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The unidimensional unfolding model proposed by Coombs (1964) is a tool for scaling 
preference data. Here we consider the special case where the sets of subjects and objects are 
identical. We get an unidimensional solution of our problem only if the data satisfy a well-
defined structure. Therefore we propose a statistical error model including an algorithm 
which allows to construct an unidimensional solution fee data with small dift"erences from 
this well-d~fined structure, too. A new coefficient li:d,n ( n is the number of subjects 
and objects, respectively ) derived from well-known distance measures on permutations 
(Kendall's r, Spearman's p and Spearman's footrule /) is used to describe this diff'erence. 
The exact distribution of this new coefficient is given for small n ( up to 9) as well as 
some asymptotical results ( n - ·:x:> ). Based on these distributions we are able to decide 
whether we use our new algorithm for a given dataset or not. We demonstrate our new 
approach by a well-known example of Coombs (1964). 

Key words: unidimensional unfolding, preference data, permutations Kendall's T, Spear-
man's p and footrule, dependent variables 
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1 Introduction 
In this paper we consider a special case of the unidimensional unfolding 
model which has been proposed by Coombs in the early fifties, cf. Coombs 
( 1964 ). In this special case the set of objects is identical to the set of subjects 
and Coombs has called it nonmetric multidimensional psychological scaling. 
\Ve can describe our considered unidimensional unfolding problem in the 
following formalistic way: 

Consider the situation where a set of n subjects 0 1 , ... , On is given. Each 
of these subjects ranks the remaining k - 1 subjects in decreasing order of 
preference. Each subject produces a rank order 1ri = ( 7r;( 1 ), ... , 1ri( n) ), where 
7ri(j) is the rank of subject j in the judgement of subject i. \Vithout loss of 
generality we assume 7r;( i) = 1. 

In the area of the unfolding model we usually work with I-scales (individual 
scales). The I-scale Ii of O; is an individual preference ordering of the n 
objects with respect to itself. O; is at the top of the I-scale!;. The following 
formalistic relation combines these both approaches: If rr;(j) = l the object 
Oi has the I-th position on the I-scale h 
The aim of unidimensional unfolding is to construct an unidimensional, met-
ric scale ( J-scale, Joint-scale) where the rank order of the absolute distances 
of one object to every other corresponds to I; (i=l, .. ,n). \Ve want to demon-
strate the unidimensional unfolding problem by an example (cf. Coombs 
( 1964' p.454-456)): 

Example 1: 
457 college students of n=6 distinct religions were asked to make out an 
I-scale of the five other religions with respect to their own one. The mean 
I-scale of all members of each group yields the I-scale of a religion. These six 
I-scales are given below. 
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Table 1: Data of Coombs ( 1964) 

Religion Number Symbol I-Scale 

Catholic 120 A ADC DEF 
Episcopalian 38 B BACDEF 
Lutheran 57 c CDEBFA 
Presbyterian 100 D DEFCBA 
Methodist 116 E EDFCBA 
Baptist 26 F FEDCBA 

An example of a J-scale is given below. For all six religions the unfolding 
problem is solved in one dimension. The numerical representation of this 
J-scale is not unique, but the order of the objects on this metric scale is 
it. This J-scale yields e.g. for Lutheran ( C) the following rank order which 
conforms with le: C D E B F A . 

A 
0.0 

Fig.I: (A) J-Scale to the Data of Tab.I 

B C D E 
2.3 9.1 1:3.6 14.7 

ID-Cl= 4.5 
IE- Cl= 5.6 
IB-CI = 6.8 
IF-Cl= 7.9 
IA- Cl= 9.1 

F 
17.0 

Coombs ( 1964) has interpreted this J-sca.le as a degree of prescribed rituals. 
Elementary restrictions are given by the unidimensional unfolding problem: 

• All I-scales have to end up with one of two objects. 

• The I-scale of one of these two endobjects has to be exact reverse of 
that for the other object. 
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Each I-scale has only an ordinal structure. In our further analysis we do 
not assume that the I-scales are derived from an underlying quantitative 
scale. Nevertheless we want to regard a distance in an usual conception 
[d(Oi,Oi)=O, d(Oi,Oi)=d(Oi,Oi) and d(Oi,Oi ~ d(Oi,Ok) + d(Ok,Oi)]. In 
the example above the distance between A a.nd B (d(A,B)) on the A-I-scale 
is not greater than the distance between A and C ( d( A,C) ). \Ve use the 
qualitative nature of the I-scales to construct a qna.lita.tive J-scale, i.e. an 
order of the given subjects from the left to the right, or vice versa. 

Then we can derive from this qualitative .}-scale a. quantitative one using 

• the triangular analysis which yields a (partial) order of all pairwise 
distances and 

• the Goode-Phillips- or the Chernikowa-algorithm to construct the de-
sired metric scale. By means of one of these algorithms we solve a 
system of homogeneous linear inequalities which represent the (par-
tial) order above. 

For more details see e.g. Coombs (1964), Phillips (1971), Lehner & Noma 
( 1980) or Hartung & El pelt ( 1984 ). A discussion about the uniqueness of the 
metric representation can be found in these papers, too. 

In this paper we consider the problem to find a qualitative J-scale which 
represents our given I-scales. Therefore we 

• introduce a statistical model for this unfolding problem, 

• propose an algorithm to find the 'best' qualitative J-scale, 

• introduce three new coefficients which measure the deviation of the 
data from the well-defined unidimensional model structure, 

• give the exact distribution of these coefficients for small n (up to 9) as 
well as some asymptot 1cal results ( n -+ oo). 
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2 A Statistical Error Model and Two Error 
Definitions 

vVe understand the unfolding model as a. deterministic one and so we do not 
assume that the I-scales are derived from an underlying quantitative scale. 
Therefore it is necessary to build an appropriate formalistic model. \Ve can 
adapt many suggestions from the theory of the Linear Model but we have to 
modify these suggestions with regard to our special problem. 

In the following discussion we assume that n I-scales a.re given. These n 
I-scales yield a datamatrix I. Starting from the datamatrix I we want to 
construct a J-scale. The use of the triangular analysis together with one 
of the algorithms (Goode-Phillips or Chernikowa.) mentioned a.hove is only 
possible if the given data are errorless. Therefore it is necessary to define (at 
least) two kinds of errors which may occur. 

Def.I: 
An I-scale Ii of Oi is incompatible with the (unknown) J-scale iff it is not 
compatible in the c:;ense of the following definition. An I-scale Ii of Oi is 
compatible with the (unknown) J-scale iff the order of the objects on the 
J-scale between oi and each of the endobjects is identical with the order of 
these objects on /;. (see example 2). 
Def.2: 
An intransitive triple is given iff from (at lf'ast) three I-scales of the objects 
A, B and C the following inequality can be derived: 

d(A, B) ~ d(B, C) ~ d(A. C) ~ d(A, B) 

(see example 3). 

These two kinds of errors are illustrated in the following examples. 

Example 2: 
Given the following four I-scales: 

A B C D 
B D C ~ 
C D B A 
D C B A 
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It is obvious that the unknown J-scale is ABCD or DCDA because the A-
I-scale is the reverse one of the D-1-scale and the two other I-scales end up 
with the object A. But f B is not compatible with these .}-scales because on 
IB D is followed by C. 

Example 3: 
An intransitive tripel is given by 

A B C D 
B C D A 
C B A D 
D C B A 

By means of symmetry the follwing inequalities can be derived from these 
I-scales: 

but 

IA: d(A, B) < d(A, C) 
le: d(A, C) < d(C, D) 
ID: d(C, D) < d(B, D) 

Ia : d(B, D) ~ d(A, B). 

All I-scales from example :3 are compatible to ABCD and the datamatrix 
from example 2 contains no intransitive tripel. It is necessary to have only 
compatible I-scales to get an unidimensional J-scale. In the case of at least 
one incompatible I-scale one has to extent the unidimensional J-scale to a 
multidimensional one. Further it is important to have no intransitive triple 

· to get a quantitative unidimensional J-scale. The sole existence of an intran-
sitive triple (where all I-scales compatible) does not prevent the existence of 
a qualitative unidimensional .J-sca.le. So we can derive Lemma 1 from Def.1 
and 2 (without proof). 

Lemma 1: 
a. Vi= 1, ... , n: #(compatible I-scales)= (7::) 
b. 3 altogether 2n-t compatible I-scales. 
c. 3 altogether ~! possible J-scales for n objects. 
To solve the unidimensional unfolding problem by means of triangular analy-
sis together with the Goode-Phillips- or Chernikowa-algorithm it is necessary 



that no intransitive triple and no incompatible I-scale exist, but we want to 
scale (slighty) non-errorless data, too. TherP.fore we allow that some subjects 
make a small mistake at the construction of their I-scales. If the 'sum of such 
mistakes' for the whole set of subjects is not too big we suppose that the true 
J-scale is more likely an unidimensional than a multidimensional one. Now 
our problem is 

• to find the 'best' J-scale and 

• to determine whether the deviations from an unidimensional sea.le are 
too great. 

\Vithout loss of generality we can describe the objects on the J-scale by the 
order 1, ... ,N. So we propose the following st atistica.l error model. 

Statistical error model:· 

i = l, · · · ,n 

with 
ii the true I-scale (derived from the true. but unknown J-scale), 
Ii the observed I-scale, 
1ri permutation which transmits ii into /;, 
P(li =ii)= (n - 1)-1 • 

This model is very similar to the model by van Blokland-Vogelesand (1985) 
but she has studied the case where the set of subjects and the set of objects 
are non-identical. Therefore she has no ptoblem with a dependc1ce-structure 
between the different I-scales. vVe consider this dependence-structure later 
in detail. 

The best (qualitative) J-scale is defined as that J-scale for which the observed 
I-scales ii have minimal dista11ce to the true I-scales /;( i = 1, ... , n ). For each 
J-scale and for each subject O; we have a set v; = {v;,1, ... ,vuJ,li = (7:;), 
of compatible I-scales and we choose that v;,k which solves 

d(h Vi,k) = m~n . 

d should be an appropriate distance measure on these I-scales or on the per-
mutations of the numbers 1, ... , n, respectively. There exist several proposals 
to measure these distances. We consider the following three: 
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• Kendall's T, 

• Spearman's p, 

• Spearman 's foot rule f. 

It is possible to use or to consider also other distance measures like the Ham-
ming, Ulam or Cayley distance. A brief survey ahout these distance measures 
and their properties can be found in Chritrhlow (1985) or Diaconis(1988). If 
we understand a.n I-sea.le as a special presentation of a permutation of the 
numbers 1, ... , n it is much easier to analyze our minimizing problem using 
the permutation notation mentioned in the introduction. If we consider two 
I-scales and denote them by 7r and a we can write the three differC'nt distance 
measures as 

T - # {sign { ri ( r) - ;r ( s)} -:f. sign {a ( r) - a ( s )} } ( r, s = l, ... , n) 
- minimal numbers of transpositions to transform rr into u , 

n 

p = L: (ir(r) - a-(,.))2, 
r=l 

n 

f - L 17r(r) - a(r)j 
r=l 

These measures are not normalized. Usually they are used in their normalized 
versions which we will denote by f, p and /. The normalization of T is done 
using the transformation 

because 0 is the minimal value of T and (~) is the maximal value and so r 
lies in the interval [-1, 1]. For p and j we use a.naloguous transformations 
regarding that p has a range from 0 to n3 ;n and f a range from 0 to n; for 
even n. and to n

2
;

1 for odd n. 
Lemma2: 
The distances measures r, f and p' .- JP are right-invariant metrics, i.e. 
they fulfill: 

d( 7r' (J') > d( 7r' tr) = 0, 
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d(ri,a) - d(a,ri), 
d(tr,a) < d(7r,K) + d(n.,a), 
d( ri, a) - d( ri o n.. a o K.) • 

3 The 'best' J-Scale 
To find the 'best' (qualitative) J-scale we have to soke the following steps: 

• to find the I-scales which are compatible (to the J-scale) and which have 
minimal distances in the sum to the observed I-scales for all i = 1, .. , n. 

• to ensure that the data matrix I contains no .intransitive triple. 

For the first step we have to solve the minimizing problem for ea.ch i men-
tioned above 

d(Ii, Vi,k) = m~n , 

where Vi = { Vi,1 , ••• , v;,iJ, l; = (7::), is the set of compatible I-scales. Then 
we have to calculate a coefficient 

n 
"'d,n = 'L d( h v;.d . 

i=l 

The 'best' (qualitative) J-scale is that J-scale where K.d,n is minimal. At last 
we have to proof that the data.matrix I contains no_ intransitive triple. If (at 
least) one intransitive triple exists exchange one of the involved I-scales with 
the second best compatible one and repeat the second step and calculate "'d,n 

once more. 

The selection of a compatible I-sea.le in the first step is not always unique. 
In these cases it is necessary to pursue all solutions using these different 
compatible I-scales. Also it is possible to exchange the two steps but some 
empirical studies have shown that it is better to execute the first step before 
the second one. If an I-scale is compatible it rarely belongs to an intransitive· 
triple. We illustrate this comment by an example. 

Example 4: 
Given the following observed I-scale I B and the corresponding J-scale (de-
termined by the remaining three I-scales): 
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J-Scale A B 
I-Scale B D 

C D 
A C 

In the case of d = T the best compatible I-scales I B - each of them with 
two transpositions - are B A C D and B C D A . 

Frequency Distributions 

\Ve have introduced the statistical model to measure and to judge the de-
viation from an unidimensional scale. To rate the size of this deviation we 
need the exact distribution of ~d.n· Therefore we have to calculate the exact 
frequency distribution of 

Tn,i(/i)° .- min{T(/;,Vi,1).···.T(/;.i·r.d} 
Pn,i(/i) .- min{p(Ii, Vi.d· · ", p(/i, Vr,d} 
fn,i(/i) .- min{/( h t'i.d· · · · ~ f(/i, Vr,l,)} 

which is the frequency distribution corresponding to our minimizing problem. 
Analogously we can define dn,i(Ji ), which is the normalized version of dn,i(/i) 
where d is T, p or f. Here the minimum function converts to a maximum 
function: 

Obviously exists for 0 1 and On only one compatible I-scale. Here is the 
frequency distribution identical to the usual frequency distribution of T, p or 
f. For more details see Kendall (19i0). \Ve have calculated these frequency 
distributions for all considered coefficients in the range of n = 3, ... , 9 and 

· i = 1, ... , (nil]. Because of symmetry the distributions of dn,(~]+1' • · ·, dn,n 
can be ignored. In Fig.2-5 graphs of the frequency distributions of cln,i for 
distinct combinations of n and i are shown. We use the symbols t, r and f 
to mark the points of the different line graphs. Detailed tables for Tn,i can 
be found in Ostermann(1987,1988). 
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.1 

.9 
-1.18 -.'9 -.28 .29 .6& 1.B9 

Fig.2: Fre4ue1H.:y IJi:-;trilJutiuu:"I uf T:,.1. p- a11d /s.1 
9.59 

9.49 

9.39 

9.29 

9.19 

9.88 
·1.11 ·9.68 ·8.21 8.29 1.99 
Fig.:3: Frequency Distributions of fs.3, Ps.:1 and /s.3 
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9.15 

9.95 

9.99 
-1.99 

Fi!;.-l: Frequency Distributions of r!l.I· PH.I a11d /1.J 
9.39 

9.29 

9.19 

9.98 
-1.98 ·9.68 ·9.28 

Fig.5; Frequency Distributions of fg,s~ pg,:, and J~.-5 
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Comment 
The following remarks to the fig111T•s aho\·0 S<'<'m n<'cf'ssary: 

• We use the graphs of cl instf'ad of d h<'cnnse all graphs t h<'n lie in the 
interYal [-1, l]. 

• All graphs are a little bit biasf'd h<'ccrnse we ha\·e not rf'scaled using 
an appropriate scale parameter. For the detNmination of such scale 
parameters see Kendall ( 1970) or Diaronis (1988). 

• The graphs of f tend mor<\ to a 11or111a I rnn·e t ha 11 t IH' graphs of ii~ but 
both are symmPt ric. 

• The graphs of J are non-symmetric and at -I they do not tend to 
zero. The coefficient .f has no well-d<\finecl prop<'rt ies. These defects 
are already descrihf'd in D<'uchl<'r ( l fl I I). 

• \Ve get the impression that for fixed i ;::: 2 and increasing n the graphs 
equal more and more the graph of i = l. We han~ seen this phenomenon 
when preparing more of such graphs on our computer screen. In the 
discussion about asymptot ica l results we consolidate this impression. 

In a second step we now ha\·c to calculate the frequency distribution of 
n 

l\d,n = 'L,d(li,l'i.k) · 
i=l 

Let H(Kd,n) denote th~ absolute frequency distribution of l\d,n· Kd,n(j) means 
. that Kd,n has the value j. dn,i is defined analogously. It holds: 

with 

Obviously 

n 

H(l\d,n(j)) = L II ll(dn.i(j;)) 

n 

i = L,ii, 
i=l 

min Kd,n = 0 and 

i=l 

li = 0. · · · ~ max(dn.d . 

12 
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max Kd,n = L max( dn,i) 
i=l 



n 

is satisfied. In the tables 2-4 selected quantils for different n fo the case of 
our three considered distance measures an"\ shown. \Ve restrict these tables 
to the 5%, 1 % and 0.1 % quantils. 

Table 2: Selected Quantils of K.r,n 

n a= 0.0.5 a= 0.01 a= 0.001 

a 0 0 0 
4 1 0 0 
5 .5 -l 3 
6 l.j 12 9 
7 :30 2:) 21 
8 .j2 46 40 
g 82 70 67 

Table 3: Selected Quantils of Kp,n 

n a = 0.05 a = 0.01 a = 0.001 

3 0 0 0 
4 2 0 0 
.; 12 8 4 
6 46 30 20 
7 92 7--l .56 
8 * :,: * 
9 * * * 
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Table 4: Selected Quan ti ls of "'J.n 

n Q = 0.05 (\' = 0.01 Q = 0.001 

3 0 0 0 
4 2 0 0 
5 8 6 2 
6 22 18 14 
.... 42 :JS 32 ' 8 70 6-l .)6 
9 :,..: * 

4 Examples 
By means of the algorithm mentioned aboYe is it always possible to solve 
the unidimensional unfolding problem. But does it makes sense for all data 
situations ? vVe want to discuss this question by a first example. 
Example 
Given four objects and their I-scales which yield the datamatrix I: 

A B C D 
B D A C 
C A D B 
D C B A 

Applying our algorithm in the case of d = r we get the results of Tab.5. 

14 
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Tab .. 5: Number of used transpositions of A, B, C ancl D 
for all possible .J-scales 

J-scale T.1,A T-t,B T4,(' T-t,D If T,4 

ABCD 0 2 2 0 4 
ABDC 1 0 2 0 3 
ACBD 1 1 1 1 4 
ACDB 2 1 0 0 3 
ADBC 2 0 :J 1 6 
ADCB :J 2 1 0 6 
BACD 0 2 0 1 3 
BADC 1 1 1 1 4 
BCAD 1 ;3 0 2 6 
BDAC 2 0 0 2 4 
CABD 0 0 1 2 3 
CBAD 0 1 2 3 6 

We need at least three transpositions to get a datamatrix where all I-scales 
are compatible to one .J-scale and where we have no intransitive tripel. How 
good does our new datamatrix represent our empirical matrix I ? If we com-
pare our result Kr,4 = 3 to the corresponding value of table 2 we see that 
K'T,4 = 3 is greater than the .5%-quantil which is 1. In the case of 4 objects 
using T as distance measure it is only acceptable to use unidimensional un-
folding if we n~ed one transposition at most. For the data of this example a 
multidimensional approc.tch is more appropriate. 

As a second example for demonstrating our new algorithm we use the data 
of Coombs (1964, p.456-462). 
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Example 
Given the following six I-scales which yield the data matrix /0 : 

,4 c D B F E 
B D E A F c 
c A F D B E 
D B F E A c 
E D B F A c 
F D c E B A 

This matrix / 0 violates the two elementar restrictions: 

• IF does not end up with C or E. 

• The I-scale IE is not the reYerse one of le. 

Using our new algorithm we get the results of the tables 6a. and 6b for the 
potential J-sca.les CAFBDE and C:\FDBE. respecti\'cly. 

Tab.6a: Results for the data of Coombs 
J-scale: CAFDI3E 

Obsen·ed Selected~ Value of 
I-scale compatible T6.i P6.i /6,i 

I-scale 

ACDBFE ACFDBE 2 8 4 
BDEAFC BDEFAC l 2 2 
CA FD BE CAFDBE 0 0 0 
DBFEAC DBFEAC 0 0 0 
EBDFAC EBDFAC 1 2 2 

{ FDACBE 4 14 6 
FDCEBA FDBEAC -1 14 6 

FD BA CE 4 16 8 

16 
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Tab.6b: Results for the data of Coombs 
.J-scale: CAFBDE 

Observed Selected, Value of 
I-scale compatible T(),i P6.i f6,i 

I-sea.le 

ACDI3FE ACFBDE :3 8 4 
BDEAFC BDEFAC 1 2 2 
CAFDBE CAFBDE 1 2 2 
DBFEAC DI3FEAC 0 0 0 
EBDFAC EDBFAC 0 0 0 
FDCEI3:\ FBDACE .j 20 8 

The selection of a compatible I-scale hat the .J-scale CA FD BE is not unique. 
Therefore we have to pursue three solutions. The nilues of Kd,6 are Kr,6 = 
8, Kp,6 = 26 or 28 and K 1.6 = 14 or 16 in t lw case of the .J-scale CA FD BE. 
In the case of CAFBDE they are "'r.6 = 10. "'p,6 = 32 and KJ,6 = 16. So \Ve 
decide for CAFDBE independent of our distance measure. The values of "'d.6 

correspond to a quantil lower than 0.01. 

Using the triangular analysis and the Goode-Phillips-algorithm we get the fol-
lowing three unidimensional solutions ( Fig.6) which correspond to our three 
different compatible I-scales IF. \Ve have to compare these three differ-
ent unidimensional solutions to a twodimensional solution of Coombs (1964, 
p.462) in Fig. 7. If we project the twodimensional solution onto its CE-line 
we get a unidimensional one which is Yery similar to our three unidimen-
sional ones. So it makes no difference which representation we use - an 
one- or a two-dimensional representa.tion of the given dataset. \Ve prefer the 
one-dimensional representation which has a simplier interpretation. 
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0.0 

c 
0.0 

c 
0.0 

Fig.6: Three U nidimensiona.l Solutions 

Solution with IF = FDACBE 

A F D B 
4.76 47.62 69.0.5 80.9.5 

Solution with IF = FDDEAC 
A F D B 

20.75 62.26 77.3.5 84.90 

Solution with IF= FDil:\CE 
A F D B 

11.86 :3.5.58 .)i.Gl . 72.86 

Fig. 7: Twodime1,sional Solution of Coombs 
(Copy of Coombs (1964)) 

A 
0 

c 
0 

B 
0 

D 
0 
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E 
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E 
100.0 

a 

E 
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E 
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5 Asymptotical Results 
In Tab. 7 we have listed the first central moments of the frequency distribu-
tions of dn,t (in dependence of n.). which can be found in Diaconis (1988). 

Tab.7: The First Two CPntral l\lom~nts 

d E( dn.1) l·,. ar( dn.d = <12( d n .d 

T 
(~) n(n-1)(2n+5) 

2 i2 

p n3 -11 n2 ~n- l Hn+ 1 }2 
-6- 36 

f n2 -1 (n+l)(2n2 +i) 
3 4,5 

For n -+ oo the result of the usual normalization 

d - E(d) 
<1( d) 

can be treated as an unit normal random variable. (Here a possible continuity 
correction is not considered.) Now we can formulate the following theorem. 

Theorem 1: 
For fixed i E { 1, ... , n} holds: 

li.m E( Tn,i) = 0 . 
n-mfty 

Proof: 

d=r Let i be fixed and Vi = { v;,1, ... , Vi,d be the set of compatible I-scales. 
Vk, l E {1, ... ,Ii} holds 
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and so (using the attributes of right-inrnriant metrics) 

Therefore 

because 0'2(r) E O(n3 ). 

d=p It is 0'2(p) E O(n5 ) and the maximal n·d11P of p between two compatibles 
I-scales is an element of 0(n 2 ). 

d=f It is u 2(f) E O(n3 ) and the maximal rnlue of J between two compati-
bles I-scales is an element of O(n). 

Using the same arguments we formulate Theorem 2. 

Theorem 2: 

a) 

b) 

lim Range( <in.i) = 2 for fixed i. 
n--x. 

lim F; = <I>( x) for fixed i and n-oc. n.1 

r· .. = n.1 

l 
f .. (~ n ( n - 1)) 2 

n,i 2 '2n + .5 

- Pn ,i · ( n - 1 ) t , 

- in.i. ( ~~ (n + 1~:n2+7) t 
The normalization of d~,i is derived from the results of Tab. 7 . So we treat 
the function d~,i as an unit normal random variable. 

Finally we transfer the results of the theorems 1 and 2 to the coefficient K.d,n· 

20 

.l 



Theorem :3: 
Let 

"d.n = !_ (i - 2~din ) ) ·.scale factor, n max ( n,1 

where the scale factor is the corresponding factor of theorem 2. Then it holds 

a.) 

lim E( n::i ; ) = 0 , 
n--:o . 

b) 

1 i m F,... = <I> ( .r) .· 
n--:io n,1 

6 Conclusion 

In this paper we have proposed a statistical error model including an al-
gorithm for solving the unidimensional unfolding problem for slighty non-
errorless data, too. By means of the exact distribution of a new coefficient 
it is possible to check whether it makes sense to use this algorithm because 
now the unidimensional unfolding problem can be solved for all data. These 
check shall prevent misuse of our new algorithr . .t. 

Some asymptotical results are given. They support that our model is em-
bedded in a solid theory because the asymptotic distribution of our new 
coefficient tends to a normal curve. In a.n f'Xample we have shown that now 
it is possible to scale data in one dimension where Coombs ( 1964) had to 
scale these data in two dimensions. 
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