
Gueth, Werner; Pethig, Rüdiger

Working Paper

Illegal Pollution and Monitoring of Unknown Quality - A
Signaling Game Approach

Volkswirtschaftliche Diskussionsbeiträge, No. 15-90

Provided in Cooperation with:
Fakultät III: Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht, Universität
Siegen

Suggested Citation: Gueth, Werner; Pethig, Rüdiger (1990) : Illegal Pollution and Monitoring of
Unknown Quality - A Signaling Game Approach, Volkswirtschaftliche Diskussionsbeiträge, No.
15-90, Universität Siegen, Fakultät III, Wirtschaftswissenschaften, Wirtschaftsinformatik und
Wirtschaftsrecht, Siegen

This Version is available at:
https://hdl.handle.net/10419/118712

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/118712
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


--------------------

VOLKSWIRTSCHAFTLICHE 
DISKUSSIONSBEITRAGE 

UNIVERSIT AT - GESAMTHOCHSCHULE - SIEGEN 
FACHBEREICH WIRTSCHAFTSWISSENSCHAFTEN 



• 

.. 

• 

Illegal Pollutjon and Monitoring of Unknown.Quality· 
- A Signaling Game Approach -

Werner Giith and Rudiger Pethig · 

Discussion Paper No. 15-90 
Revised version August 1_991 



• 

Werner Giith and Riidiger Pethigt 

Illegal Pollution and Monitoring of Unknown Quality 
- A Signaling Game Approach -

Abstract: In this paper a game model is considered whose strategically interacting agents 
are a polluting firm that can save abatement costs by illegal waste .emissions and a moni-
toring agent l controller} whose job it is to prevent such pollution. When deciding on 
whether to dispose of its waste legally or illegally the firm does not know for sure whether 
the contrqller is sufficiently qualified and/or motivated to detect the firm's ille?.al releases 
of pollutants. The firm has the option of undertaking a small-scale (deliberate) 'explorato~ 
ry pollution accident" to get a hint about the controller's qualification before deciding on 
how to dispose of its waste. The controller may or may not respond to that "accident" by a 
thorough investigation thus perhaps revealing his or her type to the firm. It is this sequen:-
tial decision process along with the asymmetric distribution of information that constitutes 
a signaling game whose equilibrium points may but need not signal the type of the control-
ler to the firm. 

In Part I of the paper the formal introduction of the game model is followed by an 
extensive discussion of four different equilibrium scenarios which are non-degenerate sub-
models whose (generic) equilibria are considered typical and especially interesting for the 
monitoring issue at hand. Having set up a rather complex game model the price to be paid 
is (as in many applications in other fields) the multiplicity of equilibria - even within one 
and the same equilibrium scenario. This multiplicity clearly weakens the predictive capa~i-. 
ty of the model. To overcome it Part II addresses concepts of equilibrium refinement and 
selection on a fairly technical level. It is shown that the set of equilibria.is reduced - not to 
a singleton, though - by applying the refinement concept of uniformly perfect pure strategy 
equilibria. Unique solutions are obtained by reference to the equilibrium selection theoretic 
concepts of cell and truncation consistency, of payoff dominance and of risk d~minance. 

1. Introduction 

Pollution is typically a public bad since it results from the economic activities of some 
agents· but bothers a large number of individuals in the society. Correspondingly, prevent-
ing pollution is a public good. When exploring pollution one can therefore rely on results in 
the literature on public goods (Bliimel, Pethig, and von dem Hagen, 1986). 

Most studies in the public goods literature assume that some public authority is in the 
position to impose the rules according to which self-interested individual agents interact 
(e.g .. Hurwicz, 1973). Such set. of rules is usually called a mechanism, i.e. a strategic game. 

• 1 Comments by participants at the conference and by an anonymous referee are gratefully 
acknowledged. · 
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This approach could be used to design some reasonable legal rules to prevent river or air 
polluti6n, to limit the noise level of factories, trucks etc. Other studies (like Giith and 
Hellwig, 1986 and 1987, as well as Rob 1989) rely on private supply of public goods, i.e. the 
economic agents 'themselves decide whether one of the proposed mechanisms for providing 
the public good will be implemented or not. 

Sonie of the studies me~tioned above deal explicitly with the crucial fact that people 
have. private information about how they are ·really affected by public goods or pollution, 
respectively. Privacy of information means that the public authority or the private agent 
does .not know the utilities which their potential customers can obtain from the proposed 
mechanism. The usual approach to take care of this information deficit is the revelation 
principle (for instance Myerson 1979). According to the revelation principle one can find an 
allocation equivalent, incentive compatible direct mechanism for every possible public 
goods mechanism. A direct mechanis~ is a normal form game with payoffs determined by 
the true preferences and all possible preferences as strategies. A direct mechanism is incen-
tive compatible if the vector of true preferences is an equilibrium point. 

The revelation theorem states that for any equilibrium of any public goods mechanism 
there exists an incentive compatible direct mechanism for which general truth telling 
implies ·the same economic res~ts. When looking for the possible results, e.g. some (wel-. 
fare) optimal mechanism, one can therefore limit one's attention to incentive compatible 
direct mechanisms with general truth telling as the solution. One could say that the revela-
tion theorem offsets the need to solve games with incomplete information. 

The price one has to pay for using the revelation principle is that the result, e.g. the 
(welfare) optimal mechanism, is very sensitive to changes of the game structure. If, for 
instance, beliefs concerning private preferences change, one usually will have to rely on a 
different mechanism. This certainly contradicts the actual practice where one mechanism is 
used for many different situations which often enough were not envisaged when implement\ 
ing the mechanism. A way to design mechanisms which are more robust to environmental 
changes is to look for mechanisms providing reasonable results for a large subset in the set 
of all possible preference profiles (Wilson, 1986). 

Although incomplete information is also a crucial aspect of our model, we do not 
consider a problem of mechanism design by relying on the revelation principle. We rather 
introduce what we consider a natural model of asymmetric information and focus attention 
on how its results are influenced by the information deficits. Furthermore, we do not look· 
at pollution in general but only at illegal pollution. More specifically, it is assumed that · 
~here exists already a set of rules, a legally codified mechanism, but polluters have an 
incentive to violate these rules. 

Difficulties or even failures to enforce regulatory rules are not an exclusive problem in 
• 
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the area of environmental policy, of course. They rather· seem to be widespread if not 
ubiquarian, since "violators" of rules can safely be expected whenever a piece of legislation 
passes the parliam~nt. Not all enforcement deficits have the same empirical significance, 
however. In many areas it may be a good apptoximation to proceed .on the assumption of 

· perfec~ compliance - or, equivalently, on. the assumption of complete and costless enforce-
ment. Russell argues in the present volume that this used to be the mainstream proposition 
of environmental economists as well. But in recent years much evidence accumulated 
pointing to considerable discrepancy between the paper form of environmental law 'and the 
true state of the environment. In Germany as in other ·countries the lack of enforcing 
existing environmental regulatio.ns has become a decisive issue in recent time. Hansmeyer 
(1989, p.75) considers the notion of "enforcement deficit" (in German "Vollzugsdefizit") a 
much conjured catch-word. It also became evident, that incomplete enforcement does not 
seem to be a transitory but rather a_persistent phenomenon the explanation of which must 
be based on analysing the strategic interactions of the parties involved. 

In the model to be set up in the present paper the strategically interacting agents are 
{i) the polluters who can save considerable costs by disposing waste illegally and (ii) the 
controllers who are hired to prevent illegal waste disposal. The issue of who controls the 
controllers which is considered relevant in the public choice literature- on bureaucracy 
would suggest to also consider the inte~actions between controllers and their supervisors 
(e.g. Pethig, 1991 ). But this is beyond the scope qf the present paper. Given this limita-
tion, our study can therefore be seen as a contribution to the game theoretic tradition of 
strategic inspe~tion analys.es (Maschler; 1966; Avenhaus, 1990; Avenhaus, Okada, and 
Zamir, 1991). Compared to such previou~ studies we explore a much more complex situa-
tion with multiple equilibria which is also the reason why we have to rely on ~ different 
game theoretic method9logy. 

For the sake of simplicity we assume that there is just one potential· violator, a fir:m 
whose production process yields waste which can be legally -disposed of only at high costs, 
and a simple monitoring agency called the controller. Detecting the source of illegal waste 
disposal is rather difficult and requires a lot of expertise which the agency mayo~ may not 
have. When deciding on· whether to dispose of its waste legally or illegally the firm does not· 
know for sure whether the controller is qualified enough to detect illegal waste disposal, i.e. 
we assume asymmetric information concerning the qualification of the agency. 

To be more certain about the qualification of the agency the firm has the option of 
undertaking a small-scale "exploratory" discharge of pollutants call~d exploratory (pollu-
tion) accident hereafter. Since a thorough investigation of .this accident will be more costly 
for an unqualified agency than for a qualified one, this might ~ield a hint about the control-
ler's qualification before deciding on whether to dispose of the waste legally or illegally. 
Because of the sequential decision process and the firm's information deficit concerning the 
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controller's qualification our model is a signaling game with equilibria signaling the type, 
respectively the qualification of the monitoring agency. 

In spite of its specific assumptions our game model defines a r~ther large class of 
sequential games with three subsequent decision stages, not including the fictitious initial 
.chance move representing the firm's incomplete information concerning the qualification of 
the agency. In Section 2 the game mo~el is formally introduced. Equilibrium scenarios, i.e. 
typical or especially interesting results of generic equilibria, are discussed in Section 3. To 
derive more specific results we apply the refinement concept of uniformly perfect pure 
strategy equilibna (Section 4) &id equilibrium selection theory (Section 5). Finally the 
results are summarised and some potential lines of f-µture research are indicated. 

PART 1: EQUILIBRIUM: SCENARIOS 

WITH POOLING AND SIGNALING BEHAVIOR . 
2. The game inodel 

For the sake of simplicity we consider a situation where one single firm /, e.g. a major 
factory, can save considerable costs by discharging· waste illegally instead of abating it as 
required by law. As an example imagine a chemical factory which can simply release toxic 
waste into a water course1

• Other examples are illegal disposal of dangerous substances on 
declared or undeclared waste deposits, illegal release of' waste in international waters for 
saving transportation costs, release of toxic smoke etc. 

In order to prevent firm /from illegal pollution the government has hired a controller c 
whose task is to detect illegal pollution. In the case of river pollution controller ·c would be,. 
for instance, a water protection agency. Usually, jobs in such agencies are poorly paid as. 
compared to jobs in private industries, especially if sophisticated techniques and a lot of 
expertise are required. to prove that firm f has caused the pollution. Therefore it is open to 
question, of course, whether controller c is really fit to detect a polluter. Another reason to 
cast doubt on e's qualities is shirking, i.e. controller c may not find out a polluter simply 
because he does not care about his d-µties but rather prefers to have some leisure time 
during his official working hours; instead. These arguments lead us to ~ssume that firm f is 
not su.re about controller c 's qualification for detecting illegal pollution. 

Firs~ of all, the controller is of course hired to detect regio~al. (or local) increases in 
ambient pollution resulting from illegal releases of pollutants. But it is also his task to find 
out the (point) source of pollution which caused that increase, i.e. he has to trace back the 
pollution to the illegal polluter. As argued above, in both cases the controller's success 

,f 
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depends on his expertise and/or determination and effort in doing his job. To simplify the 
subs~quent analysis we assume, however, that (local) detrimental increases of ambient 
pollution are always detected by the controller. Hence potential polluters such as ~rm fare 
only uncertain about the controller's ability to identify them as the source of pollution . . 

In game theoretic terminology this means that our game model is one of asymmetric 
incomplete information since only controller c himself knows his own qualification to prove 
the discharge of pollutants by firm f whereas firm /has only probabilistic beliefs concerning 
c 's prospects of finding out illegal behavior. In order to keep things simple we will distin~ 
guish only two types of controller c, as expected by f type e(xpert) and type n(on--expert). 
Firm f expects type e with probability w e (0, 1} and type n with the complementary 
probability 1-w. Firm f's beliefs are. assumed to be common k~owledge. 

~o capture firm f's information deficit about e's type we introduce a fictitious initial 
chance move whose result is type e with probability w and type n with probability 1-w 
respectively. While c learns about the result of the chance move, firm f only knows the 
probabilities for the two possible results. As a result of this fictitious initial chance move f's 
incomplete information concerning the type of its opponent is transfor:tned into strategical-
ly equivalent imperfect information. With the fictitious initial chance move we obtain a 

~ game with complete but imperfect information. 

In Figure 2.1 the fictitious initial chance move is the.first move at the origin o {the top 
~ decision node) of the game tree. Player O is the chance player since at decision nodes of this. 

player the choice behavior is determined not strategically but according to predetermined 
probabilities. That the result of this move is revealed to the existing type e or n of control-
ler c but not to firm f can be seen from the information conditions of these players at later . 
moves as graphically illustrated by their information sets. An information set of player:. i is 
a set of decision nodes where i has to decide. When deciding ·player i only knows that he is 
at one of the decision nodes in the information set but he doesn't know at which one exact-
ly. Graphically the information sets in Figure 2.1 are illustrated by encircling all decision 
nodes belonging to the same information set. 

After the fictitious initial chance move firm/- not knowing the chosen type of control-
ler c - can initiate an exploratory small pollution "accident" with the .intention to trigger 
an· investigation of its production facilities by the controller in which the firm expects to 
learn whether controller c is of the e- or .the n-type. This is f's decision I in Figure 2.1. 
Decision I implies that the firm deliberately and unlawfully discharges pollutants for the 
purpose· of checking controller e's ability and/or reluctance to detect the source of that 
"accidental" spill over. The main idea of such a move of firm f is to take advantage of the 

.. fact that due to their different qualification it is more difficult for the non-expert n than 
for the expert e to find out whether harmful pollutants have been <i;ischarged by firm for 



Figure 2.1:. The game tree of the game model 
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. . 

. not. In the case of river pollution one can, for instance, imagine the release of non-toxic 
but easily observable waste water whose chemical substances a.re difficult to determine. 

The decision not to embark on such an exploratory discharge is cienoted by 1. 

.Suppose decision 1 has been taken. Then firm f has to choose the level A E {O, A}, 
A > 0, of illegal waste release without any further hint about c 's qua.Iification: In other 
words, when deciding on A, firm f can only rely on its a priori beliefs as expressed by the 
probability parameter w. In Figure 2.1 we have graphically illustrated by the line ~A-' 
that the level A of illegal waste disposal is a continuous variable. 

In case of I the actually chosen type of controller c can decide· whether to investigate 

the "accident" thoroughly (the decision T) or not (the decision T). It is assumed that both . 
types have the ability to thoroughly investigate the spill over although such an iµvestiga-
tion is more costly for n than for e. After the investigation firm f is informed about the 

result, i.e. firm flearns about the decisi6n Tor T before the game continues. 

When deciding about A, firm f therefore knows in case of I whether controller c has 

chosen Tor T. But it still does not know the reslllt of the initial chance move. It is because 
of this information condition that oµr model is a signaling game. Suppose the two types 

react differently ·to the exploratory accident 1, for example, e chooses T and n chooses T 
(signaling behavior). Then firm f can infer from- its observation Tor T whether e's _true· 
type is e or n. This situation exhibits the typical structur~ of signaling games which require 
asymmetric information and a sequential decision process with,earlier decisions of the more 
i.nformed players allowing the less informed players to make inferences. Observe, however,_ 
that if both types of controller c do not react differently to the exploratory acCident (pool-
ing behavior), then firm f does not know c 's qualification when choosing A in· the interval 

{O, AJ 
After firm f's choice of A it is stochastically decided whether in case of A > 0 firm f is 

detected as the illegal polluter· {the chance move D) or not {the chance move D). The· 

probability for the result D is denoted by W( A, t) with A e {O, A J and t e { e, n} i_.e., the 
. detection probability of illegal p9llution depends on t;he amount A- of illegal pollution and 

on controller c 's. qualification~ A simple probability function W{ A, t) satisfying the two 
· obvious requirements, 

W(A, t) > W{A, t) for A> A and t = e, n and . {1) 
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W{A, e) > W(A, n) for all A e (0, A}, 

· is the linear probability ·function 

W(A, t) = _ . {MA/A 
NA/A 

0<N<M<1. 

fort= e, 

.fort= n, 
with 

(2) 

(3) 

(4) 

This. completes the interpretation of the game tree as graphically Visualised in Figure 2.1. 
We refrained from including the probabilities W(A,t) and 1-W(A,t} for the final chance 

moves D·and l> in Figure 2.1 in or~er not to overburden the graphical presentation of the 
game decision process and the information conditions. 

As for the description of the game model, it only remains to specify how firm /and the 
1 

two· types e and n of controller c evaluate the different plays. We follow the usual conven-
tion of assigning to a non-existing type of a player the payoff of its existing type. In case of 

no exploratory ·investigation, 1, and in case of "I an~ T" the controller has not invested in .~ 

special work effort so that his cost of effort can be neglected. 

illegal pollution is often detected because of its disastrous environmental consequences,. to 

e.g. dead fish in case of illegal tjver pollution. But it is q~te a different problem to find out 
the polluter - which is assumed to be the ~ontroller's job. How good this job is do~e de-
pends on the controller's qualification and incentives which in turn are largely determined 
by his or her payoff. In what 'follows the elements c_onstituting this -payoff are successively 

·described. 

First we ·assume that tracing illegal waste disposals back to the polluter will promote 
the controller's career. This has an impact on the payoff Ut of both types t = e and t = n of 
controller c. In case of A > 0 the payoff level Ut of type. t is simply the probability W{ A, t) 
of being able to prove that firm /has caused .the pollution. The payoff Ut for A = 0 should 
not be smaller than the payoff in case of a detection. Therefore we assume Ut = 1 for A = 
0. To formalise this hypothesis, define 

{ 
1, 

6A = 0 
if A > 0, 

otherwise. 

With the help of'the variable ~A type t's payoff for 1 and (I, T) can be expressed as 
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·ut = 1-6 A + W{A,t) fort= e, n. (5) 

After I and T occurred type t 's payoff is the difference of the payoff in ( 5) and the cost , . 

of a thorough investigation of the exploratory accident: 

ut ={· 1-6A + W{A,t)-H fort=' n, 

1-6 A+ W{A,t)- L fort= e, · 

where the assumption 

H>L>O 

(6) 

(7) 

reflects the higher qualification of the expert e as compared to the non-exp~rt n. The 
inequalities (7) may be alternatively or complementary interpreted to reflect n's greater 
disutility from" working. 

Define in addition 

{ 
1, if f chooses I, 

61= -
0, if f chooses I, 

and 
t { 1, if t chooses T, 

6 = 
T 0, if t chooses T. 

With the help of this notation the payoff functions (5) and (6) can be comprehens_ively 
written as 

For the firm, 

fort= n, 

fort= e. 

K{A} = p +FA with F ~ 0 and p > .0 

(8) 

(9) 

is the cost per unit of waste by which legal disposal exceeds the cost level of illegal disposal. 
, The assumption p > O means that il~egal disposal is alw~ys cheaper. If Fis positive, the 

discrepancy bet~een legal and illegal disposal increases with the amount of waste which is 
illegally disposed. The cost advantage A· K( A) of illegal waste disposal equ~s the firm's 
abatement cost which has to be juxtaposed to the fine B + PA with P > p to be paid in 

" case of detection.· We suppose that the fine P per unit of illegal disposal is independent of 
the amount A since ~ost such per unit fines do not depend on amounts. The fine B ~ O 
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does not depend on A and hence expresses that part of the penalty which is caused by any 

detected illegal waste dispo.sal. In case of 1 firm f's payoff uis therefore 

uf = (p + FA}A - W{A,t}{B + PA}{10} (10) 

with P. ~ p > 0 and F ~ 0. Let C ~ 0 denote the costs of firm f to induce and perform the 
exploratory accident I and E ~ 0 firm f's costs implied by the thorough investigation T of 

I 

such an accident. In case of I and T the cost C, and in case of I a~d T the cos't C+E, have 

to be subt~acted from the payoff.lev:el in (10). With the help of the variables 61 and 6~ firm 
f's payoff function can therefore be summarised by 

Uf = {p + FA}A - W{A,.t}{B +PA)- 6lC + ai£J. with (11) 

P > p > 0, F ~ 0, C ~ 0, E ~ 0, B ~ 0. (12) 

The game tree in Figure 2.1 supplemented by the probability assignment (3) and by 
the payoff functions (8) and (11) defines our game model. Of course, all these structural 
relationships do not define just a single game but rather a multi-dimensional class of 

games with parameters A, B, C, E, F, H, L, M, N ,P, p, and w which can vary in certain: 
(half-)intervals. Denote by 0 c IR12 the set of all feasible .parameter values, the parameter 
space of our game model . 

. Some subregions in this parameter space 0 will have obvious results. Nevertheless, to 
solve all games in thi~ large parameter space. is certainly beyond the scope of this paper. 
Therefore we will not explore all subregions in the same systematic way but restrict the 
most advanced game theoretic exercise to some subregions of this large parameter space 
that we consider to be especially interesting. 

. 3. A gallery of equilibrium scenarios 

Game theoretic studies of real-life decision problems are often attempts to provide consist-
ent explanations of observed behavior, especially if the observed behavior appears to be · 
paradoxical at first sight. A naive observer might be surprised, for instance, that there is a 
lot of littering on highways in spite of the fact that it would be much cheaper to· dispose 
garbage properly and that one finally has to pay for the more expensive clean up, either via 
higher road tolls or tax rates. But a game theoretic analysis may show that the situation is 
actually a prisoner's dilemma game with littering (resembling. confessing of the prisoners) 

~· 
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as a unique dominant strategy in spite of the inefficiency which it implies. This illustrates 
the purpose of game theoretic studies as attempts to resolve cognitive dissonance about 
seemingly paradoxical ob.served behavior which becomes more understandable if one can 
find a game model, reflecting the main strategic aspects, whose equilibrium result is 
consistent with the observed behavior. 

This way of using game theoretic models, namely to provide consistent explanations 
for observed behavior, has been called the method of equilibrium scenarios (Giith, 1984; 
Avenhaus, Giith, and Huber, 1991; as well as Gardner and Giith, 1991). According to the 
method of equilibrilllll scenarios one does not determine all equilibria of a game model but 
only those whose implied play corresponds to some ·really observed behavior. An equili-

. * brium (point) is a strategy vectors := (s~1 ••• , s:J specifying a strategy s~ for every player 
i, such that no player i can profitably deviate unilaterally. To put it differently, for all 
players i and all alternative strategies si of. i one must have1 

(1) 

where ui is player i's payq~ function which is transformed from the set of end points/plays 

to the set of strategy vectors in the usual way. The strategy vector s * is called an equili-
brium scenario if there exists a fuJ,l-dimensional subspace n 'of the parameter space~ such 

that s* is an equilibrium point for all games in ll'. In other words, for s* to be an equili-

brium scenario there ~as to exist a generic game withs* as an equilibrium. 

The method. of equilibrium scenario is most useful .for very complex game models like 
the game model described· in Section 2, for which a more thorough game theoretic analysis 

. . . 

is often practically impossible. This is especially true if ·one is more interested in exploring 
certain kinds of equilibria than in determining all possible equilibrium results. 

We will not check the equilibrium condition for the normal form with players/, e, and 
n. We rather check it for the so-called agent normal form (Selten, 1975, as well as Giith 
and Kalkofen, 1989), where there are as many players as information sets of personal 
players. For the case at hand this means that we have four F-players rather than a single 

firm/, namely the F-player who decides between I and 1 as well as the three F-players 

1 For the sake of notational simplicity, the numbering of equations starts with. (1) in each of ' 
the subsequent sections. If in some section of the present paper we make a reference in the 
text to an e~uation by writing, say, 'Equation (14)', then it is understood that we mean 
Equation (14) of the very same section where this reference appears. On the other hand, if 
we wish to refer to Equation {14) from Section X in the text of Section Y, X; Y, then we 
write 'Equation (X.14)". · 
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choosing A after 1, T, and T.· These four F-players are called the agents of firm f :Formally !. 

the agent nori:nal foim is a normal form game with all agents of all (normal form) players 
as players -whose. strategies are the moves in their information set and whose payoffs ~re 

· those of their (normal form) player. In our game model the agent normal form has 6 play-
~ ! • • 

ers, namely the 4 F-players in addition to players e and n. 

The basic idea of the agent normal form is that a given player's decision in one of his 
infor~ation sets should only be governed by_ the future consequences of his move, i.e. what 
one will do in such a situation is determined by what one can still achieve and not by what 
one initially tended or promised to do. What· we e~clude is therefore that a player can 
threaten to behave non-optimally later. Thus the agent normal form ~elies on decentralised 
decision making .of local players. See Guth (1990) for a discu~sion of the various notions of 
a player. 

In order to describe equilibrium s~enarios based on the agent· normal fo'rm. it is conven- . 
ient to intToduce the following pieces of notation. We denote a strategy vector by 

(2) 

with component sf, se, and sn being the strategy of firm f, type e, and t~pe n of controller· 

c, respectively. Firm f'~ strategy has to specify. the choice a1 (with a1 = 1 meaning the 

move I and 61 = 0 meaning move 1) as well as the choice of A for its three later informa- · 

tion sets. Both ~ypes of controller c have only to decide between 8 ~ = .1 (the move T) and 

6Tt = 0 . (the move T). Therefore the strategies . s and s are completely ·described by the e n . 
move 8~ and 8~ of the two types of c. With this notation firm f's strategy sf can bed~ 

scribed as 

(3). 

where 'A I*' stands for the level of A chosen after the previous moves described by '*'. For 
the sake of notational simplicity we will often' write -

(3') 

inste~d of ( 3) and correspondingly 

(2') 
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for the strategy vector s . 

. 3.1. Pooled shirking and illegal waste disposal: 'polluter's paradise' scenario 

. It certainly is not an unrealistic situation that both types of controller c are shirking and 

that firm /will react to this by maximal illegal pollution A =A. This situation is described 
by the strategy vector 

Sa:= {{O, A, A, A}, 0, o;.· (4) . 

This strategy vector ( 4) describes a situation in which _firm f does not invest into an 
exploratory accident (61 = O}. Therefore the response of controller c to a (hypothetic3:1) 

accident is irrelevant but the reactions 6 f = 6T = O as reported in sa to that hypothetical 
situation indicate, of course, the controller's reluctance to investigate: If an explorat_ory 
accident would have had occurred, both types of c would not have reacted by a ·thorough 

investigation. In fact, according to _sa the enforc~ment of the zero-emission rule is so 
ineffective that the firm ignores the legal constraint completely: Not only doesn't it. con-
sider it worthwhile to explore the controller's type, but regardless of previous moves firm f 
finds it even advantageous to choose the maximum amount of emissions A - based on its a 

priori beliefs about the controller .. If sa can be shown to b~ an equilibrium for a full-diinen;.. 
sional parameter region, it characterises doubtlessly a. "polluter's paradise scenario". 

In order to demonstrate that sa is, indeed, a scenario we first show that. it is an equili-

brium. For Sa to be in "equilibrium the following condition must be satisfied for an' levels A 

E {O, A). 

(p + FA)A....: {wM + (1-w}N}(B +PA)~ (p + FA)A- [wM + (1-w)Nj~(B +PA) 

s 
or p(A-A) + F{A2-A2H [wM + (1-w)N}[B{1- ~) + P{A - ~ )]. (5) 

Inequality (5) requires that the lower risk of detection by choosing smaller levels A < 
A of illegal disposal inust be (over )compensated by the increase of disposal costs. No ot~er 
conditio~s have to be satisfied for two reasons: firstly, an exploratory accident does not pay 

"' if both.types of controller c react in the same way and therefore do not signal tl.ieir qualifi~ 

cation and secondly, the decisions 6f and 6T do not matter in case of 61 = O. · 
• 
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For A> A inequality (5) can be simplified to 

A(p + F(A + A)) ~ wM +. (1-w}N. 
B + P{A + A) 

(5') 

The term on the right hand side of (5 1
) is the a priori detection probability for A =A as 

expected by firm f. The left ·hand side of (5') is a relation of the cost advantage and the 
penalty for illeg~ waste disposal. Due to (2.12) the left hand side of (5') is strictly positive. 

Thus there exists a full-dimensional non-empty sub space n a of the 12-dimensional para-

meter space n of games, described in Section 2, such. that Sa is an equilibrium in all games 

with a parameter vector w = {A,B,C,E,F,H,L,M,N,P,p,w) in na c n. 
The most dramatic examples of the polluter's paradise equilibrium. scenario sa seem to 

be the nuclear power plants in their early development. Before the uprise of the anti-nucle-
ar or green movement such plants were neither regularly turned off in case of small acci-
dents {although this caused environmental problems as, for instance, radioactive cooling 

·water and radioactive steam and increased the risk of major accidents), nor did the control 
agencies always pay attention to such accidents. By now nuclear power· plants are moni-

. tored much more intensively so that even minor accidents induce an immediate stop of the 
process followed by a thorough investigation of the event. 

An empirical situation ·where sa still seems to be all: equilib~ium scenario is the pollu-
tion of national and international waters.· Here the detection pr~bability of illegal polluters, 
even of major emissions such as the release of oil into a river, is still too small to prevent 
illegal dis~osal. Partly, this might be due to the fact that detection te.chniques are not well 
developed as is the case, for instance, when ships release oil into rivers. Moreover, fines for 
detected polluters are often too low to be deterring. But certainly to some extent it may 
also be the shirking of water authorities and water police departments that must be held 
responsible for very low detection rates. 

Observe, however, that in the polluter's paradise. scenario the controller's qualification 
cannot be blamed for the complete breakdown of enforcement (provided that· society. 
doesn't have at its disposal cont:rollers who are better qualified than type e of controller c), 
since even type e of controller c cannot cope with his or her task. Suppose, the probability 
of detection cannot be improved (i.e. for fixed w, M, and N) and the abatement costs of 
firm f (as characterised by the parameters p and F) are exogenous. Then the right hand 
side of {5-') and the numerator of the term on the left hand side of {5') cannot be manipu-
lated. Consequently any escape froID: "polluter's paradise" must rely on raising the fine for ~ 

·unlawful emissions thus increasing the denominator of the term on the left hand side of {5') 
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until the inequality sign is reversed. 

3.2.' Exploratory accidents and illegal waste dispos&l 
· due to unqualified control: 'signaling scenarios' 

15 

Signaling takes pla~e when 61 =1 is followed by. 5f = 1 and 6~ = O, since. in that. case ~ter 

the ID:Ove T, firm f would conclude that controller c is of the e-type whereas the move T 
. signals the n-type. We consider two strategy vectors implying such a behavior: 

i := {{1, o, A, o), 1, O} and (6) 

. I:= ((1, 0, A, A}, ~, 0). (7) 

Observe first that i and /3 differ. ~nly.in that A9 = 0 in sh, but A9 = 1 in -/3 .. The inter-
pretation of this difference is that if the firm is asked to choose its emissions based on its a 

priori beliefs about controller c, then it would not. emit .at all
1

in sit~ation i while it w~uld 

choose the maximum emission lev~ A in situation /3. But in bpth sifoations ·firm f prefers 
to launch an exploratory accident rendering· the value of A 9 irrelevant. 

. As a feaction to. 61 = 1 the two types of co~troller c· exhibit signaling behavior in that · 

tpe expert launches an investigation (6f =· 1) but not the_ non-expert (8~ =. 0). After this. 

·signal of the controller's type, firm f responds in both situation~ sb 'and /3 as follows: 
If the controller turned out to be the expert, firm f abides completely to the law: A j = 0; 

but if.the controller turned out to be the non-expert, firm f chooses t9 completely ignore 

the law: A2 =A. 

Hence ~he polluter is extremely sensitive in .his or her reaction to the con~roller's 

qualification. We now want to. prove that i and /3 are. equiHbriu~ scenarios of our game 

~odel. For i to be in ·~quilibrium for all A e {O, A.Jone must have 

·(p +·FA.JA.-N{B +PA}~ (p + FA}A-N~{B +PA), . . . A . 

{p + FA}A ~ M~{B +PA}, 
A 

(p + FA}A ~ [wM + {1-w}Nj~(B +PA}, . A 
(1-w}[{p + FA}A - N(B +PA}}~ .c· + wE, 

(8) 

. (9) 

(10) 

(11) 
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H+N~1~L+M. (12) 

The first three i~equ~ties ensure that firm f cannot gain by choosing a different 

disp~sal level A E {O, A Jin the three information conditions {I, T}, {I, T}, and (1), which 

can equivalently be expressed by·6/1-6~J = .1, 6f5~ = 1, and 61 = 0. Condition (11) 

implies the choice of I to be better than that of 1 for strategy vector i .. The left hand side 

[right hand side] inequality in (12) is the best reply condition for t ~ n [t= e]. For A > A, 
con~tion (8) can be simplified to 

A{p + F(A + A}/> N. 
B + P{A + A} -

(8') 

Obviously, this condition is similar to (5'). Due to M > N ~ O and w e {O, 1), inequality 
(9) holds for a certain level A > O, whenever this is true for condition (10). Thus to prove 

that sb is an equilibrium scenario we only have to demonstrate that conditions (8'), (10), 
(11 ), and (12) can be simultaneously satisfied in a non-degenerate parameter region. 

Owing to A > 0 and P > p > O the left-hand side of (8') is well-defined and positive. 
Since the condition H > 1 > L + M is consistent with the parameter restrictions (2. 7), 
conditions (8') .and (12) can be simultaneously satisfied by choosing N (~ O} sufficiently . 
small. For rather low values of N ~ 0 inequality (11) is obviously true for low parameter 
values C ~ 0 and E ~ 0. For A > 0 condition (10) can be rewritten as 

wM + (1-w}N~ A(p + FAJ. 
. B +PA 

(10') . 

. Since the left hand side of (10') can be chosen near to 1 by choosing wand M near to 1, it 
suffices to show that the right hand side of (10') can be ge~erically smaller than 1. This is 
obViou5ly true if B, the part of the fine not depending on A, is sufficiently large. Since all 

conditions stated so far are mutually independent, sb is demonstrated to be an equilibrium 
scenario. 

The equilibrium conditions for /3 are (5) [replacing (10)], (8), (9) , (12), and 

w{M{B+ PAJ,-E- (p + FA}A}~ C (13) 

[replacing (11)]. To satisfy (13) assume the parameters E,A, and C to be so small that the 

t, 
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coefficient [ ·] of w is positive and that the left hand side of (13) is larger than C. Similarly, 
sufficiently small values of w and Ne (0, M} ensure that (5) hold.s. As before it is possible 

. ' 

to choose Ap < B ~nd FA < P such that the condition 

A(p' + FA)< M 
B +PA 

(9') 

can be satisfied for Me {O, 1}. Except for (9') and the requirement H > 1 ~ L +Mall our 
conditions are. mutually independent. 1 ~ L + Mis clearly compatible with (2.4) and (2. 7) 
because for every M e {O, 1) there is L e {O, 1) to satisfy this inequality. Thus all our 
conditions can be simultaneously satisfied for a non-degenerate parameter region which 

proves that /3 is also an equilibrium scenario of our game model. 

The illegal release of waste water, or chemical substances, or oil into water resources 
are important examples of detrimental waste disposal in case ~f 'unqualified control'. 
Unlawful polluters can take advantage of the darkness and/or of poorly controlled· parts of 
the river system, and one .can well imagi:rie polluters st~ting with the emission of minor 
amounts, as modeled by our 'exploratory accident I'. They may then be encouraged to 
choose larger amounts and in some cases even more dangerous substances if they experi-
enced '.that their ·first unlawful action did not cause a thorough investigation. It is this 

~ reinforcement of illegal behavior which causes so dramatic environmental damage if. 
unqualified control cannot be excluded. 

· - Since in both "signaling equilibrium scenarios'' sb and /3. firm f reacts sharply on 
.. which type of controller c is revealed, it is exclusively the controller's insufficient qualifica-

tion which has .to be blamed for any enforcement deficit. In fact, as far as these scenarios 
provide an adequate characterisation of the empirical situation, the enforcement problem 
could be easily solved by firing all non-exi>ert controllers. Observe, however, that this 
recommendation· 1eads us to the issue ·of controlling the controllers which. is beyond the 
scope of the present paper. 

3.3 Absence of illegal pollution due to efficient control: "controller's paradise scenario" 

All strategy vectors· wi~h the consistent choice of A = 0 by .. firm f can easily be shown to be 
equilibrium scenarios since one can always prevent illegal pollution in our model by assum-
ing sufficiently large fines and/or high detection probabilities. To design a more interesting . 
scenario in which no illegal pollution takes place consider 

l := ((0, O, A, O}, 1, 1). {14) 
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According to the strategy vector (14) both types ofcontroller c would launch an inves-
tig'ation if an (exploratory) accident should occur, in which case it ~ould be optimal for the 
firm not to pollute at al~ (A 1 = A 9 = O) . Owing to the c_ontroller's types.' pooling behavior 
the.firm is not interested to choose I in the first place. But even then, monitoring and fines 
are so effective that zero pollution (A 9 = 0) is the firm's best strategy. Such a situation is, 
in fact, the "controller's paradise''. -

For sc to be in equillbrium'the following condition must hold for all A e {O, A}:. 

wM + 0-w)N~ A.LJ? + FAJ. 
B +PA 

For the two types e and n of controller c no equilibrium condition has to be imposed 

since .due to the move 1 by firm f their decision does not matter. But for l to be a perfect 
equilibrium (S~ten, 1975, and Section 4.2 below) one must also require in addition to {15) 

1~H+N, (16) 

1~L+M, . ! (17) 

and (8) hold for all A e {O, A). To satisfy (16) and (17) we assume 

1 >max {H + N, L + M}. (18) 

Furthermore, by choosing N small enough one can guarantee (8'). To satisfy (15) we as-

. sume values of w and M near to 1 and values of A and B such that 

1 > A(p + FA) 
B + PA 

· . for all A e {O, A}. Consequently sc is ~n equilibrium scenario of our game model. 

(19) 

Although the equilibrium scenario sc is not often mentioned in the political debate 
about environmental ·effects, it may be an empirically important one. It covers all situa- · 
tions where we do not experience illegal po~ution since this is no profitable activity due to 
the efficient control system. Notwithstanding some exceptions like the ·case of the radioac-
tive material from a run-down hospital in Brazil that had not properly been disposed of, 
radioactive material is nearly always legally abated where, of course, legal disposal may not · 
always be environmentally adequate. Similarly, most extremely hazardous chemical waste 
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and military weapons are properly disposed of. Most acci~ents with such .substances :were 
not caused by deliberate unlawful action. 

' 
One might argue that it is the aim of environmental policy 'to design a legal system for .. 

waste disposal such that the strategy vector sc· is a~ equilibrium and hopefully the only 
one. It is obvious from (15) that it is always possible to charge such a high fine B - or ·to 

increase ~ - as to satisfy. (15) for any 'feasible set of values A, A, F, M, N, and w. Hence in · 
the tradition of "crime and punishment" (Becker, 1968) the obvious .Polle! advice seems to 
be draconic monetary disincentive (punishment) .to deter agents from polluting the environ-
ment. However, there are political, legal, and social reasons why societies might want to 
place upper bounds on the parameters· Band P to the effect that the inequality (15) cannot 
be achieved. The political risk associated with high ·penalty rates as· well as horizontal 
equity considerations prevent the government from increasing the seemingly costless penai.:. 
ty (Kolm, 1973). Lawyers point to the requirement of keeping ~eans (here: fines) ·in rea-
sonable proportion to the ends. In particular, with ·high values o~B or P the punisl!ment of . 
low-wealth violators would be unacceptably high. It is for these reasons that incomplete 
enforcement of environmental standards still is an important feature in many empirical 
scenarios a.nd cannot be easily overcome by the principle of "crime and punishment". 

Even though the "controller's paradise scenario" is characterised by effective enforce-
ment it is not true that the absence of law violations can be attributed to the controller's 
qualification. Recall that the· two types of controller c show pooling behavior. The low· 
expe:rtise of ~on-experts is suffi~ie~t -to deter illegal pollution. Therefore, the · moni taring. 
agency should pursue a policy of substitut~ng expert controllers by non-experts~ 

3.4. Intermediate illegal pollution: "constrained polluter's paradise scenario" 

Till now only scenarios with either A =A or A = O have been considered. In the following 

we want to show that intermediate levels A e {O, A} of illegal waste disposal can also 
constitute equilibrium scenarios. To_ see that, consider s~rategy vectors of ~he form 

sd := {(O, A*, A*, A *J,O, O} with A* e {O, A). (20) 

Observe that. sd is exactly like sa from ( 4) except. that A is everywhere replaced by A* < 

A.It implies that both types of controller c would not react to /_by a thorough investigation 
T so 'that an explor.atory accident I cannot provide any informat~on concerning the actually 
existing type of c. 
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For sd to be an equilibrium one must have 

A*:= [ arg max g(AJ] E (0, A}, where · 
Ae [ O,Aj 

(21) 

g(A) := (p + FA}A -{wM + (1-w)Nj(B + PA)A. . A {22) 

It remains to be demonstrated that the function g( A) assumes its maximal value A* in 
. . 

the interior of the interval {O, AJ.· The first and second order conditions for .an interior 
maximum of function g are 

g'(A)=p+2FA*_wM + {l-w)N·{B+2PA*J~O, 
. A 

and g"(A) = 2{F- wM + _ (1-w)N·P} < O. 
A . 

These two conditions easily translate into 

{wM + (1-w}N}P > FA, and 

A*= Ap - [wM + {1-w)N/B . 
. 2{ {wM + . ( 1-w)N}P ·-FA} 

{23) 

(24) 

(25) 

{26) 

Obviously, (25) can be satisfied by choosing P large enough. Due to (25) the denomina-
tor of the right hand side of (26) is positive. A sufficiently small value of B ~ 0 generates 

therefore A* > 0. The condition A* < A is, equivalent to 

. wM + (1-w}N > A(p + 2F~) 
B + 2PA · 

(27) 

and can be satisfied by- choosing p > 0 and F.~ 0 small enough. Since P has to be large, the 
denominator on the right hand side of (27) is not very small. Thus we have shown that 
intermediate levels of illegal pollution also constitute an equilibrium scenario. Equation {26) 
.l~ds itself to an easy exercise in comparative statics analysis: The firm will raise its emis~ 

sions level A* if, ceteris .Paribus, 

i) . aA* aA* _.abatement costs increase: op > 0, 011 > O; 

• -· 
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ii) . the fine for illegal emissions decrease: g~ * < O, W- < O; 

iii) the probability w with which firm 1 expects to meet an expert controller decreases: 

8A*.< 0 Ow 
. * 

iv) the detection probability W{A, t) of illegal pollution decreases:~< V, W < 0. 

All these changes in. unlawful pollution conform to one's intuition. 

3.5. Equilibrium scenarios and the multiplicity of equilibria 

According to the method of equilibrium scenarios one tries to demonstrate that a certain 
type of behavior is consistent with what we consider the most basic requirement of indi-
vidually rational decision be.havior, namely the equilibrium property, by showing that such 
a behavior is implied by a generic equilibrium point. What is totally disregarded is whether 
this equilibrium point is the only one. 

In what follows we will first demonstrate the generic multiplicity of equilibria focusing 
particular attention on so-called pooli~g equilibria and signaling equilibria. An equilibrium 
is said to be a pooling equilibrium, if both types of controller c react in the same way to the 
exploratory accident I so that the choice of I gives the firm no clue and wiff therefore be 
avoided. In contrast, a signaling equilibrium implies, by definition, that the equilibrium 
solution signals. controller e's true type because his two types e and n react differently to 

/ the e~ploratory accident I and that firm f will choose I. 

Due to our· basic interest in signaling behavior we want to illustrate the _generic 
multiplicity of equilibria by showing that in a generic c;lass of games both types of equili-
.bria, signaling ones and pooling ones, coexist. More specifically we want to prove that there-
exists a full-dimensional subset 0' of 0 such that the two strategy vectors 

-s8 := {{1, o, A, A}, 1, O} { = /3 from {3. 7}} (28) 

and sP := ((0, A, A, A}, 0, O} { ~ sa from {9.4}] (29) 

are equilibria of all games in 0'. If the signali~g equilibrium s8 turns out to be the solution, 
firm f chooses I.· Having observed T, f then knows t.hat it is facing type e whereas it infers 

that c is of then-type after having observed T. As can be readily se.en from {29), in case o{ 

the pooling equilibrium $P both types of c re~.ct to I by T so· that firm f does not launch I. 
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Since s8 = J3 and s1' = sa, the equilibrium conditions for s8 are (5),. (8), (9), (12), and 

(13), and for s1' the equilibrium condition is (5). 

As mentioned above we now simplify the model by considering only values A e { O, A} 
instead of A e- {O, 1) Note that an alternative route to proceed woUld have been to state 

conditions for the function gk(A) := (p+FA}A - k{A/A}{B+PA} such that the maximum 

of gk(.fl) on {O, A}is either A = O or A =A for all 'relevant' coej'ficients k to be considered._ 
Here we. do not enter into the discussion of such conditions since to apply some of the more 
a4vanced game theoretic concepts, e.g. perfectness (Selten, · 1975), we have to rest~ct 
players to finitely many strategies anyhow. Thus we study a finite extensive game to which 
some of the more.advanced concepts can be applied (Selten 1975, Harsanyi and Selten 19~8, 

\ . 

and Giith and Kalkofen 1989). If only values A e { O,A} are allowed, our equilibrium condi-

tions for s8 and ;'. are specified by · 

pA + FA2 ~ {wM + {1-w}Nj{B -I-PA}, 

pA + FA.2 ~ N{B +PA}, 

?A + FA.2 ~ M{B +PA}, 

(5") 

(8") 

(9") 

in addition to (12) and -(13). We want to show that all these conditfons can be simultane-· 
· ously satisfied on a generic subset of the parameter space n defined· by our game model in 
Section 2. Since (5") implies (8") conditions (5"), (8") and (9') together can be expressed 
as 

M~ A (p .+ FA)~ wM + {1-w)N. 
· B +PA 

(30) 

Obviously one can simultaneously satisfy (12) and (30) by choosing.A. such that 

. 1 - L > M ~ A (p + ~A) ~ wM + (1-w}N. (31) 
B +PA 

Moreover, due to ·M > N and O < w < 1 there exists a non-degenerate interval for the 

expression A{p + FA}/{B +.PA}. 

Observe that inequality (1_3) is equivalent to (9') for C = O = E. Thus by choosing C ~ L 

0 and E ~- 0 sufficiently small we can satisfy {30) and (13) simultane,;msly .if we rely on the 
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more refined con di ti on 

1 - L > M > A (p + FA) ~ wM + (1-w}N 
B +PA 

23 

(31') 

rather than on (31). This shows that all requirements for s8 and ;p· to be equilibria can be 
satisfied for a full-dimensional subset 0' of the parameter space 0 and that therefore the_ 
coexistence of signaling and pooling equilibria is a gene.ric ph~nomenon. 

This observation leads us to t.he question which meaning and relevance can be attached 

to equilibrium. points, when in· all (or many) games with the equilibrium point s8 the 

strategy vector sP is also in equilibrium. From the earlier discussion of these equilibria we 

know that they characterise markedly different behavior. Obviously, the fact that a certain 

behavior is implied by one of the equilibria, say l; does not mean that this behavior is also 
the solution behavior. We simply do not know whether· a certain model, defined by a 
non-degenerate sub space of parameters should be characterised as "polluter's paradise" or 
as scenario of signaling the controller's type. . , 

It is possible to respond to this dilemma in different ways: Either one does not want to 

distinguish among equilibria. Then all, what one can claim, is that s8 might be th~ solu-. 
· tion. Or one is willing to discriminate between equilibria and to apply inore refined notions 
of individual rationality, e.g. refinement concepts as reviewed by van Damme ( 1987) or 
equilibrium selection theories as suggested by Harsanyi and Selten (t988) and by Giith and 
Kalkofen {1989). 

In the remainder of the paper we choose the route to discriminate between equilibria 
by applying more refined game theoretic solution concepts. For the sake of simplicity and 
·since some of the more refined solution concepts are not yet defined for continuous game~, 

we will restrict the choice of A to { O, A} instead to {O, A j and totally neglect mixed strate-
gy equilibria. 
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PART Il: PERFECT EQUILIBRIA 

AND (UNIQUE) SOLUTIONS VIA EQUILIBRIUM SELECTION 

4. Uniformly perfect pure strategy equilibria 

The weakness of the equilibrium concept, defined by the mutual best reply property (3.1), 
is that it does not guarantee optimal decisions in information sets off the equilibrium play. 

For the case at hand the strategy vector l as specified in (3.14) can be, for ins~ance, an 
equilibrium even if conditions (3.16) and (3.17) are not satisfied. The reason is that. the 

relatively high costs of a thorough investigation T do not matter since, due to l, firm f 
choose~ J so that no explorative accident occurs. But if (3.16) and (3.17) are not satisfied, 
the intention to choose Tis a non-credible threat since, given the situation I, it is better to 

use T for both types of controller c. 

In order to exclude non-optimal choices in unreached information sets, Selten (1975) 
has introduced the concept of perfect equilibria which often is colloquially ·described as 
trembling hand perfectness. The basic idea is to derive from the game at hand a so-called 

t 

perturbed game which differs from the. former in that each move has to be chosen with a ~ 

small positive minimum probability (due to a trembling hand). The original game is then 
viewed as the limit· of its perturbed games when all these (artificial) small positive mini- !. 

mum probabilities converge to zero~ In a perturbed game all information sets are reached 
with positive p~obability so that the choices in all information sets have to be optimal. An 
equilibrium point of the original game is said to be perfect if it is an equilibrium point in 
all games of a sequence of perturbed games approaching the original game. A perfect equili-
brium point is therefore immune against small perturbations in the sense of small positive 
minimum probabilities for all moves. 

Selten's perfectness idea is a rather weak concept by requiring all minimum choice 
probabilities for a perturbed game to be positiv~. ~elten wanted to define only a necessary· 
condition for individual rationality, namely an equilibrium concept excluding non-optimal 
choices in unreached information sets. Some recent refinement concepts as those discussed 
by van Damme (1987) developed more selective equilibrium concepts by imposing more 
demanding requirements of how ·immune against perturbations a strategy vector has to be. 
An extreme requirement of this form is, for instance, to ask that a strategy vector should 
be immune against all small perturbations. But such extremely, stable equilibria do not 
always exist. 

Here we do not want to·enter into a discussion of whether one should try to develop t. 

more selective equilibrium concepts, which still do not solve many games ·uniquely~ or 
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whether one should design equilibrium selection theories which yie~d unique solutions but 
are at least partly based on preliminary ideas. B~th approaches are discussed in Harsanyi 
and Selten (1988) as well as in Giith and Kalkofen (1989). The refinement concept, which· 
will be used in the following, has been suggested by equilibrium selection theory (Harsanyi 
and Selten, 1988) and seems to be the most attraGtive refinement since it is. not an ad 
hoc~oncept for ·a. special class of games. It rather relies on what· we consiqer a sound 

· philosophical basis of defining individual rationality. 

A.ssume that there are no dominant strategies and that no player has superfluous 
moves in the sense tha~ there are no two moves which always yield the same re~ult. The 
idea of the trembling hand is that moves can . be chosen .by mistake i.e. involuntarily. 
Making mistakes is not an intentional act so that the probability of making a mistake 
should be the same for all moves. In an e -uniformly perturbed game of the original game 
we require therefore the same small positive minimum choice probability e for all moves in 
all. information sets of personal players excluding chance moves. An equilibrium of the 
original g~e is called unifqrmly perfect if it ·is an equilibrium in all games of a sequence of 
e-uniformly perturbed games converging to .the original game in the sense of e -+ 0. Here it 
should be clear, of course, that to use· a strategy or a strategy vector of the unpe:r;turbed 
game in a perturbed game means to choose it with. maximal probability. 

The main aim of this sec;tion is to determine the set of uniformly perfect pure st~ategy 

• equilibria if only the two extreme levels A = . 0 and A = A > 0 of illegal ~aste disposal are. 

feasible. Let G denote the game model described in Section 2 with A e { 0, A} and cf' its 

e-uniformly perturbed games withe > O. Clearly, after 1 firm f's beliefs concerning wheth-
er the controller is of type e or n are given by its a priori probabilities w for e· and 1-w for 
n. ~he same is also true for the other agents of firm /, i{ the two types of controller c use . 

identical strategies in cf'. Let ~t with K,t e {O, 1} denote the probability that the necessary 
moves of firm f and type. t of controller c lead to firm f's informa~ion after I and T or 1 and 

T, respectively. The assumption that both types of controller c use the same strategy in· Ge 
implies ~e = ~n = K,. The probability for r~aching firm f's information set is then given by· 
w~ + {1-w}~. Due to ~ e {O, 1) this probability is positive. Thus firm f's condition~ proba-
bility for encountering type e of controller c is given by 

w~ . -----.-=w, 
WK, + (1-w}~ 

i.e. the a priori probability for meeting type e of controller c. If the two types of controller c 

use the same strategy in aE, i.e. in case of pooling ~ehavior, then fir~ f must choose 1 with 
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maximal probability 1-e, and the optimal level A* of illegal waste disposal is given by .! 

. B +PA 
. . [ 0 forA(p .+ F~) ~ wM + (1-w}N 

·A*= · (1) 
. A for the reversed inequality 

If A* = O is chosen with maximal probability, the decision T cannot be optimal if e is 

positive but very small. If.A*= 0 is the firm's optimal strategy, controller c will therefore 

use T with maximal probability. This proves -

Lemma 4.1: For 

A(p + FA) < wM + (1-w}N 
B +PA 

the only uniformly perfect pooling equilibrium is 

~ = {{O, 0, o,_ O}, 0, OJ.a 

{2) 

(3) 

If A* =A is. firm f's optimal choice, the decision for Tis never optimal since it does 
not pay to invest into a costly signal if firm f does not react to it. From this follows 

I 

Lemma· 4.2: For 

A (p + FA) > wM + (1-w}N 
· B +PA 

the only uniformly perfect pooling equilibrium is 

sP = {{o,· A, A, A}, o, OJ.a 
A 

(4) 

. (5) 

Pooling equilibria of the type l with the choice of T by bQth types of controller care 

. not unif<?rmlY perfect since the different decisions for A after T and T cannot be justified 

by different beliefs after T and T, respectively. 

\!.. 
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The ·case where (2) and ( 4), respectively, hold as an equality is neglected since we do 
n~t want to focus attention on degenerate games without special political interest. 

If the two- types. of controller c use different strategies in if-, this ~ways means that 
type t = e uses T with higher probability than t = n. Let 'Tr t denote the probability with 
which the move Tis chosen by type t. Then for given 7r and 7r. firm- f's probability for · e n . - . 
observing move T, given its decision .for I, is. 

(6) 

In an equilibrium o.f an e;-uniformly perturbed .game one has i:e ~ 7r n ~ e; > 0 so that µ,(T ! 
is always positive. We can therefore define fi.rm f's conditional or posterior probability for 
facing ty,pe t. = e after observing move T by using Bayes-rule as 

W'lr e 
µ(elT)=----

. . w'Tre + (1-w}7rn 

Analogously, the posteriori probability µ(e I T}"is given by · 

w(1-7r ) 
. µ,(el T} = . e 

w(1-7re) + (1-w)(1-7rn) 

With the help ofthis notation the optimal decision A* of firm f can,be.derived as 

!
. 0 for µ,(el T}M + {1-µ,(~I T)JN ~A (p + FAJ, 

· · . B +PA 

A for µ,(el T)M + {1-µ,{el T}JN ~A (p + ~A) 
B +PA 

!
. -0 for.µ,(el T)M+f 1-µ,{e I T} JN~ A (p + FAJ, 

. B +PA 
~ ' . 

·71 for µ,(e I T}M+f 1-µ,(e I T} JN S A (p + FAJ, 
. B +-PA 

* { 0 in case of (2), 
A 8 -o = I r ' A in case of (4), 

(9)·' 

. ' (10) 

.· (11)' 
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. ·Let us· now explore the possibilit~ of signaling behavior in the sense that .type e chooses T ~ 

and type n chooses· his -move T With m~mal probability: Le. 7r e = 1-e and. 7r n = €· .. In an 
€-uniformly. perturbe4 game with e > 0 this behavior is optimal if 1-L > Mand N :> 1-H. 

Moreover, ·one obtains µ(el T} = w(1~)/[w{1-e} + {1-w}e} and µ(el T} = W€/[~ + 
. (1-w}(1-e}] so that the posteriori probability µ(el T} increases when e ·decreases and 

converges to 1 fore ... 0 whereas µ(el T} decreases withe and converges to 0 fore ... 0. For E 

positive and sufficiently small . the following moves are therefore ·chosen with maximal 
probability: 

0 forM > A(p + ~AJ, 
B +PA 

A forM~ A(p. + ~AJ, 
B +PA. 

I 
o for N_~ A (p + ~AJ, 

* . B + PA 
A t = I 6z{1-6T)=1 _ A(p + FA) 

AforN< _. 
B +PA 

Denote by 

(9') 

(10') 

(12) 

the :vector of firm f's illegal waste disposal levels for its three information sets when only 

levels A E { 0, A} are possible. The iI1:1plications of conditions (9'), (10'), and (11) are 
graphically illustrated in Figure 4.1 from which it follows that uniformly perfect pure 

' . . -

strategy signaling equillbria can only exist in t~e range ' 

N<A(p + FA)<M. 
- B +PA 

.A*=(0,0,0} I A*=(O,A, 0) A* =(O,A,A} · 1 A* =(A,A,A) 

N wM +(1-w)N .M 

(13) 

A(p+FA) 
B+PA 

Figure 4.1: The optimal levels A* of illegal waste disposal depending on A ( P +FA) 
· · · B+PA 
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The decision problem which has not been considered s.o far is firm f's choice between I 

and l In case of A* = {O,A,O} the decision I is optimal whenever inequality (3.11) holds. 

In ·case of A* = (O,A,A} the decision is optimal if inequality (3.13) hol~s. With the help of 
the inequali t.ies 

N < A(p. + FA) < wM + (1-w}N, 
B +PA 

wM '+ (1-w}N < A(p + FA) < M. 
B +PA 

w~ now summarise our results by 

(14) 

(15) 

~ 4.3: For 1-L > M and N > 1-H the only uniformly perfect pure signaling equilir 
brium is in case of (14): 

s~ 1 := {{1, O, A, O}, 1, OJ, if {9.11} holds,· 
I 

s~ 0 := {{O, 0, A, O}, 1, O}, if the reversed strict inequality holds; 
I 

and in case of (15): 

s~ := (1, o, A, A}, 1, O}, if (9.19} holds; 
Al · . , . 

s~ := (( 0, o,· A, A}, 1, O}, if the reversed strict inequality holds. a 
A,O 

All four strategy vectors in Lemma 4.3 prescribe a type differentiating behavior in the 

sense of 6T = 0 and 6~ = 1. Strictly speaking, signaling only takes place in case of s~,l and 

s ~ when firm f chooses its move I. But we will also refer to the strategy vectors s~ 0 an.d 
A,1 . . I 

s ~ as signaling equilibria; In these strategies the controller. would have signaled his type 
A,O . · 

if an exploratory accident would have occurred. 

Lemmata 4.1, 4.2, and 4.3 provide a complete overvie~ ove~ all uniformly perfect pure 
equilibria. Thus, in the range (14) there exist two uniformly perfect pure equilibria, .namely 

~and [s~ i ors~ oJ, wher_eas the range (15) contains sP and [s 8 or 8
8 

]. In all other 
I I A A,1 A,O . 

more degenerate parameter regions there exists exactly one uniformly perfect pure strategy 
equilibri~m point. 
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M,N 

M=l-L 

N=l-H 
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'" sP sP 0 
' I ·- - - - - - - -

sP and sP and 0 I 
sP s or s SS SS sP 8 0,1 8 0,0 or 0 I,1 A,O I - - - -

sP 0 sP A 

N wM +(1-w)N M 

Figure 4.2: All uniformly perfect pure strategy equilibri~ in the 

[A(p+FA}/{B+PA}, {M,N}}-plane except for border cases 

I(p+FI) 
B+PI 

The possible cases of multiple uniformly perfect pure equilibria are graphically illus-
trated by Figure 4.2' from which it follows that the coexistence of signaling and pooling 
equilibria is not resolved by using the more refined concept of uniformly perfect equilibria. 
Like other refinement concepts the uniformly perfect. equilibrium also does not generally· ~· 

yield a unique solution. Consequently strategic uncertainty cannot be completely resolved 
· by relying on this refinement concept. 

5. Comparison of signaling and pooling equilibria 

As shown in Figure 4.2 we have to ~stinguish two generic regions with more than one · 
uniformly perfect pure strategy equilibrium, namely the range defined by" 1-L > M > N > 
1-Hand (4.14)" and the range defined by "1-L > M > N > 1-Hand (4.15.)". Whenever 
the uniformly perfect pure strategy eq.uilibrium is not unique, we have exactly two such 
equilibria, namely a signaling and a pooling one. Since the number o~ uniformly perfect 
equilibria is generically odd, in all these cases there exists also a uniformly perfect equili-
brium in mixed strategies which we chose to ignore. In the terminology of equilibrium 
selection theory the mixed strategy equilibrium is no initial candidate for the solution of 
the game (Harsanyi and Selten, 1988; Giith and Kalkofen, 1989). 

In the following we will try to derive a unique solution for all generic subregions. When- ' 
ever there is only one uniformly perfect pure strategy equilibrium, we take this equilibrium 
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to be the solution of the game. In case of more than one such equilibrium w.e will apply 
equilibrium selection theory in order to decide which of them is the solution of the game. 

· 5.1 Cell and truncation consistency 

According· to e,quilibrium selection theory as developed· in the pioneering approach of 
Harsanyi and Selten (1988) one does not solve the game directly but determines its solution 

g by deriving a unique solution l of its e:-tiniformly perturbed games and .solves the un-
perturbed game via the limit 

g=liml 
E-+ 0 

(1) 

. of the sequence of equilibria l. ·Since· l is an equilibrium point of the e:-uniformly 
perturbed game, the limit solution g, if it exists, is obviously a uniformly perfect e.quili-
bririm point of the original game. Thus for an equilibrium to become the solution of the 
unperturbed game it must be uniformly perfect according to equilibrium selection theory. 

To determine the unique solution l of an e:-uniformly perturbed game one first has to 
decompose the game if possible. A game can be decomposed, for instance, if it has a proper 
subgame in the sense of an informationally closed subtree. A subtre.e of the game tree is said 
to be informationally closed if all information sets containing a decision node of the subtree 
contain only decision nodes of the subtree. As many games with incomplete inform~tion 
our game model has no proper subgames (see Figure 2.1). 

A substructure generalising the notion of the subgame is the cell game ·(Harsanyi and 
· Selten, 1988). Consider the agent normal form of an ex.tensive game which is defined as .the 
normal form game with all agents as players whose strategies are the moves in the respec-
tive information sets and whose payoffs are those of the original player (Selten,. 1975). 
Consequently, a player has as many agents as he has information sets. A subset of players 
in the agent normal form is a cell if for all cell players it only depends on the choices of the · 
other cell players whether a certain strategy is a best reply or not. In other words, a cell is 
a subset of agents which is closed with respect to the best reply correspondence. The cell 
game has only the cell players as players whereas all other players are assumed to use all 
their pure strategies with the same probability. 

Our basic game as illustrated in Figure 2.1 has no proper cells since in t~e unperturbed 

game the agents wh~ make their move after I have all their moves as best replies if 1 is 
chosen. In the terminology of Harsanyi and Selten (1988, p. ~5) the unperturbed game has 
only a ·Semi-cell game. In the e:-uniformly perturbed games with e: > 0 the set of all agents 



32 Werner GUth und Rudiger Pethig 

who have to decide after I, is a proper cell. In such a .game the move I is. chosen with 

positive probability so that 1 cannot be chosen with certainty. All agents after I have 
therefore to react optim~y to I and to the choiGes of .the other agents after I. Thus all 
e:-uniformly perturbed games have a proper cell game with all agents after I as players. 

Also firm f's agent choosing A after 1 is a cell. The residual game has only one player - the 

agent deciding between I and 1- who can only react optimally to the two cell game solu-
tions. For details see the decomposition procedure of Harsanyi ~d Selten (1988) from 
which we deviate only by using the agent normal form. 

Cell consistency requires to solve a cell game as if it were an independent game: The 
solution of the cell game should not depend on how it is embedded in a larger game con-
text. Given the solution of the cell games the residual game is the game with the non~ell 
members as players where all cell players are fixed at their strategi~s according to the cell 
game solutions. Truncation consistency requires to solve the residual game as if it were 
independent. 

When solving an e:-uniformly perturbed game one first looks for the smallest cell 
games not containing proper subcells, then one looks for the residual games of the second 
smallest cell games resulting from anticipating the solution of the smallest cell games, etc. 
This procedure is closely related t9 the backward induction procedure of dynamic program-
ming. In the case at hand we only have two smallest cell games of our basic model, namely 

t~e one with the agents afte~ I as players and the cell gam~ with firm f's agent after 1 as 
the ·only player. What is left is only one residual game with just one player, namely firm f's 

agent choosing between I and 1. 
In the following we will distinguish two selection principles, payoff dominance and risk 

dominance. Cell and truncation consistency requires to apply these principles first to the 
two cell games and then to the residual game of the e:-uniformly perturbed games. The 
solution of the original game is then determined by the limit of the combination ·of the cell 
game solutions and the residual game solution for the e:-uniformly perturbed games when e: 
approaches zero. 

5.2 Payoff dominance 

Let 8 and s be· two different strategy vectors and denote by u/s) and ui(s) player i's 

p·ayoffs implied. by 8 and 8, respectively. The strategy vector s is said to payoff dominate 

the strategy vector 8 if 

• 
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(2) 

Suppose that a game has only two uniformly perfect equilibria in pure strategies, namely s 
· and s, and let s payoff dominate s. Equilibrium selection theory then assumes s to be 

selected as the solution (for instance, Harsanyi and Selten, 1988). 

The interpretation of. payoff dominance as an equilibri_um s~lection concept relies on _ 

the hypothetical e~pectation that all players think that ·either s or s will be the solution. 

Clearly, players i with s. = s. will then know what to do, and he or she can therefore be i . i . . 

neglected. Players i with s . # s . will be called the active players for comparing s i and 8 i" If 
i i . . 

(2) holds all remaining players are interested in 8 to become the solution. Payoff domi-
. n~ce assumes that expectations will concentrate on this commonly desired solution 
(Harsanyi and Selten, l9.88, p. 81 and p. 223) .. 

Payoff dominance as a sele.ction principle is not totally convincing since other consider-
ations, e.g. how risky a strategy vector is,· might suggest a different result. In a_. sense payoff 
dominance is a way to avoid the more appropriate way of formally representing preplay 
communication which may or may not yield a payoff dominant solution. 

For 1-L > M > N > 1-H in addition to (4.15) and (3.11) Lemma 4.1 and 4.3 Imply 

that ~ and s~11 are uniforin!y perfect equilibria. According to ~ and s~, 1. only type e · of 

con~roller c and firm f after I and . T use different strategies in the cell game after I, i.e. are 
active players. In an e-uhlformly perturbed game with e > · 0 type e receives the payoff 

e{1-e} + {1-e)2 + M{e2 + {1-c.}e}- ~L (3) 

·given that t = e, that firm /has chosen I, and that the choices according to ~are realised 

with maximal probability. For s~ 1 this payoff is 
I 

{1--e}2.+ e2+ 2e{1-e}M- (1-e}L. . (4) 

Due to 1 > Mand L > O the payoff (3) is greater than payoff ( 4) for e < 1/2. 

For firm f's. agent after I and T the payoff expectation iI~plied by ~ is 

{e2 + {1-e}ej{(p +FA}~ - {wM + {1_;,w}N}{B +PA}} - C- eE (5) 



34 Werner GUth un4 RUdiger Pethig 

giv~ that I has be~n realised .. For s~ 1 this payoff is , 

(1-w}{[e. 2 + {1-c.}2]{(p + FA}A - N(B +PA}}- EE} - C + 

+ ~2€(1-e}[{p + FA}A - M{B +PA}}- (1-e}E}. 

For E-. 0 the payoff (5) converg~s to -Cwhereas (6) approaches 

. . 

{1-w}[(p + FA)A - N{B + PA)]- C- wE. 

Due to ( 4.14) the payoff (6') is smaller than -Cif 

(p +FA}A-N(B +PA}<· 1wwE. 

(6) 

(6') 

(6") 

Thus for (6") the equilibrium point ~·payoff dominates s~,r In case that (611
) is not 

.s~tisfied, one cannot discriminate between ·~ and s~, 1 by payoff dominance. Since the 

behavior for the cell game after I does not differ between s~ 1 and s~ 0, the same result _is , , 
true for the comparison of~ ands~ 0. , 

For the trivial cell game with firm f's agent after J: as the only 'player the trivial solu-
tion is A = 0 in the range (4.14). The residual game with firm f's agent choosing between I 

and J: is not defined if the cell game after I cannot be solved by payoff dominance. 

Lemma 5.1: Suppose that in the range (4.14) two uniformly perfect pure strategy equilibria 
coezist. Then the pooling equilibrium payoff dominates the signaling one in case of {6~') 
whereas one cannot select one of them as the solution by cell and truncation consistent 
payoff dominance if {6"} is not satisfied. 

For 1-L > Mand N > 1-H in addition to (4.15) and (3.13) Lemmata 4.2 and 4.3 

imply that sP and ss are uniformly perfect equilibria. In the range (4.15) the trivial cell 
A A 1 · -, 

game after J: has the solution A =A. When comparing s~ and s8 the active players of 
A.,1 

the cell game after I are type e of controller c and firm f's agent after I and T. Given that I 
has been chosen, type e's conditional payoff expectation is 

\ 

(7) 

I 

~l 

·! 
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~ if the choices according to s~ are made with maximal probability in an e-uniformly 

perturbed game withe > 0. Fors~ the analogous payoff expectation 1s given by (4). Due 
· A,1 . 

to 1-L > M type e prefers ( 4) over (7) if e is positive and sufficiently small. Therefore, in · 
every £-uniformly perturbed game with e positive and sufficiently small type e of control-

ler c prefers the cell game solution of s s over the one of sP. 
· A 1 A , 

For firm f's agent after I and T the payoff expectation for given I according to sP is 
A 

[E{1-e} + (1-e)2]{{p + FA}A - [wM + (1-w)Nj{B +PA}} -C-eE. (8) 

The ·analogous payoff expectation for ss is given by (6). For e -. 0 the payoff (8) con-
. A1 I 

verges to. 

(p + FA}A - {wM + (1-w}Nj(B +FA} - C, (8') 

~ whereas (6) converges to (6'). The difference of (8') and (6') is 

w{(p + FA}A - M{B +PA}}+ wE (9) 

which is negative in case of 

M{B + PA}- (p +· FA}A > E. (8") 

For ( 811
) firm f prefers the cell game equilibrium according to sl 1 over the one in- . 

duced by s~. Otherwise there exists no payoff dominance relationship. 

Lemma 5.2: Suppose that in the range (4.15} two uniformly perfect pure strategy equilibria 
(!oexist. Then the signaling equilibrium payoff dominates the pooling one in case of {8"} 

' wher~as one cannot select one of them as the solution by cell and tryi,ncation consistent 
payoff dominance if {8"} is not satisfied. 

· According to the Lemmata 5.1 and 5.2 one cannot always rely on payoff dominance to 
discriminate among the uniformly perfect pure strategy signaling and pooling equilibria. It 
is interesting to observe that· according to (6") payoff dominance of pooling over signaling 
behavior in· the range ( 4.14) becomes more likely if w increases whereas in the range ( 4.15) 
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the condition for payoff dominance does not depend at all on w. In parameter region ( 4".15) 
signaling is ~ore likely to .payoff dominate pooling behavior when costs E to firm f of being 
inspected become small. Conversely, in parameter ·region ( 4.14) pooling payoff dominates 
signaling behavior if Eis sufficiently large. Thus according to the selection criterion of 
payoff dominance small inspection costs tend to support signaling behavior. 

5.3 Risk dominance 

Payoff dominance and consider~tions of strategic risk are mutually incon_sistent solutio~ 
requirements. Equilibrium selection theory (Harsanyi and Selten, 1988, and also Guth and 
Kalkofen, 1989) relies on both requirement and has avoided their mutual inconsistency by 
giving priority to payoff dominance. But this is a very premature decision and one that will 
very likely be reversed in the future. Indeed, earlier versions ~f the Harsanyi and Selten 
theory as in Guth (1978) did not rely on payoff dominance at all. Also the recent ad hoc 
selection concept of Carllson and van Damme (1989) does not use payoff dominance. 

In t~e . following. we will therefore apply risk dominance as an alternative solution 
requirement even in those regions where the game can also be solved by payoff dominance. 

To compare pooling and signaling equilibria one first has to solve the smallest cell 
games. For the case at han(l the only non-trivial game is the cell game after I. The cell 

game after I as well as the residual game are trivial games since .they have only one player. 
In the cell game after I both type n of controller c and one of the firm's agents use the same 
strategy. Thus the cell game after I has only two active players: type e of controller c and 

one of the firm's agents. Furthermore, due to A e { O, A} both active players have only two 
pure strategies and both cell game equilibria are strict whenever an e:-uniformly perturbed 
game with e > 0 is considered. Here an equilibrium is said to be strict if a unilate~al deyia-

. · tion by a player yields a lower payoff for the deviator. To solve the game at hand we 
therefore need a selection concept by which one can solve 2x2-bimatrix games with two 
strict equilibria. Fortunately, Harsanyi and Selten (1988, Chapter 3.9) have developed a 
rigorous and easily applicable con~ept to solve such games. This concept is axiomatically 
characterised by the following three very convincing requirements: independence of isomor-
phic transformations (IIT), best reply invariance (BRI), and monotonicity (MO). 

Independence of isomorphic transformations reqllires :the solution in isomorphically 
transformed games to be the same except for differences in strategically unessential details 
such as the names of players or strategies or positive affine transformations of utilities. 
Observe that IIT implies symmetry invariance, i.e. this axiom requires . the solution of· 
symmetric gain.es to be symmetric. 

Since the equilibrium concept implies all players to use ~utually oest replies, one can 
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argue that it is only the best reply structure what matters for equilibrium analysis - thus 
contradicting payoff dominance. Best reply in.variance requires the solution of games with 
the same best reply structure to be the same. 

To explain monotonicity consider a pure strategy equilibrium point sofa given gaµie. 
The game which results from this game by increasing an active p~ayer's. payoff for s is 
called the game resulting from strengthening the equilibrium s. If no other pure· strategy 
equilibrium except sis the solution of the original ga~e, payoff monotonicity requires s to 
be the solution of the game resulting from strengthening s. The stronger incentive for s 
should then make s the solution. 

Harsanyi and Selten (1988, p. 87) show that in the class of 2x2-bimatrix games with 
two strict equilibria. there is only one solution of each such game satisfyi~g the axioms IIT, 
BRI, and MO. They call this solution the risk dominant solution. Expressed in terms of a 
dominance relation they say that this solution risk dominates the other strict equilibrium. 

When determining the solution of the cell game after I w~ can refer directly to the 
axioms IIT, BRI, and MO which will allow us to transform the. original game into a more 
appropriate one. 

5.4 Solutions in the range ( 4.14) 

In this section it will be generally assumed that condition_ ( 4.14) is valid. Recall from 
Figure 4.2 that if the inequalities 1-L > M > N > 1-H do not hold along with ( 4.14), the 

, pooling equilibrium ~ is the· solution. But in case of 1-L > M > N > 1-H both. a pooling 
and a signaling equilibriUm: exist. In the following we will therefore presuppose !-L > M > 
N > 1-H in addition to ( 4.14). 

Since the crucial problem is to solve the cell game after I, we consider the strategic 

situation after I in an €-uniformly pertu.rbed game with E > 0. According to ~ ~d [s011 · 
or s~, di the only active players of this cell galll-e ar~ type e of controller c and firm f's agent 

after I and T. Type e's strategies are clearly T and T whereas firm f's agent after I and T 

can choose A = 0 and A = A. The 2x2-bimatrix presentation of the cell game is given in 
Figure 5.1 in which firm f's payoff is the upper left entry and type e's payoff is the lower 
right .e~try. 
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e ·T T 
f 

.. (~) (10) 
A=O 

(3) {12) 

.. 
{11) (6) 

A=A {13) . ( 4) 

Figure 5.1: The restricted cell game after I for the comparison of ~ with [s~, 1 or s~, oJ. 

The payoff entries in Figure 5.1 are - as far as· they have not yet been defined above: 

(1-w}[(E 2+{1-e}Ej{{p + FA}A-· N{B +PA}}- EE J - C + 

+ w{[E{1-E} + E2j[(p+FA}A-M{B+PA}}-(1-E}E}, 

[E2 f {1-E}2]{{p + FA}A- [wM + (1-w}Nj(B +PA}} -C-EE, 

(1~E)2 + E(1-E} + M{E(1-E} + E2}- (1-E}L, ' 

where, of course, all payoff expectations are conditional payoffs given the choice of I. 

(10) 

(11) 
\ 

(12) 

(13) 

In the range (4.18) the expression in curved brackets in (5) and, (11) i~ negative so that 
(5) is greater than (11). This explains the upward pointing arrow of firm /s agent in ~he 
left column of Figure 5.1. Similarly, one can see that (6) is greater. than (10) which explains 
the downward pointing deviation arrow of firm ! s agent in the right column. 

For L > 0 one has, furthermore, (3) > (12) and due to 1 - L > M also ( 4) > {13) if E is 
positive and sufficiently small. This explains the direction of the two horizontal deviation 

arrows and prov~s that (A = O, T) as well as (A = A, T) are strict equilibria of the· re-
stricted cell game after I. Here "restricted" indicates that only those agents are considered 

as active players who us.e different strategies in ~, 1 or s~, 0. Expressed in terms of 
deviation arrows an equilibrium is strict,. if all deviation arrows are pointing to it. Thus the 
game in Figure 5.1.has two strict equilibria. 
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The game in Figure 5.2 results from· the _game in Figure 5.1 by subtracting in each 
column· (row) firm f's (type e's) non-equilibrium payoff. ·This transformation preserves the 
best reply structure since ~he mixed strategy equilibrium and therefore the stability sets of 
the two games are identical (Harsanyi and Selten, 1988). The stability set of a strategy 
combination is defined as the set of all mixed strategy combinations to which this strategy · 
combination is a best reply. Due to axiom BRI it is therefore possible· to solve the game in 
Figure 5.1 by solving.the g~e in Figure 5.2. 

e T T 
f 

(5)-(11) 0 
A=O 

(3)-(12) o ... 
0 (6)--(10) 

A=A 
( 4)-:(13) 

Figure 5.2: Best reply preserving transformation of the game in Figure 5.1 

8 In· Figure 5.3 the letters X and Y are defined as 

"t 

X = (S) - ( 1.1) > 0 and 
{6} - (10} 

Y= (4)- (19) > O. 
(9) - (12} 

f 

A=O 

A=l 

e 

x 

0 

T T 

0 

1 0 

1 

0 y 

Figure 5.3: Isomorphic transformation of the game in Figure 5.2 .. 

(14) 

(15) . 
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With this notation it is clear that the game in Figure 5.3 is derived from that in Figure 5.2 
by dividing firm f's payoff by the positive constant (6) - (10) and type e'_s payoff by the 
positive constant (3) - (12). These positive affine transformations of utilities are covered 
by axiom IIT implying that we can solve the game of Figure 5.1 by ·solving the game of 
Figure 5.3. 

With the help of {14) and (15) it is easy to see that the problem of solving any 2><2-bi-
matrix game with two strict equilibria· can be reduced to solving the class of games de-
scribed· in Figure 5.3. 

Now for .x = Y the game of Figure 5.3 is completely symmetric. Axiom IIT therefore 

. forbids to select (A = 0, T} or (A = A, T} as the solution. Symmetry invariance implies 
that the· mixed strategy equilibrium is chosen as the solution which is, of course, also 

uniformly perfect. Thus due to axiom MO the solution i~ (A= O, T} for X > Y and 

{A= A, ~)for X < Y. Neglecting again the degenerate case X = Your results are sum-
marised by 

Lemma 5.4: T~e solution of the restricted cell game after I, as described by Figure ·5.1, is 

...;.. (A= o, T}, if (14} is greater than {15),· and 

- {A= A, T}, if (14} is smaller than {15). a 

If {A = o,· T) is the cell game s_olution, it does not pay for firm f to invest into an 

explorato~y accident. The solution is the pooling equilibrium ~ with no illegal waste 

disposal. In case of (A" = A, T} as the cell ·game solution, the result depends on whether 

{3.11) or the opposite strict inequality holds: s~11 is the solution for {3.11) and s~,O for the 
reversed strict inequality. 

Coroll&ry 5.5: ,In the range (4.14) the solution of the. e-uniformly perturbed game with 
e E {O, 1/2} is 

-~, 

s . 
- so,11 

if {i) 1-L < Mor N < 1-H, 
or if {ii} 1-L > M > N > 1-H and {14} > {15}; 

if 1-L > M > 1~ > 1-H, {14) < {15} and {9.11); 

if 1-L > M > N.> 1-H, {14) < {15} and if the reversed strict_ ine·quality 
{9.11} holds. a 
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In an e-uniformly perturbed game a solution s means, of course,· that the choices 
according to s are realised with maximal probability. Substitution of (3) to (6) and (10) to 
(13) into (14) and (15) yields 

X=- (1-e){(p+FA)A-[wM+(1-w)N/(B+PA)} (l4')' 
{1-w}{1-e} {(p+FA}A-N{B+PA} }+we [ (p+FA} A-M{B+PA}j 

and 

Y=(l-2£)(1-M)...: L. 
L 

(15') 

Using the. notation 

x'l:=limX=-(p + FA)A-[wM + {1-w)NJ(B +PA), and (l4") 
e-+O ( 1-w)[(p + Fjt}A -- N{B + PA)} 

"ft:o z . y 1 - M - -L r-:= im =----
e-+ 0 L 

the limit solution of the unperturbed game can be described as follows: 

Theorem 5.6: In the range (4.14) the solution of the game with A e {O, A} is 

- ~, if {i) 1-L < Mor N < 1-H, 

s -so 1' 
. I 

or if (ii) 1-L > M > N > 1-H and xD >. ¥°; 

if 1-L > M > N > 1-H, x0 < yO and (3.11}, 

if 1-~ > ¥ > N > 1-H, xD < yO and {3.11} reversed. a 

(15 11 ) 

Observe that neither the case xD > y0 nor y0 < xD can be excluded since xD and yO are 
bo~h positive. 

With Lemma 5.1 and Theorem 5.6 one woUld have·determined a unique solution for all 
. generic subregions of the multi-dimensional parameter space n satisfying. (4.14). Either 

there exists only one uniformly perfect pure strategy equilibrium - the solution is then 
'f • always a pooling equilibrium - or one can select between the pooling and the signaling 

equilibrium by risk dominance or. by payoff dominance. Actually this would be the resuli 
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' 
according to the theory of. Harsanyi and Selten which defines a dominance relation by 
p~yoff dominance or by risk dominance, in case that payoff dominance does not apply. Here 
we investigate risk dominance also in situations where payoff dominance applies. 

5.5. The solution in the range ( 4.15) 

If either 1-L < Mor N < 1-H in the range ( 4.15), then the pooling equilibrium sP is the 
A 

solution. For 1-L > M and N > 1-H the game has also a signaling. equilibrium, namely 

ss in case of (3.13) and ss · in case of the revers.ed strict inequality. We therefore rely 
A,1 · . A,O . 

on ( 4.15), 1-L > Mand N > 1-H when selec~ing the solution in what follows. 

The restricted cell game after I which we consider for the comparison of sP with . A 
[s~. ors~ }is shown in Figure 5.4. The not yet defined payoff entries in Figure 5.4 are 

A,1 · A,O · 

[{1-e}2 + e2j {(p + FA}A - [wM + (1-w}Nj(B '+PA}} - eE- C, (16) 

(1-w){[(1-e) 2 + (1-e.)~j[(p + FA}A- NB+ PA)]~ eE} --:C+J 

+ w{[e(1-e} + (1-e}2]{{p + FA}A -M{B +PA}] - (1-e}Ej } , 
(17) 

e2 + e(1-e} + M{e(1-e} + (1-e)2]- (1-e}L, (18) 

(19) 

e T T 
f 

A=O 
(16) (6) 

"' 
(19) . (4) , 

-~ 

(8) {17) 
A=A 

(7.) (18) 

Figure 5.4: The restricted cell game after I for the comparison of sP with [s s or s ~ J 
A A,1 A,O 

• 1.-
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For e e {O, 1/2} the payoff (8) is greater than (16) which explains the downward 
pointing deviation arrow in the left column~ Similarly, for the range ( 4.15) .it follows that 
(6) is gre~ter than (17). Then, in the right column, the deviation arrow has to point up-

. ward. For 1-L > M and L > 0 the horizontal deviation arrows have to be as indicated in 
Figure 5.4. This proves tha~ the game of Figure 5.4 has two· strict equilibria, namely 

(A = o, T) and (A =A, T}. 

The next step is to transform the game resulting from Figure 5.4 by a procedµre ( cov-
ered by the axioms BRI and IIT) similar to that used to transform Figure 5.1 into 5.3. For 
that purpose define 

U = (8) - (16) and 
.(6) - (11) 

V= (4) - (19) 
t!) - (18) 

.. 
to obtain.the 2x2-bimatrix of Figure 5.5. 

e 
£ 

0 
A=O 

u 
A=A 

T T 

1 

0 v 
0 

1 0 

Figure 5.5: The transformed restricted cell game after I of Figure 5.4 

Now the same arguments a~ used for proving Lemma 5.4 yield 

. (20) 

(21) 

Lemma 5.7: The solution of the restricted cell game after I - as described by Figure 5.4 - is 

- {A= A, T), if {20} is greater than (21); 

- (A =0, T}, if (20} is smaller than (21). a 

In the range ( 4.15) ·firm f 's agent after 1 uses A = A with maximal probability in 
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every e-uniformly perturbed game. If the pooling behavior {A =A, T} i~ therefore the ~ 

solution of the cell game after I, firm f will choose 1, i.e. s~ is the solution of the game .. For · 
A 

the signaling solution (A = 0, T) of the cell game after I the solution depends on w~ether ~ 

(3.13) holds or not. In case of (3.i3) it is s~ whereas it is ss in case of the reversed 
· · A,1 A,O . 

inequality. 

Corollary V.8: In the range (4.15} the solution of the e-uniformly perturbed game with 
e: E {O, 1/2) is 

-sP ·A 

-SS 
.A,1 

-SS 
A,O 

Since 

and 

. if {i) {-L < Mor N < 1-H holds, 
or if {ii) 1-L > M > N > 1-H and {20) > {21) holds; 

if 1-L > M > N > 1-H, {2Q) < (21} and {9.19) holds; 

if 1-L > M > N > 1-H, {20} < {21} and if the reversed strict inequality of 

{3.19} ~olds. a 

U = e: { (p+FA)A--) wM+ ( 1-w)N/(B+PA)} (2o,) 
(1-w)e:{(p+FA)A-N{B+PA) } +w{l-e:){ ( p +FA}A-M{B+PA}}.· 

. V= (1 - -2€)(1-M) - L , . (21') 
L 

one has V > Ufor positive ~nd sufficiently small e:. This proves . 

Theorem 5.9: In the range (4.15) the solution of the game with A E {O, A} is 

if 1-L <:. Mor N < 1-H holds; · 

-SS - , if 1-L > ·M > N > 1-H and {9.19} holds; 
A,1 

-SS - , 
A,O 

if 1-L > M > N > 1 :-H, and {9.19} reversed holds. a 
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Observe that Lemma 5.2 and Theorem 5.9 determine identical solutions for the region 
~ 1-L > M > N > 1-H, (8") and ( 4.15). Thus the signaling solution for this .parameter 

region ts very convincing since it is supported both by payoff dominance and by risk domi-
nance. For such ·games it does not matter whether we rely on payoff dominance or not. 

5.6. Discussion of the solution . 

Exc~pt for degenerate cases reflecting the boundaries of parameter regions we have solved 
all games of. the basic game model. We ignore degenerate games since they rely on highly 
special assumptions for the game parameters ·and have therefore.no practical relevance. A 
small· change of one of the relevant parameters will usually imply that· the game falls into 
one of the generic regions for which the solution has been derived above. Of course, one can 
also .solve the degenerate games uniquely by applying equilibrium selection theory. But this 
would be a purely game theoretic exercise wi~h ,hardly any economic relevance. 

Let us first look at the e:-uniformly perturbed games with e: e {O, 1/2). To illustrate 
how the solution of such a game depends on the parameters, we use a graphical presenta-
tion of results similar to Figure 4.2. 

In Figure 5.6 the major dividing line is 

A(p + FA) = wM + (1-w}N. 
B +PA 

{22) 

With some modifications this dividing line played a major role throughout the paper, e.g. 
in (3.5'), (3.10'), (3.15), (3.28). The right hand side of (22) is the ratio of what firm f can 
win and what it can lose from (maximal) ill~gal waste di_sposal. This ratio can be inter-
preted as the firm's "chance to gain" from violating the law as a percentage of fine in case 
of detection. The right hand sf de is the a priori probability for being detected as an illegal 

polluter (A =A). If the firm's chance to gain is less than the detection probability (i.e~ on 
the left h~d side of (22)) firm /will choose A = O with maximal probability provided that 

it has to rely on its a priori belief. On the right hand side of (22) the choice of A = A is 
optimal according to the a priori belief. The solution of the game reflects this behavior by 

the appropriate choice of A after 1 with maximal probability as well as by the pooling 
solution of the cell game after I. 

Other essential dividing lines are M = 1 -:- L and N = 1 - H. For M > 1 - L even type · 

·e of controller c prefers no~ to thoroughly investigate an exploratory accident {T)'since his 
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H ,N 

M=1-L 

N=l-H 

0 

.. 

- -

sP 0 

- -
sg! 

I 
N 
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. sg 

sP for (14)"> (15) sP for 0 I 

s~ 1 for {3.111 and SS for 
' I,1 {14) 

s (3.11) < SS for s0 ,0 for (15) reversed l,o 

sP 0 

wM+(l-w)N 

sP 
I 

(20) > (21) 

{3.13)] 
(3.13) 

reversed 

sP 
I 

and 
(20) sP < I {21) 

' I 
M ! 

l(p+Fl) 
B+Fl 

Figure 5.6: Solution of an e-uniformly perturbed game 

withe: e {O, j) in the (A (p +~AJ, {M,NJ] - plane except for border cases. 
B+PA 

detection probability Mfor A= A exceeds his payoff 1 - Lin_ case of A = 0 and a thorough 
explora.tion {T). Thus for M > 1 _- L only a pooling equilibrium is possible. For N < 1- H 

on the other hand even. type n of controller c prefers T over T since his detection probabili-

ty N for A= A is too low compared_ to his payoff 1- H for T if "T induces the choice of 
A= 0 by firm f. Below N = 1- Hone can therefore have only a pooling solution. 

The region where the solution of an €-uniformly perturbed game is most reactive to 
the game parameters is the rectangular area determined by 

1-L > M > N > 1-H and (23) 

N < A(p + FA)< M. 
B +PA 

(24) 

The latter range is again subdivided by (22). On the left hand side of (22) it depends on the 
relation of X and Y whether .the solution is a pooling or a signaling equilibrium. Only if the . i 
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latter is true, condition (3.11) o~ its reverse dete~mine firm f ,.s initial choice between I and 

1. Inequality (3.11) simply says that firm f prefers I over 1 if the solution of the cell game 
after I is of the signaling type. Similarly, on the right hand side of (22) the variables U and 
V determine whether the solution is a pooling or signaling equilibrium. Here inequality 

, (3.13) or its reverse matter only in case that the pooling equilibrium is not selected. Like 
(3.11) the condition (3.13) requires that I is a best reply given that the sollltion of the cell 
game after Jis the signaling equilibrium . 

M,N 
M=1-L 

. "' 

. -

sP 
0 

- -
sP 

01 
I 

0 N 

sP 0 

s 
8 0,1 

s 
so,o 

sP sP 0 I. 

for x0 > yo - sP for (3.13) 
l,1 

for x0 < Y0 
\ 

and (3.11) ss ·for (3.13) 
l,O reversed · 

for x0 > Y0 and 
(3.11) reversed 

sP sP 0 I 

wM+(1-w)N 

I 
I 

.M 

sP 
I 

. . , l(p+Fl) 
·B+Pl 

Figure 5.7: Limit solution for the unperturbed game in the (A (p +:Al, {M;N;l -plane 
B+PA J 

The limit solution of the unperturbed game, i.e. the solution of our game model with 

A E { 0, 4}, is illustrated in Figure 5. 7 in the same way as in Figure 5.6 for its uniformly 
perturbed games. Compared to the :uniformly perturbed games there is a surprising asym-
metry between the left and right hand side of the rectangular area, described by (23) and 
(24). While to the right of (22) a signaling solution prevails whenever such behavior is a 
uniformly perfect equilibrium, on the left hand side of (22) the solution is of the signaling 

type only for x° < l'°. The variable xD, defined by (14't), can b~ descnQed as the relation 
of the a priori expected ~oss · 

[wM + {1- w)Nj(B +PA)- (p + FA}A (25) 
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of A =A and the expected profit 

(1 - w)[(p + FA}A - N(B +PA}} {26) 

due to unqualified monitoring by the non-expert type n of controller c. ·similarly, l"", 
defined by (15"), relates the difference (1 ~ L} - M to L. Here {1 - L} - M is type e's_ 

incentive to choose T if firm f reacts to T by A = O and io T by A = A whereas L is the 

incentive to choose T if firm f reacts to T and. T in the same way. This shows that there 

are intuitive interpretations for· the variables x_O and y0 -which determine whether the 
solution .on the left hand side of {22) in the rectangular area (23) and (24) is of the signal- , 
ing or the pooling type. 

It is interesting to observe that such different ·game· parameters as p and F, deter-
mining the ·cost advantage of illegal, waste disposal as well as the parameters B and P 
defining the fine in case of detected illegal waste disposal, influence the solution only via 
the term 

A(p + FA}: 
B +PA 

(27) 

· which also captures the impact of the level A of illegal waste disposal. One can very· well 
imagine compensating changes of the various parameters constituting (27) which neverthe-

. . 
less leave the value of (27) and thereby the solution unchanged. This indicates that t~ere 
exist trade off relationships which could be economically and politically very i~portant. So, 
for example, our .solution allows·to calculate the necessary increases for the fine parameters 
B and/or P t·o offset a higher profitability of illegal waste disposal due to higher values of p 

and For due to a larger waste amount A. 

6. Conclusions . 

A major motivati.on for our study was to .demonstrate the applicability of non-cooperative 
game theory for analysing illegal pollution, especially the strategic problems _involved_ in 
enforcing environmental control. T~at is why we have used quite different methods ranging 
from equilibrium scenarios to concepts yielding unique solutions. The approach ta~en here 
is by no means confined to illegal pollution but easily lends itself to analysing other strate-
gic and institutional problems of .~nviron:mental management such· as strategic interaction 

\~ 

.. I ,,_ 
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between private polluters and pollutees. 

In our view, it is very important to take into account that envi~onmental policy has to 
be determined in situati~ns· of uncertainty and private information. For example, impor-
tant aspects of pollution damages can only be evaluated by the pollutees themselves and 

· are therefore private information. Another information deficit on which our model focuses 
is that polluters are poorly informed about the effectiveness of environmental control by 
public authorities. Unlike in conventional principal-agent-relationships (for instance, Hart 
and. Holmstrom, 1987) neither the firm nor the inspector can be viewed as a subordinate of 
the other player. Nevertheless the monitoring of private employment contracts can easily 
be analysed by appropriately reinterpreting the assumptions of our model. 

Private information as such does not always lead to signaling. ~or signaling to occur it 
is necessary, in addition, to have a sequential decision process which allows a less informed 
player to elicit the superior information of ot:fier players by infer~nces from their earlier 
activities. Signaling aspects of environmental problems therefore_ always require an exten-
sive game form like that in the preceding analysis. 

To demonstrate that environmental policy might be improved by institutional arrange-
ments related to signaling assume that the government considers a new policy instrument 

1 with only poor information about the polluter's abatement costs. If these costs are low, the 
new measure would lead to welfare improvement, whereas high abatement costs, as 

j probably claimed by self-interested polluters, would suggest to refrain from such a meas-
ure. In order to elicit cost information, the government might introduce the envisaged 
measure either on a very small scale or only locally. One can easily imagine market institu-
tions where it does not pay for a polluter to pretend high abatement costs even though.they 
are actually low. Thus the reactions to the exploratory move, closely resembling the move I 
in Figure 2.1, may allow for updating the governµient's cost ~timates, thus cl;tanging its 
subjective probability for high or low abatement co.st and increase its chances for imple-
menting welfare improving environmental management. 
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