
Koch, Karl-Josef; Trimborn, Timo; Steger, Thomas M.

Working Paper

Multi-Dimensional Transitional Dynamics: A Simple
Numerical Procedure

Volkswirtschaftliche Diskussionsbeiträge, No. 121-05

Provided in Cooperation with:
Fakultät III: Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht, Universität
Siegen

Suggested Citation: Koch, Karl-Josef; Trimborn, Timo; Steger, Thomas M. (2005) : Multi-Dimensional
Transitional Dynamics: A Simple Numerical Procedure, Volkswirtschaftliche Diskussionsbeiträge,
No. 121-05, Universität Siegen, Fakultät III, Wirtschaftswissenschaften, Wirtschaftsinformatik und
Wirtschaftsrecht, Siegen

This Version is available at:
https://hdl.handle.net/10419/118772

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/118772
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


? Volkswirtschaftliche 
Diskussionsbeitrage VWL 

Multidimensional Transitional Dynamics: 
A Simple Numerical Procedure 

Timo Trimborn, University of Hamburg 
Karl-Josef Koch, University of Siegen 

Thomas M. Steger, ETH Zurich 

Discussion Paper No.121-05 

ISSN 1433-058x 

UNJVERSIT AT SIEGEN 
F ACHBEREICH WIRTSCHAFTSWISSENSCHAFTEN 



Multi-Dimensional Transitional Dynamics: 
A Simple Numerical Procedure 

Timo Trimborn, University of Hamburg* 
Karl-Josef Koch, University of Siegen.. 

Thomas M. Steger, ETH Zurich 

December 2004 

Abstract 

Growth models often give rise to saddle-point stable dynamic sys-
tems with multi-dimensional stable manifolds. It is argued that stan-
dard solution procedures used to numerically approximate the tran-
sition process are generally inadequate when the (stable) eigenvalues 
differ substantially in magnitude. Therefore, the relaxation procedure 
is proposed as a powerful method for simulating the transition process 
in dynamic macroeconomic models. We argue that this procedure is 
in general well-suited and highly efficient. The procedure can be easily 
applied to dynamic systems which exhibit the above mentioned struc-
tural characteristics. This is demonstrated by simulating the transition 
process of the well-known Jones {1995) model. 
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1 Introduction 

Dynamic macroeconomic theory nowadays relies heavily on infinite horizon 
optimization models which usually give rise to a system of nonlinear dif-
ferential equations. This dynamic system is then in,terpreted to describe 
the evolution of the economy under consideration. Many studies in the 
field of growth theory have confined their a~alysis to the balanced growth 
path {BGP). A comprehensive understanding of the respective model under 
study requires, however' to additionally investigate the transition process. 
At least two important arguments support this view: ~irst, the positive and 
normative implications might differ dramatically depending on whether an 
economy converges to the BGP or grows along the BGP (e.g. Jones, 1995). 
Second, dynamic macroeconomic models are often employed to conduct com-
parative welfare investigations of different policy regimes or instruments. In 
this context, the transition process needs to be taken into account. Lin-
earizing the dynamic system might be appropriate in many cases but can be 
potentially misleading especially whe:n the analysis aims at a Pareto-ranking 
of different policy instruments. This overall perspective is best summarized 
by the following statement due to Jonathan Temple (2003, p. 509): Ulti-
·mately, all that a long-run equilibrium of a model denotes is its final resting 
point, perhaps very distant in the future. We know very little about this 
destination, an·d sho.uld be paying more attention to the journey. 

Especially in growth theory the models under study are very often multi-
dimensional in the sense that there is more than one (predetermined) state 
variable. Usual stability properties then imply that the stable manifold is 
also multi-dimensional. 1 Examples for models which fit into this class com-. 
prise R&D-based growth models (e.g. Romer, 1990; Jones, 1995; Eicher and 
Turnovsky, 1999) as well as human-capital based growth models (e.g. Lucas, 

1 In the case of saddle-point stability, the dimension of the stable manifold equals the 
dimension of the state space, while indeterminacy implies that the dimension of the stable 
manifold exceeds the dimension of the state space. 
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1988; Mulligan and Sala-i-Martin, 1993; Benhabib and Perli, 1994). More-
over, if the dynamic system is charcterized by (stable) eigenvalues which 
differ substantially in magnitude, then usual ·procedures are either not appli-
cable or highly ineffecient.2 It is important to notice that this characteristic 
property is not at all a special {or even pathological) case but instead occurs 
quite frequently. Indeed, employing the well-known Jones {1995) model we 
will show that this property results from usual calibrations. 

The paper at hand contributes to the literature on dynamic macroeco-
nomic theory by proposing the relaxation procedure as a powerful method 
to simulate the transition process in growth models. We will ar~e that 
this procedure is in general well-suited and highly efficient. Moreover, this 
procedure can be easily applied even when the stable manifold is multi-
dimensional and the stable eigenvalues differ substantially. This will be 
demonstrated by simulating the transition process of the well-known Jones 
{1995) model, which implies a two-dimensional stable manifold with_ po-
tentially non-monotonic adjustments and shows (stable) eigenvalues which 
differ drastically in magnitude. 3 

Turning to the related literature, there are, of course, a number of proce-
dures to simulate the transition process of dynamic macroeconomic models. 
In the context of growth theory, the most prominent approaches comprise 
shooting (e.g. Judd, 1998, Chapter 10), time elimination (Mulligan and 
Sala-i-Martin, 1991), backward integration (Brunner and Strulik, 2002), 
the projection method (Judd, 1992) as well as the discretization method 
of Merencier and Michel {1994). The similarities and differences of the 
relaxation procedure and the methods mentioned above will be discussed 
concisely in Section 2.4. We will argue that the relaxation procedure is 
largely superior to existing methods and can easily deal with problems such 

2 In the mathematical literature, differential equations exhibiting this structural char-
acteristic are labelled "stiff differential equations". · 

3To the best of our knowledge, there is no study simulating the transition process of 
the Jones (1995) or related models such as Eicher and Turnovsky (1999). 
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as non-monotonic adjustments and stiff differential equations. 
The paper is structured as follows: In Section 2, the relaxation proce-

dure is first described concisely, then evaluated numerically employing the 
Ramsey-Cass-Koopmans model and eventually compared to other existing 
procedure. In Section 3, we apply this procedure to simulate the transition 
process of the well-known Jones (1995) model. Finally, Section 4 summarizes 
and concludes. The appendix (Section 5) provides a more formal description 
of the relaxation algorithm. 

2 The relaxation procedure 

2.1 Description of the relaxation procedure 

The principle of relaxation can be applied to various· numerical problems. 
Here we use it to solve a differential equation numerically. Relaxation type 
algorithms applied to differential equations have two very useful proper-
ties. First of all, they can easily scope with boundary conditions, such 
as initial conditions for state variables and transversality conditions of op-
timal growth. Second, additional equations, e.g. equilibrium conditions or 
feasability constraints, can be incorporated straight away. Beyond, by trans-
formation of the (independent) time variable one can solve infinite horizon 
problems with, as they arise from many dynamic optimization problems in 
economics. 

Suppose we want to compute a numerical solution of a differential equa-
tion in terms of a large (finite) sequence of points representing the desired 
path. To start with, we take an arbitrary trial solution, typically not satisfy-
ing the slope conditions implied by the differential equation nor the bound-
ary conditions. We measure the devi~tion from the true path by a multi-
dimensional error function and use the derivative of the error function to 
improve the trial solution in a Newton type iteration. Hence, at each point 
of the path the correction is related to the particular inaccuracy in slope and 
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. in solving the static equation. The crucial difference to the various shooting 
methods is the simultaneous adjustment along the path as a whole. 

The outline of the algorithm proposed in this paper leans heavily on 
Press, Flannery, Teukolsky and Vetterling (Press et al. 1989, pp. 645-672). 
We have implemente4 the algorithm in matlab. The code is published for 
free download in the intemet4 and a print version is available on request. 5 

We apply the method to the following problem: Consider a system of N 
ordinary differential equations together with N - N (static) equations in N 
real variables. This system describes a vector field on a ( N - N)-dimension~l 

surface in R_N. We impose a list of n1 boundary conditions at the starting 
point and. n2 at the end point of a path sufficient to determine a particular 
trajectory. To meet all dimensional requirements n1 and n2 must add up to 
&. 

For the finite representation of the problem we fix a time mesh of M 

points in time. In case of an infinite time horizon we choose a transformation 
to map the interval (0, oo) to (0, 1). At each point of time an N-dimensional 
vector has to be determined. We approximate the differential equation by 
M-1 systems of equations of dimension N for the slope between neighboring 
mesh points. Together with N boundary conditions we have an M x N di-
mensional system of equations. After adding the n2 static equations which 
have to hold at each of the M mesh points we have incorporated all re-
strictions available. The final system of nonlinear equations is of dimension 
M x N and involves the same number of unknowns. 

We apply a Gau6-Newton procedure to compute a root of this system. 
Step by step we adjust the trial solution until the error is sufficiently small. 
This involves the solution of a linear equation with the Jacobian matrix of 
the system of nonlinear equations. At first glance there seems little chance to 
achieve good solutions because the complexity of the problem is proportional 

4 http://www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm 
5 In the appendix we give a. detailed description of the algorithm. 
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to the size of the Jacobian matrix which is quadratic in M. However, the 
Jacobian is not an arbitrary matrix of dimension M x N. 

The Jacobian matrix inherits a specific structure from the approxima-
tion of the differential equation. The boundary conditions and the static 
equations each depend only on one respective vector, and the interior slope 
conditions only on neighboring vectors. Hence the Jacobian matrix shows 
nonzero entries only close to the diagonal. This can be used to solve the 
linear system by a special version of a GauB algorithm carrieded out recur-
sively on N-dimensional blocks along the diagonal. This recursive procedure 
allows to increase the number M of mesh points without increasing the di-
mension of the blocks. Only the number of blocks increases in proportion 
to M. The complexity of the problem is only linear in the number of mesh 
points and not quadra~ic. Hence, a fairly good approximation of the con-
tinuous path is possible without using too much computer time. 

2.2 Implementat~on of the algorithm 

In this section we describe how the relaxation algorithm is applied to solve 
the Ramsey-Cass-Koopmans model (see Ramsey (1928}, Cass (1965}, Koop-
mans (1965}}, since it is a simple growth model where the problem of a saddle 
point arises. The model gives rise to a system of two differential equations 
for consumption and capital in effective labor (see Barro and Sala-i-Martin 
(2004)): 

i:. = ~(aka-1 -(o+p+xo)Y 

k = k"' - c - ( n + x + o)k 
(1) 

(2) 

The elasticity of capital in production is denoted by a, population growth 
with n, depreciation with c5 and the exogenous growth of technology by x. 
The parameter for time preference is p and the inverse of the intertem-
poral elasticity of substitution is denoted by 9. The steady state is at 

k* = ( r+P \ 1 ~0 and c* = (k*)"' - (n + x + o)k* and saddle point stable. 
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First, a time mesh has to be chosen where the solution is calculated. We 

choose the mesh to be uniform in r, the transformed time scale. 
Second, the two differential equations have to be transformed into two · 

difference equations, taking into account the transformation of time as de-
scribed in the appendix. These difference equations has to be satisfied be-
tween every two mesh points. For M mesh points this leads to 2 · ( M - 1) 
nonlinear equations. 

Third, two boundary condition have to be chosen to complete the set 
of equations to 2 · M. Ih this example the relaxation algorithm needs one 
initial boundary condition and one final boundary condition. Capital is the 
state variable and therefore we choose capital to be .at 103 of its steady 
state value at t = 0. For the final boundary condition there are several 
possibilities to formulate an equation. It would be possible to choose each 
of the two equations (1) or {2) and set the RHS equal to zero. However, 
here the steady state values for consumption and capital can be computed 
analytically so we choose consumption to equal its steady state value as the 
final boundary condition. Note, that only one final boundary condition is 
nee<;led. Thus the algorithm does not make use of the knowledge of the 
steady state value of capital. It is reached ~utomatically. 

At last an ii:titial guess for the solution has to be made. We choose c and 
k to be constant at their steady state values (ct, kt)= (c*, k*). The Newton 
procedure always converged quickly, indicating a high degree of robustness 
regarding to the initial guess. 

2.3 Evaluation of the procedure 

For the special parametrization (} = a(S+:~e:z:)-:z: the solution can be ex-
pressed analytically, because the representative consumer chooses a constant 
saving rates= j (see Barro and Sala-i-Martin (2004)).6 This allows us to 

6The analytical solution is k(t) = f 1 + ( k1- 0 - 1 '\ e-<t-o)(6+n+:i:>t 1 ~ c6+n+:z:)9 o (cl+n+:z:)9 
and c(t) = (1 - ~ )k(t)0

• 
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compare the computed results with the analytical solution, which has a pre-
cision close to the machine epsilon. The relative error is computed for every 
mesh poirit. Table 1 shows the maximum relative error of consumption and 
capital per capita for different number of mesh points for a common set 
of parameter values. In addition, the quadratic mean error of combined c 

and k provides information about the distribution of the error.7 It can be 
seen in table 1 that multiplying the number of mesh points by x reduces 
the maximum error of each solution vector by the factor .:Z, which indicates 
the order 2 of the difference procedure. Even with a moderate number of 
mesh points and therefore a short computation time a sufficient high degree 
of accuracy can be achieved. Moreover the accuracy can be improved to a 
very high degree just with increasing the number of mesh points. It should . 
be mentioned that the allocation of the mesh was chosen exogenously. The 
accuracy of the algorithm could be improved with a self allocating time 
mesh. 

I number of mesh points I max error c max error k mean error 
10 < 1.3·10 ·2 < 3.4· 10-:4 < 3.0.10-o:s 

. 100 < 1.1·10-4 < 8.6 .10-a < 2.7·10-6 

1,000 < 1.1·10-6 < 8.5 .10-7 < 8.2.10-9 

10,000 < 1.1·10-8 < 8.5 .10-~ < 2.6 .10-u 
100,000 < 1.1 .10-1u < 8.5·10-u < 8.2 .10-14 

Table· 1: Accuracy of the algorithm 

The treatment of higher dimensional systems even with multi-dimensional 
stable manifolds is analogous, therefore the performance of the algorithm 
should be similar at more complicated models. 

7 It is defined as E:::::: N~ • 'E:!.1 E~, + E~1 E~i with Ee, and Ek, defining the relative 
error of k and c respectively at mesh point i. 
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2.4 Comparison to other procedures 

In this section we compare very briefly the relaxation procedure to common 
alternative solution methods. Other solution techniques for this problem are 
the backward integration (Brunner and Strulik 2002), multiple shooting (e.g. 
Judd {1998), Chapter 10), time elimination {Mulligan and Sala-i-Martin 
1991), projection methods (e.g. Judd {1992), Judd {1998)) and the method 
of Mercenier and Michel {1994). We keep this section brief and restrict our 
comparison to related methods, because most of the procedures and their 
advantages are described in Judd {1998) an~ Brunner and Strulik {2002). 

The method of backward integration as described in Brunner and Sti:u-
lik {2002) exploits the numerical stability of the backward looking system 
by inverting time. By starting near the steady state of the transformed 
system the resulting initial value problem is stable and the solution con-
vergea towards the stable manifold quickly. Therefore the method can solve 
systems with single dimensional stable manifolds very conveniently. For 
multi-dimensional manifolds Brunner and Strulik {2002) suggest to gener-
ate starting values on an orbit around the steady state. To pass through 
a pre-specified point, which is determined by a specific shock under study, 
it is necessary to iterate until the trajectory hits this point. However, if 
the real parts of the eigenvalues associated with the stable manifold differ 
substantially, the problem of a stiff system of differential equations occurs. 
It is well-known that these problems are very hard to handle numerically. 
If the difference of the stable eigenvalues is sufficiently high, it is impossible 
to meet the pre-specified point, because the backward shooting trajectories 
will be attracted by the submanifold associated with the eigenvalue with the 
smallest real part. Therefore the resulting trajectories can not represent a 
specified shock and potentially have no economic meaning. 

Mercenier and Michel ( 1994) propose to transform the continuous time, 
infinite horizon problem into a finite horizon maximization problem in dis-
crete time with the same steady state. Maximizing the transformed problem 
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leads to a system of non-linear equations, which can be solved with a New-
ton algorithm similar as in the relaxation ·algorithm. Our approach is to 
solve the system of differential equations. Here the discretisation is done at 
a later stage. To apply our algorithm the researcher simply has to paste the 
system of differe~tial equation into the algorithm instead of converting the 
whole maximization problem. Apart from the simplicity our approach has 
some further advantages. 

First, our approach is more general, since the system of differential equa-
tions can be attained .in different ways, not only by a single· maximization 
problem. In particular the approach of Mercenier and Michel for steady 
state invariance requires the discount factor to be constant. However, if the 
firm also faces an intertemporal optimization problem the discount factor 
is the real interest rate which is not constant during transition. Therefore 
steady state invariance can not be guaranteed and the performance of the 
method deteriorates. Second, the relaxation algorithm we propose can deal 
with a compactification of the time interval. Therefore it is not necessary to 
choose an adequate terminal time where the optimization is truncated. Also 
the treatment of a post terminal stationary phase does not apply. Third, in 
the approach of Mercenier and Michel the way of discretisation is fixed. The 
relaxation algorithm leaves room for selecting different discretisation rules, 
also of higher order. This leads to a higher level of accuracy with· the same 
number of mesh points. The discretisation rule of the method of Mercenier 
and Michel is a first order rule,· where· ·our approach uses a second order 
rule.8 

Projection methods as they are introduced iri Judd (1992) and Judd 
(1998) cover a very wide range of algorithms. They are considered to be 
fast and accurate, but they need a high programming effort. However, very 
often they are applied to solve for the policy function, not for the system of 

8When multiplying the number of mesh point with x a first order rule leads to a 
reduction of the global error by ~where a second order rule red~ces the error by iz. 
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differential equations. This does not work for cyclical adjustment or prob-
lems with multi-dimensional stable manifolds, because the policy function 
can not b~ computed at certain points. In addition, the polynomial bases 
and therefore the computation costs grow exponentially when the dimension 
of the problem increases. To avoid this "curse of dimensionality" a special 
complete polynomial basis is chosen. But then also the dimension of the 
basis grows polynomially compared to the relaxation algorithm where the 
cost of computation grows quadratically. 9 

For the method of time elimination part of the same critique holds. With 

multi-dimensional stable manifolds ~he policy functions can not be computed 
· ·at certain points and therefore the method does not work. 

3 An illustrative application 

The relaxation procedure is employed to investigate the transition process of 
the well-known R&D-based semi-endogenous growth model of Jones {1995). 
This model is chosen since it implies a two-dimensional stable manifold. 
Moreover, for standard calibrations the two stable eigenvalues differ drasti-
cally (by about a factor of ten) and, hence, usuai procedures are inappro-
priate to solve the underlying dynamic system. 

3.1 Th~ Jones model 

. As in Jones {1995), the focus here is on the market solution. The final-output 
t~chnology is given by Y = ap(</JL)uL .r: x(i)1-uLdi, where Y denotes final 
output, <P the share of labor allocated to final-output production, x( i) the 
amount of differentiated Gapital goods of type i, A the number of differen-
tiated capital goods, ow a constant overall productivity parameter and a L 

9For the example of the Jones (1995) model presented below this means a basis of 28 
elements if the solution is approximated with' linear functions, a basis of 55 elements if 
the solution is approximated with quadratic polynomials and smaller and a basis of 91 
elements for an approximation with polynomials of degree three and smaller. 
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the elasticity of labor in final-output production. Noting the general symme-
try among x(i) and using the definition of aggregate.capital K :=Ax, the 
final-output technology can be written as Y = aF(A</>L )O'L K 1-uL. The 
R&D technology is A = J = aJA'lA ((1 - <P)L)'1L with 1/L := 771 + 11i, 
771 = 1,-1 < 11i < 0, where A := dA/dt, <l!J denotes a constant overall 
productivity parameter, 1/A the elasticity of technology in R&D and 1/L the 
elasticity of labor in R&D. 

To simulate the transition process, one needs the complete dynamic sys-
tem governing the evolution the economy under study. Moreover, we express 
all endogenous variables as normalized or scale-adjusted variables such that 
their long-run levels are constant. This dynamic system can be summarized 
as follows: 10 

ci = j - f3Ank 

c = ~[r - 6 - p - {1 - 1)n) - f3xnc 
. "Y 

Va = Va(r. - (f3K - f3A)n) - 1r 

ULY rflj T =Val-<P 

(3) 

(4) 

(5) 

(6) 

(7) 

with y = ap(a</>)O'Lk1-uL, j = <l!Ja'1A(l - <P)'1L, r = (l-kL)
2
Y, 1r = 

uL(l-uL)Y f3K = l-9A+!JL r.1A = _!lL, The scale-adJ'usted variables are a ' 1-'lA ' fJ. 1-'lA 
defined by y := Y/JJJK, k := K/Ifh<, c := C/If1K, a:= A/If1A, j := J/J}JA 
and Va := v/IJ3K-PA. The (unique) stationary solution of this dynamic 
system corresponds to the (unique) balanced growth path of the economy 
expressed in original variables. 

Equations (3) and (4) are the equations of motion of (scale-adjusted) cap-
ital and technology, (5) is the Keynes-Ramsey rule of optimal consumption c, 
(6) shows capital market equilibrium with Va denoting the (scale-adjusted) 

1°For a detailed derivation of the dynamic system for the general R&D-based non-scale 
growth model see Steger (2004). 
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price of blueprints and (7) determines the privately efficient allocation of 
labour across final-output production and R&D. 

3.2 Investigation of the transition process 

Numerically, the problem is to·solve a four dimensional system of differential 
equations (3) - (6) and simultaneously one static equation (7) that has to 
be satisfied at all times. The steady state is a saddle point with a two-
dimensional stable manifold. Since the steady state can be computed only 
numerically the algorithm computes the steady state of the system first by 
applying a Newton algorithm. The choice of k(O) = ko and a(O} = ao 
as the initial boundary condition is obvious, since k and a are the state 
yariables. Again for choosing the final boundary conditions there is some 
scope in setting the RHS of two of the four differential equations equal to 
zero. We take the equations (5) and (6). As an initial guess we choose again 
all variables to be constant at their steady state values. This always leads to 
quick convergence supporting the impression that the procedure is relatively 
robust regarding to the initial guess. 

The transition process considered below results from a combination of 
two simultaneous shocks. Specifically, it is assumed that the overall pro-
ductivity parameter in the production function for final output O!F increases 
from 1.0 to 1.3, while the overall productivity parameter in the production 
function for new ideas O!J decreases from 1.0 to 0.9. This shock was chosen 
to demonstrate that the adjustment can be non-monotonic and therefore 
the policy functions can not be computed at certain points with conven-
tional methods, .which can be seen in the phase diagrams in Figure 1 (vi).11 

Figure 1 gives a summary of the adjustment process. The plots (i) to (iii) 
show the time path of the jump variables c, </>,Va, plots (iv) and (v) display 
the time path of the state variables k and a, while plot (vi) contains the 

11The set of parameters used for the simulations reads <TL = 0.6, <TK = 0.4, 6 = 0.05, 
n = 0.015, T/A = 0.6, T/L = 0.5, T/r = 0.6, p = 0.04 and 'Y = 1. 
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Figure 1: Summary of the transition of the Jones (1995) model 

projection of the adjustment trajectory into the (k,a)-plane. Several aspects 
are worth being noticed: (1) The transition process shows a pronounced 
non-monotinicity for c and k. This overshooting pattern in scale-adjusted 
variables implies that the instantaneous growth rate of the respective orig-
inal variable is initially above the long-run growth rate, then undershoots 
and finally converges to the long-run value. (2) The (average) speed of con-
vergence appears to be fairly low with half-lifes of more than 50 years. This 
observation underlines the importance of the analysis of transitional dynam-
ics. (3) The intersectoral allocation variable </>first jumps up [indicated by 
the crosses in plot(ii)) and then converges to the intial long-run value. This 
feature mirrors the basic non-scale character of the underlying model. 
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4 Summary and conclusion 

In this paper, we propose the relaxation procedure as a powerful and ef-
ficient procedure to investigate the transition process of dynamic macro-
economic models. At a very general level, this procedure has two main 
advantages: First, it is simpler than most other procedures. Second, and 
more importantly, the relaxation procedure can easily deal with complex 
dynamic systems for which standard procedures are generally inadequate. 
More specifically, the procedure can readily handle dynamic systems which 
are characterized by multi-dimensional stable manifolds (with the poten-
tial of non-monotonic adjustment patterns) and strongly differing (stable) 
eigenvalue8. It is important to notice that such dynamic systems are not 
at all special cases but arise quite frequently from a large number of widely 
employed growth models. 

As an example, the relaxation procedure has been used to investigate 
the transition process of the well-known Jones (1995), which represents one 
of the basic workhorses in modern growth theory. Usual procedures turn 
out to be inadequate for the analysis of this model. This is probably the 
reason for the fact that there are only few studies which take the adjustment 
process of this or related models into account. 12 

5 Appendix 

In this section ~e go thr~ugh some details of the algorithm. Consider a 
system of N differential equations on ~n open set in RN, with N 5 N. Let 
x be the vector of those components of the full vector x€RN affected by f. 

dx 
dt = f(t,x) , f: IR+ x IRN ~RN 

12To the best of our knowledge, Papageorgiou and Perez-Sebastian (2003) is the only 
study which, using the projection method of Judd (1992), simulates the adjustment process 
of an (extended) non-scale R&D-based growth model. 
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If N is strictly smaller than N the ~ifferential equations are to be supple-
mented by N - N equations x has to satisfy at any time. 

0 = g(t,x) , g: R+ x RN--+ RN-N 

Boundary conditions are supposed to be given in form of ni initial conditions 
and n2 final conditions. For the solution to be well determined we need 
ni + n2 to equalize N. Finally, it is convenient to denote the codimension 
N - N of the manifold given by g = 0 with na. Summing up we have 

ni initial conditions 
n2 final conditions 
na · running equations 

with ni +n2 +na = N +na = N 

For convenience, we rescale the time range R+ by introducing a new time 
parameter T running from 0 to 1 

T = vt/(1 + vt) 

In terms of T we get an equivalent differential-algebraic system 

dX 
dr 

0 

= 
= 

e(r,x)·= !( 11ci'°-.,.px) I v(t - r)2 

¢(r, x) = g( 11( 1:.,.), x) 
(8) 

Define a mesh of M points in (transformed) time r by T = { r 1, ... , TM}. 
Along the mesh, the dependent variable x falls into a list of vectors. To 
avoid confusion we denote it by y = {yi, ... , YM} where Yk is the value of x 
at Tk· We use the midpoint of each interval (rk, Tk+i) for the ·discretization 
of the differential equation 

Yk+l - Yk = (T/c+l - Tk) e(11c, Yk) for k = 1, ... , M - 1 (9) 

where Tk = '(Tk + Tk+i)/2 and Yk = (Yk + Yk+1)/2. An element of this 
sequence of difference equations yields an JV-dimensional error function H : 
([ J mN)2 rmN 0, ... , 1 x J1'. --+ J1'. 
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Note that. the matrix of partial derivatives of H with respect to Yk and Yk.f.1 

differ only in their derivatives of Yk+l and Yk, respectively, and this is plus 
or minus the identity matrix of dimension N. 

Let B denote the initial conditions 

F denote the final conditions 

and let G denote the running conditions 

G : (0, ... , 1] x RN -+ Rn3 

All together this defines a system of equations in y = (y1, ... , YM )dRN·M 

given a mesh r = ( r1, ••• , TM )eRM, and we are looking for a root of this 
system. 

For the description of the algorithm it is convenient to list the equations 
according to the unknown vectors Yk involved. We start with the initial 
conditions which only involve Yl and end with the equations which only 
involve YM· Ordered this way the system can be seen as a system of M + 1 
vector equations Eo(y), ... , EM(y). The first subsystem Eo(Y) depends only 
on Yl and consists of n1 initial conditions. The intermediate subsystems 
Ek(Y) fork= 1, ... , M -1 depend on Yk and Yk+l and are of dimension N. 
Each of these subsystems begins with n3 running conditions a~d is completed 
by ni + n2 difference equations. The last subsystem EM(Y) depends on YM 
and consists of na interior conditions together with n2 final conditions. It 
has dimension n2 + n3. 
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I ( B(y1) ) \ . 
I Ec}(y) \ 

( C(yk) \ 
E(y) = Ek(Y) = H(yk,Yk+I) (10) 

EM(Y) ( C(yM) \ 
F(yM) 

Each step of the Newton algorithm applied to E(y) = 0 computes a 
change fly by solving the linear equation 

DyE(y) ·fly = -E(y) 

Due to the ordering of subsystems E this equation is of following form: 

I so,R 
st,L. sI,R 

82,L 

0 

82,R 
0 

sM-I,L sM-I,R 
SM,L 

\ 
I fly1 \ I -Eo(Y) \ 

I e.~M J = I -E~(y) J 

(11} 
All sk,L and sk,R are Jacobian matrices defined by 

Sk,L = 8Ek(Y) , and Sk,R = 8Ek(Y) 
8yk 8Yk+I 

The upper left matrix So•R has n1 rows and the lower right matrix sM,L 

only na + n2, whereas all other matrices sk,L and sk,R, resp, are N x N. 

Hence, the system is not overdetermined. The solution Ay can be computed 
by a specialized Gaussian algorithm. This algorithm starts in the upper left 
corner of the matrix and works downward block by block to the lower right 
corner. The result is a system in upper triangular form with a sequence of 
N x (n2 + na) non-zero blocks above the diagonal. Finally the vector fly 

can computed from bottom to top. To be more precise: 
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• step 0: 
step k, k = 1, ... , M -1: 

step M: 

step M + k, k = 1, ... , M: 

Diagonalize the first ni columns of so,R. 
Eliminate the first N - n1 columns of Sk,L; 
diagonalize the remainder of Sk,L together 
with the first N - ni columns of 5k,R. 
Eliminate the first N - ni columns of sM,L; 
Diagonalize the remainder of 5M,L 

Solve for liYM+l-k· 

The Newton algorithm refines the current guess of y by adding Day or a 
fraction of this vector toy. The algorithm stops if the error Eis sufficiently 
small according to an appropriate norm. 
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