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Abstract 

A classical theorem by H. Poincare asserts that the characteristic roots at a 
rest point of a continuous-time autonomous variational or Hamiltonian dynamical 
system come in opposite-signed pairs. This result confirms the catenary motion of 
efficient capital accumulation paths around a saddle-point turnpike in finite-horizon· 
models of efficient economic growth. Poincare's theorem will be extended to the 
non-autonomous case of a time-dependent biconvex production technology which 
can be represented by a. separable transformation frontier function. This extension 
may prove useful to integrate into optimum growth theory areas of economic analysis 
such as externalities and public goods. 

• This paper is for discussion purposes only. It must not be quoted without the author's written consent. 



I. Introduction 

A classical theorem by H. Poincare states that the characteristic roots of a continuous-
time autonomous variational or Hamiltonian dynamical system come in opposite-signed 
pairs of equal absolute value if these roots are evaluated near a rest point. Thus, if T 

is a root to the characteristic polynomial then -T is also a root (see G.D. Birkhoff [1]). 
Therefore, if by imposing further restrictions one can rule out roots with zero real parts, 
the stationary equilibrium is a symmetric saddle-point (cf. D. Levhari and N. Liviatan [6]). 
In economic dynamic analysis such restrictions are frequently imposed upon technology 
which is usually assumed a convex cone. We since observe the familiar catenary motion of 
efficient accumulation paths around a saddle-point turnpike in many finite-horizon models 
of optimum economic growth. This result was first conjectured by R. Dorfman, P.A. 
Samuelson and R.M. Solow [3, ch. 12) and is now known as the Dorfman-Samuelson-Solow 
turnpike theorem or simply as the catenary turnpike theorem. 

This paper is concerned with the qualitative dynamics of a non-autonomous optimum 
growth model into which enters 'time' as an explicit variable of the problem at hand. 
The model assumes a biconvex instantaneous production technology which may be time-
dependent and represented by a differentiable transformation frontier function. The notion 
of biconvexity of a multiple-input, multiple-output technology is due to L.J. Lau [5). It can 
be thought of as a generalization of the concept of convexity in that it allows overall non-
constant returns but, at the same time, preserves the properties of decreasing marginal 
rates of substitution and increasing marginal transformation rates amongst inputs and 
outputs, respectively. Furthermore, if the production possibilities set is independent in its 
input and output partitions (see L.J. Lau (5, Section 2.3]) then biconvexity implies ( addi-
tive) separability of the frontier function. The main purpose of this paper is to establish 
in Sections II-IV a local turnpike result which occurs if such a separability assumption 
is made but no further qualifications as to the retums to scale are introduced. We will 
there by prepare the ground to cover phenomena such as production externalities as well 
as public goods which play a key role, e.g., in the creation of agglomeration economies and 
diseconomies typical of an urban or regional growth process. This will generalize earlier 
results obtained by R. Wolff [7,8). The paper's primary concern is with the final-state ver-
sion of the turn pike theorem in which case the maximization of terminal stocks serves as 
the intertemporal efficiency criterion. However, our results will also go through in models 
of intertemporal utility maximization. We conclude with a brief discussion of two global 
turnpikes in Section V of this paper. 

First of all, a few comments on our use of notation are in order. Throughout the paper 
elements of Rn, n > 1, will be referred to as column-vectors or simply called 'vectors'. 
They will be denoted by lowercase letters and set in a bold typeface for ease of reading. 
Component i of vector x will be written as :c;. Correspondingly, emboldened uppercase 
letters like A shall represent matrices with elements a;;. Furthermore, let SC Rn and 
T C R be two sets and consider a differentiable function J: S ~ T. Then for each element 
x E S and image /(x) we use /zi as short-hand notation for 8J(x)/8:c;. Much in the 
same way, /ziz; is short-hand notation for fP J(x)/8:c;8:c; while /x stands for the gradient 
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V f ( x) . Differentiation with resp·ect to 'time' will be indicated by a dot '·' and a prime 
'

1
' signifies transposition. Finally, we always write as o and I the null vector and identity 

matrix of appropriate length and dimension, respectively. 

II. Statement of the Problem 

We will be concerned with the following problem of Mayer in the calculus of variations: 

(1) max p' k(ti) 
k(i) 

subject to T(k,k, t) = 0, t E [to, ti], and k(to) = ko. 
We take asp a vector of given non-negative constants with at least one component posi-
tive. T( ·) is assumed a continuously differentiable function with domain R+ x Rn x R+ , 
~here n > 1. In particular, all second-order derivatives of T( ·) with regard to k and 
~ shall not vanish. Furthermore, w~ assume that T(·) is increasing in k, decreasing in 
k and quasi-concave in both k and k. T( ·) shall also satisfy Inada regularity conditions 
lim1:, ... 0T1i = oo and limi:, ... oo Ti,= 0 for all le;. 

This setup is motivated by a standard problem in the theory of optimum economic 
growth. Consider k a vector of stocks, e.g. machinery of some kind, such that i: holds 
the corresponding amounts of investments into these stocks. Suppose that p is a vector of 
stock prices which are expected to prevail in period ti. Let T( ·) completely characterize the 
set of efficient one-period input-output combinations of a firm or of an economy. T(·) may 
thus be viewed a transformation frontier function which exhibits the standard neoclassical 
properties of decreasing marginal rates of substitution between any two capital stocks and 
increasing marginal transformation rates among any pa.ir of investments. (1) will then 
represent an economic optimum investment problem: we seek to maximize the expected 
value of a set of terminal stocks subject to a given environment of investment opportunities 
and given initial endowments. 

In what follows, we will always treat (1) as a classical calculus of variations problem 
with a free end point. We assume that it has an interior solution in the class of non-
negative twice-differentiable functions k(t) for t E [to, ti] with _k;(ti) > k;(t0 ) for at least 
one ki. Note that since T(-) is by assumption quasi-concave ink the Legendre definiteness 
condition for a maximum of p' k( ti) will be met globally. Uniqueness of the solution is 
thus assured (see G. Hadley and M. C. Kemp (4] as a reference on variational methods in 
economics). . 

III. Statement of the Theorem 

Consider the problem of Mayer (1) which we introduced in Section IL Associated with 
this problem is the Lagrangian functional 

1.•1 
p' k(ti) + AT(k, k, t) dt 

io 
(2) 
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and the time-dependent variational system of Euler differential equations 

(3) 

Assume that kn > 0. Let s ::- (k1/kn, ... , kn_ 1 /kn)' and z := (s', kn)'. Next define 
F{z, z, t) := T(skn, k,u skn + skn, kn, t) which changes (3) to 

(4) AF.(z,Z,t)- ~[AFc(z,Z,t)] = o. 

Now we may introduce our basic 

Theorem: Suppo1e that k ;, additively 1eparable in T(k, k, t) from k and that 
T(k, k, t) can be repreaented by 

(5) T(k, k, t) = J( G(k), t) - H(k) 

with homogeneo11.1 function1 G(k) and H(k) which are qua1i-conca'IJe and qua1i-con'Ue~, 
re1pecti'Uely. Then there e~ilt1 a real-'Ualued 1calar function 6(t) and a 'IJector of po1iti'Ue 
conltant1 s• 1uch that k(t) = 6(t)(s•', 1)' i1 a 1olution to (3) ands• i1 a 1a.ddle-point of 
(4). 

Our theorem says that if there exists a solution to ( 4) such that all capital stocks and, 
therefore, all investment flows change proportionately over time, then the corresponding 
capital stock and investment ratios s• will serve as a turnpike for economic growth. This 
turnpike prol>erty of s• is independent of the levels of input and output variables other 
than k and k. Consider, e.g., di:ff erent types of labor inputs and consumption outputs. 
Such variables may appear as exogeneous functions of time which enter (5) via t. In other 
words, we do not need to care about the preference orderings from which these functions 
are generated. The the<:>rem thus still applies if we wish to maximize, e.g., a Ramsey-type 
utility functional rather than terminal stocks. The turnpike property of s• does also not 
depend on autonomous types of technical progress. Furthermore, our theorem does not 
require T( ·) to exhibit constant returns to scale. In passing, note that we may assume G( ·) 
and H( ·) homogeneous of degree one without loss of generality. 

The first part of the next section contains a brief discussion of some important ex-
istence and uniqueness related questions. Then we shall present in a subsequent second 
part a formal proof of the saddle-point property of s•. We will not, however, address the 
assumed existence of aggregator functions G(·) and H(·). The interested reader is referred 
to C. Blackorby and W. Schworm [2] for a comprehensive study of the existence of input 
and output aggregates in aggregate production functions and for further references. 
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IV. Proof of the Theorem 
Part 1. Existence and Uniqueness 

The own-rates of interest equations of optimum growth theory provide the key to 
proving the existence and uniqueness of a. stationary solution s• to ( 4 ). These equations 
link to ea.ch other the own-rates of interest -T'/r.JTii of different capital stocks le; in the 
process of efficient economic growth. We attach a quick proof for the reader's convenience: 

Lemma 1: If k(t) i1 a 1olution to (3) th.en 

(6) Ti:, = Ti: fl + .!!.. ln [ Tt] , for all i :/: n. 
T1, Tifl dt T1fl 

Proof: Consider equations (3) which are.equivalent to .(4). From the former follows 
with regard to each arbitrary variable le; that ·l/ A = (Ti, - Ti, )/Ti,. Hence, 

(7) 

Finally, straightforward differentiation yields 

(8) .f!. ln [Ti' ] = it - it , for all i :!= n . 
dt T1fl T1, T1fl 

Adding it /Tift to both sides of (7) and using (8) will give (6). This proves Lemma 1. 
Q.E.D. 

Now suppose that all components of k change proportionately, i.e., suppose that 
k = 8(t)(s', 1)' and k = B(t)(s', 1)' with ii constant. ~hermore, reca.11 that T(·) has 
been assumed separable with respect to k on one hand and k on the other hand according 
to (5). Therefore, since H(·) is homogeneous by assumption, the ratios Tii/Ti" will depend 
solely on i and will thus stay constant a.long the ray k = B( t) (s', 1 )' . As a result, the 
second term on the right-hand side of (6) will drop to zero and(~) can be rearranged to 

(9) 

By the same line of reasoning, we conclude that the ratios T.1:, /Tin on the left-hand side of 
(9) will also only depend on 8. Furthermore, because of the regularity conditions imposed 
upon Tk, these ratios can assume any non-negative value. There will thus exist a strictly 
positive solutions• to (9). Furthermore, because of the quasi-concavity of G(·) a.nd quasi-
convexity of H( · ), this solution will be unique. Q.E.D. 

The following shall elucidate the significance of the given functional form (5) of T(·) 
for the a.hove results. Consider, e.g., the case of a. non-separable transformation frontier 
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T(·) = J( G(k, k), t) with homogeneous G(·). There is no loss in generality if we assume 
G(-) homogeneous of degree one. Using k(t) = 8(t)(i', 1)'. and k(t) = B(t)(s', 1)' will 
then give G(·) = 8(t) G((s', 1)', w(t)(s', 1)') with w(t) := 8(t)/9(t). Hence, both sides of 
(9) will depend on w(t) and will therefore, in general, change as t changes. No stationary 
solution s• may then exist. 

The economic content of (9) is that the marginal rates of substitution between any 
two capital stocks coincide with the marginal transformation rates which prevail between 
the corresponding pair of investments. In addition, since T,, /Ti. is constant for all i :/: n 
along k(t) = B(t) (s•', 1)', we conclude from (6) that the own .. rates of interest are the 
same for all components of lt( t ). 

Part 2. Stability 

We will now prove that s• is a saddle-point of the variational dynamical system (4). 
Our proof will be a proof of the local saddle .. point property of s• to begin with. Later on 
in Section V, we will also present some global results which are available in special cases 
of ( 5). First of all, however, we shall briefly comment on how we will seek to arrive at the 
desired conclusion. 

One might as a first try of a proof of the local saddle-point property of s• expand 
equations ( 4) into a linear Taylor series approximation a.round s• and then check the roots 
of the associated characteristic polynomial. The problem with this approach is that the 
resulting linear equations will, in most cases of ( 5 ), possess time-dependent coefficients 
which makes our stability analysis rather intricate.1 We will therefore pursue a different 
strategy which involves a detour. Our proof resorts to the fact that associated withs• is 
a unique set of stationary ratios TZ./Ti and 'I!./T; according to (9). Now let Ui := 

, ft ... ' "'" 

T1:JT1" =: ai(s) f~r all ~ :/: n. Furthermore, let kn-1 := (k1, ... , kn-1)' such that 
v; := Tj,./Ti:," =: bi(kn-1 /'lcn) for all i :/: n. Also define u.• := a(s•) and v• := b(s•). 
It is sufficient then for a. proof of the local saddle-point property of s• to prove the local 
saddle .. point property of ( u.•, v•) instead. As we proceed, we will show how this can be 
accomplished. 

We start with the algebra of the dynamics of u and v. First of all, recall that if lt( t) 
is a solution to (3) and, therefore, s(t) is a solution to ( 4) then (6) will hold. Thus, since 
d {ln(·]}/dt = [·]-1d(·]/dt, rearranging terms and substituting u; and v; for T1)T1" and 
Ti: )Ti:" will give 

(10) ii;= /(t)(u; -v;), for all i :f: n, 

1 It is sometimes possible to transform the linearized model into an autonomous system. Two such examples 
are given in R. Wolff [7,8). However, R. Wolff (8] assumes that the own-rates of interest. of the capital stocks are 
approximately equal to w(t) which is valid only in the neighborhood of a certain point along the ray of efficient 
proportionate capital stock expansion. 
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with /(t) := Ti" (k(t), k(t), t) / T1" (k(t), k(t), t). Furthermore, we conclude from 
a;(s) and s; := k;/kn that 

n-1 n-1 · · 
Ui = L 8a;(s) a;= L 8a;(s) le; kn~ k; kn 

. 8s1· . 
1 

8a1• kn 
1=1 1= 

(11) 

n 1 • - 8a·(s) le· = Wn ( t) 2: ;
8

. ( ~ - s;) , for all i :F n , 
j:l 1 kn 

U. -. -

where wn(t) := kn(t)/k,. (t). Now observe that G(·) and F(·) a.re by assumption quasi-
concave and quasi-convex, respectively. Hence, the Jacobian determinants of a(·) and b( ·) 
will be globally non-zero. Therefore, by the implicit function theorem, there will always 
exist inverse functions s = a-1(u) =: i(u) and k,,_ 1/kn = b-1(v) =: b(v). We thus 
find that 

(12) U; = w,.(t) ~":,(~)I.. (b;(v)- a;(u)), for all i :F n. 
j:l 1 a(u) 

Equations (10) along with (12) make a. system of 2(n-1) first-order differential equations 
with respect to yet unknown functions u(t) and v(t). A stationary solution to (10) and 
( 12) is a solution (ii, v) = ( q, q) with i( q) = b( q) . This latter condition is equivalent 
to (9), so we can be sure that q will exist and will also be unique. For the same reason, 
q = u• = v•. 

The next step is to expand (10) and (12) into a Taylor series around u• and v•. 
Therefore, recall that u = v = o and b(v) = i(u) as well as wn(t) = w(t) along 
(u•, v•). Also observe that the product of the Jacobian matrices of a(s) and i(u) will 
come out as the identity matrix, since i(u) is the inverse of a(s). We will thus end up 
with the following linear dynamical system if we neglect all second-order and higher-order 
terms: 

(13) y = f ( t) ( x - y) , i: = w( t) (AB y - x) , 

where x := u-u• and y := v-v• while A and Bare symmetric (n-1, n-1)-matrices 
with elements 

(14) 8a;(s) I a;;= , 
8s; i(u) 

b .. _ 8b;(v) 
' 1 - 8v· ' 1 

taken at (u•, v•). Note that associated with the stationary solution (u•, v•) to (10) and 
(12) is a stationary solution (:i., y•) = ( o, o) to (13). 

Since in (13) both f (t) and w(t) may in cases be rather complicated functions of the 
time variable t we can only look for qualitative results. As it turns out, such results ca.n 
already be obtained from the time-free dynamical system 

(15) y = y - x, x = AB y - x, 
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to which (x*,y*) = (o,o) is also a stationary solution. Our interest in (15) is due to 

Lemma 2: If (x*, y•) = ( o, o) i1 a 1addle-point of the time-free 1ystem ( 15 ), then 
it i1 a.lso a. 1a.ddle-point of ( 13 ). 

Proof: Consider the families in ( x, y )-space of phase trajectories implicitly defined 
by {13) and (15), respectively. Observe that /(t) < 0 and w(t) > 0. Hence, the set 
S = { ( x, y) I :i = o or y = o} is the same for both systems. It also follows with regard to 
all other points ( x, y) not in S that the signs of y and x do not change if we switch from 
(13) to (15). The topological structure of the phase trajectories of (13) is thus preserved. 
Q.E.D. 

Associated with {15) is the characteristic polynomial 

(16) IAB-(1-r()Il=O. 

We thus have 

Lemma 3: If 'fJ is a root to ( 16) then -rJ ia also " root to ( 16 ). Both 11 and -11 come 
aa non-zero real n'll.mbers. 

Proof: The first result is immediate. The second requires further thought. To 
begin with, note that A is a negative definite matrix while both B and its inverse B are 
positive definite matrices as we have assumed G( ·) and H( ·) quasi-concave and quasi-convex 
functions, respectively. By a standard theorem of linear algebra there exists a regular 
matrix R such that B = RR' . Another theorem says that for any regular ( n - 1, n - 1 )-
matrix C the eigenvalues of AB and c-1 ABC a.re the same (see any text book on linear 
algebra for a proof of these theorems). Now choose C = R'-1 . Then 

{17) c-1 ABC = R' ABR'-1 

= R' ARR'R'- 1 

= R'AR. 

Next consider an arbitrary vector c E Rn-l with at least one component different from 
zero. Let r := Re. Note that r :/: o as R is regular. Hence, since A is negative definite, 

(18) c'R'ARc = r'Ar < 0. 

We thus conclude that R' AR = c-1 AB c is also a negative definite matrix so its 
eigenvalues will be real-valued and negative. As a. result, a.11 eigenvalues of AB are real-
valued and negative, too. Now note that if µ is an eigenvalue of AB then 1- 112 = µ < 0 . 
Therefore, both 'fJ and -rJ are non-zero reals. This completes the proof of our second result. 
Q.E.D. 

We have so far shown that the roots to {16) are both real and non-zero and appear 
in opposite-signed pairs of equal absolute value. The origin ( o, o) is thus a symmetric 
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saddle-point of (15) and hence of (13) because of Lemma 2. From this we conclude that 
(u•, v•) constitutes a local saddle-point of (10) and (12). Furthermore, since there exists 
a one-to-one correspondence between (u•, v•) ands•, it follows thats• is a local saddle-
point of ( 4). Our proof of the local turnpike property of s• is thereby finished. Q.E.D. 

V. Conclusions 

We will now briefly present in our final section two global turnpike results which relate 
to specia.1 cases of (5). To begin with, take ask a vector of two capital stocks, i.e., let 
n = 2 in which case there is only one capital stock ratio lc1 /k2 and only one ratio of 
investment outputs k1 / k2 • We may therefore suppress all subscripts attached to variables 
s, u and"· Equations {10) and (12) can then be written concisely as 

{19) iJ = f(t)(u- t1), " = '°2( t > ~< • > I (b(") _ a( u)) , 
3 a(u) 

with scalar functions a(8), a(u) and b(t1) which are decreasing in sand u and increasing 
in"' respectively. Hence, da(s)/ds < 0. Recall likewise that f(t) < 0. Now suppose that 
w2 (t) > 0 for all t E [t0 , t 1]. Then the global saddle-point property of (n•, fi*) and thus 
the turnpike-property of i* will be ensured. We leave it to the reader to provide a proof of 
this result, e.g. by mea.ns of a graphical analysis of the phase trajectories in ( u, 11 )-space. 

Next let n > 2 and assume that both G(·) and H(·) in (5) are ACMS-type functions. 
This latter assumption implies that the marginal rate of substitution between any two 
capital st~cks le; ~d lcn and the marginal transformation rate between any t~o ~vestment 
outputs le; and lcn will depend solely on the respective ratios ki / lcn and k; /kn . As a 
consequence, all oir-diagonal elements of the Jacobian matrices of a(s), i.(u) and b(v) 
will identically drop to zero and equations (10) and (12) disintegrate into n -1 separate 
systems of the form (19). The above global turnpike result applies accordingly. 
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