estimator

The appendix shows that the minimization of (13) where "n(�; �) =

Yn�Sn
m(n)X
k=0

�kWk
NXN� yields a consistent estimator. It is also shows,

that the NLS- approximate estimator has the following asymptotic dis-
tribution:

n�1=2
�b� � �0� D! N

�
0;A�1

0 B0A
�1
0

�
(15)

with B0 = D0�0D
0
0, �0 = �

2
0SnGN (�0)G

0
N (�0)S

0
n,

D0 =
�1
n

0BBBB@
X0
N

m(n)X
k=0

�k0W
0k
NS

0
n

�00X
0
N

m(n)X
k=1

k�k�10 W0k
NS

0
n

1CCCCA, A0 = nD0D
0
0,

It is also possible to interpret (15) as the numerical approximation
of (14).
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2.4 OLS- estimation

The OLS- Estimator is based on the approximation model (4). But
instead of making an nonlinear approach the model is linearized in the
following way:

Yn = Zn�0 + �n (16)

where Zn = Sn[W0
NXN ;W

1
NXN ;W

2
NXN ;:::;W

m(n)
N XN ], �0 =

�
�00; �0�

0
0; ::: �

m(n)
0 �00

�0
and �n= Sn (IN��0WN)

�1 ". The estimator is based on the GMM- con-
dition gOLS;N = n(N)�1Z0n�n. Thus resulting in the case of an exact
identi�ed estimator. The appendix shows that b� = (Z0nZn)�1 Z0nYn is a
consistent estimator for �0. Our next concern is to �nd a Transformation
T1 : R(m(n)+1)k ! R so that: E[T1(�0)] = �0. With this Transformation
we are able to use the asymptotic distribution of n�1=2 (b� � �0):

n�1=2 (b� � �0) � N �0;R�1
n V0;NR

�1
n

�
(17)

where Rn=
�1
n
Z0nZn and V0;N =

�20
n
Z0nSn(N)GN(�0)G

0
N(�0)S

0
n(N)Zn. We

suggest to consider the following (k+1) continuos di¤erentiable Transfor-
mations T2;i : R2(m(n)+1) ! R so that E[T2;i(�0; ci;1; :::; ci;m(n)+1)] = �0;i+1
where �0;i+1 denotes the i-th element of �0. In addition we need the ci;j to
be chosen so that the minimization of the variance of the transformation
is achieved:

ci;j = argmin
ci;j

V [T2;i(b�; ci;1; :::; ci;m(n)+1)] (18)

The main issue is that due to the linearization of (4) one has to make an
additional transformation to �nd estimators for �0. Obviously there are
an in�nite number of possible transformations to do that. Therefore, we
suggest to �nd one transformation that is at least the most e¢ cient one
in a class of transformations.
One possibility for the transformation T1 would be:

T1(�) =
1
km

mX
i=1

d6(
i)d(
i�1)
�1

where 
i =
�
�k(i�1)+1; �k(i�1)+2; :::; �ki

�0
. One possibility for the trans-

formation T2
6d() denotes diag()

9



T2;0(b�; c1;1; :::; c1;m(n)k) = mX
i=1

d(�i)d(
i)d(
i�1)
�1

T2;j(b�; cj;1; :::; cj;m(n)k) = ci;1�j + mX
i=2

cj;i
�
�ik+1

�1�i �
�(i�1)k+1

�i
for j 2 f1; 2; :::; kg where �i =

�
c1;k(i�1)+1;c1;k(i�1)+2; :::; c1;ki

�0
and

mX
i=1

kX
j=1

�i;j = 1. T2;0 is the transformation for � and T2;j for �j. The

transformations T2 have the following Variance:

V ar(T2;k(b�)) = �@T2;k(�)@�
j�=b�

�0
nR�1

n V0;NR
�1
n

@T2;k(�)

@�
j�=b�

@T2;1(
)

@
i
=8<:

�d(�i)d(
i)d(
i�1)�2 if i = 1
d(�i)d(
i�1)

�1 � d(�i+1)d(
i+1)d(
i)�2 if i 2 f2; 3; :::;m� 1g
d(�i)d(
i�1)

�1 if i = m
@T2;j(�)

@�
=

�

One can see that T2;0 = T1 if c1;j = c1;1 for every j and
mkX
i=1

c1;i = 1.

3 Estimator properties

3.1 E¢ ciency of the proposed estimators

The proposed GMM, NLS and OLS- estimators are all mean distance
estimators. Since the GMM- Estimator is the only one where the mo-
ment conditions are weighed in a way to reduce the classical "sandwich"
form of the variance matrix of n1=2

�b�N � �0�, the used GMM- estimator
is the most e¢ cient one in his class of GMM- estimators. That is the
main reason why we regard the GMM- estimator as the most preferable
method for small to medium size samples.
Obviously some of the NLS and OLS estimators�ine¢ ciency lies in

the fact that in (4)Yn has the variance �20�0 = �
2
0Sn (IN��0WN)

�1 (IN��0W0
N)

�1 S0n.
Therefore, it might seem plausible to multiply the model with b��1=2,
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since OLS and NLS produce almost consistent estimators for �0. If we
multiply (3) with ��1=20 we get:

�
�1=2
0 Yn= �

�1=2
0 Sn (IN � �0WN)

�1XN�0+"N (19)

Green (page 207) shows that ��1=2
0 Yn, like "N has now a variance of

�20In. But the matrix �
�1=2
0 Sn (IN � �0WN)

�1 induces two problems:
First, let us consider two additional assumptions in the theoretical

framework: As n approaches 1 we will no longer have any missing ob-
servations and that our weigh matrix is symmetric. This would cause
limn!1�

�1=2
0 Sn (IN � �0WN)

�1 = limn!1 In. Therefore (19) would be
asymptotically reduced to ��1=2

0 Yn= Xn�0+"n. In that case the para-
meter � is no longer identi�ed7.
Secondly, this theoretical problem also accures if n is near N . In that

case depending on the speci�edWN it is possible that�
�1=2
0 Sn (IN � �0WN)

�1

is near Sn. As a result, � maybe badly identi�ed by ().

A third problem is posed by the transformation in a numerical sense,
since in most cases �0 will not be a sparse matrix and therefore even
e¢ cient algorithms may not be able to calculate ��1=2

0 in reasonable
time if the observed data is huge (n > 5000). An other obstacle is that
porgrams like matlab don�t have a sparse routine for X1=2. As a result,
the time increases for calculating X1=2 with ~n3.
In the following subsection we assume in addition8:

1. n, N andWN take values so that � is still identi�ed by equation
(19).

2.



��1=20





1
< 1 and




��1=2
0





1
< 1 for all sample sizes and all

possible �

3.1.1 Enhancing e¢ ciency for the NLS Estimators

The minimization of (13) yielded consistent or almost consistent estima-
tors for �0. We use this estimation to calculate eYn := b��1=2n Yn. Further

7In that case where � is not identi�ed by () it is still possible to do a simple
regression of SnXN on �

�1=2
0 Yn in order to get e¢ cient estimates for �. This is like

doing a Corcane Orcut transformation on ().
8These assumptions are necessary so that all the proof- logic shown in the appen-

dix still holds for consicentcy, almost consictnecy and asymptotic normality.
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we de�ne eSn := b��1=2n Sn =
� b��1=2

n 0n�(N�n)

�
. We are now faced with

the following data generating process:

eYn=eSn (IN � �0WN)
�1XN�0+"n (20)

eYn�eSn m(n)X
k=0

�k0W
k
NXN�0+"n (21)

Note that the estimator for �0 will have the following asymptotic distri-
bution, since for both estimators �0 = �20In and A0 = D0D

0
0.

n�1=2
�b� � �0� D! N

�
0; �20A

�1
0

�
(22)

where D0 =
1
n

8>>>>>>>>><>>>>>>>>>:

 
X0
NGN (�0)

0 eS0n
�00X

0
NGN (�0)

0 eS0n
!

forGMM- e0BBBB@
X0
N

m(n)X
k=0

�k0W
0k
N
eS0n

�00X
0
N

m(n)X
k=1

k�k�10 W0k
N
eS0n

1CCCCA forGMM-a
Obviously the variance of (22) has smaller eigenvalues than that of

(15) and (14) and hence more e¢ cient.

3.1.2 Enhancing e¢ ciency for the OLS Estimator

If we use the same notation as in the NLS- case we have to estimate the
following process:

eYn = Zn�0 + "n (23)

where eZn = eSn[W0
NXN ;W

1
NXN ;W

2
NXN ;:::;W

m(n)
N XN ]. If we use the

consistent estimator9 b�n = �eZ0neZn��1 eZ0n eYn the asymptotic distribution
is

n�1=2 (b� � �0) � N �0; �20n �eZ0neZn��1
�

(24)

Obviously the variance of (24) has smaller eigenvalues than that of (17)

and hence is more e¢ cient. Additionally, one only needs to do the second
Transformation T2 in order to get estimations for �0.

9this is basically a GLS-estimator (see Green page 207)
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3.2 Numerical properties
In this section we focus on the di¤erent numerical properties of the
estimators. The GMM-e and the NLS-e Estimator are obviously the
most expensive in a numerical sense. Both have to minimize a crite-
ria function over k + 1 dimensions and in each optimization step the
inverse of (IN � �WN) has to be calculated. In each optimization run
calculations with matrices of the size of N need to be handed. Keep
in mind that to calculate a gradient of the objective function one has
to evaluate the Inverse at least at two points in each optimization step.
Of course the GMM- method is more expensive then the NLS- estima-
tion, since the GMM- procedure consists of two steps and the criteria
function is more complicated. Since for exact algorithms the time to
compute (IN � �WN)

�1 rises with � N3 if WN isn�t a sparse matrix,
both estimators should only be used for small to medium sized N in
these cirsumstances.
Since the GMM-a, NLS-a and OLS Estimator only use approxima-

tions there is no need to calculate (IN � �WN)
�1. Furthermore it is pos-

sible to calculate Sn[W0
NXN ;W

1
NXN ;W

2
NXN ;:::;W

m(n)
N XN ] only once

at the beginning of the optimization and therefore in each method one
only have to handle matrices with the size n.
GMM- a is next to the GMM-e and NLS-e the most numerical ex-

pensive, since it poses a k + 1 dimensional optimization problem with a
relatively complicated criteria function.
On the other hand NLS-a poses, in some sense, only a unidimensional

problem: First restrict the maximization parameter only to �, calculate
in each optimization stepXX = Sn[�

0W0X;�1W1X; �2W2X;:::;�mWmX]10

, regress XX on Y and use the estimated sum of squared residuals as
criteria function.
The OLS- estimator is obviously numerical the cheapest. It only

needs to perform one regression of Z on Y which can be programmed
very e¢ ciently. The only optimization routine that is needed to get
an e¢ cient Transformation T2, is a mk + k dimensional problem. The
matrices handled during this optimization are only of the size mk + k.
One must also keep in mind that in order to �nd consistent estimations
for �0 it is not necessary to �nd a global minimum for the Variance.
Time of the di¤erent algorithms taken in MC:
Graph...

10whereWiX = SnW
i
NXN
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4 Monte-Carlo study

4.1 Basic Monte-Carlo Design

4.2 Spatial dependence - used W-matrices

4.3 Results

5 Appendix

5.1 Useful Lemmas

Proof.

Lemma 1 Due to Assumption (1) and (2) it follows:


(IN � �WN)

�1


1
�

a <1

Proof.


(IN � �WN)

�1


1
=







1X
k=0

�kWk
N







1

�
1X
k=0

j�jk kWkkN = 1
1�j�j

Lemma 2 Let j�0 +4�j < 1. It follows that GN(�0+4�) = GN(�0)+
4GN(�0;4�) where4GN(�0;4�) = 0)4� = 0 and k4NG(�0;4�)k1 �
�a <1

Proof. G(�0+4�) = (IN � (�0 +4�)WN)
�1 =

1X
k=0

(�0 +4�)
kWk

N =

1X
k=0

Wk
N

kX
i=0

�
k
i

�
�k�i0 4 �i =

1X
k=0

Wk
N

 
�k0 +4�k +

k�1X
i=1

�
k
i

�
�k�i0 4 �i

!
=

(IN � �0WN)
�1 +

1X
k=0

Wk
N

 
4�k +

k�1X
i=1

�
k
i

�
�k�i0 4 �i

!
= GN(�0) +

4GN(�0;4�)

Proof.
1X
k=0

Wk
N

 
4�k +

k�1X
i=1

�
k
i

�
�k�i0 4 �i

!
= 0)4 � = 0 trivial;
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Proof.







1X
k=0

Wk
N

 
4�k +

k�1X
i=1

�
k
i

�
�k�i0 4 �i

!





1

�

1X
k=0



Wk
N




1

�����
 
4�k � �k0 + �k0 +

k�1X
i=1

�
k
i

�
�k�i0 4 �i

!����� �
1X
k=0

���(�0 +4�)k � �k0��� �
1

1�j�0+4�j
+ 1

1�j�0j
� �a <1

Lemma 3 Under the proposed assumptions one can write:
g2;i
�
XN ; Sn(N);WN ; �

�
= g1;i

�
XN ;Sn(N);WN ; �

�
+

1
n
Wi

NX
0
nSn(N)

1X
j=m(n)+1

(��+ �0)
jWj

NXN (�0 +��)

Proof. g2;i
�
XN ; Sn(N);WN ; �

�
=

1
n
Wi

NX
0
n

 
Yn�Sn(N)

1X
j=0

(��+ �0)
jWj

NXN (�0 +��)

!

+ 1
n
Wi

NX
0
nSn(N)

1X
j=m(n)+1

(��+ �0)
jWj

NXN (�0 +��)

= g1;i
�
XN ;Sn(N);WN ; �

�
+

1
n
Wi

NX
0
nSn(N)

1X
j=m(n)+1

(��+ �0)
jWj

NXN (�0 +��)

Lemma 4 For every i,j: E
hf
jXi �

�!
X
i
= 0 only if

�!
X = 0 where eXi =�

Sn(N)W
i
NXN

�0
and

�!
X = �SnGN(�0)XN���4GN(�0;4�)XN (�0 +��)

(proof is not correct)

Proof. E
hf
jXi �

�!
X
i
= 0 is only possible if every (with j indicated) row

vector of eXi is orthogonal with
�!
X. If �� 6= 0 and �� 6= 0 it follows

that for at least one (i; j) 2 ff0; 1; :::; zg ; f1; :::; kgg that < fjXi;
�!
X >6= 0

< fjXi;
�!
X >= � < fjXi; SnGN(�0)XN�� > � < fjXi; Sn4GN(�0;4�)XN�0 >

� < fjXi;4GN(�0;4�)XN�� > 6= 0 since

< fjXi; SnGN(�0)XN�� >=<j
�
Sn(N)W

i
NXN

�
; Sn

1X
k=0

�k0W
k
NXN�� >

6= 0 for at least one (i; j) 2 ff0; 1; :::; zg ; f1; :::; kgg if �� 6= 0 and
�� 6= ��0
< fjXi;4GN(�0;4�)XN�0 >=
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<j
�
Sn(N)W

i
NXN

�
; Sn

1X
k=0

W k
N

 
k�1X
i=1

�
k
i

�
�k�i0 4 �i4 �k

!
XN (�0 +��) >6=

0 for at least one (i; j) 2 ff0; 1; :::; zg ; f1; :::; kgg if �� 6= 0

5.2 Appendix for chapter 2
5.2.1 Rewriting (1) for missing y3

Y =�WY +X�+" where "i � i:i:d:(0; �2). This process can be rewrit-
ten as:

yi =

8<:
�y2 + x1� + �1 if i = 1

�yi�1 + �yi+1 + xi� + �i if i 2 f2; 3; :::; n� 1g
�yn�1 + xn� + �n if i = n

If y3 is not observed we have to substitute it in the expressions of y4
and y2:
y4 = �y3 + �y5 + x4� + �4 = �(�y2 + �y4 + x3� + �3) + �y5 + x4� + �4

) y4 =
1

1��2 (�y5 + x4� + �x3� + �
2y2 + ��3 + �4)

and for y2:
y2 =

1
1��2 (�y1 + x2� + �x3� + �

2y4 + ��3 + �2)
If we rewrite this matrix notation:
Y=�W1Y+

1
1��2X3� +

�
1��2

�
W2Y +X2�

�
+ �2

1��2W3Y +X1�+" where

W1 =

0BB@
0@0 10 0
0 0

1A 03;n�2

0n�3;2 fWn�3;n�2

1CCA ; fWn�3;n�2 =

0BBBB@
0 1 0 :: :: 0
1 0 1 :
0 1 � � :
: � � � 0
0 :: 0 1 0 1

1CCCCA W2 =

0BB@
0@0 0 0 01 0 0 0
0 0 0 1

1A 03;n�4

0n�3;4 0n�3;n�4

1CCA ; W3 =

0BB@
0@0 0 0 00 0 0 1
1 0 0 0

1A 03;n�4

0n�3;4 0n�3;n�4

1CCA ;X1 =

0BBBBBB@
x1
01;k
01;k
x5
:
xn

1CCCCCCA ;

X2 =

0BB@
01;k
x3
x3

0n�3;k

1CCA ;X3 =

0BB@
01;k
x2
x4

0n�3;k

1CCA ; Y =

0BBBB@
y1
y2
y4
:
yn

1CCCCA and " =
0BBBBBB@

�1
1

1��2 �2 +
�

1��2 �3
1

1��2 �4 +
�

1��2 �3
�5
:
�n

1CCCCCCA
5.2.2 Upper bound for approximation error:

Proof. �(�0) := max1�i�n fjyi � eyijg =
16









Sn (IN��0WN)
�1XN�0+"N � SN

m(n)X
j=0

�j0W
j
NXN�0�"







 =





SN
1X

j=m(n)+1

�j0W
j
NXN�0







 �
1X

j=m(n)+1

j�jj0 kXNk k�0k k =

kxm�m

�
1

1�j�j �
1�j�jm(n)+1

1�j�j

�
= kxm�m

j�jm(n)+1
1�j�j where

xm = max1�i�n;1�j�k(jxi;jj); �m = max1�j�k(
���0;j��)

5.2.3 Consistency proof for the GMM- estimators and OLS-

estimator:

Matyas 2007 shows on page 12-14 that if the following 3 GMM- condi-
tions are ful�lled the GMM- estimator is consistent.

GMM- property 1: (i) E
�
g
�
XN ; Sn(N);WN ; �

��
exists and is �nite

for all � 2 � and for all N
(ii) There exists only one �0 2 � for all N such that
E
�
g
�
XN ; Sn(N);WN ; �0

��
= 0

Proof (i): ( E
�
sup�2�



g �XN ; Sn(N);WN ; �
�

� <1 for all N

, 8i 2 f0; 1; :::; zg : E
�
sup�2�



 1
n
gi
�
XN ; Sn(N);WN ; �

�

� < 1 for
all N

a.) GMM- exakt:

Proof. , 8i 2 f0; 1; :::; zg :
E
h
sup�2�




 1nWiX
0
n

�
Yn�SnGN(�0 +��)XN (�0 +��)

�


i
=: E [sup�2� kz1k] now considering Lemma 2 for
z1: z1 = 1

n
WiX

0
n

�
Yn�SnGN(�0)XN�0

�
�

1
n
WiX

0
n (Sn�GN(�0;��)XN (�0 +��)� SnGN(�0)XN��),z1 =

1
n
WiX

0
nYnG(�0)�� 1

n
WiX

0
n (Sn�GN(�0;��)XN (�0 +��)� SnGN(�0)XN��)

) E [sup�2� kz1k] =
E
h
sup�2�




 �1
n
WiX

0
n (Sn�GN(�0;��)XN (�0 +��)� SnGN(�0)XN��)




i �
E
h
sup�2�




 �1
n
WiX

0
n (Sn�GN(�0;��)XN (�0 +��)� SnGN(�0)XN��)




i
By using the Couchy- Schwarz equality: E [sup�2� kz1k] �

E

�
sup�2�

k
n

�


WiX
0
n




1n�k�0 �1n�k 

Sn(N)

 k�GN(�0;��)k kXNk k(�0 +��)k
��

+E

�
sup�2�





 kn �


WiX
0
n




1n�k�0 �1n�k 

Sn(N)

 kGN(�0)k kXNk k��k
�



� �
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E [sup�2� kxm1k�1�axm�m]+E [sup�2� kxm1k�1axm2�m] <1) 8i 2
f0; 1; :::; zg : E

�
sup�2�



 1
n
g1;i
�
XN ; Sn(N);WN ; �0

�

� <1 for all N

b.) GMM- approx:

Proof. , 8i 2 f0; 1; :::; zg :

E

24sup�2�






 1nWiX

0
n

0@Yn�Sn(N)
m(n)X
j=0

(��+ �0)
jWj

NXN (�0 +��)

1A






35 =:

E [sup�2� kz2k]

z2 = 1
n
WiX

0
n

 
Yn�Sn(N)

1X
j=0

(��+ �0)
jWj

NXN (�0 +��)

!
+

1
n
WiX

0
nS

1X
j=m(n)+1

(��+ �0)
jWjX (�0 +��)

) E [sup�2� kz2k] � E [sup�2� kF1k]

+E

24sup�2�






 1nWiX

0
nSn(N)

1X
j=m(n)+1

(��+ �0)
jWj

NXN (�0 +��)








35 =

, E [sup�2� kz2k] � E [sup�2� kF1k]+E
h
sup�2�




 1nx2m1k�1�m j��+�0jm(n)+1
1�j��+�0j




i <
1

c.) OLS:

Proof. E
�
gOLS;N

�
XN ; Sn(N);WN ; �

��
=

E

�
n�1

h
W0Xn;W1Xn; :::;WmXn

i0 �
Y�

h
W0Xn;W1Xn; :::;WmXn

i
�
��
�

E
�
n�1xm1(m(n)+1)�k�n(N)

�
ym1n(N)�1�xm�m1n(N)�1

��
= xm (ym�xm�m)1(m(n)+1)k�1 <

1 where �m = maxi;j
�
�i0�0;j

	
= �m

Proof (ii):

a.) GMM- exact:

Proof. E
�
g1
�
XN ;Sn(N);WN ; �

��
= 0! � = �0

, 8i 2 f0; 1; :::; zg : E
�
g1;i
�
XN ;Sn(N);WN ; �

��
= 0! � = �0

, 8i 2 f0; 1; :::; zg : E
h
1
n
Wi

NX
0
n

�
Yn � SnGN(�)XN�

�i
= 0! � =

�0
The use of Lemma 2, Lemma 4 and setting � = �0+�� and � = �0+

�� shows that E [] = 0 is only possible if E
�
Yn � SnGN(�)XN�

�
= 0.

RewritingE
�
Yn � SnGN(�)XN�

�
toE [�SnGN(�0)XN�� �4GN(�0;4�)XN (�0 +��)]

one can see that E
�
Yn � SnGN(�)XN�

�
= 0)4� = 0;4� = 0

b.) GMM- approximate:
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Proof. The GMM- approximate estimator only satis�es this condition

approximately. The minimization has an error that gets exponentially
smaller as m(n) increases. Using the same logic as in Lemma 4 one

has only to show weather: E

24Yn � Sn
m(n)X
j=0

�jWj
NXN�

35 = 0 ) � = �0

Setting � = �0 +�� and � = �0 +��

E

24Yn � Sn
m(n)X
j=0

(�0 +��)
jWj

NXN (�0 +��)

35 = 0
, E

24Yn � Sn

0@GN(�0 +��)�
1X

j=m(n)+1

(�0 +��)
jWj

N

1AXN (�0 +��)

35 =
0
, E

�
Yn � SnGN(�0 +��)XN (�0 +��)

�
�

E

2666664
1X

j=m(n)+1

(�0 +��)
jWj

NXN (�0 +��)| {z }
=�(m(n))

3777775 = 0
One can see that the estimation problem has an error to exact min-

imization problem of �(m(n)) :

�(m(n)) =
1X

j=m(n)+1

(�0 +��)
jWj

NXN (�0 +��)

This error must be smaller then
k�(m(n))k �

�
1

1�j�0+��j
� 1�j�0+��jm(n)+1

1�j�0+��j

�
xm�m

k�(m(n))k � j�0+��jm(n)+1
1�j�0+��j

xm�m

c.) OLS- estimator:

Proof. E
�
gOLS;N

�
XN ; Sn(N);WN ; �

��
= 0) � = �0

, E
�
n(N)�1Z0n

�
Yn�Zn�

��
= 0 let � = �0 +4�

) E
�
n(N)�1Z0n

�
Yn�Zn (�0 +4�)

��
= 0

, E

24n(N)�1Z0n
0@Yn�Sn

m(n)X
l=0

�l0W
l
NXN�0�Sn

m(n)X
l=0

4�lWl
NXN4�

1A35 =
0
, E

�
n(N)�1Z0nSn (IN � �WN)

�1 "
�
�
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E

24n(N)�1Z0n
0@Sn 1X

l=m(n)+1

�l0W
l
NXN�0�Sn

m(n)X
l=0

4�lWl
NXN4�

1A35 =
0

, E

2666664n(N)�1Z0nSn
0BBBBB@

1X
l=m(n)+1

�l0W
l
NXN�0| {z }

=:�(m(n)

�Z4 �

1CCCCCA

3777775 = 0
If it is true that rank(Z0) = m(n)k+k then the minimization problem

is identi�ed only at 4� = 0 if and only if �(m(n)) = 0. Since �(m(n) �
j�0jm(n)+1
1�j�0j

xm�m1(m(n)+1)k is near 0 if m(n) is high enough, the estimator
ful�lls almost this property.

GMM- property 2: (i) � is compact

(ii) g
�
XN ; Sn(N);WN ; �

�
� E

�
g
�
XN ; Sn(N);WN ; �

�� p! 0 pointwise
on �
(iii) g

�
XN ; Sn(N);WN ; �

�
is stochastically equicontinuous andE

�
g
�
XN ; Sn(N);WN ; �

��
is equicontinous.

(i) Property 1 is ful�lled due assumption 1

(ii) Proof Property 2 8� > 0 : lim
N!1

P (kg1;2 ()� E [g1;2 ()]k > �)
?
=

0 ,
8i 2 f0; 1; :::; zg ; � > 0 : lim

N!1
P (kg1;2;i ()� E [g1;2;i ()]k > �)

?
= 0

GMM- exact:

Proof. lim
N!1

P
�


E[g1;i]� E [g1;i]� 1

n(N)
Wi

NX
0
nSn(N)GN(�0)�




 > �� =
lim
N!1

P
�


E[� 1

n(N)
Wi

NX
0
nSn(N)GN(�0)��




 > �� = 0
GMM- approx:

Proof. lim
N!1

P
�

g2 �XN ; Sn(N);WN ; �

�
� E

�
g2
�
XN ; Sn(N);WN ; �

��

 > ��
Using Lemma (3)

, lim
N!1

P

0@





g1;i + 1
n
Wi

NX
0
nSn(N)

1X
j=m(n)+1

(��+ �0)
jWj

NXN (�0 +��)�

E

24g1;i + 1
n
Wi

NX
0
nSn(N)

1X
j=m(n)+1

(��+ �0)
jWj

NXN (�0 +��)

35






1A >

�
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, lim
N!1

P
�

g1;i �XN ; Sn(N);WN ; �

�
� E

�
g1;i
�
XN ; Sn(N);WN ; �

��

 > �� =
0

OLS- estimator:

Proof. gOLS;N
�
XN ; Sn(N);WN ; (�0 +4�)

�
�E

�
gOLS;N

�
XN ; Sn(N);WN ; (�0 +4�)

�� p!
0

E
�
gOLS;N

�
XN ; Sn(N);WN ; (�0 +4�)

��
=E

�
n(N)�1Z0n

�
Yn�Zn (�0 +4�)

��
=

n(N)�1Z0n

0@Sn 1X
l=m(n)+1

�l0W
l
NXN�0 � Zn4 �

1A
) gOLS;N � E [gOLS;N ] = n(N)�1Z0nSn (IN � �WN)

�1 �
p! 0

Proof Assumption 3 Proof. (iii) b.) E
�
g
�
XN ; Sn(N);WN ; �

��
=

0 is equicontinious since the multiplication and addition of equicontinous
functions is equicontinous.
(iii) a.) g

�
XN ; Sn(N);WN ; �

�
is stochastically equicontinous:

The sequence of stochastic functions fg(�; �)Ng is said to be stochas-
tically equicontinous if there exists a set M 2 
 where P (M) = 1 and
for every 
 > 0 there exists a � and such that for every � 2M :

sup
j�1��2j��

jg(�; �1)N � g(�; �2)N j � 


for all N > N(�)
...since for all � of the parameter space it holds that (IN � �WN)

�1 =
1X
k=0

�k �W k
N , it follows directly that g

�
XN ; Sn(N);WN ; �

�
is only a sum

of polynoms in � multiplied with X�. Since every function of the sum
is equicontinuous and the uniformly converging sum of equicontinuous
functions is itself equicontinuous, it follows that g

�
XN ; Sn(N);WN ; �

�
is

equicontinuous... (actual proof is still work in progress)

GMM- property 3 There exists a non-random matrix sequence of
positive de�nite matrices 
N such that, 
N� b
N p! 0.
Proof. (i) This is obviously true for the �rst step for both estimators

since: b
N = IN
Proof. (ii) The minimization of (10) and (7) are both yielding to con-

sistent estimators for �0. Therefore, one would use the inverse of (6) as
weighing matrix:
Due to assumption (4) and the following rewriting of b
N (for further

details, see Green page 835, b
N is positive de�nite: G(b�)
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b
N =
1
n2
�

0BBB@
X
0
nSnGN(b�)

WX
0
nSnGN(b�)
:

WzX
0
nSnGN(b�)

1CCCA
0BBB@

X
0
nSnGN(b�)

WX
0
nSnGN(b�)
:

WzX
0
nSnGN(b�)

1CCCA
0

Obviously 
N� b
N
p! 0 holds since


N� b
N = 1
n2
�

0BBB@
X
0
n
e
SXn X

0
n
e
SWXn ::: X

0
n
e
SWzXn

WX
0
n
e
SXn WX

0
n
e
SWXn ::: WX

0
n
e
SWzXn

: :

WzX
0
n
e
SXn :: ::WzX

0
n
e
SWzXn

1CCCA
where e
S = Sn

1X
k=0

�k0W
k
N

1X
k=0

�k0�Wk
N�

1X
k=0

b�kWk
N

1X
k=0

b�kWk
NS

0
n = Sn

1X
k=0

1X
l=0

�k+l0 Wk+l
N �

1X
k=0

1X
l=0

b�k+lWk+l
N S0n = Sn

1X
k=0

1X
l=0

�
�k+l0 � b�k+l�Wk+l

N S0n

5.2.4 Asymptotic distributions of the GMM- estimators:

under the GMM- Assumptions the GMM- estimator b�n has the asymtotic
distribution:
n�1=2

�b�n � �0� � N �0; (G0
0
0;gmmG0)

�1� where G0 =
@g1
@�0 j�=�0

(Matyas page 19, Theroem 1.2)

GMM- property 4 g
�
XN ; Sn(N);WN ; �

�
is continuously di¤erentiable

with respect to � on �

GMM- exact:

Proof. @g1;i
@�

=

 
@gi
@�
@gi
@�

!
= 1

n(N)

 
�WiX

0
nSn (IN��WN)

�1XN

�WiX
0
nSn (IN��WN)

�2WNXN�

!
=

1
n(N)

0BBBB@
�WiX

0
nSn

1X
k=0

�kWk
NXN

�WiX
0
nSn

1X
k=0

1X
l=0

�k+lWk+l+1
N XN�

1CCCCA is continuos in � and �.

GMM- approx:

Proof. @g2

@b�0 = �1
n
WiX

0
nSn

0@0@m(n)X
j=0

b�jWj
NXN

1A0

;

0@m(n)X
j=1

jb�j�1Wj
NXN

b�
1A01A0

is continuos in � and �.
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GMM- property 5 For any sequence ��N such that �
�
N

p! �0,

1
n

nX
k=1

@gk(Xk;Sn(k);Wk;�)
@�0 j�=��N � FN

p! 0

where FN is a sequence of q�p matrices that do not depend on �
Proof. Note that the proof of GMM- exact and GMM- approximate are

the same, since we have to show a probabilitylimit and therefore the ap-

proximate model converges to the exact model: 1
n

nX
k=1

@gi(Xk;Sn(k);Wk;�)
@�0 j�=��N =

1
n(N)

0BBBB@
�Wi

NX
0
nSn

1X
k=0

(��N)
kWk

NXN

Wi
NX

0
nSn

1X
k=0

1X
l=0

(��N)
k+lWk+l+1

N XN�
�
N

1CCCCA
) 1

n

nX
k=1

@gi(Xk;Sn(k);Wk;�)
@�0 j�=��N � FN =

1
n(N)

0BBBB@
�Wi

NX
0
nSn

1X
k=0

(��N � �0)
kWk

NXN

(SnW
i
NXN)

0
Sn

1X
k=0

1X
l=0

Wk+l+1
N XN

�
(��N)

k+l ��N � �k+l0 �0

�
1CCCCA p!

0, since ��N
p! �0

OLS- estimator

Proof.
@gOLS(Xk;Sn(k);Wk;�)

@�0 j�=��N =
@
@�0n(N)

�1Z0n
�
Y�Zn�

�
� Z0Z p! 0

where Z
0
Z = E [limn!1 n(N)

�1Z0nZn]

5.2.5 GMM- property 6

g
�
XN ;Sn(N);WN ; �

�
satis�es a central limit theorem, so that

V
�1=2
N �

p
n � g

�
XN ;Sn(N);WN ; �0

� d! N(0; Ik+1)

where VN = n � V ar(g
�
XN ;Sn(N);WN ; �0

�
)

Proof.

Theorem 5 Multivariate Lindberg- Feller Central Limit Theorem (Green
page 912):
If g (XN ;S1;WN ; �0)1 ; :::; g

�
XN ;Sn(N);WN ; �0

�
n(N)

are random vari-
ables from a multivariate distribution with �nite mean vector � and �nite
positive de�nite covariance Matrix �2
, then

p
n
�
g
�
XN ;Sn(N);WN ; �0

�
� �

� d! N
�
0; �2


�
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where

g
�
XN ;Sn(N);WN ; �0

�
= 1

n

nX
i=1

g (XN ;Si;WN ; �0)i

GMM- estimators:

Proof. i.) E
�
g
�
X1;Sn(1);W1; �0

��
= 0

ii.) 
 is positive de�nite (see GMM_Property 1.3)
iii.) 
 has �nite entries:



�2


 � �2

n2












0BBB@
X
0
n kSnk kGN(b�)k

WX
0
n kSnk kGN(b�)k

:

WzX
0
n kSnk kGN(b�)k

1CCCA
0BBB@

X
0
n kSnk kGN(b�)k

WX
0
n kSnk kGN(b�)k

:

WzX
0
n kSnk kGN(b�)k

1CCCA
0










using Lemma 1



�2


 � �2

n2
a2












0BBB@
X
0
n

WX
0
n

:

WzX
0
n

1CCCA
0BBB@

X
0
n

WX
0
n

:

WzX
0
n

1CCCA
0








 <1

OLS- estimator

Proof. (Ia): Vn = n � V ar(gOLS
�
XN ;Sn(N);WN ; �0

�
) =

E
h
1
n
Z0nSnGN(�0)�N�

0
NG

0
N(�0)S

0
n(N)Zn

i
= �2

n
Z0nSnGN(�0)G

0
N(�0)S

0
nZn

(Ib)Vn ... is positive de�nite since rank(Z) = (m(n) + 1)k
(Ic)Vn ... has �nite entries: 1

n
Z0nZn � z2max1m(n)k+k�m(n)k+k

(II):
p
ng
�
XN ;Sn(N);WN ; �0

�
= 1p

n
Z0nSn(N)GN(�0)�N

d! N(0;Vn)

5.3 Consistency-proof for NLS- estimators:

If the following NLS- properties (NLS- properties 1-6) are ful�lled then
the NLS- minimization yields consistent estimators (proof see Prucha
Asymptotic script page 19).One must point out that in Prucha assumes
that the yi are i.i.d. but the proof logic also applies if the yi have a depen-
dence like

�
Sn (IN � �0WN)

�1 "
�
i
. These conditions are written as prop-

erties for the function hi() where we de�ne: �i =
�
Sn (IN � �0WN)

�1 "
�
i

where ()i denotes the ith entry in this vector.

Notation for NLS- exact:
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Q1;n(Xn; �; �) = n
�1

nX
i=1

q1 (xi; �; �) =

1
n

�
Yn � Sn (IN � �WN)

�1XN�
�0 �
Yn � Sn (IN � �WN)

�1XN�
�
=

n�1
nX
i=1

(yi � h1;i(X; �; �))2 ) h1;i(X; �; �) =
�
Sn (IN � �WN)

�1XN�
�
i

Notation for NLS- exact:

Q1;n(Xn; �; �) = n
�1

nX
i=1

q2 (xi; �; �) =

1
n

0@Yn � Sn
m(n)X
k=0

�kWk
NXN�

1A00@Yn � Sn
m(n)X
k=0

�kWk
NXN�

1A = n�1
nX
i=1

(yi � h2;i(X; �; �))2 )

h2;i(X; �; �) =

0@Sn m(n)X
k=0

�kWk
NXN�

1A
i

5.3.1 NLS- property 1

hi(X; �; �) is a real valued function on RN�k �B, B � Rk+1 where B is
a Borel set
Proof. Both functions are real valued functions. Therefore NLS-1 prop-

erty is ful�lled.

5.3.2 NLS- property 2

B � Rk+1 is compact.
Proof. Ful�lled due to Assumption 1

5.3.3 NLS- Property 3

hi(X; :; :) is Borel measurable for each [�
0; �]0 2 B

Proof. Both functions are continuous functions on auf [�0; �]0 2 Rk �

(�1; 1). Therefore both are Borel- measurable.
5.3.4 NLS- Property 4

zi = [yi;xi] with yi 2 R and xi 2 Rn�k is a sequence of identically and
independently distributed random vectors.
Proof. Ful�lled due to Assumption 3

5.3.5 NLS- Property 5

E[yijxi] = h(xi; �0; �0) for �0; �0 2 B.
Proof. This obviously true for h1, since
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E[yijxi] = E[h1(�0; �0;Si;Wi;Xi)i+�ijxi] =E[h1(�0; �0;Si;Wi;Xi)ijxi] =

E

" 
Si

1X
k=0

�k0W
k
iXi�0

!
i

#
= h1(�0; �0;Si;Wi;Xi)i

For h2 this is only true with an maximal error �(m(n)) �, since

E[yijxi] = E[h2(�0; �0;Si;Wi;Xi)i +

0@Si 1X
k=m(n)+1

�k0W
k
iXi�0

1A
i

+

�ijxi] = E[h2(�0; �0;Si;Wi;Xi)ijxi] + �(m(n); i) where �(m(n); i) =0@Si 1X
k=m(n)+1

�k0W
k
iXi�0

1A
i

) �(m(n)) := maxi fj�(m(n); i)jg � kxm�m
j�0jm(n)+1
1�j�0j

5.3.6 NLS- Property 6

E[yi � h1;2(xi; �0; �0)]2 <1 and E[sup[�0;�]02B (h1;2(xi; �; �))
2] <1.

NLS- exact:

Proof. (i)E[yi�h1(xi; �0; �0)]2 = E
��
Si (Ii��Wi)

�1�
i
"2i
�
< aE

�
(")2i

�
=

a2�2

Proof. (ii) E[sup[�0;�]02B (h1(xi; �; �))
2] =

E
h
sup[�0;�]02B

�
Si (Ii��Wi)

�1Xi�
�2
i

i
� (axmk�m)

2 <1

NLS- approx:

Proof. (i) b.) E[yi � h2(xi; �0; �0)]2 =

E

240@�
0@S 1X

k=m(n)+1

�k0W
k
iXi�0

1A
i

+
�
Si (Ii��0Wi)

�1 "i
�
i

1A235 � j�0jm(n)+1
1�j�0j

kxmi�0+

a2E["2i ] <1
Proof. (ii) b.) E[sup[�0;�]02B (h1(xi; �; �))

2] =

E

24sup[�0;�]02B
0@h1(xi; �; �)�

0@Si 1X
k=m(n)+1

�kWk
iXi�

1A
i

1A235 � (axmk�m)2+
2ax2mk

2�2m
j�jm(n)+1
1�j�j + x2mk

2�2m

�
j�jm(n)+1
1�j�j

�2
<1

5.3.7 NLS- property 7

E[h1;2(xi; �0; �0)� h1;2(xi; �; �)]2 > 0 for � 6= �0

NLS- Exact:
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E[h1(xi; �0; �0)�h1(xi; �; �)]2 = E
" 
Si

1X
k=0

�
�k0�0 � �k�

�
Wk

iXi

!
i

#2
=

0) � = �0

NLS- approximate:

E[h2(xi; �0; �0)�h2(xi; �; �)]2 = E

240@Si m(n)X
k=0

�
�k0�0 � �k�

�
Wk

iXi

1A
i

352 =
0) � = �0

5.4 Asymptotic distribution- proof for NLS- esti-
mators:

The following NLS- properties (1-7) have to be ful�lled in order that the
following theorem holds (proof, see Prucha page 27; nonlinear economet-
ric models)

n1=2
�b�N � �0� D! A�1

0 D0�

if � � N(0;�0), then
n1=2

�b�N � �0� D! N
�
0;A�1

0 B0A
�1
0

�
with B0 = D0�0D

0
0

5.4.1 NLS- property 8

The parameter space T and B are Compact subsets of Rp� and R�� ,
respectively.
Proof. This is for both NLS estimators ful�lled due to Assumption 1

5.4.2 NLS- property 9

QN = ZN � T � B ! R where QN(z1; :::; zN ; � ; �) is �� measurable
for all (� ; �) 2 T � B and QN(z1; :::; zN ; � ; �) is a.s. twice continuous
partially di¤erentiable at every point (� ; �) in the interior of T � B
(where exceptional null sets does not depend on (� ; �)).

NLS- exact:

Proof. QN(z1; :::; zN ; �N ; �N) =
1
2n
"n(�; �)

0"n(�; �) where "n(�; �) =
Yn � SnGN (�)XN�

r�0QN(z1; :::; zN ; �N ; �N) =
�1
n

�
X0
NGN (�)

0 S0n"n(�; �)
�0X0

NGN (�)
0 S0n"n(�; �)

�
QN is continuous di¤erentiable at every point in (� ; �)

r��QN(z1; :::; zN ; �N ; �N) =
1
n

�
A+A

�
,
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A =

�
X0
NGN (�)

0 S0n
�0X0

NGN (�)
0 S0n

��
SnGN (�)XN SnGN (�)XN�

�
,

A = �
�

0k�k
"n(�; �)

0SnGN (�)X
X0
NGN (�)S

0
n"n(�; �)

2"n(�; �)
0SnGN (�)WNGN (�)X�

�
,

QN is twice continuous di¤erentiable at every point in (� ; �) where
GN (�) = GN (�)WNGN (�)

NLS- approx:

Proof. r�0QN(z1; :::; zN ; �N ; �N) =
�1
n

0BBBB@
X0
N

m(n)X
k=0

�kW0k
NS

0
n"n(�; �)

�0X0
N

m(n)X
k=1

k�k�1W0k
NS

0
n"n(�; �)

0

1CCCCA
QN is continuous di¤erentiable at every point in (� ; �)

r��QN(z1; :::; zN ; �N ; �N) =
1
n

�eA+ eeA�,
eA =

0BBBB@
m(n)X
k=0

�kH0

m(n)X
k=1

k�k�1H
0

1CCCCA
 
m(n)X
k=0

�kH

m(n)X
k=1

k�k�1H

!
,

eeA = �

0BBBB@
0k�k

"n(�; �)
0
m(n)X
k=1

k�k�1H

m(n)X
k=1

k�k�1H0"n(�; �)

m(n)X
k=2

k (k � 1) �kH0
"n(�; �)

1CCCCA
"n(�; �) = Yn � Sn

m(n)X
k=0

�kWk
NXN , H = S �Wk �X, H = H � �

QN is twice continuous di¤erentiable at every point in (� ; �)

5.4.3 NLS- property 10

The estimators
�b�N ;b�N� take their values in T �B, the true parameters

(� 0; �0) lie in the interior of T �B,b�N � �0 as n!1,
n1=2 � (b�N � b� 0) = Op(1)

Proof. Ful�lled due assumption (1)
NLS- Exact and NLS- approx ful�ll: b�N � �0 as n ! 1 , since

lim
n!1

m(n) =1
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5.4.4 NLS- property 11

The sequence b�N satis�es
n1=2 � r�0 �QN(z1; :::; zN ;b�N ;b�N) = op(1)
(I.e. b�N satis�es the normalized �rst order conditions up to an error

of magnitude op(1).

Proof. p lim
n!1

�1p
n

�
X0
NGN (b�)0 S0nSnGN (b�) "N

�0X0
NGN (b�)0 S0nSnGN (b�) "N

�
� p lim

n!1

1p
n

�
a2X0

N"N
�ma

2X0
N"N

�
=

op(1)

5.4.5 NLS- property 12

For all sequences of random vectors
�e�N ;e�N� with e�N p! � 0 and e�N p! �0

we have
r�� �QN(z1; :::; zN ;b�N ;b�N) p! A0
as N !1, where A0 is a real symmetric positive de�nite matrix:

Proof. Note that p lim
n!1

1
n

�
A+A

�
= p lim

n!1

1
n

�eA+ eeA�
p lim
n!1

1
n
A

p! 0k+1�k+1 for � = e�N , since "n(�0; �0) = SnGN (�0) " ande�N p! �0
p lim
n!1

1
n
A� 1

n
A0 =

1
n

 
X0
NG�N (e�; �0)0 S0n�e� � �0�0X0

NG
0
�N (e�; �0)S0n

!�
SnG�N (e�; �0)XN SnG�N (e�; �0)XN�

� p!

0k+1�k+1 whereG�N (e�; �0) = 1X
k=0

(e�� �0)kWk
N ,G�N =

1X
k=1

k�(e�� �0)k�1Wk
N

since e�N p! �0.
A0 is a real symmetric positive de�nite matrix since X0

NGN (�0)
0 S0n

and �00X
0
NG

0
N (�0)S

0
n are linear independent (for more details see Green

page 835).

5.4.6 NLS- property 13

For all sequences
�e�N ;e�N� as in NLS- property 12 we have

r�� �QN(z1; :::; zN ;b�N ;b�N) p! 0

Proof. p lim
N!1

�1
n

�
X0
NGN (b�)0 S0nSnGN (b�) "N

�0X0
NGN (b�)0 S0nSnGN (b�) "N

�
p! 0 since 1

n



X0
NGN (b�)0 S0nSnGN (b�)

 �

xma
2 <1 and



�0X0
NGN (b�)0 S0nSnGN (b�)

 � �mkxma2

5.4.7 NLS- property 14

There exists a real matrix D0 such that
�N1=2r�0 �QN(z1; :::; zN ; � 0; �0)

p! D0 � �n + op(1)
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where �n and � are random vectors satisfying �n
D! �

Proof. Obviously it is true that: p lim
N!1

1p
n

�
X0
NGN (�0)

0 S0n"n(�0; �0)
�0X0

NGN (�0)
0 S0n"n(�0; �0)

�
�

1p
n

�
X0
NGN (�0)

0 S0nSnGN (�0) "N
�0X0

NGN (�0)
0 S0nSnGN (�0) "N

�
p! op(1). Therefore, D0 =

�1
n

�
X0
NGN (�0)

0 S0n
�0X0

NGN (�0)
0 S0n

�
and n1=2�n = n

1=2SnGN (�0) "N
D! � (????)
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