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Abstract 
The core of the analysis of endogenous growth models typically is the ex-
amination optimality and stability of balanced growth trajectories. But the 
development of a robust and general economic theory of endogenous growth 
around this concept is limited by the lack of simple tools of analysis. In 
the paper we broaden the concept of balanced growth and propose two new 
methods of analysis. The first one invokes the theory of time varying sys-
tems and the second one is a compactification approach. Both methods are 
designed to clarify to what extent the linearization of the system along a 
path of balanced growth reveals enough information about the dynamfos in 
a neighborhood of the path. 



1 Introduction 
The mathematical theory of economic growth is complicated enough but at 
the same time it is very restrictive. In the paper we want to demonstrate 
that in many well-known models the analysis of a growth path and its 
neighborhood may be simplified by the use of slightly more sophisticateq 
mathematical tools. Moreover, these tools can be applied to models with 
a less restrictive, more flexible structure. Technically, the tools are closely 
related to those usually applied. They are based on linear approximations 
and involve. the computations of eigenvalues. 

Growth theory provides an increasing variety of mathematical models· 
which describe forces driving economic growth and focus on some kind of 
dynamic equilibrium. There have been substantial improvements in the un-
derstanding of what an equilibrium is and how it evolves over time. Changes 
over time considered in models of economic growth are due to savings and 
investment in capital, accumulation of human capital, innovation in prod-
ucts and processes, creative destruction to name the most important ones. 
Individual and collective incentives, market structures as well as forms and 
degree of competition. influence scope and tj.irection· of these changes. Be-
yond short run fluctuations we observe regularities in the long run dynamics. 
They still are assumed to justify the assumption of balanced growth in the 
long run. · . 

In new growth theories the more elaborate microeconomic foundations 
of short run market reactions and allocation processes on the one hand and 
the long run trends on the other hand are interconnected. However,. should 
the model be tractable there have to be limitations to the motion close to 
the path of balanced growth. If the model can be expressed in ratios of 
variables the path of balanced growth reduces to a rest point. The analysis 
of the dynamics in the neighborhood of this point is standard. Obviously, 
this trick places severe constraints on the de~ee of freedom in modelling 
economic dynamics off the path of balanced growth. For this and possibly 
for other reasons as well Robert Solow1 judges upon the state of the axt: 
"There is a dangerous lack of robustness in the assumptions that, so far, 
underlie every version of the theory. . .. a model· of genuine endogenous 
growth seems to be achievable only if everything in the model turns out just 
so.". (p. viii). And later on in his book he votes "for less focus on steady 

1 Robert M. Solow (2000) Growth Theory, 2. Edition, Oxford University Press. 
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state paths and more on other kinds of equilibrium trajectories, even if that 
means dependence on simulations" (p. 182). The goal of this paper is to 
present mathematical tools which can be applied to generalized models and 
even to growth paths which show patterns of non-balanced growth. 

The recommendation of the first tool is motivated by the fact that apart 
from the sustainability problem and from overall optimality economists are 
interested in how the growth path will develop in the near future. This is 
not only a question of time passing by, moreover it is a question of stocks 
of resources and knowledge, quantiti~s and diversity of commodities pro-
duced, which altogether should not be to different from today. The more 
we look into the future the less reliable are the quantifications. However, 
severe changes to be expected in the far. future due to current activities -
e.g. sustainability problems - should not be negle.cted in the analysis. A 
tool which ineets these requirements is the compactification of the growth 
path mapping the far future to a finite interval. Under fairly weak and 
economically reasonable conditions a compactification should be possible. 
In mathematical terms it requires normal hyperbolicity of the growth path 
to carry over to infinity. 

The second tool is based on the theory of time varying systems developed 
for problems in electrical engineering. The idea is to disentangle the motion 
along a growth path from forces transversal to it. In general, these forces 
will change along the path, or in other words they will change as time passes 
by._ It is then possible to derive conditions under which the time varying 
linearization provides sufficient information about the qualitative behavior 
of the system. As a conclusion the information is sufficient if the system 
does not change too fast. 

Both tools work within a framework that is more general t.han that of 
. balanced economic growth! Sufficient conditions for the ·applicability are 
much more generic. No ratios Of variables in the neighborhood of a growth 
path are involved. Nor is the condition of constant growth· rates necessary 
for the analysis. The approach may therefore serve as. a step towards a more 
robust and generic theory of endogenous economic growth. 

2 Beyond Balanced Growth · 
The goal of this section is to redefine the general model of a balanced growth 
path. At the end we will not give a concise, general definition. We will rather 
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mark out substantial ingredients. N.evertheless, a prototype of a definition 
will be given. 

To begin with, consider a growth path of a single economy. Every single 
point of such a growth path is associated with a particular point of time. It 
is made up of a .description of the state of the economy together with all 
relevant (and available) decisions made at that time. A sequence of such 
points forms a growth path. The sequence may be finite running from one 
particular point in time to another, it may run from a finite starting time 
to infinite future or it may be double infinite. 

Obviously, the restriction to a single economy has no strucural impli-
cation at this point. Whatever the. scope of ~onsideration is, we may as 
well think of the world economy as a whole. This will not matter until we 
connect the description of the economy to a model which deals ·with the 
interdependence of particular elements of the description. 

Formally, the joint description of state and control may be an· element 
of a fairly general mathematical space. However'· due to availability of data 
and possible problems of computability it seems to be reasonable to confine 
the model to a subset of a finite dimensional vector space which has the . 
. structure of Rn. In other words, we have a list of real numbers measuring 
quantities of resources allocated to certain uses arid the like. 

An infinite time horizon raises the question of unboundedness of the 
growth path. Economists tend to think of unbounded paths at least as far as 
ideas, knowledge or other abstract quantities are concerned. In .contrast to 
natural scientists economists often disregard bounds on ·labor force, capital 
stock goods produced. No doubt, this is questionable, but we do not want to 
discuss this issue here. Ho:wever, we want to seize the opportunity to point 
out that unboundedness creates its own complications in the mathematical 
theory of dynamical systems. 

Whether time is considered to be a discrete or cont~nuous quantity is 
a less important issue. Although data are available only in discrete time 
series we may try to fit a model with continuous time. Technically, some 
issues are easier to deal with in discrete time models, others are simplified 
by .using a continuous· time framework. 

The evolution of an economy over time is affected by different kinds of 
periodical or less regular fluctuations. The most obvious to. find are seasonal 
fluctuations. More complicated patterns are generated by business cycles. 
A growth path of an economy is the more even development which remains 
after eliminating these fluctuations. This establishes a strucural property of 
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a growth path expressed in terms of empirical data together with a broad 
understanding of basic economics. We take this as a first constituent of a 
definition: 

Requirement A) A growth path is a time series of economic data free 
of seasonal fluctuations and business cycles. 

Growth economists seem to agree that growth paths show some empirical 
regularities independent of the point of time they are taken at or the country 
the data stem from. Although there is no complete agreement about a 
list of such regularities there seems to be consensus to treat some of these 
regularities almost as facts. (Cf. Temple (1999) for a recent discussion of 
stilized facts and empirical evidence in economic growth.) Still, a particular 
model may deliberately disregard certain aspects (e.g. a real growth model 
of a closed economy) and corresponding stilized facts. 

Nevertheless, compatibility with stilized facts is like a backbone of a 
growth model. It should therefore be part of the definition of balanced 
growth. 

Requirement B): A model of a growth path should be in accordance 
with stylized facts. The list of stilized facts reproduced by a particular 
model need not and perhaps cannot not be complete. 

The fact that a growth path is supposed to be smoother than raw data is 
not spectacular. Neither is the assumption of accordance with stilized facts. 
However, they indicate what a proper definition of balanced growth has to 
add to the basic description of a growth path and what the links to economic 
theory contribute to the understanding of economic growth. Whereas all the 
qualifications made so far are standard and rather obvious, the definition of a 
balanced growth path needs substantial conceptual, .economic and technical 
input. The following formulation may constitute a first approach to pin 
down the concept. It rather demonstrates the need for a precise, complete 
definition than being one: 

Requirement C): A balanced growth path is a growth path with a very 
smooth and regular pattern. Small deviations from the path should not 
change the dynamic behavior too much. 

In general a formalization of this requirement is considered the core 
of a definition of balanced growth. A precise but still verbal form of the 
requirement is the phrase: Along a path of balanced growth all growth 
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rates are constant. A formal version of this requirement may be given by2 

Convention 1 (Balanced Growth) Let x(t), tER+, be a path in Rn. x(t) 
is called balanced 'W'ith growth rates gi, ... , gn, gi ~ 0 Vi, if 

Xi = giXi ' gi ~ 0 Vi 
and gi > 0 for at least one i. 

Growth along a balanced growth path is called even if there is a common 
positive growth rate g and if all gi are either· equal to g or equal to zero. It 
is called uneven if there are at least two different positive growth· rates. 

There are two important issues we want to draw the readers' attention 
to. Often traditional growth models are presented-in per capita form. This 
'reduced form' then usually has a rest point - with zero growth - which 
corresponds to the path of balanced growth. However, the analysis of the 
reduced dynamical system is not fully equivalent to the analysis of the full 
growth model. In general exponential stability of the rest point does not 
imply stability of the full balanced growth pathf3 From the economic point 
of view this is a minor problem in traditional (old) growth models. It may 
well be that we are only interested in the long run behavior of the per 
capita model from the beginning. In New Growth models this is a more 
complicated issue. 

Reductions by taking ratios may hide interesting details and .may even 
be misleading with respect to the analysis of stability and transition. The 
following little formal example demonstrates that the ratio of two variables 
may converge over time, whereas the amplitude of fluctuations around the 
trend increases! Consider 

x(t) = t, y(t) = t112 sin(t) 

The ratio y(t)/x(t) converges to zero. However, the amplitude of the fluc-
tuation around y = 0 goes to infinity of order t°'. This phenomeno~ occurs 
in economic models and one should deal with it carefully.4 

2We hesitate to call this a definition, because a definition should be part of a theory 
which is not available in this case. 

3Deardorf {1970) was the first to analyze this issue in the model by Solow and Swan. It 
is not always stability we are looking for. It may well be that economic policy instruments 
put the economy right away to balanced growth like in the unstable Ak model we will 
discuss later. 

4The problem is often disregarded e.g. Benhabib and Perli {1994) in their analysis of 
the Lucas model, Barro and Sala-I-Martin (1995) do not mention it in their book, ect. 
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A further aspect is the dependence of such a concept on the choice of 
coordinates. Consider an even balanced growth path with positive growth 
rate g fork~ 2 coordinates, say for x 1 , ... , Xn· By a rotation in Rn we can 
transform the growth path into the first coordinate axis. It may then turn 
out, that all other growth rates except for the first one are unc;lefined, i.e: 
not finite. The other way around, the system with 

. d . . 1/2 \../ .. 1 
X1 = X1 an. Xj =xi vJ > 

has a solution x1 (t) = et and Xj = 0 Yj > 1 which is a linear path with 
growth rate g in direction of the path. Yet, the path does not satisfy 
the conventional definition of balanced growth given above. 5 However, 
almost any rotation of this path yields proper even balanced growth! The 
reason is that even balanced growth is a one-dimensional property along 
a line. Only the formulation looks n-dimensional! It does not contain 
any assumption about the growth rates perpendicular to the .path under· 
consideration, unless coordinates are perpendicular to the path. 

There is another minor problem related to the choice of coordinates one 
~an easily cope with. Adding a constant to a variable with positive growth 
rate shifts a path by the same constant but turns. a balanced growth path 
into a (shifted) unbalanced one! Hence we may at least want to make the 
concept independent of such shifts. 

Convention 2 _(Affine Balanced Growth) Let x(t), t€R+, be a path in 
~. x(t) is called affine balanced with growth rates gi, ... , 9n, Yi ~ O'Vi, and 
h ;tJ. -o - ( 0 0) ;1 S 'lJ" X - X 1, ... , Xn , 'lJ 

Xi= gi(Xi - x~), 9i > O'Vi 

and 9i > 0 for at least one i for some constant vector x. 

Although this seems to be a necessary formal generalization, we will 
not make use of the term affine balanced growth in the following. We may 
assume that appropriate. choice of coordinates has led to balanced growth 
right away. We may even assume that all positive growth rates coincide! A 
simple nonlinear transformation will yield this property. 6 

5We will demonstrate below, that unbounded growth rates in directions perpendicular 
to a balanced growth path occur asymptotically in·the Jones-Manuelli-model. 

6Recall that (xi)ai grows with a times the growth rate of xi. 
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Beyond these considerati.ons, convention ( 1) is not yet a satisfying defini-
tion, because it lacks some necessary further specifications. Convention ( 1) 
does not refer to requirement B and to our understanding there are further 
requirements one has to impose on balanced growth. Numerous authors use 
the term balanced growth exactly with the meaning of convention (1). Lucas 
(1988, p. 9) gives a hint that this term is nothing but a name which is "as 
good as any". We refrain from the question of (re-)naming the concept and 
turn to" a slight extension. 

The constant growth rate assumption for a particular trajectory does 
not impose much structure in the neighborhood of this path. It is easy 
to think of formal examples of dynamical systems with unbounded growth 
rates in direction and in arbitrary small neighborhoods of the path. 7 To 
our underst_anding this purely technical assumption is plausible. But we 
are not sure whether all standard examples of New Growth Theory satisfy 
the assumption! 

To emphasize the importance of this kind of regularity we make it a 
formal assumption. 

Assumption R): Growth rates in direction of a balanced growth path 
should be finite in a neighborhood of the path even asymptotically. 

In terms of empirical analysis a growth path is a single time series of 
observations. The path we observe hardly ever is really balanced - regardless 
of the additional requirements which are still to come. But we may well 
observe a convergence towards balance. Either ~:iue to underlying economic 
forces or due to appropriate - not necessary unique - policy measures a 
balanced growth path must be attainable or the concept is of almost no 
importance. 

. Requirement D): A balanced growth path of a model must be attain-
able. It will possibly be reached only after a long period of transition. 

We may call a path gaining balance over time and reaching it in infinite 
future asymptotically balanced. Again we want to give a mor~ formal re-
presentation of this idea: A formal version of this requirement may be 
given by 

7 A simple formal example is x = 7x + x2y and y = ay. The x-axis is a balanced 
growth path ·with growth rate 'Y· However, for any e :f= 0 and y = e the growth rate 
X/X = {+EX goes to infinity With increasing X. 
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Convention 3 (Asymptotically Balanced Growth) Let x = F(x) be 
an ordinary differential equation on q,n open set W C R~. An asymptoti-
cally balanced growth path of F with asymptotic growth rates g = (g1, ... gn) 
is a curve C invariant under F with the property 

Obviously, this convention includes the former one of balanced growth. 
Actu.ally both types of growth paths may appear jointly in a single model. 
Dependent on the initial state of an economy there may be a collection of 
asymptotically balanced growth paths converging to a particular balanced 
growth path. In a nice and smooth model this collection will have the 
structure of a differentiable manifold, the stable manifold of the balanced 
growth path. This is the case in many models of optimal growth (e.g. Cass-
Koopmans type of optimal growth models which go back to Ramsey (1928), 
Cass (1965) and Koopmans (1965)). The per capita version of this model 
has a saddlepoint which corresponds to a balanced growth path of the full 
model. The (one-dimensional) stable manifold of the saddle corresponds to 
a two-dimensional stable manifold of the balanced growth path. 8 

In general a model may h~ve a single or even a higher-dimensional man-
ifold of asymptotically balanced growth paths but no balanced growth path at 
all. Probably the best known such example with only a single· asymptoti-
cally balanced growth path.is the (per capita version of) Jones and Manuelli 
(1990). In this model the unique path of asymptotically. balanced growth is 
the only optimal path. In· such a model of endogenous growth, there is no 
simple reduction to a model with a rest point!9 

Beyond obtainability immunity against disturbances is a further aspect. 
A reasonable model should take shocks and marginal policy changes into 
account. Marginal appropriate policy changes as a reaction to minor shocks 
may put the economy in a position to reach the former path· again. As 
a consequence, the economy may be thrown back by some amount of time 

81n this model stability analysis of per capita model is sufficient. I.e. it can be shown 
that a trajectory of the full model converges to the balanced growth path if an arbitrary 
point of this trajectory is projected to a point of the stable manifold of the saddlepoint 
in the reduced model. 

9This is not to say that there are no ways to reduce the asymptotically balanced 
growth path to a trajectory which converges to a rest point. E.g. Barro and Sala-1-
Martin (1995, pp.161) and section 3 of this paper. 
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but on the same track again. In other words, adapted policy measures place 
the economy on the stable manifold of the former asymptotically balanced 
growth path. 

Requirement E): A {locally} stable asymptotically balanced 
growth path is a growth path the economy may return to even after digres-
sion due to a minor economic shock and possibly after appropriate changes 
in economic policy. 

Model builders have to derive from economic theory the forces which 
eventually push the economy back to the former path - rather than to any 
other growth path. The forces may be intrinsic like market forces or they 
may be due to more or. less explicit and direct control through institutions 
whitch apply instruments of economic policy. 

At the latest these considerations call for a comprehensive incorpora-
tion of many ideas of modern macro- and microeconomic theory. In this 
respect New Growth Theory is much more adequate than "traditional the-
ory". However, the way general theory enters the arena of New Growth 
models 'is not generic and hence leads to less robust models. By not generic 
we mean that the strucural variety of the new elements is very limited. 
Functional forms are very restrictive and only along a thin line of new 

· · developments in growth theory implications of these new elements ,are or 
perhaps can be analyzed. Consequently, by less robust we. mean that the 
resulting collection of New Growth models is a thin set. Slight changes in 
the structure of models throw us out of the world we know and we can 
understand. 

Requirement F}: A model of economic growth should be structurally 
robust. 

We avoid using the term structurally stable to emphasize that this is an 
informal statement. The property we probably want is reasonable perturba-
tions of the formal framework should not change the qualitative outcome of 
the analysis. The mathematics of structural stability of dynamical systems 
is well· developed, but quite complicated to apply. 

A couple of fundamental questions have to be answered before a formal 
approach is possible. And it becomes more intricate if.the stability analysis. 
is supposed to be carried through within a restrictive class of functional 
forms etc. How restrictive the framework should be. is a deep economic 
question! The state of the art in modelling economic growth is a collection 
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of very narrow models rather than a general theory. In particular this holds 
for the so called 'New Growth Theory'. Clearly we do not want to consider 
robustness in a class of arbitrary functions. Sound economic reasoning leads 
to restrictions we should not disregard. On the other hand, many limita-
tions seem to be caused by expected complications in the analysis of more 
general models. I am sure that the analysis of growth paths viewed as 
trajecories rather than rest points of a reduced model will eventually relax 
some limitations. But it calls for an investment into new techniques at the 
beginning. 

3 Well Known Examples 
A well known and equally well understood example is the Cobb-Douglas 
version of the Ak-model of Jones and Manuelli (1990). The model leads to 
a differential equation10 

k - A1k + A2k0 
- c - 8k - nk 

c - a(A1 - aA2k0
-
1 - 8 - p- n)c 

which is a variation of the linear Ak-model. 

k - B1 k-c 
c - B2c 

with B1 = A1 - ( 8 + n) 
and B2 = a(A1 - (p + 8 + n)) 

(JM) 

(AK) 

. The Ak-model has an unstable balariced growth path with slope c/k = B := 
B1 -B2 with growth rate 'Y = B2 • The intuition is that the Jones-Manuelli-
model should have an unstable asymptotically balanced growth path with 
the same asymptotic slope B. 

One method to analyze the model is a transformation proposed by Barro 
and Sala-I-Martin (1995, pp.161). Define new variables x = c/k and z = 
( Ak + B k0

) / k and get a differential equation in terms of x and z with 
a saddlepoint. This procedure is not generic. It is rather designed for 
this particular example and here it gives the correct answer. The optimal 
(consumption-) policy follows the stable manifold of this system towards 

10The model is presented in standard notation, which is so much standard that I think 
I can do without explaining the symbols. 
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the saddlepoint. Transformed back into' original variables this yields the 
unique asymptotically balanced growth path. 

Whereas the structure of the model is considerably robust and not hy-
brid at all this method of analysis does not generalize to structural varia-
tions. Consider a model introduced by Steger (2000). It is an Ak~model 
of economic development with productive consumption. Let '11( e) measure 
the net cost of consumption (nee) and suppose this is the concave function 
of form c - d3. Let 11(e) denote the elasticity of the marginal net cost of 
consumption. 

. B e c= 2---
l + 011(e) 

Asymptotically the productive consumption effect vanishes and the model 
coincides with the basic Ak-model. I.e. there is an asymptotically bal-
anced growth path approaching the line e/ k = B2 - B1• But productive 
consumption spoils the possibility of an elementary transformation. 

However, the asymptotic correspondence with the Ak-model preserves 
a property useful for the analysis. It can be shown that the asymptotically 
balanced growth path is normally hyperbolic, i.e. its stability can be studied 
by linearization of the dynamics along the path. This will eventually confirm 
the intuition that the qualitative behavior of the model coincides with the 
(linear) Ak model. 

Another well known example is Romer's model of endogenous techno-
lo~cal change (Romer 1990). A final product is produced from unskilled 
labor, human capital and an aggregate of intermediate products. Capital is 
used to manufacture intermediates and the productivity of capital depends 
on the degree of differentiation A. A can be increased by R&D activities at 
a rate proportional to the use of human capital in this sector. Output which 
is not consumed increases the stock of capital, and the optimal consumption 
path is derived by intertemporal optimization. The total amount of labor 
and human capital is constant. 

Under certain parameter restrictions this model has a (unique) un-
even balanced growth path. It can be shown, that this path has a two-
dimensional stable manifold which covers the state space, i.e. for any initial 
condition there is an optimal path approching the unique balanced growth 
path. Such a path is asymptotically balanced. The collection of these 
asymptotically balanced solutions form the stable manifold of the balanced 
growth path. 

More complicated is the situation in Lucas' human capital model (Lucas 

11 



1988). Human capital may either be used in the production of a physical 
good or in the "production" of new human capital. In this model parameter 
bifurcations occur. Stability depends on the size of parameters. Under weak 
conditions, the model has a balanced growth path. If the initial conditions of 
the economy do not yield balanced growth from the beginning, the question 
of existence of asymptotically balanced solutions arises. 

Among other authors Benhabib and Perli (1994) discuss the saddlepoint 
stability of a reduced version of this model. But a careful examination of the 
full model shows that reasonable parameter values may yield a saddlepoint 
in the reduced model that corresponds to an unstable balanced growth path! 
In other words, only a proper analysis of the balanced growth path of the 
full model leads to the conditions under which this model is economically 
meaningful. 

4 Mathematical Tools 
In this section we want to introduc~ two procedures to analyze stability 
of an (asymptotically) balanced growth path. The initial consideration is 
similar in both cases. Mathematical methods to analyse the behavior near 
trajectories in bounded sets are well developed in the literature. They may 
be difficult to apply, but they exist. The key idea of both procedures is to 
associate the unbounded system with a particular bounded system. This 
has to be done in such a way that statements about stability correspond 
properly. The reductions we have seen in the last section do not satisfy this 
crucial requirement. 

4.1 A Prototype Model of Balanced Growth 
Computational effort.s for both procedures are much smaller for the case of 
even balanced growth along a coordinate axis. This is only a question of 
choice of coordinates. Simple transformations can always turn a model into 
this form. In the following we therefore restrict the analysis to a prototype, 
a C1 autonomous ordinary differential equation on an open subset of Rn of 
form 

x - G(x, y) = 1x + G(x, y) 
iJ - F(x, y) 

with XER, yERn-l, / > 0. 
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Definition 1 (Balanced Growth) A differential equation of form (PT) 
is a model of balanced growth, if 

(a) G(x, 0) = 0 for all x 

(b} F(x, 0) = 0 for all x 

We say the i-th normal growth rate is bounded along y = 0, if Fi(x, O)/Yi is 
bounded. · · 

A prototype model (PT) of balanced growth has a solution x(t) = x0e-rt, 
Yi(t) = 0 for all i.· Notice that we do not require the normal growth rates 
Fi(x, O)/Yi to be bounded. 

Asymptotic balanced growth is a weaker property and the conditions 
can be relaxed to: 

Definition 2 (Asymptotic Balanced Growth) A differential equation 
of form (PT). is a model of asymptotic balanced growth, if 

(c) lim G(x, 0) = 0 
Xl-+00 

(d} lim F(x, O)/G(x, 0) = 0 
Xi-+OO 

Condition (d) requires the slope of the vector field to approach zero along 
· y = b. Due to (c) condition (d) reduces to limx1-+oo F(x, O)/x = 0. In other 

words, in the limit x grows with rate I and all other variables are stationary. 
(d) does not imply asymptotically bounded normal growth rates! Such 

a requirement would be too restrictive. 
Recall the Jones-Manuelli-model (JM). A rotation 

1 1 
x := .J 

2
(k+ Be), y := 2 (c-Bk) 

1 + B ./1 + B 

yields a prototype model of asymptotic balanced growth: 

(:) = (~2 B~)(;) 
+ 1 ( 1 I! ): ( f ( 7'1!-) ) 

VD -B 1 -af' (x-:J/l). (B;bu) 
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Clearly, the model has an asymptotic balanced growth path and it ap-
proaches y = 0. However, in 'the limit y has unbounded growth rate. The 
unbounded normal growth rate is the implication of the nonlinear compo-
nent in the production function. Only the (linear) Ak-model has a path 
which is balanced from the beginning. In that case Bi is the normal growth 
rate. 

· From the economic point of view possible unboundedness of normal 
growth rates certainly is an issue one should be aware of. Stability anal-
ysis without careful consideration of the possible implications is necessary. 
Reduced model analysis always involves the danger of missing this phe-
nomenon. The methods we are going to introduce in the next secti9n resume 
the phenomenon. 

4.2 Towards the Analysis of 
.Asymptotic Balanced Growth 

First we demonstrate the ideas behind the methods by means of an example 
we already considered before. Recall the prototype form of the Ak-model 

The solution of the generic initial value problem is 

x(t) = - ~ eBit + ( Xo - ~) eB2t and y(t) =Yo eB,t 

with B =Bi__, B 2 as before. For the sake of a general analysis we drop the 
assumptions on the signs of Bi, B2 and B, respectively. 

Obviously, the solution converges exponentially towards the x-axis if 
B1 < 0. It diverges if B1 > 0. For negative B1 the whole plane is the stable 

. manifold of the x-axis. 
The first approach is to convert the system into a time dependent system. 

This can be done in such a way that the motion along the balanced growth 
path is identified with true time running. The motion transversal to the 
balanced growth path then is transformed into a changing motion around 
zero. 

To derive a first time dependent version of the system we take ratios 

dy iJ B1y -=-=---
dx x B2x-y 
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If we consider x to be the exogenous variable ~d get a time dependent 
system in standard notation 

. B1y 
y=---

B2t-y 

But the derivative of iJ with respect toy vanishes for large tat y = 0. This 
inconvenience can be eliminated by using lnx as exogenous variable instead. 
We get 

with derivative 
dy _ B1(B2 - ye-t) + B1ye-t 
dy - (B2 -. ye-t)2 

For small y and t ~ oo this derivative converges to Bi/ B2.. Here the sign 
of B2 matters for stability because a negative B2 reverses the direction of 
'time'. If there is no time reversal we confirm the result, that y = 0 is 
unstable if and only if B2 is positive. 

In higher dimensional models stability of a time varying system is more 
complicated to analyze. We will go into some of the related technical details 
in section 4.3. 

The second approach is a compactification of an (asymptotically) bal-
anced growth path by a simple projection. We call it directional compact-
ification because the dynamics in directions perpendicular to the ( asymp-
totically) balanced growth path remain unchanged. 

The projection z = x/(1 + x) takes the infinite horizon of the balanced 
growth path x = oo to z = 1. This yields 

z = (1 - z) (B2z - (1 - z)y)), iJ = B1y 

We are interested in the behavior of this system near the rest point (1, 0). 
The Jacobian matrix of the compactified system is 

J = ( B2(1- 2z): 2(1- z)y -(l_ii z)2 
) 

At (1, 0) the Jacobian reduces to 

J= c-~2 ~J 
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Again we confirm the stability condition: the infinite horizon is a sink if 
B1 < 0 and a saddle otherwise. 

Although the idea behind both tools seems quite simple there are pitfalls 
to avoid in more general applications. In the following subsections we go 
int9 more details and point out what the possible problems are. 

4.3 Slowly.Varying Systems 
Recall the prototype system (PT). If there is balanced growth along y = 0 
we may consider x itself as exogenous variable and eliminate real time t. 
The first step to do so is to take ratios 

dy y F(x, y) 
-=-·=--..,,.._--

IX+ G(x,y) dx x 
Formally the system is an ( n - 1 )-dimensional time dependent differential 
equation 

y 
eT F(eT, y) 

- B2eT + G(eT, y) 

F(eT,y) - B2 + G(eT, y)/eT 

In case of balanced growth the term G(eT, O)/eT is equal to zero for all r 
due to condition (a). If growth is only asymptotically balanced this term 
vanishes asymptotically. Hence, the procedure is still valid, provided r is 
large ~nough. 11 Using lnx instead of x as exogenous variable is only a 
question of convenience. There is no deeper. reason behind. this choice. 

The goal now is to analyze this system for r 1-4 oo near y = 0. The sys-
tem is well defined and in principle suitable for a proper analysis. However, 
linearization with respect toy is not always an appropriate way to continue. 
The eigenvalues of the linear part of such a system may be misleading com-
pared to the decisive role they play in autonomous systems. Markus and 
Yamabe (1960) give an example of a nonautonomous system where all eigen-
values have negative real part but the system has saddle structure. On the 

11 For finite ti"rae there may be reversals in the direction of x. In such a case we cannot 
use x or ln(x) as exogenous variable for too small values of x. 
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other hand, Skoog and Lau (1972) provide an example of a uniformly expo-
nentially stable system with a positive eigenvalue for all r. Slowly varying 
systems are those where the linear part tells the whole stability story. The 
crucial point is that the 'tendency' to converge or diverge at some point of 
time according to the eigenvalues may be dominated by the change of the 
system itself. 12 By definition of the term slowly varying systems are those 
system w~ere eigenvalues determine stability. However, the conditions are 
very difficult to check.' 

Appendix: Slowly Varying Nonlinear Systems 
An extended treatment of slowly varying nonlinear systems can be found in 
Barman (1973) and Vidyasagar (1993). The latter author provides a fairly 
general theorem which represents the state of the art. 

Consider nonautonomous systems of form 

x(t) = f(t, x(t)), \:It~ o (SV) 

Let s( r, t, x) be the solution of ( SV) started at time t with initial con-
dition x and evaluated at time T. Furthermore, consider the autonomous 
system which results from freezing (SV) at timer, i.e. x(t) = f(r, x(t)). 
Let sr(T, t, x) for r ~ 0 be the corresponding solution of the frozen system. 

With this terminology Vidyasagar's theorem (1993, p. 248) reads 

Theorem (Vidyasagar, p. 248) 
Suppose 

(i) f is C1, 

(ii) SUPxERn SUPt>O llD2(f(t, x)ll =: A< oo, 
(iii) there exist constants µ, 0 > 0 such that 

llsr( r, t, x) II ::;; µllxlle-o(r-t) Yr ~ t ~ 0, \:/xeRn , \:/reR+ 
and finally 
(iv) there exists a constant E > 0 such that 

llD1f(t, x)ll < cllxll \:It~ 0, \:/xeRn 
12The article by llchm~nn, Owens and Pratzel-Wolters (1987) is a recent survey of the 

relevant mathematical literature. By the way, the theory is mainly developed for the 
field of electrical engeneering. 
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Then the nonautonomous system (SV) is globally exponentially stable 
provided 

£ < _o(_(p_-_1_)0_-_A_) 
pµJ' 

where p > 1 is any number such that (p- l)o >->.. 

·Further Remarks on Slowly Varying Systems 

Slowly varying linear systems are fairly well understood. Though, the list 
of sufficient conditions for stability is and probably will remain open for 
extension. 

Among the more general questions is the one concerning tl~e existence 
·and respective dimension of stable and unstable manifolds of hyperbolic 
critical points~ At least in ·the generic case the technique for autonomous 
systems should generalize. (I have not check yet whether this has been dealt 
with in the literature! Most of the literature I have seen stems from the 
field of electrical engeneering.) 

Apart from problems in the theory of non-linear dynamical systems 
which are related to the main issue adressed in the analysis of slowly varying 
linear systems. Non-linear systems are changing systems in the sense that 
their linear part is not constant. Along a trajectory this change may be 
translated into a time change of the system. Attractiveness of a trajectory 
then becomes the analogon to stability of an isolated critical point. Again· 
existence and dimension of stable and unstable manifolds are important 
issues. 

4.4 Directional Compactification 
Figure 1 illustrates the geometry of the approach. The necessary calcu-
lations are straight forward. However, some extra considerations and ~ . 
specific assumption will turn out to be necessary. 

Recall the system ( ABG) 

x = G(x, y) = 1x + G(x, y) 
iJ = F(x, y) 

Directional compactification by z = x / ( 1 + x) ·with inverse x = z / ( 1 - z) 
yields 

z z - (1- z)2 G( 1 _ z,y) 
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Figure 1: Asymyptotic balanced growth after directional compactification 

infinite 

ABGP·----

- z(l-z)('Y+l z zG(I~z'y)) 
z 

iJ - F(I-z'y) 

Notice that due to condition ( c) for asymptotic balanced growth z cannot 
have a pole at z = 1 and y = 0. The expression 

has to converge_to zero! 

1 - z G(-z-, y) 
z 1- z 

Due to condition ( d) the components of F( l~z, y) cannot diverge to fast 
either. The expressions. 

1 - z Fi(-z-, 0) 
z 1-z 

converge to zero. In other words, F( 1.:_z, 0) is. of order less than 1 in the 
first variable. 

There is a further implication of regularity: After directional compacti-
fication z = 1 is an invariant manifold. I.e.: In general the flow is tangent 
to the infinite horizon. , 

The same kind of problem arises with respect to F( 1.:_z, y ). Again bound-
edness of growth rates imposes the property we need: it implies boundedness 

·of all components even at z = l. 
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From the literature on compactification of planar systems we b.orough 
the idea for the solution: we multiply z by an apropriate power of (1 - z) 
to guarantee differentiability at the infinite horizon. Of course we have to 
assume that this is possible.13 

The _Jacobian matrix J of the system at the infinite horizon of the bal-
anced growth path can easily be computed. In the upper left corner we 
find z z 

J1,1 = 1(1- 2z) - 2(1 - z) G( 1 _ z' y) + DxG( 1 _ z, Y) 

The rest of the first line is given by (1 - z)2DyG( 1:_z, y). The rest of the 
first column is (l!z)2 DxF( 1:_z, y). Finally, at the lower right there is the 
( n. - 1) x ( n - 1) block of partial derivatives of F with respect to y. 

J = ( 1(1- 2z) - 2(1 - z) G(}:_z,y) + DxG( 1:_z,y) z ) 
DxF(l-z' y) DyF(l-z' y) 

can easily be computed. It contains an ( n - 1) block of partial derivatives of 
F with respect toy. The corresponding (n -1) eigenvalues are eigenvalues 
both of the compactified system and of the full system. The remaining 
eigenvalue is the negative of the balanced growth rate 1· Hence the balanced 
growth path is normally hyperbolic even towards the infinite horizon. The 
asymptotic eigenvalues in normal direction, i.e. those of F, determine the 
stability properties of the balanced growth path.14 To make these arguments 
work we have to assume 

Assumption 1: The eigenvalues of DyF(x, 0) converge along the path 
of asymptotically balanced growth. 

5 Final Remarks 
The constant growth rate property may be the core of any definition of 
(asymptotically) balanced growth, but it is not a sufficiently precise de-
scription. Coordinate dependence reveals that a more detailed definition 

13We boroughed the idea for this tool from the literature on compactification of planar 
systems initiated by Poincare (1882). He used projections of planar vector fields to the 
sphere. Chicone and Sotomayor (1986) give a modern discussion technique. 

14C.f. Pugh and Shub (1970) on linearization and normal hyperbolicity. 
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is necessary. The economic forces perpendicular to the path under consid-
eration deserve more attention. The analysis of th~ Jones-Manuelli model 
reveals this clearly. 

The proposed methods of analysis (the time varying systems approach 
and the directional compactification approach) both are useful tools as 
demonstrated in the paper. However, they need to be sharpend. Their 
application to more complex models of economic growth is tractable. As 
tools they probably can be developed up to tl~e point, where no transforma-
tion of the differential equation has to be carried out. Within. their limits 
of applicability they. then may ·be used to prove that· linearization of the 
original system answers all relevant question. In other words, if the tools 
are sharpened we may realize that we do not need them anymore. 
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