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Abstract

This paper discusses solution procedures for real business cycle (RBC) models. First, we show that
the most often used solution methods, the linear-quadratic approximation, the Lagrange multiplier,
and the Euler equation approach all lead to the same decision function. Second, we demonstrate that
deterministic and stochastic detrending methods which are used to transform the growing model
~ economy to & stationary one, lead to the same model solution, no matter if the technoiogy. process
has a unit root or not. Third, we éhow that contrary to statements in the literature the numerical

.value of the growth rate of the model can have substantial effects on the model results.
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1. Introduction

RBC models can be solved exactly only under very speci_al assumptions. The most prominent case is
Ai;he model of Long and Plosser (1983) whé suppose a logaﬁthmic utility function and a Cobb-
Dougias production function with 100% depreqiation. If under more realistic assumptions the exact
‘ solution can not be found, then the model must be solved approximateiy. Numerous such solution
methods are proposed in the literature.! Some of these methods are highly numericai and require the -
- implementation of a contraction mapping operator on a computer. Examples are the value function
iteration employed by Greenwood, Hercowitz, and Huffman (1988), Danthine, Donald>son, and
- Mehra (198‘9) -and Christiano (1996&),__and}the Euler éqgation approach of éoleman (1990), den
. Haan and Marcet (1990), Tauchen (1990), and Judd (1992). On the other hand, there are solution
niethods which are less numerical and lead to linear apprbxiniétive“ decision rules. A first apbro#ch_ in
this claés is the proéedure introduced by Kydland and Prescott (1982) and extended to nonstationary
' econonﬁes by Christiano (1988), to eliminate th§ nonlinear constraints'by. suBstituting them into the
utilit.y functioﬁ and then to take the second order Taylor approximation around the deterministic
equilibrium point of the system. The resulting optimal linear regulator problem is usually solved by
the iteration of the matrix Riccati equation.? The variant of McGrattan (1990) elinﬁnates the
nonlinearities by approximating the constraints by linear ﬁmctions. A second approach proposéd by
King, Plosser, and YAR'ebelo (1988a) is to linearize the first order condition; of the.i.agrangian of the
'thimization problem. Chow (1992, 1993, 1997) in a series of contributions describes a sixﬁilar-
.procedure but proposes to linearize the constraints in advance.3 In a third approach Campbell (1994)

takes the first order Taylor approximation of the Euler equation of the model.

! ,See'Taylor_and Uhlig (1990) and. Danthine and Donaldson (1995) for a survey of different

| solution methods.
2 This solution method is described in detail by Hansen and Sargent (1988).

3 ‘Kwan and Chow (1997) use a numerical procedure to solve the first order conditions of the
original problem. They describe the linearization of the constraints as a particular implementation

* of the Lagrange multiplier approach, which in general they prefer to value function iteration,
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King; Plosser, and Rebelo (1988a, p. 211) state that their procedure is essentially eduivalent to the
procedure of Kydland‘ and Prescott (1982), and Christiano- (1990b; p. 99) calls the solution
procedure of King, Plosser, and Rebelo (1988a) a linear-quadratic approximation Campbell (1594)

notes that in the case of homoskedastxc shocks his solution method yields the same results as the |
lmear-quadratlc apprommatlon approach of Christiano (1988). Reiter (1997) on the other hand
shows for the simple deterministic Ramsey optimal growth model that the} various solution
' pfocedures give different decision rules, depending on the choice of the state and (the control
variables. Therefone, the first objective of this paper_ is to compare these solution fnethods which all -

~ lead to linear decision rules, and to show under which conditions they give the same solution.4

' While the first part of the paper deals with stationary models it is the concern of the second part
how to deal with the trend in RBC models. The solution procedures of King, Plosser, and Rebelo
(1988a and 1988b) -and Christiano_ (1988) requires to transform the growing model economy into a
stationary one. Hansen (1997) in his comparative study uses diﬁ'erent procedures for this
transformation, depending on the nature of the technology process. If (the logarithm of) technology
follows a trend-stationary stochastic process the growing variables are divided hy ‘the deterministic

A ﬁme trend (detenninistic detrending), if technology follows a difference stationary process, the

growing model variables are divided by the lagged technology variable (stochastic detrending). It is -

shown in the present paper that it is not necessary to apply differéni detrending methods because the |

deterministic and the stochastic detrending procedures lead to the same solution of the model.

. Christiano (1988) and Hansen (1997) assume a logarithmic utility ﬁmctlon presumably because in
the case, that the constant elasticity of intertemporal substltutlon is different from unity, a random
walk term appears in the quadratic approximation even if the stochastic detrending method is used.
On the other hand Campbell (1994) linearizes the Euler equation of the original nonstationary model

with a general isoelastic utility function and a possibly stochastic trend. This procedufe leads to a

4 Clearly, the solutions of the pure numerical methods depend strongly on the specific
| implementation of the procedure. Therefore a comparison with those solution methods is beyond

the scope of this paper.
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statxonary stochastic: dlﬁ‘erence equation, so that a restriction to the logarithmic case is not necessary.
Tt is shown in the present paper that the deterministic and the stochastic detrending method both lead
to the same Euler equation as the approach of Campbell (1994).. Therefore, the most preferred.
methods to solve RBC models, first the tagrange multiplier .method of ‘King, Plosser and Rebelo
- (1988a2) and second the linear-quadratic approximation approach of Kydland and Prescott (1982),
can b,‘e‘ .applied even for the case of a stochastic trend and a general isoelastic utility function. It is

: suﬂicient in this case to adjust the variables for the deterministic trend.

" The paper also examines the effects of a variation in the growth rate of technology on the model
solution. Hansen (1997) claims that a change in the growth rate does not affect the model statistics.
But it is shown here that this result depends on a specific parameter variation of Hansen's procedure
In general the effects of a change in the growth rate depend upon the fact which of the remammg
parameters also change. It is possible to change these parameters in such a way that the variation in
the gromh rote is nearly neutralized. But it is also possihle to change the remaining parameters in |

such a manner that the effects on the model statistics are substantial. '

The plan of the paper is as follows. Section 2 analyzes the three approaches to approximately solve
stationary stochastic dynamic optimization problems and examines .thé significance of linear
constraints. Section 3 compares the different methods to obtain stationary Euler equations from a
nonstationary economy for the case of a deterministic and a stochastic trend. Section 4 investigates .
.the'eﬁ‘ects' of a variation in the growth rate on the model results. Section 5 gives a short summary of

the paper.

2. Solution methods for stationary models o

Let X , be an (nx l)‘ vector of state variables in period 7, U, an (mx 1) vector of control variables,

‘and Z, an exogenous stationary stochastic vector process of dimension (Ix1). Suppose' that the
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transition equation of the system, which relates the future state of the system to the current state, the

control variable, and to the stochastic shock, can be solved for the control variable:5

U, =g(X,,X,...2,). | | | (1)
The objective is to maximize
Eo{Zﬁ'f (X,,U.)} - @
t=0 .

- subject to the _transitibn equation (1) and giveh Xos where f (x,,U) is the one-period return
function, B is the discount factor, which is positive but less than unity, and E, denotes the
~ expectation operator conditioned on information available in period ¢ In the following subsections

several procedures to solve the dynamic stochastic optimization problem are compared.

2.1. The Euler equation approach

Define the function r by

r(X.7,2)= f[X,8(X.Y,2)]. - 3)

Thén, substituting (1) into (2), we have.to maximize

F.Eo{iﬂ“r(anu‘th)} ' 3 ) (4)

t=0

given X,. The first order conditions of this optimization problem are the,stochastic Euler equations®

r(X,X,.,Z)+BEr(X,,X.,,2,)=0,t=0,1,2, ..., 6))

5 In this formulation of the stochastic optimization problem the decision is made after the
realization of the stochastic shock, so that the state variable in the next period is known with

certainty.

6 See Stokey and Lucas (1989). It is assumed that the transversality condition and the second order

conditibns,are also fulfilled.
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where 7, and r, are the derivatives of r(X .Y, Z) with respect to X and Y, respectively.” First
consider the corresponding deterministic optimization problem with Z, =Z", where .Z" is the
unconditional expectatioh of Z,. Suppose the deterministic system has an unique ‘ equilibrium

X, ‘=, X°,t=0, 1, .... From equation (5), the equilibrium point must satisfy
r+pr, =0, : - ()

where ry, =r (X", X", 2") and ; = rx(X°,X°,Z°). This is a system of  equations to solve for the n -

unknowns in X *. The first order Taylor approximation of equation (5) around (x°,x,2) is

. .. :
ﬁ,";r'E:xuz "‘(r;r' +PBryy )xm TlyxX, = —(r;z.E,zm ""'r.z'z:) . ’ (7

. ; * . . . o Y ' ) . .
Here, x, =X, - X" and z,=2,-Z", and riy., By, Ty =(Fip) Txz» and ry;. are the matrices of -

- second order derivatives of rf(X ,Y¥,Z), again evaluated at (X X,z )

. Now let U'=g‘=g(X',‘X',Z') and denote the derivatives of f(X,U) at (X',U") and the
- derivatives of g(X,?, Z) at (X ‘X ’,Z") similar to the derivatives of "Xx,7,2). Applying the chain |
rule and the product rule givés fhe following relatiopships between the derivaﬁves of r and the

derivatives of fand g

re=fe+8 Jfos ‘ ,‘ " (8a)
n=g fg | - (8b)
and
rex = frx + Frv8x + 8o (I® 13)+ 85 ([ + fow &)y (%)
Tey = fru&r + 8o (I1® 1)+ 85 fov-8rs  (9b)
Tez= frv 8o + 85 (1 ® f5)+ 8o fou&snn (9¢)

7 See appendix 1 for the collection of some differentiation rules for vector functions which are

employed in this paper.
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rr =8I ®f5)+ &/ fov 8- , (od)

he =g IO L) v el fovgs. (%)

2.2. The Lagrange multiplier approach
The Lagrangian of the optimization problem (1) and (2) is given by

L=E02T:{ﬂ‘f(XnUr)—K:[Ut_g(XnXul’Zc)]}’ A - (10)

.- where .7\, is an (m x 1) vector of Lagrange multipliers. With A, = A, / p' the first order conditions of

equation (10) are?

A =f,(X,U), | Q1)
gl" (Xl ? XH‘] ’ZI)AI +ﬂEt [fX (Xl+| ’ Ul+l) + g:"(Xt+1 ’ Xl+2 ’ Zl+l )At+l ] = o’ (12)
‘and the transition equation (1). The deterministic equilibrium values must satisfy
&' fs +B[fx+85fs]=0. | (13)

It is seen from equations (8) that (13) is identical to (6), so that the same deterministic equilibrium is

‘obtained. With A" = f; and A, = A, — A" the linearized first order conditions are

’1':=fb}'xr+fJu'uxa : o - (14)

10K + 310K )5 4812 (10K ) 2872, + e
. . S . . . . . . . (15)
ﬂEr{[fxx'xm +fxu'u:+|]+[g:\'x'(1 ®A )xm +g)'n"(1®A )xnz +g3(z'(1 ®A )z:+1 +8x '1:+|]} =0, :

U, = GyX, + Gy Xy + 812, | - (16)

8 See Chow (1997).
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- Eliminating u,, A,, and A" in equations (14) to (16), rearranging terms, and using equations (9),
again gives equation (7). So the Lagrange multiplier approach leads to the same solution of the

~ optimization problem as the Euler equatidn approach.

23. Lin‘earizing the transition équatioh

Now maximize the objectnve ﬁmctlon (2) subject to the lmeanzed transition equation |

U =§(X,.X....2) = g+gx(X X)+gy(X.+, x)+g:(2,-77). 17

Proceeding as before, define F(X,Y,Z)= f [x.8(x.7, Z)] Then the lineérized Euler equation is

given by

ﬂf;r Ex,,, +("rr +ﬂ"xx')x:+1 + x = —(ﬂrxz Ez, "".'}.z'zz),-‘ (18)

Note that at the deterministic equilibrium the first order den'vativés of g are equal to those of g, and
the second order derivatives of & are equal to zero. So the second order derivatives of 7 at the
eqliiliiarium point are identicél to the ‘s'eco‘nd order derivatives of 7, except that the second order
derivatives of g do not appear. Therefore, one obtains equation (18) if in equations (7) and (9) the
second ordér derivatives of g are set to zero. Equation (18) is not identical to equation (7) because in
general it makes a difference if an equation is first linearized and then diﬁ‘érentiated or, alternatively,

first differentiated and then linearized.
24, Tﬁe linear-quadtratic'approximétion ,
. Now maximize the quadratlc approxnmatlon of the retum functlon
7 ’ N 1 ’ r£* . |
‘ f( U) f "‘fxx:"'fu” +—= xfxxx +— ufuu” +X fypth, | '(19)

subject to the linearized transition equation (17). Bepéuse at the deterministic equilibrium the second
derivatives of f are identical to those of f, the Euler equation of the new optimization problem is

again given by equation (18). But note that in the present case equation (18) is the exact Euler
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.equat'ion, (of the approximated problem) because the first order conditions are elready linear. and no

further approximation is required.

2.5, Concllrsions ,

If the one-penod return function is quadratrc ‘and the transition equation and the law of motion of
the exogenous stochastic process are linear, then the Lagrange method and the dynalmc :
programmmg method lead to the same optnmal pohcy function.® It follows that, if the transmon ~
equatton and the equation for the stochastic process are lmear then the three solutron methods: 1) |
ltneanzrng the Euler equation, (2) lmeanzmg the'ﬁrst order conditions of the Lagrangtan,, en,d ?3)
dynarmc progrémming with a quadratic approximation of the return’ function all lead to the szlm‘e
‘solution. If the solutlon procedure requxres a linear transmon equation, as the optimal lmear regulator |

| problem does, then all the nonlmear constraints should ﬁrst be substituted into the return ﬁmctlon to

ehrmnate the nonlinearities. This is the proceeding of, for example, Kydland and Prescott (1982) and

_ Christiano (l9>88)'and-emphesized by Hansen and;Presc,ott (1994). If the transition equation ‘is

nonlinear but approxirhated by a linear function, as proposed by McGrattan (1990) and lCho'w _

(1997), then there is ; loss in accuracy because the second derivatives of the, transition equation are

neglected. So the conclnsi_on of Reiter (1997) for the simple deterministic Ramsey optimal growth -

- model, that the problem should be formulated in sucha way that the eonstraints are linear‘,‘» holds in

- general.

3. Stochastic and deterministic trends in a RBC model

‘Consider the following RBC model. The representative infinitely-lived agent maximizes

OZ( ALCRANE v'.» o o M '('26)"

=0

9 _See‘ Chow (1975) or Hansen and Sargent (1997). -
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where again E, is the expectation operator conditioned on information available at time ¢, C, is

consumption and L, is leisure in period £, and & is the positive rate of time preference. The. period

utility function is given by

1—_1;C«"’exp{(l— 9o(L)} Tl

»dQLﬁﬂ_ | : - for (21)
L log(C)+ (L) . Cr=1

\

In (21) ris. the positive elasticity of the marginal utility of cbnsumption, and (L) isa function with
@'(L)>0 and »"(L) <0. The period utility function Satisﬁes the conditiohs given m King, Plosser,
and Rebeld'(1988a) and Barro and Sala-i-Martin (1995), that must be fulfilled for the gxistence ofa
deterministic balanced grthh path. The single good is produced aécording toa lineafly hémpgenous

production function with labor-augmenting technical progress:

Y,=F(K.,4N). @2

Here, ¥, is output, KX, is the predetermined Stock of capital, N, is labor input; and 4, is a stochastic
process, which describes the level of the technology. Harrod-neutral technical progress is required
for the existence of a determi’ni_stic balanced growth path. The law of motion for the ‘capital stock is

- given by
Ku—l = (1 - é)K: + In ’ | (23)

where I, is investment and & is the constant rate of depreciation, which lies between zero and unity.

- The household maximizes his expected lifetime utility subject to the resource"cbnStraints

L+N,<1 24

and

a

C,+1, <7, 4 : (29

It is assumed that the productivity level evolves according to

4,=(1+4) exp{4,} o o @e) -
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with z> 0. It is assumed that 4, follows the autoregressive stochastic process -

dB)Z:=8n' | o | - (27) |

where ¢(B) is a finite polynomial in the backshift operator B and ¢, is a zero mean white noise
process with ﬁmte variance o>. The roots of #(B) determine the persistence of a shock. It is
assumed that at most one root of ¢(B) is equal to unity, the remaining roots are lying outside of the
unit circle. If unity is a root, then 4, follows a difference stationary stochastic ‘process,‘.if not, then 4,

follows a trend-stationary process. In both cases, the mean growth rate of the productivity level is

" given by o

Ifuis posifive the solution methods described in the foregoiﬁg‘ section are not applicable directly
i because the variable 4, is growing over time. It follows that the model has no deterministic
- ‘equilibrium. Instead King, Plosser, and Rebelo (l988a)_sh0w that ot;A the’ balanced_ deterministic -
Agrowth path with 02=0, 4, C, '1 K,, and ¥, are growing with the same rate 4. But due to the‘
constant mtertemporal elastlclty of consumptlon and the homogeneity of the productlon ﬁmctlon it is
possible to adjust these variables for the trend so that a deterministic equilibrium GXIStS for the

transformed variables. If we substitute the constraints (22) to (25) mto the utlhty ﬁmctlon (20) we -

’

can define the function R by
R(X,,K,,,,N, 4)=u(C,L,) . (2_8-)
=u[F(K,,AN,)+(1- K, -K,.;;1-N,] | -
' Note that R is homogeneous of degree 1- 7 in its first, second, and fourth argument, i.e.
,  R(VK,vK. N,v4)=v"R(K, K, ,N,A4), v>0.10 (9

As shown below this property of R is of crucial importance to obtain a solution of the model.

10 In the logarithmic.é‘ase there appears an additive term.log(v). But this term can be neglected in ‘

. the following transformations because it does not affect the first order conditions.
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3.1. The case of a deterministic trend‘

In the case of a deterministic trend we can stationarize the model by divfding the growing variables
: by the  trend. If we define -log[K / (1+ mi ] =log(N,), and ‘
r(R, K., 5,,4) = Rlexpl, };(1+#) exp{K.., }, exp{F, },exp{4,}], we can ‘wnte" |

1Y -
(-1_4'5) R(K 'K'H-I’NI’A) ﬂr( t+l’N At)’ . ) (30) .

where f=(1+ ,u)" /(l +6). If we deﬁne the state vector of the model as [K N,_,] and the control
* vector as [K,+1 N ] we have the model of the foregoing section ‘with the period return ﬁ.mctlon

- (30) and the linear stochastic process (27). The transition equation is also linear and says that the -
next period state variable is equal to the control variable. The Euler equations of the RBC model are

givenby
rz(IZ KN]’ )+ﬂE [rl( t+lslzr+2’];,l+hgt+l)]=0’ | | (31&)

Q(KZ,KQ],N,,E,):O, ) S (3lb)

where 7, is the derivative of r with respect to its i-th argument. The deterministic equilibrium value
" of 4, is equal to zero. With X* and N° the deterministic equilibrium values of K, and N,, and
r'=r(R",K’,N",0), we have the two equations 7, +fr" =0 and r; =0 to solve for K" and N*.12

* Then the linearized Euler.equations are

B ] v » * » ® * - .
Br.Ek,,, "'(rzz +ﬁrn)km +hok, +PrsEn, ; + 10, "*'ﬂrMErau_'l +"2:a¢ =0, » (32a)

11 We also take the logarithm of the variables, because it is shown by Christiano (1988) and Taylor

‘and Uhlig (1990) that this transformation gives a better approximation.

12 It is assumed that the two equatiohs have a unique solution. In some cases the equations may be
highly nonlinear so that the deterministic equilibrium values must be computéd with numerical.
methods. Alternatively the equilibrium may be given, from which parameters of the utility function

or the production function are determined.
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.
k.,

+r3k, +ran, +rua, =0, , (32b)

withk, =K, -K' , n=N,~-N',anda, = 4

t [

3.2. The case of a stochastic trend

Christiano (1988), King, Plosser, and Rebelo (1988b), and Hansen (1997) investigate the case that
the stochastié process for‘ A has a unit. root. Hansen (1997, p. 1010) argues, that in this case a
different solution procgdﬁre §hould be employed, because if 4, "follows a random walk, simulated
variables may wander far from ltheir steady-state values" and the "solution may b;a‘ a poor 6ne :
because the appfoximation may be accurate only when the vaﬁables take on values close to the
steady state." (\Bhristiano (1988) and Hansen (1997) propose to\ transform the model by divjding the
growing variables by the lagged technology variable 4,. Then it follows from equations (29) and (30)
that - '
' :

(1) BB W)= 0p{(1- DA} (R, - K= A+ 02, 5,80). G3)
Two things should be noted aBout this equation. First, in the logarithmic case with 7 equal to one, 4, ,
disappears in equation (33). Therefore the transformed model is.an optimization problém in the -
stationary variables (£, - 4,_,), N,, and A4,. Because the deterministic equilibrium value of .AZ, is
equal to zéro, it follows from the Euler equations, that the ‘deterministic- steady state values of

(l?, -—,Z,_,) and N, are equal to K’ and N°, respectively, so that in the deterministic and in the
stochastic trend model the Taylor approximation is -taken around the same values. Because
r(I?, ,IE’H, ; IV, , 2,) is equal to r(lz', - 2,_, ,IE'“, - Z, +'A.Z,, N, , O), the two ﬁmctions of course have the
same Taylor approximations. It follows that although the variables in (32) are nonstationary, the
equations can be transformed in such a way that only stationary variables remain. The same
statement holds for the resulting optimal decision functions which may be expi'essed in stationary

variables. Then, these stationary variables will not wander far from their steady state values.

Therefore in the logarithmic case there is no need for a special transformation if the technology



-14-
process has a unit root. Even in this case it is sufficient to adjust the variables for the deterministic

trend.13 -

Second, for 7#1 the nonsté.iionary variable 4, appears in equation (33) andvthe critiéism of Hansen
(1997) could be valid.! This seems to be the reason for Christiano (1988) and Hansen (1997) tb
 investigate the logan'thmic case only. Christiar‘lo"(p. 252) explains this éxplicitly: "The solution
strategy I use tb solve the model recjuires that the function relating consumption to instantaneoﬁs

utility have the property of converting multiplication into addition, as the logarithmic does. "1

An .alternative to explicitly stationarize the model is to take the Euler equations of the original . |

hohstationary economy as propo'sed,‘ by Campbell (1994). This leads to the first order conditions

t+12

* R(K Koo Ny A+ = ER (Ko Ko N Au) =0, (342)

R(K,.K.\, N, A) 0. | ~ (34b)

. Because R is homogenous of degree 1 7 (in its first, second, and fourth argument), the derivatives
R, and R, are homogenous of degr_ee —7 and R, is homogenous of degree 1- 7. Therefore the Euler
equations can be written as

- [;ﬂ N,,l) 1‘95{A;;R(§+ Ij"z N )} 0, (352)

t+1 t+1

gt

13 Indeed, Hansen (1997, p. 1013) reports that he obtains the same summary statistics for both

procedures, but he attributes this result to the quality of the quadratic approximation.

- 14 The same point holds for the procedure of King, Plosser, and Rebelo (1988b), who divide the

- model variabies by the permanent component of technolog)(.

15 Remember that in the logarithmic case in the transformed return function an additive term
appears. This term contains the exogenous stochastic process and can be neglected because it is

not under control of the agent.
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A;*R,[%,%ﬂ,N,,l]:o. | _' (35b)

BB, R N,s ) = R [explR, 1, (14 ) expl ...}, ex( A, Lexp{Z Hexp{&.},
BB R, N, 4) = R[exp{& 1,1+ ) exp{R..: }, exp{ﬁ, Lexp{Z }a+4) exp{liu }

Al A Rs[exp{K} (1+ﬂ)exp{K.+l} exp{ ¥, },exp{Z, }]exp{N L

- the equations (35) can be transformed to

rz(Izt - ‘ann-l - Zt’ﬁtao) +ﬂE,[exp{(l - T) AZ,}r,(K'”, - AI+I’KI+2 - ~¢+1 ,N:;l’o)] = O’ | (36a)

!

Q(K,—Z,,_K,*,—Z,‘,N,,O)=‘O.‘ o (36b).

* Because K, ~ 4, = K, - 4_ - Ad,, we have two equations in the stationary variables I? -4, N,
and A4,. That means that the Euler equations of the nonstatlonary RBC model are stationary
, stochastrc difference equatlons The deterministic steady state values of (K -4, 1) and N, again are

equal to K* and N , respectively. Then the linearized Euler equatlons are -

ﬂ’izE( 42 r+1)+(rzz "'ﬂ"n)( A )+r12(k -a, ,)+ﬂr13 U +r23n +

, (37a)
ﬂ[(l— T)rl _"li]E:Aat+| f'izAa: =0

1 (ke —a)+ry(k,—a,,)+rgn - riAa, = 0. | (37b)

Because only stationary variables appear in equations (37) the linear approxrmatlons should not be
inaccurate. But the deterministic detrending procedure leads to the same linearized Euler equations,
which can be shown as follows. Due to the homogenelty of R, we have the followmg version of
Euler's theorem for homogenous functions: (1- Or’ =r’ +r,+rl, i = 1, 2, 3. Then it follows
he =(l— I =1y =1y, 1 =—P(l- I —ry -1y, and r, =-r,~r; because r, +fr =0 and

=0. Substrtutmg this into equations (32) gives equations (37). Therefore,. to stationarize the

model it is sufﬁcrent to detrend the growing variables by the deterministic trend. It is not necessary
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to use a different procedure in the case of a stochastic trend even if the technology process has a unit

root and tlie ntility‘ﬁmction is of the general isoelastic kind.

As an example take the RBC model in Hansen (1997) with a negative autocorrelation for the grwah
: rate of the technology variable. In this, ’medel tne subutiljty, function for leisure is a)(L) = B-L with
B> 0, the production function is F(K,AN)=K"*(4N)" with 0<a <1, and the pararnetens are
given b‘yla= 0.64, 6= 0;02, p=0.01, =1, 4=0.005, ¢, =1, and ¢, = —6.2. Further, steady state
labor is N* = exp{]V '} = 0.3, which determines B=2.868. The adjustment for the deterministic

trend, the transformation employed in section 3.1, gives the optimal decision functions!s -

K

t+1

= 0.9420K, +0. 0738A -0. 0158A, , +0.1410,

¥

N, =-0.4770K, +0.65614, - o.'17922,_, —0. 0444,

Because the sum of coeﬁiclents in the first equation is equal to unity and in the second equatxon

equal to zero,17 the equatnons can be transformed to

(B~ 4)=09420(F, - 4_,)~0.9262(4, - 4.,)+0.1410,

. N, =-0.4710(K, - 4.,)+0.6561(4, - 4,_,)-0.0444.

These are nearly exactly the optlmal dec1snon functions obtamed by Hansen (1997) with the

altematlve stochastxc detrendmg transformatnon 18

16 The linear-quadratic approximation method was used for the solution of the model. The optimal

.lin'ear regulator problem was solved with the procedure described in Ehigen (1997a). -
17 Campbell (1994) obtains the same result for the unit root case.

18 There may be seyeral reasons for the slight differences in the coefficients. First, the utility in this
paper depends on leisure, while the utility function in Hansen is formulated in labor. Second, there

might be small differences in the numerical values of the.pararneters.
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4. The importance of the trend for model statistics

-In a parameter variation Hansen (1997) sets the growth rate ‘of the model equal to zero and obtains |
the same summary statistics as in the model with a positive growth rafe. He concludes that
“absfracting from growfh does not affect the prdpenies of the fluctuations disblayed by a RBC model .
with exogenous technical progress. This is reassuring given that so much of the business cycle
literature abstracts from growth" (p. 1013); It is demonstrated in this section that this statement is

~ only true in special circumstances.

Campbell (1994) shows that on the balanced growth path the relationship (1+ )" = (1+7)/(1+p) |
holds. Here r is the steady Stafe interest rate determined by the marginal product of capital. Note that -
for =1 we have approximately r = H+p. Further Campbell shows that the coefficients in the
~ optimal  decision functions depend on g, &, and r through the parameters A, = (1+7) /(l +u),

A, = a(r‘?i- 8)/(1+p), and A, = ofr +8)/(1+7). Now, if s set to zero, & increased by the change
~of 4, and pis not changed, then for r = ptpto hold, » must decline with . It follows that 2,, A,
A5, the optimal deciéion functions, and the model.statistics change only slightly. Tabl¢ 1, which gives
the variabilities of the different varizibles of the RBC rﬁode’l in slection 33 for severai parameter
constellations, illustrates this point. Case 1 is the base model of Hansén (1997) with a determihistic

trend, and case 2 is the model with the growth rate set to zero. The variabilities are nearly identical.

But if the growth rate is modified and the changes in the remaining model parameters do not just
offset the change in the growth rate in this spécial way, then the model ‘statistics are not invariant to
the growth rate. If, as in case 3, u is set to zero but & is not changed, then again r must go down.

But now the coefficients 4, and A, change as well as do the volatilities of the variables.

While these results do not seem to be of quantitative importance, the changes in the inodel statistics

are more severe if the change in the growth rate affects the elasticity of intertemporal substitution but
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leaves the remaining parameters of the model unchanged‘.19 Cases 4 and 5 are parametér variations
for the deterministic trend model with a sma]lér growth rate and a higher elasticity of the marginal
htility"of consumption. Cases 6 to 8 exahﬁne the situation, that the logarithm of technology follows a
lstocliastic trend. Cas_e 6 is the model of Hansep (1997) with a logaﬁthmis: utility function and a first
order autoregressive process with negﬁtive _Seﬁal correlation for the growth rate of technology.
~ Similarly td cases 4 and 5, in ‘cé.ses 7.and 8 the grov&h rate is reduced. Two main results follow.
First, it turns out that the lessv'vthe grthh rate, the greater is the relative volatility of consumpfion
and fhé less is the relative volatility of investment. Second, the changes in model statistics are much
greater if the technology process has a unit root. If e.g. the growth rate is 4= 0.001 (case 8) and
accordingly 7=35, then the standard c_ieviations of consumption and investment are not very different

from the standard deviation of output.

* Therefore, in general a variation in the growth rate can have important consequences for the model
re_sufts. The strength of these effects dépends on the nature of the stochastic process and on the fact
which parameters bear t-he‘ consequences of the variation in the growth rate. If the steady state
interest'rate and the rate of depreéiation are allowed to ‘vary and can "neutralize" the change in the
growth rate, as in Hansen (1997), the effects may be negligible. But if the i;iterést rate and the rate of
depreciation are given, as in 'Campbell (1994), and the elasﬁcity of intertemporal substitution
changes, then the effects of a variation in the growth rate on tﬁe model results may be substahtial. It
follows that the treatment of the trend, especially the nature of the stochastic' process and the

" numerical value of the growth rate, deserves a special attention.

- §. Summary -
* In the present paper we first presented some solution methods for RBC models in a unified

framework and verified the statements in e.g. King, Plosser, and Rebelo (19882), Christiano ( 1990b‘),‘

19 If 7 is different from unity the model can not be interpreted as an economy with indivisible labor
(see Hansen and Prescott, 1995). The simple parameter variation here is made for illustrative

reasons only.
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and Campbell (1994) concerning the. equivalencé of the. different solution methods. Second we
showed that in a growing 'ecbnomy it is sufficient to adjust the variables for the deterministic trend
even in the case that technology follows a stochastic trend. This result justifies the proceeding in e.g.
Baxter and Crucini (1995) who use the deterministic detrending method in a model with a stochastic 7
trend. It is not necessary to rely on the borderline case of a detemiini;tic trend and an autoregressive
root neér uﬁity as e.g. in Baxter and Crucini (1993). Third we demonstrated that a change in the
growth rate of the model can influence the model results. Therefore not only the kind of the
stochastic process, i.e. a trend- or a difference stationary process, but also the numerical value of the |

growth rate can have substantial effects upon the model statistics.
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Eﬂ‘ects of Parameter Variations on Variabilities -

Table 1
Parameter Values

6 & w5 Tt 1
0.95 0.0 00050 0.020 -1 0015
095 00 00000 0.025 1 0010
095 0.0 0.0000 0020 1 0010
095 0.0 00025 0020 2 0.015
095 00 0001 0.02 | 5 0.015
1.00 0.2 00050 0020 1 0015
1.00 -o.é 6.0025 0,020 2 o.ois
100 02 0.0010 0020 5

0.015

_ Variabilities
Y C I N K
181 053 580 138 . 0.50
© 100 029 320 076 028
181 053 579 138 0.0
100 029 320 076 - 028
186 048 649 146 045
100 026 349 078 0.24
140 067 38 074 031
100 048 275 053 022
130 072 344 059 026
1.00 - "0.55 . 264 .. 045 020
126 060 335 073 025
1.00 048 265 058 0.0
096 074 176 025 012
1.00 077 183 026 0.12
08 080 106 0.11 0.06
1.00 096 127 0.13 0.07

The remaining parameter values in all cases are @=0.64, p= 0'01 and B=2.868. The first
measure of variability is the standard deviation of the loganthm of the series after HP-filtering,

* multiplied by the factor 100. The loglinearized equation for output, investment, and consumption
are derived in appendix 2. This leads to a state space system as in King, Plosser and Rebelo
- (1988a). Then exact moments of the filtered series are computed with the procedure described in

Ehlgen (1997b). The second measure of variability is the standard deviation relative to the standard
dewviation of Y ‘ o
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Appendix 1

In this appendix we collect some rules for dxﬁ‘erentlatton of vector functions. In the followmg, k m,

and » are posmve integers and x is a real (r x 1) vector.

~Let F= ( fﬁ) be an (m x k) matrix of single valued functions on the n-dimensiunal real space. Then
the derivative JF (x)/ 3x is defined as thé (mn x k) matrix of functions G = (g,j), such that
Euis-yoi,(X)= (%) [Ox, fori=1,. .. ,mj=1, . kands=1, | , n; where x, is the s-th element
of x. The denvattveo"F (x)/ox is. defined as the (mx k) matrix of ﬁmctnons H= (h) such that
,'k(,_l)ﬁ(x)— ofy x)/o”x fori=1,. ,mj=1 .. kands=1,..,n Itis easy to show that |
OF (x)/o”x’ = [ﬁF '(x) / ox ] Note the spectal cases that the denvatlve of an (mx1) column vector - o
with respect to an (1x#) row vector is an (m x n) matrix, and the derivative of an (1x k) row vector

with respect to an (nx1). column vector is an (n x k) matrix.

With this convention it is easy to verify the following chain rule for vector functions. Let f (u) be a.
vector of single valued functions on the m-dimensional real space and let g(x) be an (mx1) vector

of single valued functions on the #-dimensional real spéce. Then:

a—if'[g(»]v—ig'(f)-gu-ff(u),withu=é<x)- |

Also we have the following version of the product rule. Let G= (g,,j) be an (m x k) matnx and let
= (r,) be an (k x1) vector of single valued functions on the n-dimensional real space Further let

£ =(f,) bethe (mx1) vector of ﬁmcttons gtven by f,(x) = Z - g,j rj(x) Then

= f(;) - Ex—'G(x)'[I" ®r(x)]+ G,(x)%r(x)’

-

where ® denotes the Kronecker product and I, is the identity matrix of dimension .
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Appendix2

In this appendix we derive the approximative optimal decision functions for output, investment, and

| "’éonsumption for the case of the Cobb-Douglas production function. We have

L=K"(4N), | (Ala)

It = Kt+l.;(l - 5)Kn ) (A lb)
g C=Y-I.. (A.1c)

Let ﬁ:lég[x/(1+p)’], ;C',:log[C,/(l_-.!-y)'], and I =Alo(g[1,/(1+,u)‘]i be. the logarithmic

 detrended variables. Equations (A. 1) can be transformed to

F=(1-a)k+o4+HN,),  (A2a3)
exp{l } =(1+ ) exp{R,,, }-(1- ) exp{&.}, (A.2b)

ep{Cl=ep{f}-ep{f}. (A.20)

The deterministic equilibrium values of these variables, 7*, C*, and I°, are given by

7 =(1-‘a)12‘ +aV', | ‘ (A.3a)
exp{I"}=(u+o)exp{R’}, (A3b)
o en{Cl=exp{F}-exp{I"}. T A3

Define y,=1,-¥", ii=I,-I', ¢ = C-C, K =exp{R}, ¥ =exp{F'}, I" =exp{I*}, and
C'= exp{C"}. The first order Taylor approximations of equations (A.2) around the values in (A.3)

are
Y, = (1- a)k, + a(a, +n,), . (A4a) Q
I'i, =(1+ WKk, - (1- 9)Kk,, _ (A.4b)
C'c,=Yy-rIi,. . . (Ado)

Assume that a, follows a first order autoregressive process. (The case of a higer order process is
straightforward.) The optimal decision functions for capital and labor can be written as
k.= .k, +n.a, ' (A.52)
n, = nuk, + 1,4, | (A.5b)
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Then we have from eqﬁations (A.4) and (A.5) the following optimal linear decision rules for output,

investment, and consumption:

v, =(1-a+an, )k + o1+ 7,)a, = n.k + n,.a, (A.63)

L= [(1+[l) Y/ _(1-6)] I kr"+(l+.u)7 a9 = 77:’1:(‘: + 7.9, (A.6b)
yoor |

‘ | | . ]o A . -
€= [? Nk _? N )k: +(F Mya c Nha )a: = Nk, + 1.9, - (A60)
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