
Ehlgen, Jürgen

Working Paper

A Comparison of Solution Methods for Real Business Cycle
Models

Volkswirtschaftliche Diskussionsbeiträge, No. 66-98

Provided in Cooperation with:
Fakultät III: Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht, Universität
Siegen

Suggested Citation: Ehlgen, Jürgen (1998) : A Comparison of Solution Methods for Real Business
Cycle Models, Volkswirtschaftliche Diskussionsbeiträge, No. 66-98, Universität Siegen, Fakultät III,
Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht, Siegen

This Version is available at:
https://hdl.handle.net/10419/118761

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/118761
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


V,o:l::ksw.i:rtsc.haftllche 
:Oiskus,s;.i:o .. ns·be·.i.tri·g'e · 

A Comparison of Solution Metbods for 

Real Business Cycle Models 

Jiirgen Ehlgen 

University of Siegen 

Discussion Paper 66-98 

ISSN 1433-058x 

. 'I 

: 

: ' 
I' 

.: 
~ ' 

I 
,1 

:i 
: ~ 

I 

I 

i 
I 

'' I, 

,1 
'! 

'' 

'' 

. i j 
! 

I 

'' 

UNIVERSITAT - GESAMTHOCHSCHULE. 8HEGBH.'<-! 
' - ' • • • • • --- -·- '•~r ---- -

FAC.HB: · -E.-· RE· · -1-·c· ·H "t"l-TTD 1TSCHAF .. · · TSWI· ·s·-.s· ·E· --'l\..:tac·· · u .A UiT:tJ":&m 
. _·· __ .; __ , -~- ... ·_~°'- •. ~-~--~- ~ · • VY~~-,_:··.,· -'.-..: :. -·-~:t~:~

1

1,·--~·~~~-~: 



A Comparison of Solution Methods for 

Real 'Business Cycle Models* 

Jurgen Ehlgen 
University of Siegen 

. Department of Economics 

D-57068 Siegen, Germany 

Phone: (49) 271740 3217 
Fax: (49)·2717402310 
E-mail: ehlgen@wap-server.fb5 .uni-siege~. de 

Siegen, January 1998 

Abstract 

This paper discusses solution procedures for real busi~ess cycle (RBC) models. First, we show that 

the most. often used solution methods, the linear-quadratic approximation, the Lagrange multiplier, 

and the Euler equation approach all lead to the same decision function. Second, we demonstrate that 

deterministic and stochastic detrending methods which are used to transform the growing model 

ecqnoiny to a stationary one, lead to the same model. solution, no matter if the technoloID:'· process 

has a unit root or not. Third, we show that contrary to statements in ·the literatu.re the numerical 

. value of the growth rate of the model can have substantial effects on the model results. 

Keywords: Dynamic optimization; Euler equa~ion; Real business cycles; Unit roots 

JEL classification: C6 l, C63 

• . I am. grateful to Michael Gail and Hans-E. Loef for encouraging discussions and helpful · 

comments, but any remaining errors are mine alone. 
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1. Introduction 

RBC models can be solved exactly only under very sp~cial assumptions. The most prominent case is 

~e model of Long and Plosser (1983} who suppose a logarithmic utility function and a Cobb-

Dougl~ production ~nction with I 00% deprec.iation. If under more realistic assumptions the exact 

solution can not be found, then the model must be solved approximately. Numerous such .solution 

methods are proposed in the literature. 1 Some of these methods are_ highly numerical and require the · 

implementation of a contraction mapping operator on a computer. Examples are the value function 

iteration employed by Greenwood, Hercowitz, and Huffinan (1988), Danthine, Donaldson, and 

Mehra (1989) ·and Christiano (1990a), .and. the Euler equation approach of Coleman (1990), den 

. ·Haan and Marcet (1990), .Tauchen (1990), and Judd (1992). <?n the ~ther hand, there ~re s~lution 

methods which are less numerical and lead to linear approximative decision rule$. A first approac~ in 

this class is the procedure introduced by Kydland and Prescott (1982) and extended to nonstationary 

economies by Christiano (1988), to eliminate the nonlinear constraints by substituting them into the 

utility function and then to take the second order Taylor approximation around the deterministic . . . 
equilibrium point of the system. The resulting optimal linear regulator problem is usually solved by 

the iteration of the matrix Riccati equation. 2 The variant of McGrattan {1990) eliminates the 

nonlinearities by approXimating the constraints by linear functions. A second approach proposed by 

.. King, Plosser, and Rebelo ( l 988a) is to linearize the first order conditions, of the. Lagrangian of the 

·optimization problem. Chow (1992, 1993, 1997) in a series of contributions describes a similar 

. procedure but proposes to linearize the constraints· ih advance. 3 In a third approach Campbell ( 1994) 

takes the first order Taylor approximation of the ~uler equation of the model. 

1 .See Taylor. and Uhlig (1990) and. Danthine and Donaldson (1995) for a survey of different 

solution methods. 

2 . This solution method is described in detail by Hansen and Sargent (1988). 

3 ·Kwan and Chow (1997) use a numerical procedure to ·solve the first order conditions of the 

original problem. They describe .the linearization of the constraints as a particular implementation 

· of the Lagrange. multiplier approach, which in general they prefer to value function iteration. 



-3-

. King; Plosser, and Rebelo (19S8a, p. 211) state that their procedure is essentially equivalent to the 

procedure of Kydland'' and Prescott (1982), and Christiano· (1990b, p. 99) calls the solution 

procedure .of King, Plosser, and Rebelo (1988a) a linear-quadratic approximation. Camp~ell (1994) 

notes that in the case of homoskedastic shocks his solution method yields the same results as the 

linear-quadratic approximation approach of Christiano (1988). Reiter (1997) on the other hand 

shows for the simple deterministic Ramsey optimal .growth model that the various solution 

procedures give different decision rules, depending on the _choice of the state and the control 

variables. Therefore, the first objective of this paper is to compare these solution methods which all 

lead to li~ear decision rules, and to show under.which.conditions they give the same solution:4 

While the first part of the _paper deals with stationary models, it is the concern of the second part 

how to deal with the trend in RBC models. The solution procedures of King, Plosser, and Rebelo 

(1988a and 1988b)-and Chflstiano (1988) requires to transform the growing model economy into a 

stationary one. Hansen (1997) in his comparative study uses different procedures for this 

transformation, depending on the ~ature ofthe technology process. If (the logarithm of) technology 

follows a trend-stationary stochastic process the growing variables are divided by the deterministic 

time trend ( detefministic detrending), if technology follows a difference stationary process, the 

growing model variables are· divided by the lagged technology variable (stochastic detrending). It is· 

shown in the present paper that it is not necessary to apply different detren.ding methods because the 

deterministic and the stochastic detrending procedures lead to the same solution of the model. 

. Christiano (1988) and Hansen (1997) assume a logarithmic utility function, presumably because in . 

the case, that the constant elasticity of intertemporal substitution is different from unity, a random 
I 

walk term appears in the quadratic approximation even if the stochastic detrending method is used. 

On the oth~r hand Campbell (1994) linearizes the Euler equation of the original nonstationary model 

with a general isoelastic utility function and a possibly stochas~ic trend. This procedure leads to a 

4 Clearly, the solutions of the pure numerical . methods depend strongly on the specific 

implementation of the procedure. Therefore a comparison with those solution methods is beyond 
. ' 

the scope.ofthis paper. 
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stationary stochastic difference. equation, so that a restriction to the logarithmic case is not necessary. 

It is ·shown in the present paper that the deterministic and t~e stochastic detrending method both le~d 

to the same -Euler equation as the approac_h of Campbell (1994) .. Therefore, the most preferred. 

methods to solve RBC models, first the Lagrange multiplier method of King, Plosser and Rebelo 

(1988a) ~d .second the linear-quadratic approximatiOD: approach of Kydland and Prescott (1982), 

can be applied even for the case of a stochastic ·trend and a general isoelastic utility function. It is 

. sufficient in this case to adjust the variables for the deterministic trend. 

The paper also examines the effects of a variation in the growth rate of technology on the model 
' . 

solution. Hansen (1997) claims that. a change in the growth rate does not affect the model statistics. 

But it is shown here that this· result depends on a specific parameter variation of Hansen's procedure. 

In general the effects of a change in the growth rate d_epend upon the fact which of the remaining 

parameters .also change. It is possible to change these parameters in such a way that the variation in 

the growth rate is nearly neutralized. But it is also possible to change the remaining parameters in . . . 

such a manner that the effects on the model statistics are substantial. · 

The plan of the paper is as follows: Section 2 analyzes the three approaches to approximately solve 
. ' ' 

stationary stochastic dynamic optimizatio~ problems and. examines the significance of linear 

constr~ts. Sectiori 3 compares the different methods to obtain stationary Euler equations from a 

nonstationary economy for the case of a deterministic and a stochastic trend. Section 4 investigates 

. ~he effects of a variation in the growth rate on the model results. Section 5 gives a short summary of 

the paper. 

2. Solution methods for stationary models 

Let X, be an (n x 1)' vector o~ state variables in period t, U, an (m x I) vector of control vari~bles, 

·and Z, an exogenous stationary stochastic vector process of dimension (I x I). Suppose. that the 
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transition equation of the ~ystem, which relates the future state of the system to the current state, the 
' . ' . 

control variable, and to the stocha.stic shock, can· be solved for the control variable:s 

U, = g(X1 ,X1+ 1 ~Z1 ). (1) 

The objective.is to maximize 

(2) 

subject to the .transition equ~tion (I) and give~ X0 , where J(X,,U,) is) the one-period return 

function, p is the discount factor, which is positive but less than unity, and .E, denotes the · 

ex:pectatioil operator conditioned on information available in period t. In the following subsections 

several pro.cedures to solve the dynamic stochas~ic optimization problem are compared. 

2.1. The Euler equation approach 

Defin~ the function r by 

r(X,Y,Z) = ![ x,g(X,Y,Z)]. (3) 

Then, substituting (I) into (2), we have.to maximize 

(4) 

given X0 • The first order conditions of this optimization problem are the. stochastic Euler equations6 

(5) 

s In this formulation of the stochastic optimization problem the decision is made after the 

realization of the stochastic shock, so that the state variable in the next period is known with 

certainty. 

6 See Stokey and Lucas (1989). It is assumed that the transversality condition and the second order 

conditions. are also fulfilled. 
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where rx. and ry are the derivatives of r(X,Y,Z) with respect to X and Y, respectively.7 First 

consider the corresponding ~eterministic optimiµtion problem with Z, = z•, where . z• is the 
. ' 

unconditional expectation of Z, . . Suppose ~he deterministic system ·has an unique equilibrium 

X, ~ x•, t =. 0, I, .... Fr~m equation ( 5), the equllibrium point must satisfy 

• p. ry + rx = 0, (6) 

where ~; :::: r x ( x•, X, z•) and r; = ~r ( x•, X, z•). This is a system of n equations to solve for the n . -

unkno~s in x··. The first order Taylor approximation ~f equation (5) arou~d ( x•, x•, z•) is 

(7) 

' ... ' . . 
· • z z• d • • • ( • ) • • · Here, x, = X, -X and z, = , - . , an rxx•, ryy•, rrx· = rxr· , rxz·, and· ryz· are the matnces of 

. second order derivatives of r( X, Y, Z), again evaluated at ( x·, x·, z•) . 

Now let u· =g· =g(~·,x•,z•) and denote the derivatives of J(X,U) at (x•,u•) and the 

derivatives of g( X, Y, Z) at ( x•, x•, z•) similar to the derivative~ ·of r( X, Y, Z). Applying the chain . 

·rule and the product rule gives the following relationships ·between the derivatives of r and the 

derivatives off and g: 

and· 

• 1· , • ./'* rx= x+KxJu, 

• , • ./'* r, =gr Ju, 

. 1· 1· . ,. (1~ ./'•) ,•( ./'* ./'* • ) rxx· = xx·+ xu·Kx· + Kxx· \OI Ju + Kx JUX' + Juu·Kx· , 

• 1· . ,. (1~ ./'*) , • ./'. • rxY' = xu·Kr· + KxY' \OI Ju + Kx Juu·Kr•, 

• 1· • • . ,. (1 ~ "'*) ,• ./'* • rxz·. = xu·Kz· + Kx'z· \OI Ju + KxJuu·Kz·, 

(Sa) 

· (Sb) 

(9a) 

(9b) 

(9c) 

' See appendix I for the collection of some differentiation rules for vector . functions . which are 

employed in this paper .. 
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• . ,. (1 '°' I'*) ,. I'* • Trr· = Krr· 'Cl Ju +Kr Juu·Kr•, (9d) 

-• ,. (1 '°' I'*) ,. I'* • Trz• = Krz• 'Cl Ju +Kr Juu•Kz·· (9e) 

2.2. The Lagrange multiplier approach 

" . The Lagrangian of the optimizatio~·problem (I) and (2) is given by 

L = E0f {p11(x,,u,)-X;[u, -g(x,,x,+1,z,)]}, {IO) 
t=O 

. where A, is~ (m x I) vector of Lagrange multipliers. With A, =A,/ P' the first order conditions of 

equation (IO) ares 

A,= fu(X,,U,), (11) 

(I2) 

and the transition equation (I). The deterministic equilibrium values must satisfy 
I . 

(I3) 

It is seen from equations (8) that (I3) is identical to (6), so that the same deterministic equilibrium is 

obtained. With A* = f; and IL, = A, - A* the linearized first order conditions are 

. (14) 

s See Chow (1997). 
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·Eliminating u,, .A,·, and A* in ~quations (14) to (16), rearranging.te~s, and using equations (9), 

again gives equ8:t~on (7) .. So . the Lagrange multiplier approach leads to . the same solution of the 

~ptimization problem as the.Euler equation approach. 

2.3. Linearizing the transition equation 

I 

Now µiaximize ihe objective function (2) subject to the linearized transition equation 

(17) 

Proceeding as before, define r(X,Y,Z) = J[ X,g(X,Y,~)]. Then the linearized Euler equation is 

given by 

(18) 

Note that at the determillistic equilibrium the first order derivatives of g are equal to those of g, and . 

the second order derivatives of g are equal to zero. So the second order derivatives of r at the 

equilibrium point ·are identical to the second order derivatives ·of r, except that the second order 

derivatives of g do not appear. Therefore, one obtains equation ( 18) if in equations (7) and (9) t~e 

second order derivatives of g are set to zero. Equation (18) is not identical to equation (7) because in 

general it makes a .difference if an equation is first linearized and then differentiated or, alternatively, . , 

first differentiated and then linearized. 

2.4 •. The linear-quadratic' approximation. 

Now maximize the quadratic approximation ofthe·return function 

f-(X . U ) f • . f • , . "• l '/ • l '"• 'f • . 
" 1 = + x•x, + Ju•u, +-x, xx•x, +-utJuu•u, + x, xu·u, . . 2 . 2 (19) 

subject to the linearized traris~tion equation (17). Be.cause at the deterministic eq~ilibrium the second 

derivatives of j · are identical to those of/, the Euler. equation of the new optimization problem is 

again given by equation (18). But note that in the present case equation (18) is the exact Euler 
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I 

.equation. (of the approximated problem) because the first order conditions are alreacly linear, and ··no 

further approximation is required. 

2.5. ConclusiOns 

If the one-period return ·function is quadratic,· and the transition equation and the law of motion of . . ' . . 

the exogenous stochastic process are linear, then the Lagrange method . and the dynamic 

programming method lead to the same optimal policy functiori. 9 It follows that, if the transition 

equation and the equation for the stochastic process are linear, then the thre~ s.olution methods: (1) 

linearizing the Euler equation, (2) linearizing the first order· conditions of the Lagrangian,. aQd (3) 
. . 

dynamic programming with a quadratic approximation of the return· function all. lead to the same . ' . . . . 

solution. If the solution procedur~ requires a linear transition equation, as the optimal linear reglila~or 

problem does, then all the nonlinear constraints should firs( be substituted into the return function to 

eliminate the nonlinearities. This is the. proceeding of, for example, Kydland and Prescott ( 1982) and· 
. . . . . . 

~Christiano (1988) and emph~sized by Hansen and :Presc.ott (1994). If the transitfon equati~n. ·is 

nonlinear but approximated by a linear function, .as proposed .by McGrattan (i990) ·and Chow . 

(1997), then there is a loss in. accuracy because the second derivatives of the. transition .equation are 

neglected. So the conclusion of Reiter (1997) for the simple deterministic Ramsey· optimal growth ~· 

· mo.del, that the problem should· be formulated in 'such. a way that the constraints are linear, holds in 

· general.· 

3. StochastiC and deterministic trends in a RBC model 

Consid~r the following RBC model. The representative infinitely-lived agent maximize~ 

00 

( 1 )' E0 L - u(C,,L,), 
t=O I+ 8 . 

(20) 

9 See Chow (1975) or Hansen and Sargent' (1997) .. 
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where again E, is ·the .expectation operator conditioned on information available at time t, C, is 
. . . . ' 

consumption and L, is lei~ure !ti p~riod t,. and fJ is the positive rate of time preference. The. period ~ 

utility function is given by 

- 1-c-r exp{(l- i-)a>(L)} '* 1 1-i-
-u(C,L) = for (21) 

log(C) t m(L) ·' 

In (21) i- is the positive ~lasticity of the marginal utility of consum~tion, and a.>( L) i_s. a function with 

m'(L) > 0 and to~'(L) s 0. Jhe period utility function satisfies. the conditions given in King, Plosser, 

and Rebelo "(1988a) ~d ~arro and Sala-i-Martin (1995), that must be fulfilled for the existence of a 

deterministic balanced growth path. The single. good is produced according to a linearly homogeqous 

production function wit~ labor-augmenting technical progress: 

~ =F(K,,A,N,). {22) 

Here, Y, · is outp1:1t, K, is the. predetermined stock of capital, N, is labor input; and A, is a stochastic 

process, ·which describes the level of the technology. Harrod-neutral techllical progress is required 
• I 

for the existence of a deterministic ·balanced growth path. The law of motion for the capital stock is 

·given by 

K,+1 = (1- 8)K, + / 1, (23) 

where I, is investment and 8 is the constant rate of depreciatio.n, which lies between zero and unity~ 

The household maximizes his expected lifetime utility subject to the resource constraints 

L, +N, s 1 . (24) 

and 

C, +I,~ Y,. (25) 

· It is assumed that the productivity level evolves according to 

A,= (1+ µ)'exp{ A,} (26) . 
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with µ ~ 0. It is assumed that A, follows the autoregressive stochastic process 

tAB)A, = e,, · (27) 

where ;!... B) is a fi~te polynomial in t~e backshift operator B and e, is ~ zero mean whlte noise 

process with finite variance a;. The roots of ;!... B) determine the persistence of a shock.. It . is 

assumed that at most one root of ;f...B) is equal to unity, the remaining roots are lying outside of the 

unit circle. If unity is a-root, then A, follows a difference stationary stochastic process, if not, then A, 
foll<;>ws a trend-stationary process. In both cases, the mean growth rate of the productivity level is 

. . 
· given by.µ. 

Ifµ is positive the solution methods described ·in the foregoing section are not applicable directly 

because the variable A, is · growing1 • over time: It follows that the model has no det.erministic 
. . 

equilibrium. Instead King, Plosser, and Rebelo (l 988a). show that on the balanced deterministic . 

growth path with 0: = 0, A,, C,, I,, K,, and Y, are grow~ng with the·same rateµ. But due to the 

constant ihtertemporal .elasticity of consumption and the homogeneity of the productiOn function it is 

p~ssible to adjust these variables for the tren~, so that a ·deterministic equ~librium exists for the 

transformed variables. If we substitute the constraints (22) to (25) into the utility function (20) we 

can define the function R by 

R(K,,K,+1,N,,A,) = u(C,,L,) 
=u[F(K,,A,.tV,)+(1-o)K, -Kt+l;l-N,]. 

. (28) 

· Note that R is homogeneous of degree 1- -r in its first, second, and fourth argument, i.e. 

• R( vK,, ~K,+1 ,N,, vA,) = v1-'"R(K,,K1+1,N1 ,A1 ), v> 0.10 (29) 

As sh<:>wn below this property of R is of crucial importance to obtain a solution of the model. 

10 In the logarithmic case there appears an additive term -log( v). ·aut this term· can be neglected in · . . 

. the following transform~tions because it does not affect the first order conditions. 
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3.1. Tbe case of a- deterministic trend 

In the case of a detenninistic trend we can stationarize the model' by dividfug ~he growing variables 

·by the trend. If we ·define· .K, =log(K,/(l+µ)'], fl, =log(N,), and 

r(K,,K.,+1 ~N,,A,) = R[exp{K,};(l+ µ)exp{K1+1},exp{il,},exp{A,}], we can writell 

( 1)'( .. ) '(- - - -) -. R K,,K,+1,N,,A, =Pr K1 ,Kt+1,N,,A, , 
1+8 ' . ' . 

(30) 

I 

wher~ P= (1 + µ)1
-r /(1+8). If we define the state_ vector of the model as [ K, N,_1] and the control 

. ' . ' 

vector as ( K,+1 N,] , we have the ·model of the foregoing section. wi~h the period return function 

. (30) and the linear stochastic process (27). The transition equation is also linear and says that th~ 

next_ period state variable is equal to the control variable. The Euler equations of the RBC model are 

given by. 

(3la) 

r3(K,,Kt+1 ,N,,A,) = o, ' (3lb). 

where r, is the derivative of r with r~spect to its i-th argument. The detenninistic equilibrium value 

of A, is equal to zero. With K• and ir the deterministic equilibrium values of K, and fl,, and 

If• = r; ( k*, k*, N•, 0), we have the two equations. r; +Pr..• = 0 and r; = 0 to -solve for k* and R• .12 

Then. the ·linearized Euler equations are 

11 We also take the logarithm of the variables, because it is shown by Christiano (1988) and Taylor 

·and ~ig (1990) that this transformation gives a better approximation. 

12 It is assumed that the two equations have· a unique solution. In some cases the equations may be . 

highly nonlinear so that the deterministic equilibrium values must be computed with numerical. 

methods. Alternatively the equilib~um may be given, from which parameters of the utility function 

or the production function are determined. 
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with k, = K.1 ~K.·, n, =fl, -ir, and a,= A.,. 

3.2. The case of a stochastic trend 

Christiano (1988), King, Plosser, and Rebelo (I 988b ), and Hansen (1997) inve.stigate the case that 

the stochasti~ process for A, has a unit root. Hansen (1997, p. 1010) argues, that in this case a 

different solution procedure should be employed, because if A, "follows a random walk, simulated 

variables .may wander far from the~r $t~ady-state values" and the "solution may be. a poor one 

because the approximation may be accurate only ~hen the variabl.es take on values ·.close to the 

steady state." Christiano (198.8) and Hansen (1997) propose to transform the model ~Y div;ding the 

growing variables by the lagged technology variable A,. Then it follows from equations (29) _and (30) 

that 

(1~ 0 J R(K,,K, • .,N,,A,) = P' exp{( I- r)A,~1 }r(.K, -A,_.,.K,.1 -A, +AA,,N,,M,): (33) 

Two things should be noted about this equation. First, in the logarithmic case with '!equal to one, A, 
disappears in equation (33). Therefore the transformed model is.,an optimization problem in the 

st.ationary variables (K., -A.1_ 1), fl,, and M,. Because the deterministic equilibrium value of M, is 

equal to zero, it follows from the Euler equations, that the deterministic· steady st~te .values of 

(.K, -.A1_1) and fl, are equal to .K• and ii*, respectively, so that in the deterministic and in the 

stochastic trend model the Taylor approximation is ·taken around the same values. Because 

r( K,, K,+1, fl,~ A,) is equal to r( K, - At-1, .K,+1 - A, + ·ilA,, fl,, 0), the two functions of course .have the 

s~e Taylor approximations. It follows that although the variables in (32) are nonstationacy, the 

equations can be transformed in such a ·way that only stationary variables remain. The same 

statement holds for the resulting optimal . decision functions which may be expressed in stationary 

variables. Then, these stationary variables wijl not wander far from their steady state values. 

Therefore in the logarit~c case there is no need for a special transformation if the technology 
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process has a unit root. Even in this case it is sufficient to adjust the variables for the_ deterministic 

trend.13 · 

Second, for -r~ I the nonstationary variable A, appears in equation (33) and the criticis~ of~arisen 

(1997) could ·be valid.14 This seems to b~ the reason for C~stiano (1988) and Hansen (1997) to 

· investigate the logarithmic case only. Christiano ·(p. 252) explains this explicitly: "Th~ solution 

strategy I use to solve the model requires .that the function .relating. consumption to instantaneous 

utility have the property of converting multipl~cation into addition, ·as the logarithmic does. "15 

An . alternative to explicitly stationarize the Qiodel is to take the Euler equations of the original . · 

nonstationary economy as proposed; by Campbell (1994). This leads to the first order conditions 

. . . I . 
Ri_ (K, ,K,+1, N,, A,) +--E,R1 (K,+1 ;K,+2 , N,+1, A,+1) = 0, . 1+8 

(34a) 

. (34b) 

B~cause R is homogerious of degree 1- -r (in its first, secon~, and fourth argument), the derivatives . 

R1 and Ri, are homogenous of degree --r apd ~ is homogenous of degree 1- -r. Therefore the Euler 

equations can be written as 

A-"'11(K, K,+1 N .1)+-.1-E {A-"'R (K1+1 K1+2 N. 1)} = 0 
t .I. '2 A ' A ' t' 1 8 t t+l I A ' A ' t+l' ' 

t t + l+l t+l 

(35a) 

13 Indeed, Hansen (1997, p. 1013) reports that he obtains the same summary statistics for both 
'. 

procedures, but he attributes. this result to the. quality of the quadratic approximation. 

14 The same point holds for the .procedure of King, Plosser, and Rebelo ( l 988b }, who divide the 
i . 

model variables by the permanent comp~nent of technolom;: 

is Remember that ·in the logarithmic case in the transformed return ~nction an additive term 

appears. This term contains the ex~genous stochastic process and cat) be neglected because .it is 

n~t under control of the agent. 



-15-

A-r'f)(Kt Kt+l N 1)= 0. 
~ ~'3 A ' A ' ,, 

~ t. 
(35b) 

Because 

'i (K,,K,+•• N,,A,) = R1 ( ~{ K, },(I+ µ)exp{ K,+1},exp{ N,}~exp{ Z,})exp{ K, }, 

r;(K:1 ,Kt+1,fv1 ,A1 ) = Ri[exp{K.i},(1 + µ)e"p{K,+i},exp{ii,},exp{z,}](1 + µ)exp{K.1+1}, 

r3(K.,,K.,+1,ii,,A,) = ~( exp{K.,},(1 + µ).exp{K.,+1},exp{ii,},exp{z,}]exp{R,}, 

the equations (3 5) can be transformed to 

rJK, - A.,,.K,+1 - A.,, .N,, o) = o. (36b) . 

. Because K., - A, = K.1 ~ A1-1 - AA,, we h~ve two equatio~s in the stationary variables K., ~ A1-1, N,, 
and AA,. That means that ·the Euler equations of the nonstationary RBC model ·are stationary 

. s~ochastic difference equations. The deterministic steady sta~e values· of ( K, - A.,_1) and N, again are 

equal to K.• and fl•, respectively. Then the linearized Euler equations are 

p,-.;E,·( k,+2 - a,+1) + (7 ~ + P'i ~ )( k,+1 - a,)+ 'i; ( k, - a,_1) + P'i;E,n,+1 + 7 ;n, + 

P[(1- -r)'i. -1jnE,Aat+l ~1j;&i, = o 

, . 

(37a) 

(37b) 

Because only stationary variables appear in equations (3 7), the· linear approximations should not be 

inaccurate. But the deterministic detrending procedure leads· to the same linearized .Euler equations, 
. . 

which can _be shown as follows. Due to the homogeneity of R, we have t~e .. following version of 

Euler's theorem for homogenous functions: (1- i)r;• = r;; +r;; +11:, i = I, 2, 3. Then it follows 
• ( ) • • • • p( ) • • • d • • • • p • d 1j4 = 1- i- 'i -1j1 -1j2 , 724 = - 1- ''i -721 -722 , ·an 734 = -731 -732 be<.'.ause 72 + 'i = 0 an 

13• = 0. Substituting this into equations (32) gives equations (37). Therefore,- to stationarize th~ 

model it is sufficient to _detrend the growing variables by the deterministi~ trend. It is not necessary 
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to use a different procedure in the case of a stochastic trend. even if the technology process has a unit 

root and the utility' function is of the general isoelastic kind. 

As an example take the RBC model in Hansen (1997) with a negative autocorrelation for the growth 

· rate· of the technology variable. ~n this. ·model the subuti~~y function .for leisure is a>( L) = B · i with 

B > O, the production function i,s F(K, AN) = K1
-a (AN t with O < a < 1, and the parameters are 

given by a= 0.64, o= 0.02, p= 0.01, i-= I,µ= 0.005, </>1=1, and </>2 = -0.2. Further, steady state 

labor is N* = exp{N*} =«0.3, which determines B = 2.868. The adjustment for the deterministic 

trend, the transformation employed in section 3.1, gives the optimal decision functions16 ·. 

kt+1 = o.9420K, +0.0738..4, -o.01s8.At-1 +p.1410, 

fi, = -o. 4110K, + 9. 656 lA, - 0.1192.Jt-1 - o. 0444. 

Because the sum· of .coefficients in the first equation is equal to unity. and in the second equation 

eq~al to zero, 17 the. equations can be transformed to 
' ·. 

( kt+1 - A,) = o. 9420( k, -A,_1 )- o. 9262( A, -A,_1) + 0.141 o, 

.· .. ii,= -0.4110(.K, -At-I) +0.6561(.A, -..4,_1)-0.0444. 

These are nearly exactly the optimal decision functions obtained by· Hanse~ ( 1997) with the 

alternative stochastic detrending transformation.18 

16 The linear-quadratic approximatio~ method was used for the solution of the model. The optimal 

li~ear regulator problem was solved with.the procedure described in Ehlgen {1997a). · 

11 Campbell (1994) obtains the same result for the unit root case. 

ts J"here may be. seyeral reasons for the slight di~erences in t~e coefficients. First, the utility in this 

paper depends on leisure~ while the utility function in Hansen is formulated in labor. Second, there 

might be small differences in the numerical values of the. param~ters. 
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4. The importance of the trend for model statistics 

. In a parameter variation Hansen (1997) sets the growth rate· of the model equal to zero and obtains 

the same summary statistics as in the model with a positive growth rate. He concludes that 
0 abstracting from growth does not affect the properties of the fluctuations displayed by·a RBC model 

with exogenous te~hnical progress. This is reassuring given that so m~ch of the business cycle 

literature abstracts ·from growth" (p. 1013). It is demonstrated in this section that this statement is 

only true in special circumstances. 

Campbell (1994) shows that on the. balanced growth path the relationship (I+ µy ~ {I+ r) /(I+ p). 
holds. Here r is the steady state interest ra~e determined by the marginal product of capital. Note that · 

for -r= 1 we have_ approximately .r = µ + p. Further Campbell shows that the coefficients in the 

optimal· decision functions depend on µ, 6, and _r through the parameters· .A.1 =(I +r )/(1 + µ), 

_A.2 = a(r,+o)/(1+µ), 'and .A.3 = a(r-yo)/(l+r). N~w, ifµ is set to zero, oincreased.by.the· change 

ofµ, and p is not changed, then for r = µ + p t<;> hold, r must decline with µ. It follows that .A.1, A.2 , 

.A.3 , the optimal decision functions, and the model statistics change only slightly~ Table ~, which gives 
. . 

the variabilities of the different variables of the RBC model in section 3 .3. for several parameter . 

constellations,· illustrates this point.· Case. I is the base model of Hansen (1997) with a deterministic 

trend, and case 2 is the model with the growth rate set to zero. The variabilities are nearly identical. 

But if the growth rate is modified ~d the changes in the remaining model parameters do not_ just 

offset the change in the growth rate in this special way, then the model· statistics ar~ not invariant to 

the growth rate. If, as in case 3, µ is set to zero but o is not changed, then again r must go down. 

But now the coefficients .A.2 and .A.3 change as wen· as do the volatilities of the variables. 

While these results do not seem to be of quantitative importance, the changes in the mode~ statistics 

are more severe if the change in the growth rate affects the elasticity of intertemporal substitution but 
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leaves the remaining parameters of the model unchanged.19 Cases 4 and 5 are parameter variations 

for ·the deterministic trend model with. a smaller growth rate and a higher elasticity of the marginal 

utility-of consumption. Cases 6 to 8 examine the situation, that the logarithm of technology follows a 

stochastic trend. Ca~e 6 is the model of Hansen ( 1997) with a logarithmic utility function and a first 

order autoregre~siv~ process with negative .serial correlation for the growth rate of technology. 

Similarly to cases. 4 ·and 5, in cases 7 and 8 the growth rate is reduced. Two main results follow. 

First, it turns out t~at the less· the growth rate, the greater is the relative volatility_ of consumption 

and the less is the relative volatility of investment. Second, the changes in model statistics are much 

greater if the technology process has a unit root. If e.g. the growth rate is µ=·0.001 (case 8) and 

accordingly -r = 5, then the standard deviations of consumpti.on and investment are not very different 

from the standard deviation of outpuf 

Therefore, in general a variation in the growth rate can have important consequences for the model 

resuits. The strength of these effects depends on the nature of the stochastic process and on the f~ct 

which parameters bear the. consequen~es ·of the variation in the growth rate. If the steady state 
. . 

interest ra~e and the rate of depreciation are allowed to vary and can ·"neutralize" the change in the 

growth rate, as in Hansen (1997), the eff~ct~ may be negligible. But ifthe i~terest rate and the rate of· 

depreciation are given, as in Campbell (1994), and the elasticity of intertemporal substitution 

changes, then the effects of a variation in the growth rate on the model results may be substantial. It 

follows that the treatment ·of the trend, especially the nature of the stochastic process and the 

'nu~erical ~alue of th~ growth- rate, deserves a special attentio~. 

5. Summary 

In. the present paper we first presented some solution methods for RBC models in a unified 

framework and verified the statements in e.g. King, Plosser, and Rebelo (1988a), Christiano (l990b),. 

19 If 'r is different from unity the model can n_ot be interpreted as an economy with indivisible labor 

(s~e Hansen and Prescott, 1995). The simple parameter variation here is made for illustrative 

reasons.only . . 
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and Campbell (1994) concerning the equivalence of the. different solution methods. Second we 

showed that in a growing economy it is sufficient to adjust the variables for the deterministic trend 

even in the case that technology follows a sto.chastic trend. This result justifies the proceeding in e.g. 

Baxter and Ciucini (l995) who use the deterministic detrending method in a model with a stochastic 

trend. It is not necessary to rely on the borderline case of a detemlinistic trend and an autoregressive 

root near unity as e.g. in Baxter and Crucini (1993). Third we demonstrated that a change in the 

growth rate of the model can influence the model results. Therefore not only the kind of the 

stochastic process, i.e.· a trend- or a difference stationary proqess, but also the numerical value of the 

growth r~te can have substantial effects upon the model statistics .. 

~. 
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Table l 
Effects of Parameter Variations on Variabilities 

Parameter Values Variabilities 

_Case tP1 tP2 µ 0 "' r y· c I N K 
l 0.'95 0.0 0.0050 0.020 . 1 0.015 1.81 0.53 5.80 1.38 . o~5o 

1.00 0.29 3.20 0.76 0.28 
2 0.95 0.0 0.0000 0.025 1 0.010 1.81 0.53 5.7~ 1.38 0.50 

1.00 0.29 3.20 0.76 0.28 
3 0.95 0.0 O.QOOO 0.020 1 0.010 1.86 0.48 6.49 1.46 0.45 

. 1.00 0.26 3.49 0.78 0.24 
4 0.95 0.0 0.0025 0.020 2 0.015 1.40 0.67 3.86. 0.74 0.31 

1.00 0.48 2.75 0.53 0.22 
5 0.95 0.0 0.001 0.02 5 0.015 1.30 0.72 3.44 0.59 0.26 

1.00 '0.55 2.64 0.45 0.20 
6 1.00 -0.2 0.0050 0.020 1 0.015 1.26 0.60 3.35 0.73 0.25 

1.00 0.48 2.65 0.58 0.20 
7 1.00 -0.2 0.0025 0,020 2 0.015 0.96 0.74 1.76 0.25 0.12 

1.00 0.77 1.83 0.26 0.12 
8 1.00 -0.2 0.0010 0.020 5 0.015 0.84 0.80 1.06 0.11 0.06 

1.00 0.96 1.27 0.13 0.07 
The remaining parameter values in all cases are a= 0 .. 64, p= 0.01, and B = 2.868. The first 
measure of variability is the standard deviation of the logarithm of the series afler HP-filtering, 
multiplied by ·the factor 100. The loglinearized e·quation for output, investment, and consumption ' 
are derived in appendix 2 . .This leads to a state space system as ~n King, Plosser, and Rebelo 
(I 988a). Then exact moments of the filtered ·series are computed With the procedure described in 
Ehlgen (1997b). The second measure of variability is the standard deviation relative to the standard 
deviation of Y. - . . 

I 

,· 
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Appendix 1 

In this appendix we collect some rules for differentiation of vector functions. In the following, k, m, 

and n are positive integers and x is a real (n x I) vector: 

Let F = (Ju) be an (m x k) matrix of single valued functions on the n-dimensi~nal real ·space. Then 

the derivative 8 F( x) /Ox is defined as the (mn x k). matrix of functions G = (~u), such that 

KJ.,s-t)+i. (x) = Bfu(x)/oxs for i = I, ... , .m;f= I, ... k, ands= I, ... , n; where ~s is the s-th element 

of x. The derivati~eo F( x) I ox' is . defined as. the ( m x kn) matrix of functions !I = ( hij)' such th~t 
~.k(s-..t)+J(x) = Bfu(x)/oxs for i = I; ... , m;j = I, ... k; ands= I, ... , n: It is easy to show that 

. ' 

oF(x)/ox' = [ oF'(x)/ox J. Note·the special cases that the derivative of an (m x I) colu.mn vector:: 

with respect to an (I x n) ·row vector is an (m x n) matrix, and the derivative of an (I x k) row vector 

with respect to ~ (n x I} column vector is aµ (n x k) matrix. 

With this convention it is easy· to verify the follo~g chain rule for vector functions. Let I ( u). be a 

vector of single valued functions on them-dimensional real space and let ~(x) be an (m x I) vector 

of single valued functions on the n-dimensional real space. Then: 

~f'[g(x)]= ~g'(x)· :Uf'(u), with u=~x). 

Also we have the following .version of the product rule. Let G = (gu) be an (m x k) matrix and let . 

r = ('i) be an (k ?<I) vector of single valued functions on then-dimensional real space: Further, let 

f =(J;) bethe (mx I) vecto~ offunctio~s given by J;(x) = :L;=
1
gij(x)·r1(x). Then 

~ J(x) =:: ~G(x)·[ln ®r(x)]+G(x)~r(x), ox' . ox' ox' 

where® ~enotes the Kronecker product and I;, is the identity matrix of dimension n. 
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Appendix2 

Jn t~s appendµc we derive the approximative optimal decision functions for output, investment, and . . 
.··) ' 

'/consumption for the case of the Cobb-Douglas production function. We have 

Y, = K:-a ( AtNt t, 
It= Kt+i·-(1-o)Kt, 

ct= Y, ....;J, . . · 

(Ala) 

(A.lb) 

(Ale) 

Let t. = l~g[ Y, / < 1 + µ)']. c, = log[ c.f < 1,i-µY]. and i, =lo~[ 1.f < 1 + µ)'] be. the logarithmic 

detrended variables. Equations (A.1) can be transformed to 

Y, = ( 1- a )Kt + a( A, + fl,), 

exp{ j,} = ( 1 +µ)exp{ K,+1}-(1-6) exp{ K,}, 
.exp{ C,} = exp{ Y,} ~ exp{ jt}. 

The deterministic equilibrium values ofthese·variables, r, C .. ,- and r, are given. by 
. . 

r =(1-a)x· +afl·~ 

·. exp{r}·=(µ+o)exp{K·}, 

exp{ c·} = exp{ r }- exp{ r}. 

(A2a) 

(A.2b) 

(A.2c) 

(A.3a) 

(A3b) 

(A.Jc) 

Define y, = Y,-r, it= jt -r, ct= C, -t·, K = exp{K·}, y• = exp{r}, 1· = exp{r}, and 
. . 

c• .= exp{ t•}. The first order Taylor approximations of equations (A.2) around the values. in (A.3) 

are 

y, =(I- a)k, + a(a, +n,), 
(it =(1+µ)K•kt+i-(1-6)K•k,, 

· c· c, = ~ y, - r ;, . 

(A4a) . 

(A.4b) 

(A.4c) 

Assume that at. follows a fi~st ·order autoregressive process. (The case of ~ higer order process is 

straightforward.) The optimal decision functiOns for capital and labor can be written as · 

kt+l, = TJ,tkkt + T/i«JQt' 

n, = T/n1ckt + T/naat. 

(A.Sa) 

(A.Sb) 
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Then we have from equatiQns (A.4) .and (A.5) the following optimal linear decision rules for output, . 

investment, and consumption: 

y, =(I- a+ aTJnk)~, + a(I + T/nJa, = ·T/ykk, + T/JIOa,, (A.6a) 

. · ~ · · x· x· · 
. 11 =[(l+µ)TJa -(1-o)]-. k,+(1+µ)-. T/aa, = T/;kk, + TJ,0a1 , 

I . I . . 
. (A.6b) 

. (A.6c) 
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