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Abstract 
Efficient capital accumulation paths of an expanding multi-sector economy are known 
to display catenary behavior around a von Neumann saddle-point turnpike if the econ-
omy's production possibilities set is a time-free convex cone. We prove that this result 
generalizes to the case of a time-dependent biconvex production technology with non-
constant returns to scale but strong separability and homotheticity conditions imposed. 
We also demonstrate that these are locally necessary conditions if technical progress 
is known a. priori to be Hicks neutral. 

•Thanks go to A. Pfingsten (Siegen) for helpful comments on an earlier draft of this paper.· Please do 
not quote without the author's written consent. 



1 Introduction 

It is well understood that the characteristic roots associated with rest points of au-
tonomous variational or Hamiltonian dynamical systems have special properties. In par-
ticular, they are known to come in opposite-signed pairs or pairs of reciprocal roots, de-
pending on whether the analysis is carried out in continuous or discrete time. Therefore, 
if by appropriate assumptions one can rule out roots with zero real parts the stationary 
equilibrium appears as a symmetric saddle-point (cf. Samuelson [11], Levhari and Livi-
atan [9]). One such assumption often made in the theory of optimum economic growth 
of a multi-sector economy is that the economy's technologies set is a convex cone. This 
generates the familiar catenary motion of efficient capital accumulation paths around a 
von Neumann ray of fastest proportional expansion of heterogeneous capital stocks, a 
result that was first conjectured by Dorfman, Samuelson and Solow (4, ch. 12]. It is 
since termed the DOSSO turnpike theorem or simply the catenary turnpike theorem and 
is among the most striking results of modern growth theory. {See McKenzie [10) for a 
review of turnpike theorems in the theory of optimum economic growth.) 

The catenary turnpike theorem does not easily generalize to other cases of production 
technologies which exhibit non-constant returns to scale. Yet non-constant returns in pro-
duction may be present in many cases of empirical relevance. Consider, e.g., phenomena 
such as agglomeration economies and diseconomies which play a major role in the process 
of growth of an urban or regional economy. We will therefore in this paper look into 
possible extensions of the catenary turnpike theorem with a major focus on production 
technologies with varying returns to scale. We will also allow for some sort of exogenous 
technological change over time. We are thus formally concerned with questions relat-
ing to the existence and qualitative properties of stationary solutions in non-autonomous 
variational dynamics. 

The paper is organized as follows. We will introduce in Section 2 our basic continuous-
time model of a multi-sector pure accumulation economy which seeks to maximize terminal 
stocks in some future period of time. We assume an instantaneous biconvex production 
possibilities set which may be time-dependent and can be represented by a differentiable 
transformation frontier function. The notion of biconvexity of a multiple-input, multiple-
output technology is due to Lau [8). It extends the concept of convexity of a production 
technology in that it allows for overall non-constant returns but preserves the properties 
of decreasing marginal substitution rates and increasing marginal rates of transformation 
between inputs and outputs, respectively. A general characterization of efficient balanced 
growth solutions to our model is provided in Section 3. 

In Section 4 we introduce the first of two theorems: we prove that a turnpike ray of 
fastest balanced capital stock expansion exists with no assumptions made about returns to 
scale if we impose upon technology strong separability and homotheticity restrictions. We 
demonstrate that the linearized system of Euler differential equations can be decomposed 
under a weak regularity condition into a system of independent equations all of which 
possess stationary saddle-point solutions. Such decompositions are already known in the 
literature from the adjustment model of the firm in investment theory (e.g. Scheinkman 
[12]) as well as from the model of optimum economic growth when the second-order 
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cross partial derivatives of the underlying utility function are symmetric (DasGupta (3]). 
However, we will be concerned in our paper with non-autonomous dynamical systems and 
the decomposition can only be done after a suitable transformation of variables. 

We then establish in Section 5 our second theorem which states that the technological 
constraints imposed in Theorem 1 are also in a certain sense locally necessary conditions 
if technical progress is known a priori ·to be Hicks neutral. A brief summary and appraisal 
of results concludes. In particular, we argue that our results are still valid if we allow for 
the existence of exogenous inputs and outputs different from capital stocks and invest-
ment goods once a suitable separability assumption is again maintained. An important 
implication of this is that nothing has to be known of the decision processes or types of 
preference orderings from which the time paths of these variables have been generated. In 
all, however, we feel that our findings are sobering if seen from the applied point of view 
of a trading economy as the types of technologies involved appear to be rather specific 
ones. 

We make the following notational conventions. Throughout the paper elements of 
JR!', n > 1, will be referred to as column: vectors or simply called 'vectors'. They will be 
denoted by lowercase letters and set in a bold typeface for ease of reading. Component i 
of vector Xi will be written as Xi. Correspondingly, emboldened uppercase letters like A 
shall represent matrices with elements ai;. Furthermore, let S E !Rn and T E JR!' be two 
sets and consider a differentiable function f : S -+ T. Then for each element x E S and 
image /(x) we use /:ei as short-hand notation for 8/(x)/oxi. Much in the same way, fziz; 
is short-hand notation for 82 f(x)/8x;8xi while fx stands for the gradient V /(x). Total 
differentiation with respect to 'time' will be indicated by a dot '·' and a superscript 'T' 
signifies transposition. Finally, we always write as o the null vector of appropriate length. 

2 The Basic Model 

To begin with, we will be concerned with a model economy where different outputs are 
produced from n (> 1) capital stocks kT := (k1 ••• kn)· All output _is used .for capital 
accumulation and consists of quantities of n net investment goods kT := (k1 ••• kn).1 

Production technology is assumed to possess in each time period t a frontier function · 
representation of the form 

T(k,k,t) = 0 (1) 
where the 'time' variable t represents exogenous technical progress. In particular, T( ·) 
shall have the following properties: 

(Pl) It is a continuously differentiable function with domain JR~ x JR" x IR+. 

(P2) It has non-vanishing second-order partial and cross-partial derivatives with respect 
to the components of k. An analogous assumption applies to k. 

1 We do not distinguish between gross and net investment for ease of presentation. Gross invest-
ment outputs could be modeled by substituting k + diag(d) k fork where dis the vector of (constant) 
depreciation rates. 
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(P3) It is increasing in k and decreasing in k, respectively. 

(P4) It is quasi-concave in both k and k. 
(P5) Inada regularity conditions limki-o Tki = oo and limki-oo Tki = 0 are satisfied for all 

k,. 

Properties (Pl )-(P5) define a neoclassical type of technology which exhibits the standard 
attributes of decreasing marginal rates of substitution between any two capital stocks 
and increasing marginal cost between any pair of investment outputs. Note that nothing 
is implied by these properties with regard to returns to scale. We are thus implicitly 
considering a biconvex production possibilities set in the sense of Lau. We will refer to 
T(k, k, t) as the transformation frontier of our model economy. 

The economy shall maximize over a finite and closed time interval (t0 , t1] some positive 
linear combination of terminal stocks k(t1 ), given an initial endowment k0 : 

max pTk(t1) 
k(t), tE[to,t1) 

subject to T(k, k, t) = 0 and k(to) = ko. 

(2) 

For example, suppose that p is a vector of (discounted) stock prices which are expected 
to prevail in period t1• We will then be concerned with a classical optimum investment 
problem: the economy seeks to maximize the expected (present) value of its terminal 
stocks, thereby using a given technology and given initial endowments. 

This is a standard problem of Mayer in the calculus of variations. We assume that 
there exists an interior solution which can be found in the class of non-negative twice-
differentiable functions k(t) for t E (t0 , t1] with k,(t1) > k,(to) for at least one k,. Note 
that since T( ·) is by assumption quasi-concave in k the Legendre definiteness condition for 
a maximum of pT k(t1) will be met globally. Uniqueness of the solution is thus ~sured. 
(See Kamien and Schwartz (7] as a reference on variational methods in economics.) 

3 A Characterization of Stationary Capital Structures 

Optimum time paths k(t) are long known to satisfy the so-called own-rates of interest 
relationships of optimum growth theory which are equivalent to the Euler necessary con-
ditions associated with (2): 

PROPOSITION 1: If k(t) is a solution to {2) then 

Tki T1cn d 1 ( Tki) t. ll . ...J. T- = T· + dt og T· Jor a i -r n . 
ki kn kn 

(3) 

PROOF: See Wan, Jr. (14, pp. 277-278). 

These n-1 equations along with 2n boundary conditions and the technology constraint 
(1) completely determine the dynamics of k(t). Now assume that kn > 0 for all t E [to, t1] 
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and let sT := (k1/kn ... kn-i/kn)· Turnpike theorems are then concerned with balanced 
growth solutions of the form k(t) = kn(t) (s*T, I)T wheres* is a vector of n - 1 positive 
constants which define a ray of efficient proportionate capital stock expansion. Along 
each such ray the following proposition applies: 

PROPOSITION 2: Ifs* is a balanced-growth solution to {2} and w(t) > 0 is the uniform 
rate of growth of all capital stocks in period t E (t0 , t1] then 

- T1c1 = ... = - T1cn = w + w - 0(t) 
Ti· T· w k1 kn 

(4) 

where 0( t) is the relative change in w which can be attributed to technical progress. 

PROOF: Note that k = wk along s* and hence T(k, wk, t) = 0. As T( ·) is decreasing 
ink we may solve for was a function of k and t: w = f(k, t). Using k =kn (S*T, If we 
obtain w = f ( kn.s*, kn, t). Next observe that for a given expansion ray to be efficient it 
must never pay, in terms of levels of w, to move off the ray as k increases over time. In other 
words, every efficient ray s* must always point in the direction of the maximum increase or 
minimum decrease, respectively, of w. Therefore, we conclude from the envelope theorem 
that along s*: 

(5) 

As kn is really any capital stock the above sequence applies accordingly to all components 
of k. Finally, totally differentiating f ( ·) with respect to t yields 

(6) 

Now define 0(t) := .!_ 88
1 and solve for the summation expression in brackets. Then plug 

w t 
into (5) and our proof of Proposition 2 is completed. o 

Proposition 2 implies that the marginal rate of substitution between any two capital 
stocks coincides along s* with the marginal rate of transformation between the corre-
sponding pair of investment outputs. (Consider the first n - 1 equals signs in ( 4) and 
rearrange terms.) The latter ratios also follow to be constants as the second terms on 
the right-hand sides of (3) drop to zero because of ( 4). This constitutes a special invari-
ant relationship betweens* and the economy's marginal input substitution and output 
transformation rates. We thus arrive at 

COROLLARY 1: Consider a ray s* of efficient balanced capital stock expansion. Then 
each marginal substitution rate and related marginal cost take identical constant values 
for all t E [to, ti]: 

(7) 
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Now assume for a moment that the transformation frontier T(·) is both time-free and 
homogeneous of degree one ink and k. This is the case of a stationary constant-returns 
technology originally studied by Dorfman, Samuelson and Solow (4, ch. 12]. We then have 
0(t) = w(t) = 0 and can be sure that all marginal substitution and transformation rates 
between inputs and outputs stay constant along s•. Conditions (7) will thus establish 
as s* the economy's von Neumann/ray of balanced exponential growth at a maximum 
possible rate. This ray is well-known to possess the saddle-point property and hence to 
serve as a turnpike for optimum accumulation paths k(t) which do not start or terminate 
along s*. 

However, in other cases of production technologies each ratio Tk./Tkn and TkJTkn ( i = 
1, ... , n-1) will normally depend on 'time' t (due to technical progress) as well as on 'size' 
k.,,, (due to non-constant returns) and will change over time even with the composition of 
capital stocks and investment flows· held constant. As a result, no ray of proportionate 
capital stock expansion may be efficient in the sense of (3). In other words: the turnpike 
theorem does not in general go through for non-stationary technologies with non-constant 
returns to scale. 

Therefore, for there to exist a turnpike ray that allows for accelerated or deceler-
ated balanced growth of our economy we must impose upon technology further a-priori 
structure. This brings up the question whether we can find functional forms of frontier 
functions T( ·) which are compatible with (7). 

4 Separable Production Technologies 

We have argued in Section 3 that a turnpike growth ray may not in general exist due 
to 'time' and 'size' effects on input substitution and output transformation rates. We 
therefore now require that technology satisfies more specific properties. The f;irst of these 
refers to technical progress: 

(P6) Technical progress is Hicks neutral. 

We also assume that the production technologies set is independent in its input and output 
partitions. In particular: 

(P7) T( ·) is both (additively) separable and homothetic with respect to k on one hand 
and k on the other hand. 

(Note that (P7) implies (P6).) These are sufficient assumptions to warrant constant 
substitution and transformation rates TkJTkn and Tk)Tkn (i = 1, ... , n - 1) along each 
arbitrary·expansion rays. We may now establish the following theorem: 

THEOREM 1: If the transformation frontier (1) assumes the form 

T(k,k,t) = J(G(k),t)-H(k) (8) 
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with first-order homogeneous functions G( ·) and H( ·) and a regularity condition satis-
fied then there exists a unique vector of positive constants s* which will possess the local 
turnpike property. 

The regularity condition is the following weak requirement. Its significance will become 
clear soon: 

(P7) The Hessian matrices G1c;ki and Hk;ki with i,j < n will be of maximum rank if 
evaluated along s*. 

PROOF: The existence and uniqueness of a vector of constants S* which is efficient in 
the sense of (3) is immediate from our discussion of Corollary 1 and from (Pl)-(P4). We 
can also be sure of this vector's components being strictly positive due to (P5). However, 
we still have to prove the saddle-point property of s*. We will now do so by taking three 
steps. 

To begin with the first step, define F(s, s, t) := T(kns, kn, kns + kns, kn, t) for pre-
supposed solution paths kn(t) and kn(t) and note that associated with (2) is the La-
grangian functional 

k,.(t)(I:p;s; + p,.) + [' >. F(s,S, t) dt 
i=l to 

(9) 

and the subsequent system of n - 1 Euler differential equations: 

>. F8 (s, S, t) - ~ [>. Fs(s, S, t)) = o. (10) 

Exploiting (8) one obtains: 

(11) . 

We assume that,\, .X and JG are known functions of time and proceed by expanding (11) 
into a. Taylor series approximation around s*. (We neglect second-order and higher-order 
terms.) Because of 8* = o, this gives after division by kn (=rf 0): 

;\(t) JG(t) Ay + ~(t) By+ ;\(t) By= o, (12) 

where y stands for the deviations s - s* and A and B denote constant matrices which are 
built of the first n - 1 rows and columns of the Hessians of G( ·) and H( · ), respectively, 
multiplied by kn and evaluated along s*. We are thus facing a non-autonomous linear 
system of differential equations with respect toy. Note that both A and Bare regular 
due to (P7). This rules out borderline cases where the qualitative properties of s* depend 
on terms which involve higher powers of s. 

In order to study these properties any further consider in a second step a real-valued 
and regular ( n -1, n -1 )-matrix X and the transformation 

y(t) = Xz(x) where x := j >.(t)-1 dt, (13) 
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which, after rearranging terms, changes (12) into 

BXz" + r(x)AXz = o, (14) 

with T := A2Ja. Note that in (14) we have used the following intermediate result (a proof 
is provided in the appendix): 

LEMMA 1: A(t) > 0 for all t E (t0, t1]. 

Hence, there is a one-to-one correspondence between x and t, so T can be expressed as a 
function of x. Also note that as B is regular its inverse exists. Therefore, premultiplying 
(14) by x-1B-1 yields 

z" + r(x )x-1cxz = 0' (15) 

introducing C := B-1 A. A characterization of optimum z(x) and s(t) can now be derived 
from (15) and the following properties of C (see the Appendix for proofs): 

LEMMA 2: All eigenvalues of C are real-valued and negative. 

LEMMA 3: C has a complete set of n - 1 independent {right} eigenvectors. 

Therefore, select in our third step as X the matrix of {right) eigenvectors of C in which 
case x-1cx is known to be a diagonal matrix with the eigenvalues µi, ... , µ,,,_1 of C as 
its diagonal entries. As a result, (15) disintegrates into n - 1 independent second-order 
differential equations: 

z:' + r(x) µiZi = 0 for all i -:/: n. 
These are equivalent to the following systems of first-order equations: 

Yi+ r(x) µiZi = 0 
Yi - zi = 0 for all i -:/: n . 

(16) 

{17) 

Each such system has a stationary solution {g;, z;} = {O, O} which is independent of r(x). 
Now recall that µi < 0 for all i :f: n and also note that r{ x) > 0. Then an inspection of 
the phase trajectories in {yi, Zi}-space will reveal that the origin is a saddle-point of {17). 
Hence, we conclude that the null vector o (of length n -1) is a 'generalized' saddle-point 
of (12) due to (13). This in turn means that s* is a 'generalized' local saddle-point of 
( 10). Our proof of Theorem 1 is thereby finished. o 

5 A Representation Theorem 

Our first theorem states that a frontier function specification of the form in (8) is a 
sufficient pre-condition for the turnpike result established in the previous section. The 
question thus comes up whether or not there exist other functional forms of the transfor-
mation frontier which generate local saddle-point behavior of optimum capital accumula-
tion paths. In particular, how can we characterize such functional forms? Note that since 
(8) appears to stand for a rather exceptional case of a production technology of a trading 
economy much of the empirical significance of the catenary turnpike theorem will depend 
on the answers to these questions. Therefore, we will now look into related necessary 
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conditions in terms of the kind of structure to be requested of a frontier function T( ·) in 
the presence of 'time' and 'size' effects of economic growth. 

However, we make two strong qualifications. First of all, since we have been concerned 
in Theorem 1 with local behavior of efficient growth paths, we will now also focus on local 
conditions only, i.e. necessary conditions along the ray s*. Secondly, we make the a-priori 
assumption that in the neighborhood of each such ray technical progress is neutral with 
regard to input substitution and output transformation. We then obtain the following 
representation theorem: 

THEOREM 2: Suppose a turnpike expansion rays* exists. Also suppose that along this 
ray all marginal substitution and transformation rates between inputs k and outputs k, 
respectively, are independent oft. Then the production technology set will possess a local 
frontier function representation of the form in (8). 

PROOF: To begin with, define again as w the rate of growth uniformly assigned to all 
stock var~ables .along s* at a given point in time and .. recall from Section 3 that w = f(k, t). 
Now let T(kn, k, t) := T(kns*, kn, k., t) = 0. Since T(·) _is increasing in kn because of (P3) 
we can solve for kn in terms of k and t: kn = F(k, t) . Now recall that all output 
transformation rates are by assumption independent of t. Therefore, and considering 
(7), it follows from the quasi-concavity of T( ·) with respect to k that F( ·) must be a 
homothetic and quasi-convex function of k. (See Fare (5) and [6, pp. 49-61); also see 
Shephard [13).) Hence, kn = F(H(k), t)= F(w H(k), t) where H(·) has been assumed 
a first-order homogeneous function without loss of generality. Consequently, multiplying 
both sides of w = f (k, t) by H(k) yields 

w H(k) = H(k) = f (k, t) H(k) =: i(k, t) (18) 

and thereby separates T(-) into a homothetic and quasi-convex output branch H(·) and 
a remaining input branch i(·). At this point note that the gradients Hk. and it always 
indicate the same expansion ray because of (7). Also note that we have assumed all 
input substitution rates not to be affected by t. Finally, remind that T( ·) is a quasi-
concave function of k. As a result, i(·) must be both homothetic and quasi-concave ink: 
i(k, t) = J(G(k), t). We thus obtain from (18) a frontier function representation of the 
form 

T(k,k, t) = J(G(k), t)-H(k) (19) 

which is quasi-concave in both k and k and with H(·) and G(·) homogeneous of degree 
one. This ends our proof of Theorem 2. o 

6 Conclusions 

We have so far been concerned with the final-state version of the turnpike theorem where 
the economy seeks to maximize terminal stocks and where all output is used for capital 
accumulation, physical capital being the only input to production. Two basic results have 
emerged. First, we proved that the theorem generalizes to the case of a time-dependent 
biconvex production technology with non-constant returns to scale but strong separability 
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and homotheticity restrictions imposed. Second, we showed that these restrictions are also 
locally necessary conditions if technical progress is Hicks neutral. 

Now assume that there are inputs and outputs different from capital stocks and in-
vestment goods, e.g. labor inputs and consumption outputs. Next suppose that society 
has chosen to select known growth patterns for each of these variables. We may then 
simply re-interpret our transformation frontier function (I). In particular, we may attach 
a new meaning to the time variable t: it does not any longer only stand for exogenous 
technical progress but now also represents the time paths of all inputs and outputs other 
than k and k. Therefore, all of our results remain valid provided that appropriate sep-
arability assumptions are again made such that (8) still applies. Note that we even do 
not have to care about the decision processes or preference orderings from which the pre-
supposed growth patterns have been generated. Therefore, these patterns may well be 
'optimum patterns' in that they maximize some intertemporal utility functional subject 
to the technology constraint. 

This once more again demonstrates the strength of separability assumptions in eco-
nomics. It is for such reasons that separability is a maintained hypothesis in a great deal 
of empirical research. On the other hand, however, we have not addressed any of the 
complex questions relating to the assumed existence of aggregator functions like G( ·) and 
H( · ). (The interested reader is referred to Blackorby and Schworm [2) for a comprehensive 
discussion of the existence of input and output aggregates in aggregate production func-
tions and for further references.) In all, it seems that the types of technologies which are 
compatible with (8) are rather specific ones. Therefore, we feel that our findings appear 
to be sobering if seen from the applied point of view of a trading economy. 

Appendix: Proofs of Lemmas 1-3 

PROOF OF LEMMA 1: Let F(s, s, kn, kn, t) := T(kns, kn, kns + kns, kn, t) in which case 
Pn = ,\(t1)Fknh t1) constitutes a transversality condition with respect to the optimum 
path kn(t). Hence: 

n-i n-i 

Pn =,\(ti) (LT1cisi + T1cn + LTk,si), 
i=i i=l 

where all derivatives have to be taken at t = ti. Now assume for a moment that in 
(2) ko and p are such that the optimum time path of s happens to coincide withs* in 
all of the interval [to, ti]. Then the following chain of reasoning applies. To begin with, 
recall that s• > o, 8* = o and that T1c, > 0 for all i due to {P3). Therefore, since Pn is 
positive by assumption, we conclude that ,\(ti) is also a positive number. Next consider 
{11) and observe that Ja, Gan H;,i > 0 by {P3). Also remind that H( ·) is a first-order 
homogeneous function which has constant derivatives along each arbitray expansion ray. 
Therefore, Hai = Hk.kn > 0 where the latter inequality follows again from (P3) and from . . . 
kn > 0. We thus find that ,\(ti) < 0. Hence, ,\(t) can be traced backwards in time to 
stay positive for all t E [t0 , ti). At this point, observe that the optimum time path of,\ 
changes continuously as we change ko or p. Hence, ,\(t) will always come out positive if 
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evaluated in some neighborhood of s* which proves Lemma. 1. o 

PROOF OF LEMMA 2: The proof ca.n be obtained from a.n extension of a. theorem by 
Arrow [1, p. 200] on the eigenvalues of the product of a. positive quasi-definite matrix 
a.nd a. symmetric matrix (see DasGupta. [3, p. 315]). We provide a. direct proof which 
exploits the properties of A a.nd B. In pa.rticula.r, we show tha.t the eigenvalues of C a.re 
the sa.me a.s those of A. Therefore, note tha.t A is a negative definite matrix while both 
B a.nd its inverse B-1 are positive definite ma.trices because of (P4), (8) a.nd (P7). By a. 
sta.nda.rd theorem of linear algebra there exists a regular matrix R such that B-1 = RR T. 

Another theorem says that for any regular ( n-1, n-1 )-matrix X the product x-1 B-1 AX 
is a. similarity transformation of B-1 A which leaves its eigenvalues unchanged. (See any 
textbook on linear algebra for a proof of these theorems.) Now choose X = R. Then 

x-1B-1AX - x-1RRTAX 
- R-1RRTAR 
- RT AR. 

Next consider an arbitrary vector x E F-1 with at least one component different from 
zero a.nd let r :=Rx. Note that r '/: o as R is regular. Hence, since A is negative definite, 

We thus conlude that RT AR= x-1 B-1 AX = x-1cx is also a negative definite matrix, 
so its eigenvalues are real-valued and negative. As a result, all eigenvalues of C are real-
valued a.nd negative, too. (However, note that C is not, in general, a negative-definite 
matrix a.s the product of two symmetric matrices like a-1 and A need not be symmetric.) 
This proves Lemma 2. o 

PROOF OF LEMMA 3: Suppose that µis an eigenvalue of x-1cx and tha.t r is the as-
sociated eigenvector. Hence, x-1cxr = µr. Premultiply with X to obtain CXr = µXr. 
Therefore, Xr is the corresponding eigenvector of C. Now let X := R in which case 
x-1cx has n - 1 independent real-valued eigenvectors as this matrix is negative def-
inite (see proof of Lemma 2). Therefore, since the transformation matrix X (= R) is 
real-valued a.nd regular, C will possess n - 1 real-valued eigenvectors which a.re linearly 
independent. This completes the proof of Lemma 3. o 
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