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Abstract: 

Optimal intertemporal pollution control with irreversibilities is investigated under 

conditions of certainty and uncertainty. When the assimilative capacity is positive, 

irreversible pollution levels are shown to be optimal only if the social time preference is 

sufficiently high. The irreversible destruction of environmental resource characteristics is 

assumed to occur when the environmental quality drops below some threshold value. If the 

impact of destroying a characteristic is uncertain and there is the prospect of better 

information, this future information carries a non-negative quasi-option value as in the 

Arrow-Fisher-Henry type of nature conservation model - adapted to pollution control. 
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Optimal Pollution Control, Irreversibilities, 
and the Value of Future Information 

Rudiger Pethig 

1. Introduction 

Irreversible destruction of natural or cultural resources can take the form of species extinc-

. tion by (over)harvesting - which may be the result of optimizing (Smith 1977, Sinn 1982) 

or not 1 - or of natural resource deletion by projects of industrial development with the Hells 

Canyon case as an early prototypical example in the literature (Krutilla and Cicchetti 

1972). Most of the recent publications on irreversibilities (e.g. Clarke and Reed 1988; Smith 

1986; Miller and Lad 1984) focused on the conflict between land development and 

wilderness conservation. This issue is clearly similar to the problem at hand, but its frame-

work of investigation does not lend itself easily to the study of irreversibilities caused by 

gradually increasing accumulation of persistent pollutants in environmental resources. 

To provide such a framework, the first step is to build a simple model capturing in-

tertemporal environmental degradation by linking the emission of pollutants inversely to 

the quality of an environmental resource. The environment has a limited capacity of assi-

milating pollutants. As long as the flow of released pollutants exceeds that capacity, the 

environmental quality is reduced until eventually nature's assimilative services are com-

pletely exhausted. 

It is very important to be specific about what exactly is irreversible or irreversibly 

destroyed. For one thing, there is pollution irreversibility in the sense that the pollution 

1There is some literature on irreversibilities associated with (inefficient) over harvesting of 
(common) property resources, as e.g. the fishery. In the present paper we disregard these 
positive approaches. Here the focus is, instead, on problems of irreversibility in optimal 
resource control. · 
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itself is irreversible. This is always the case, when the environmental resource does not 

provide assimilative services (a.ny more). Moreover, even when the assimilative capacity is 

not (yet) exhausted, a characteristic of the environmental resource may be irreversibly lost 

(characteristic irreversibility) when environmental degradation exceeds a threshold level. 

For example, pollution causes irreversible modifications for the habitat of plants or animals 

or the destruction of "cultural characteristics" like the Akropolis in Athens. 

The present paper aims at addressing both types of irreversibilities. With the objec-

tive of p~oviding basic theoretical support for correct cost-benefit analyses various condi-

tions for the (non)optimality of irreversible decisions are investigated under certainty and 

uncertainty. In· the latter case special emphasis is placed on the likely situation that de-

cisions about irreversibilities have to be made today under uncertainty about its costs when 

- at the same time (i.e. today) - the decision maker faces the prospect of better informa-

tion at some future point in time. 

In section 2 the model is developed and used to investigate the policy implications of 

pollution irreversibility under certainty. It is shown, among other things, that ever increas-

ing and hence finally irreversible pollution is never optimal in the case of positive assimila-

tive capacity, unless the rate of social time preference is positive and sufficiently high. 

Whenever the assimilative capacity is positive though possibly small, multiple steady 

states may arise and some of these are unstable. 

After having obtained a comprehensive understanding of the conditions under which 

irreversible pollution is optimal, section 3 turns to the issue of when it is optimal, under 

conditions of certainty, to irreversibly destroy a resource characteristi,.. '1"1'o 1""" ,...r " ~0-

source characteristic is assumed to cause parametric changes and hence discontinuities in 

the production function, the welfare function and/or in natur~'s assimilative capacity. As a 

consequence, whether or not the preservation strategy is superior to the destructive strate-

gy cannot be determined by conventional marginal analysis. It is an important result (to be 

0 

used in the subsequent analysis of section 4) that if it is optimal at all to destroy the re- _o 

source characteristic, then it is optimal to do so as soon as the optimal trajectory reaches 
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the threshold value of environmental quality whose passing causes the destruction. 

Section 4 focuses on uncertainty about the (social) evaluation of the resource chaHr-

teristic (demand uncertainty). Taking expected welfare as the relevant objective, the intro-

duction of uncertainty does not change the results from section 3 conceptually. A marked 

difference emerges, however, when we follow Weisbrod (1964) in making the additional 

assumption that there is the prospect of better information on the social evaluation of the 

resource characteristics at some future point in time. Now the question arises as to whether 

the resource characteristic should be preserved, temporarily at least, as long as the new 

information becomes available. Is sequential decision making of this kind a more appro-

priate planning procedure than a once-and-for-all decision? Is there a bias pro or contra 

preservation when these two decision making strategies are compared? 

The literature on that issue deals with the concepts of "option value" and "quasi-op-

tion value" (Arrow and Fisher 1974; Henry 1974; see also footnote 4 below) in the context 

of (industrial) land development. The basic arguments of this literature are shown to be 

applicable for the problem under review in the present paper. The major result is that a 

non-negative quasi-option value exists implying that a decision maker is mistaken if he or 

she does not, in today's decision, account for the new information emerging in the future. 

The mistaken decision maker has an anti-preservation bias. The principal message is that 

"good" decisions about irreversibilities cannot be reached unless the best possible use of all 

available information is made which may imply sequential decision making when new infor-

mation is in the offing. Technically speaking, the mistaken decision maker applies a cer-

tainty equivalence policy of the open-loop variety, whereas the optimal policy is of a closed 

loop or feedback nature (Clarke and Reed 1988). 

In the final part of section 4 it is investigated how the quasi-option value depends on 

the length of the time period until the new information emerges. Confirming one's intui-

tion, the value of new future information for the present decision making problem turns out 

... to be the smaller the longer it takes to obtain the new information. Another extension of 

the model is to introduce uncertainty with respect to the future date of new information. It 



4 

turns out that this type of uncertainty tends to favor the preservation strategy in the sense 

that an anti-preservation bias results from accounting for that uncertainty simply by tak-

ing the expected time of the new information as if it were known with certainty. 

2. Pollution irreversibilities 

Consid~r an economy in which two outputs are produced: a consumption good (good 

Y with quantity y) representing the national product and a pollutant which is generated as 

an undesired joint product along with good Y. Conventional productive factors are labor (t) 

and capital (k), and the production of Y depends positively on the environmental quality 

which is measured by an index q. Labor can be used both for the production of good Y and 

for the reduction of pollutants through intra-industrial waste abatement. All these rela-

tionships are captured (Pethig 1979) by the production function Y: DY--+ IR+, 

y = Y( L,m,k,q). 
++++ 

(1) 

The convex set Dy:= {(k,i,m,q) e IR!xlR I q ~ qm, m ~ H(k,i,q)} is the domain of function 

Y and qm e IR++ denotes the quality of the unpolluted environment. As an externality, q 

creates a 'fundamental non-convexity' of the production set. But we proceed by assuming 

tacitly that on the relevant part of its domain, a subset of DY, the function Y is concave 

and twice differentiable. In (1) the variable 'm' denotes the amount of pollutants which is 

generated as a by-product of good Y and then discharged into the environment. Observe 

that in function Y the emission is treated as if it were an input even though it is clearly an 

undesired output. But the input interpretation is both appropriate and convenient, because 

in addition to being an output the emission constitutes the industry's demand for a produc-

tive factor, namely for the waste assimilation services of the environment. 

The supply of labor, i
0

, is assumed to be time invariant. The capital stock changes 



". 

5 

over time according to 

fc=y-c-,Bk with kt = k0 ~ 0 for t = 0, {3 '?:. 0, (2) 

where c is (aggregate) consumption of good Y and where {3 is the rate of capital deprecia-

tion. Environmental quality is an indicator of the ambient concentration of pollution, but 

inversely proportional to the stock of pollution. Its changes over time are 

q = Q(z) (3) 

where z is the industry's excess demand for nature's assimilative services. In the sequel, the 

function Q is specified by Qz = - 1 and Q(O) = O, but the more general notation in (3) is 

maintained when it is desirable to keep track of the proper dimensions of terms. The excess 

demand for assimilative services is 

z=m-M(q), (4) 

where the assimilation function M: (- oo,qm] --1 IR+ is assumed to have the following pro-

perties:2 There is qu ~ qm such that M(qm) = O and M(q) = 0 for all q ~ qu. Moreover, M 

is continuously differentiable on (- oo,qm], it is positively valued on (qu,qm), and there is 

an inflection point qf e ( qu,qm) such that MqqC q) > 0 for q E ( qu,qf) and Mqq( q) < 0 for q 

E ( qf,qm). The decision maker's objective is to maximise 

rm 8t Jo e- W( c,q)dt, (5) 

2conceptually, these assumptions are supported by evidence from the natural sciences 
(Fiedler 1989) even though they have been stylized here for convenience of exposition. 
Alternative plausible assumptions are, e.g. that M( qm) is positive or that M is strictly 
concave on lqu,qm] and hence not differentiable in point qu. While the consideration of 
these cases would certainly increase complexity, it would not change the qualitative results 
of the subsequent analysis. · 
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where 8 is a positive and constant rate of (social) time preference and where the strictly 

concave function W represents the decision maker's evaluation of the bundle ( c,q) for each 

point in time. 

An optimal pollution control program consists of time paths for the control variables 

c, m, and y and the state variables q and y maximising (5) subject to (1) - (4). Under the 

simplifying separability conditions 

Y mk = Y mq = Y kq = 0 and W cq = O (6) 

it is easy to derive from the Hamiltonian H = W( c,q) + AQ[m - M( q)] + 1r(Y(k,l0 ,m,q) -

c - ,Bk] 

the following necessary optimality conditions: 

'ff= WC> o, 

A= -WcYmQml = WcYm > 0, 

~ = 5-(Yk-{J) = - 5 [M:k-Mck). 
A w y Q w Q [ MC ] A = 8 + M Q + c q z + q z = - 8- MB - __1!! . 

q z WY WY MB m 8 c m c m m 

(7a) 

(7b) 

(7c) 

(7d) 

In (7d) MBm := WcYm is the marginal benefit from releasing pollutants (at time t) 

and MCm := - Qz(W c Y q + W q + W c Y mMq) > 0 is the instantaneous cost of emitting 

that same marginal unit of pollutants. More specifically, I W c Y q Qz I is the indirect margi-

nal damage of pollution that emerges because the emission of pollutants diminishes t :.e 

environmental quality. This quality reduction decreases the output of the consumption 

good whose marginal evaluation is positive. I W q Qz I is the direct damage of increased 

pollution which arises because consumers suffer under the reduction in environmental quali-

ty, and I W Y M Q I represents the cost of the change in nature's assimilative capacity c m q z 
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induced by emitting the last unit of waste. This cost factor is positive [negative], if Mq > 0 

(if Mq < O]. 
,.. 

Observe that in (7d) the sign of A is equal to the sign of the difference between margi-

nal benefit and cost of emission. If we consider emission at point in time t, the associated 

instantaneous cost is MCmt· But since emission in t causes a permanent reduction in q, we 

have MCmt' = MCmt for all t' > t. Hence the overall marginal cost of emission int is the 

present value of all future marginal costs: MCm/ 6. 

The second· equation in ( 7 c) has a similar interpretation. The marginal cost (in terms 

of the consumption good) of capital investment is MCk = 1. Its instantaneous marginal 

revenue is MRk = Y k - {3. Therefore, the overall marginal revenue from investment at 

point in time t is MRk/ 8, because investment in t generates the extra output Y kt - (i = 
Ykt - f3 for all t' > t. 

Suppose, the optimal program converges to a steady state characterised by k = q =A 

= 1f = 0. Owing to (7c) and (7d), such a state satisfies 

MRk MCm --= MCk and MB = --. 
fi m fi 

(7e) 

As is well-known, the first condition requires to expand capital formation to the point, 

where (overall) marginal revenue of investment equals its marginal cost. According to the 

second condition the environmental quality must be reduced until the (overall) marginal 

cost of pollution balances its marginal benefit. The optimal capital stock, ks, is only affect-

ed by the marginal productivity of capital which depends on k only in view of ( 6). There-

fore, one has c = y - ,Bks for :k = O and it is possible to use the function 

V(m,q) := W[Y(m,ks,q)-,Bks, q] (8) 

for the evaluation of steady states. This function clearly satisfies V m = W c Y m > 0, V q = 
2 2 

W c Y q + W q > 0, V mm = Y mW cc + W c Y mm < 0, V qq = Y q W cc + W qq < 0, and V mq 
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... 
= Wccym Yq < 0. For A= 0 equation (7d) yields (6-Mq)WcYm + WcYq or 

(9) 

Define, in addition, 

(10) 

1/J( q) := V q[M( q),q], (11) 

whose derivatives are given by 

(10') 

(11') 

The graph of function cp can be determined with the help of (10), (10') and the pro-

perties of function M. If there is g,0 and q0, 9.o < q0, such that 

(12) 

then cp(g,0) = cp(q0) = 0 and ~ q) < 0 if q E (g,0,q0). Moreover, as drawn in figure 1, 'Pq < 0 

for all q ~ 9.o- The curvature of cp is indeterminate on the intervals [g,0,qf] and [<l0,qm]. But 

suppose that the production externality is not too strong in the sense that there is qg > 

qh := arg max M(q) satisfying sgn (V mmMq + V mq) = sgn V mmMq for all q E [qg,qm]. 

Then cpq is positive on (qg,qm]. If M does not fulfill condition (12) then the graph of func-

tion cp is as indicated by the line ABLP 4 G in figure 1. 

, 
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- Figure 1: Steady states in optimal pollution control -

The main results are summarised in 

Proposition 1: {i) If there is a unique optimal program implying ever increasing pollution 

(no steady state), then M does not satisfy (12). In other words, ever increasing pollution is 

never opt~mal in the case of positive assimilative capacity unless the rate of social time pre-

ference is positive and sufficiently high. If {12} holds, then there is always an optimal steady 

state in which pollution is reversible. 

(ii) C~nsider a separable welfare function W satisfying cp( q,,j = '¢( q,,j for some qw < 

qu. Then there is u > 1 such that there is no optimal steady state with irreversible pollution, 
-

if 'l/J = <J'ljJ with <J ~ a. But in this case there exists an optimal steady state qs such that 

M/q) <8. 
-{iii} There are at least two steady states, if 'l/J = <J'l/J with <J <a and if {12) holds. One 

of these states is characterised by qs e (qu, !l~ and the other one by qs e (q0, qmj. A third 

steady state with irreversible pollution exists, unless cp( q) < '¢( q) for all q 5 qu. 
-

{iv) Suppose that 1/J = <J1/J with <J < u and there is q
8 

< qu such that cp(q) = 1/J(qJ. 

Then q
8 

is the more likely to be the unique steady state, the flatter is the assimilation func-

tion. A necessary condition for uniqueness is that ( 12) doesn't hold. 

Proposition 1i makes it clear that pollution irreversibility crucially depends on "high" 

social time preference as long as the objective function is of the utilitarian variety with 

aggregating discounted flow benefits. In view of eq. (7e) the marginal cost of waste emis-

sion becomes unbounded when the rate of time preference tends to zero implying that the 

levels of ambient pollution tolerated in the optimal steady state are the lower the smaller is 

the social rate of time preference. Conversely, capital formation is encouraged by diminish-
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ing social time preference because that increases the overall revenue to investment 

For supplementary information about the optimal program it is convenient to develop 
... 

a phase diagram. The locus of all tuples (m,q) satisfying A = 0 is implicitly given by (9). 

Its curvature depends heavily on the properties of M and W. Giving priority to concrete-

ness over completeness and generality, suppose that (12) doesn't hold, that the production 

externality is weak (hence I Y mq I is small) and that Mqq is small on [qu,qf)3. Then condi-

. tion (9) can be represented by a function F such that m = F(q) ~ 0 if and only if (m,q) 

satisfies (9), and it is true that F q( q) > 0 whenever F( q) > 0. Moreover, the condition 

V qm > ( 6 - Mq)V mm also guarantees that ). ~ 0 if and only if m ~ F( q). 

Differentiating (7a) and (7b) with respect to time yields 

... ... ... 6 - (Yk - /3) 
7r = w c or c = , 

C WC 
(13) 

(14) 

where wc := cWccfWc < 0 and 1/m := mYmm/Ym < 0. Suppose the initial capital stock 

k0 is so small that Y k{k
0

) < 6 + /3 holds which appears to be more plausible than the op-
... 

posite inequality. Then 7r < 0 or MRk/ 6 > MCk at t = 0, and it is optimal to continue 
... 

capital investment until 7r = 0 is reached in the steady state. The next step is to show that 
... ,. 

if it is optimal to approach a steady state monotonely with 7r < 0 and q < 0, then it must 
,. 

be also true that A > 0 until the steady state is reached (with a minor restriction on the 

upper bound of Mqq)· To see this, differentiate {7d) with respect to time. This yields 

3More precisely, the conditions to be required are Mqq < - V qq/V q and V qm > max 
[(Mqq v q + v qq)/( 6 - Mq), ( 6 - Mq)V mm] with 6 > Mq. "~ 
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qW qY 
with b := q q + qq + qMqq· From the equations (7c), (7d), and (13) one obtains 

W c ym ym 

.... [ w y ] .... 1Jmm = Y k - P - Mq + q + ..:Jl. and wc = 8 + fj - Y k' Substitute these terms in 
W c ym ym 

(15) and write after some rearrangement of terms 

(15a) 

A A A A 

Suppose now, 1r < 0, q < 0, and there is r ~ 0 such that Ar< 0. Then .At < 0 for all t > r 

(for b < 0) contradicting the presupposition that a steady state is reached. Hence .A > 0 
.... 

which determines, in turn, m > 0 via (14). 

- Figure 2: Steady states and optimal trajectories -

Figure 2 provides the phase diagram corresponding to figure 1, when the graphs of cp 

and 'ljJ are given by the lines ABMG and HH>, respectively. The preceding investigation 

clarified that the optimal trajectory is to approach P 3 [P 1] from a point like R [ Q], if q0 e 
[q3, qm) [if q0 e ( ql' q2)]. The third steady state P 2 is unstable. For q0 e ( q2, q3) it is 

optimal to approach P 3. 

3. Irreversible loss of resource characteristics under certainty 

Suppose now there is a characteristic of the environmental resource and a threshold 

value of environmental. quality, say q = q , such that this characteristic disappears for r 
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good as soon as the environmental quality drops below qr for the very first time. The loss 

of the resource characteristic is assumed to cause parametric changes (hence discontinui-

ties) in at least one of the three building blocks of the model: in the production function, in 

the welfare function and/or in the assimilation function. To formalise these changes let x e 
X ~ IRn and rewrite the functions Y, M, and W to include x as an argument. Then the ana-

lysis of the preceding section can be reinterpreted to hold for some specific vector x, say xt 

= x
0 

for all. t. This modified setup allows to describe the impact of the loss of a resource 

c~aracteristic by 

x { = x0 if qr ~ qr for all r ~ t, 

t = x1 otherwise. 
(16) 

The decision maker faces now the control problem A: Maximise (5) subject to (1) -

(~) and (16) with Y( · ), M( · ), and W( ·) from (1), (4), and (5) replaced by Y(k,£0 ,q,x), 

M( q,x), and W( c,q,x), respectively. In what follows assume without loss of generality, that 

~ > qr and that the solution to control problem A yields an optimal program with q 

strictly monotone decreasing from q
0 

towards a steady state Cig < qr, if it were true that x1 
= x

0
. In the general and more relevant case x1 :f: x

0 
it is then no longer a priori clear whe-

ther the solution to problem A is the preservation strategy or the strategy of destroying the 

resource characteristic (destructive strategy). The preservation strategy is defined as the 

solution of control problem P: Solve control problem A under the additional constraint 

(17) 

The solution to this problem exhibits the following property: There is r > 0 in the 

solution of control problem P such that qt > qr for t e {O, r) and qt = qr for all t ~ r. On {O, r} 

the optimal program is independent of the value of x1' To proof this claim observe that ac-

cording to Jacobson, Lele, and Speyer (1971) the constraint (17) can be taken care of by -~ 

considering the Lagrangean .. 
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L = W( c,q,x) + ,X[m - M( q,x)] + 7r(Y( i
0

,m,k,q,x) - c - ,Bk] + p( q - qr). 

The marginal condition (7a) remains unchanged but (7d) is substituted by 

" w y p 
,\ = 6 - M - q - _:__q_ - -. 

q W c ym ym ,\ 
(7d') 

It is known, in addition, that p ~ 0 and p( q - qr) = 0 and that the co-state variable ,\ may 

jump in that particular point in time, say r, when the constraint (17) becomes binding. In 

fact, for q7 = qr we have A( r-) > 0. Therefore p jumps from zero top( r+) = ,\( r+ )[o -

Mq -(Wq/WcYm) -(Yq/Ym)], and ,X(t) = .X(r+) for all t > r to keep A(t) = 0 for all t 

> r. It follows that (7d') is equal to (7d) for p = 0 so that the optimal program is indepen-

dent of the value of x1 during the time interval [O,r]. 

The next step is to define the destructive strategy as the solution of control problem 

D: Solve control problem A under the additional constraint qt < qr for some t. Clearly, 

during the time interval [O,r] the solution to this problem must be the same as that of pro-

blem P. For convenience, the comparison between both strategies is therefore restricted to 

the period [r,m) in what follows. 

- Figure 3: Optimal pollution control under certainty 

when a destructible resource characteristic is present -

So far, it is an open question whether the destructive strategy implies, as suggested 

by figure 3, that qt < qr = OH for all t > r (path BCD), or that the destruction of the 

characteristic is postponed to some point in time () > -r, i.e. to the end of the time interval 

a := ( r, OJ /: 0 (path BEF). To investigate this issue denote by B0 the value of the objec-
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tive function (5) attached to the solution of control problem D. Call d = 1 the decision not 

to destroy the characteristic at all, call d = 0 the decision to destroy the characteristic at 

point in time -r, and denote by B(d) the associated value of the objective function. B(l) is 

clearly the value of the preservation strategy whereas B(O) is the value attached to the 

solution of control problem D when the additional constraint (qt < qr for all t > r] is im-

posed. 

·Proposition ~: If it is optimal to destroy the resource characteristic, then it is optimal to 

destroy it at time t = r, i.e. 

max {B{t},B 
0

} =max {B{t),B{O}j. {18) 

To prove that proposition observe first that B(O) ~ B
0 

by definition of these terms. 

Therefore (18) always holds, if max [B(l),B
0

] = B(l). We have to show, therefore, that 

B(O) = B0 if max [B(l),B
0

] = B
0

. Suppose not. Then there is (} > r such that 

(19) 

where the superscripts a and {j refer to the time intervals a and {j as indicated in figure 3. 

Ba( d a) and B/3( d a'd p) in ( 19) denote values of the objective function during the time in-

tervals a and {j depending on the decisions da and dp about the preservation of the re-

source characteristic during those time intervals. d = 0 [d. = 1] indicates that qt < qr 
'Y 'Y 80 

[that qt ~ qr] for all t e 'Y and for 'Y = a, {j. Observe that Ba(l) = (1 - e- )B(l) and 

BP(l,O) = e-88B(O). Hence (19) can be rewritten as 

Since B
0 

> B(O) by presupposition, (19') implies B
0 

< B(l). This contradiction of the 

premise max [B(l),B
0

] = B
0 

proves the proposition, so that the optimal decision regarding 
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the preservation or the destruction of the resource characteristic is 

d* = arg max B{ d). 
d 

4. Characteristics irreversibility, uncertainty, and its future disappearance 

{20) 

Uncertainty about the future benefits of preserving or losing an environmental cha-

racteristic can be easily incorporated into our formal model by interpreting the term x in 

Y{ · ,x), M{ · ,x), and W{ · ,x) as a random variable with known distribution. Consequently, 

the value of the optimal program under uncertainty with its implied decision d = 0 or d = 
1 is now considered to be its expected value Ex[B{ d,x)]. With these qualifications the ana-

lysis of section 3 carries over. In particular, the equivalent of equation (20) reads 

d* = arg max E [B( d,x)]. 
d x 

{20') 

As the comparison of the equations {20) and (20') shows, the effect of uncertainty 

simply consists of replacing discounted welfare streams by their expected discounted va-

lues. 

The preceding arguments implicitly presupposed that with the passage of time no-

thing further is learned about the value of x. An alternative, more plausible assumption 

appears to be that the value of x becomes known at some point in time 0 > r. For that case 

the structure of the problem is easily illustrated with the help of Figure 3. The path BCD 

represents the optimal program conditional on deletion of the characteristic at time r. 

When point C is reached on that path at time 0, the new information is useless. The alter-

native option to preserve the characteristic at least until time· 0 means to choose the path 

, . BE of environmental quality during the time interval [ r, O]. This strategy leaves the agency 
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with the option of following either EG or EF, once the new information will have emerged. 

These considerations suggest, therefore,· to partition the entire planning horizon [ r,oo) into 

the time intervals a := [ r, OJ and {j := [ O,oo) and then to raise the decisive question whether 

or not the characteristic should be preserved during the time interval <l. More formally, 

denote by 

the expected value of a pollution control program that involves the decisions da and dp, 

where (as before) d'Y = 0 [d7 = 1] indicates that qt < qr [that qt ~ qr] for all t e 'Y and for 

'Y = a, {j. Note that the decision sequence da = O and dp = 1 is infeasible, since irreversibi-

lity implies dp ~ da. Therefore, the decision dp is constrained to the set D(da) := {O,da} 

with D(l) = {0,1} and D(O) = {O}. Using this notation we now compare the decisions 

about deleting the resource characteristic when the decision maker has different attitudes 

towards the future information (Fisher and Hanemann 1986). 

Suppose first, the decision maker disregards (today) the new information emerging in 

0. Then the optimal decision about dais the maximizer of 

V*(dct) := Bct(dct,x0 ) + max Ex(B.B(dct,d,8,x)). (21) 

dpE D( da) 

That is, the environmental characteristic is preserved during the time interval o., if V*( 1) 

2: V*(O). On the other hand, if the decision maker does not ignore the prospect of new 

information, then do. has to be chosen as to maximize 

(22) 

A A 

Hence the preservation strategy is optimal, if V(l) ~ V(O). Comparing (21) and (22) for da 
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,. 

= 0 reveals that V*(O) = V(O). Therefore the information-neglecting decision procedure 

may result in a program different from that selected by the information-regarding proce-

dure if and only if the quasi-option value, defined 4 as 

,. 
QOV := V(l) - V*(l), (23) 

is equal to zero. In fact, the literature (Arrow and Fisher, 1974; Henry 1974; see also Frei-

. xas and Laffont ~984; Fisher and Hanemann 1986) established 

Proposition~: The quasi-option value is non-negative {QOV ~ O}. 

A few comments on the relevance of Proposition 3 are in order. First, it should be 

emphasized that (22) is the correct objective function for decision making on da. Decision 

makers who ignore the prospect of new information are mistaken, and since QOV ~ O, they 

tend to underestimate the value of preserving the characteristic during the time interval a. 

If their wrong decision making procedure leads to an incorrect decision - which need not 

inevitably be the case - it is always .the decision to destroy the characteristic when it 

should have been preserved during the time interval a. 

Note, however, that the resource characteristic will not necessarily be preserved for 

ever, if da = 1 turns out to be the optimal decision. In the ex ante perspective, i.e. at the 

time of decision r, the optimal decision d = 1 may well imply the intention to destroy the . a 
characteristic at point in time D > r. This point is clarified by a simple numerical example 

4Some authors like Henry (1974) and Fisher and Hanemann (1986) refer to QOV as the 
"option value", while others use the term "option value" for a phenomenon distinctly 
different from QOV. This semantic confusion has its origin in the historical development of 
these concepts. Fortunately, there is no more confusion in substantive issues, as is 
demonstrated by Bishop (1986) and Freeman (1986). The option value as defined in these 
two articles will not be discussed in the present paper, because that option value "focuses 
attention on the individual economic agent as s/he evaluates alternatives under 
uncertainty" (Bishop 1986, p. 147) while for quasi-option value (QOV), the focus ought to 
be, as it is in our paper, "on the public decision maker who is evaluating public policies or 
:projec~s under uncertainty" (ibidem). This point is also forcefully made by Freeman 
t1986). 
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in Pethig (1989). Of course, when the new information has become known at time 0, the ex 

ante decision to destroy the characteristic in (J may again be changed in the light of that 

new information. 

- Figure 4: A scenario of decision making -

A simple but illuminating scenario of decision making is depicted in figure 4 for the 

case that the random variable has two realisations. The assimilation curve is given by 

A0 NPQA4, the initial environmental quality is qm = OA0 , and qr = OA2 is the threshold 

value beyond which the resource characteristic is destroyed. Suppose for a moment that the 

variable x remained unchanged after destruction of the characteristic and that the associat- ; 

ed locus for,\= 0 is YA7" Then the optimal time path for q would be A
0
DBC approaching 

the steady state value q = OA7, and m would decline from a positive value less than A
0 
Y 

to zero taking values in the area bounded by Y A7 and the assimilation curve. But since x 

becomes uncertain for q < qr rather than remains constant, at point in time r a decision 

must be made with regard to preservation. 

If the optimal decision is d a = 1, we have qt = qr and mt = P A2 for all t E [ r, 8]. 

Reaching the point in time (J (along the straight line DE in figure 4) there are two options: 

either to keep qt = qr and mt = PA2 for all t (line EF) or to dip below qr and then follow 

the path being optimal for the realisation of x. Let us assume that x = x1 prevails shifting 

the,\= 0 curve to XA8. Then m must be given a value such as A2P 11 , and m would have 

to decline from that value to zero while q decreases to OA8 along the line EL. On the other 

hand, if x = x2 is the realisation of x and ZA3 is the associated ,\ = 0 line, then m would 

have to be assigned a value such as A2P' (after being slightly raised above A2P to push q 

marginally below q ) in order to approach the point Non the assimilation curve. Simulta-r 
neously, the environmental quality rises from OA2 to OA1 along the curve EG. 
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Suppose now, the optimal decision is da = 0. Then there exists an optimal path for 

the time interval a such as DB in figure 4. At point in time 8 (at point B) there is no op-

tion left. The decision maker has to calculate that program which is optimal for the realisa-

tion of x. It is either characterised by qt = OA5 (and mt = 0) for all t ~ 8, if x = xl' or by 

BM in case of x = x2. If the assimilation curve is represented by A
0

NPQA6, it would be 

optimal to raise q from OA5 to the steady state OA1 following the line BH. This option 

became possible only because, by assumption, nature's assimilative capacity was not yet 

exhausted ·at q = OA5, thus clarifying the close relationship between the issues of pollution 

irreversibility and the optimal decision about the preservation of a resource characteristic. 

kObserve, however, that owing to (16) the increase of environmental quality from OA7 
over qr = 0 ~2 to q = 0 A1 does not restore the resource characteristic. 

The (positive) quasi-option value has been identified as a conditional value of infor-

mation, conditional on retaining the decision leading to an irreversible state (Conrad 1980, 

Fisher and Hanemann 1986). It does not follow, however, that the quasi-option value 

should be considered a separate or additional component of benefit in applied benefit-cost 

analyses, as the earlier literature seemed to imply. The message of Proposition 3 is, instead, 

to avoid mistaken decision making. To the extent that conventional benefit-cost analysis 

neglected the (present) value of future information (Bishop 1986, p. 150) careful considera-

tion of the information issue will have significant implications for applied research. 

A straightforward extension of the previous analysis is to investigate the impact on 

the quasi-option value of parametric changes of 8. For that purpose recall the definition of 

QOV from (23), introduce the parameter 8 in all pertaining functions, and define ME( 8) := 

max {Ex[B(l,1,x,O)], Ex[B(l,0,x,8)]} and EM( 8) := Ex[max {B(l,1,x,8), B(l,O,x,8)}] to 

obtain, after some rearrangement of terms, 

QOV(8) = V(l,8) - V*(l,8) = e-88[EM(O) - ME(O)]. (24) 

Since EM(O) and ME(O) do not depend on 8, (24) yields immediately 
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Proposition 4: Suppose, uncertainty about the social evaluation vanishes at the point of time 

0 with certainty and QOV{O) > 0. Then the quasi-option value shrinks monotonely to zero, 

ceteris paribus, when 0 tends to infinity. 

This result conforms to the intuitive idea that the value of new information depre-

ciates with the social time preference rate. With increasing values of 8 the probability of 

. mistaken decisions decreases so that the error from ignoring new information is the smaller 

the longer one has to wait for that new information. 

It has been assumed, so far, that time 0 is known with certainty. While it appears to 

be very realistic that the future will, in fact, reveal knowledge about resource characteris-

tics and their proper evaluation, it is quite uncertain, in general, precisely when that new 

information will be available. Suppose, therefore, 9 itself is a random variable with a known 

distribution. In that scenario a decision maker might wish to avoid complexity in the deci-

sion making process by simply substituting the previously certain time 8 by its expected 

value E( 8). But then the following question arises: Does this procedure lead to erroneous 

decisions about preservation in the (now uncertain) time interval a( 8), when a decision 

maker is considered who is willing to take the prospect of better information into account, 

when evaluating the preservation strategy.The answer is given by 

Proposition 5: Suppose, uncertainty about the social evaluation disappears at the point of 
-

time fJ, but fJ itself is a random variable with a known distribution. Then there is fJ ~ E o(8) 
A A a.o A -

such that EofV(l,O)j = V{l,O} ~ V{l,Eo(OJ} and EofQOV(O)j = QOV{O) ~ QOV{Eo(OJJ 

... 
To substantiate this observation recall that the decision maker considers V( da, 8) 

from (22) for da = 1 which can be transformed to read 

(25) 
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where P(x
0

) is the value of the preservation strategy over the period [ r,oo ). According to 

(25) either EM(O) = P(x
0

) or EM(O) > P(x
0

). Obviously, EM(O) = P(x0 ) yields 
" 

E~V(l,O)] = V[l,Eo(O)]. Hence in this case the correct result is obtained by taking care of 

the uncertainty about 8 simply through considering E8(8). For EM(O) > P(x
0

), however, V 
.... .... 

is strictly convex in 0 so that E0[V(l,O)] > V[l,Eo(D)]. The strategy of capturing uncertain-

ty in E( 8) would now underestimate the net benefit of the preservation program. This un-

derestimation effect caused by mistaken handling of uncertainty with respect to 0 carries 

over to the quasi-option value, since (24) implies EJQOV( O)] := 

=[EM(O) - ME(O)]·E 8(e--8 8) ~ QOV[E8(0)]. Obviously, the strict inequality sign holds if 

·and only if EM(O) > ME(O) or QOV( 0) > 0 which proves proposition 5. 

This result suggests to interpret the effect of uncertainty about 8 by reference to a 
-

"certainty equivalent": The certain time 0 that would lead to the same evaluation of the 
-

preservation strategy as the expected time E o( 8) satisfies 0 ~ E rJ. 0). In that sense, uncer-

tainty about 0 tends to favor the preservation strategy . 

5. Concluding remarks 

The present paper aimed at clarifying the principles of optimal intertemporal pollu-

tion control involving decisions about irreversibilities of two types: irreversible pollution 

and the irreversible destruction of environmental resource characteristics. The latter pro-

blem turned out to cause the technical difficulty of discontinuities in the model's functional 

relations so that the conventional marginal analysis had to be supplemented by comparing 

total conditions. If the impact of irreversibly destroying a characteristic is uncertain, and 

there is, at the same time, the prospect of better information of that impact in the future, 

then one deals with the Arrow-Fisher-Henry type of nature conservation model - adapted 

to the issue of pollution control. Even though we still treated environmental management 

as an optimal control problem with infinite horizon, the decision about the preservation of 

.• · resource characteristics boiled essentially down to a two-period matter. 
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Several extensions of the analysis are conceivable and desirable. For example, the 

threshold value of environmental quality beyond which the resource characteristic is delet-

ed may be a random variable itself and new information about its true value may be avail-

able at some future point in time. A more fundamental suggestion for the future research 

agenda is an attempt to overcome both the all-<>r nothing nature of future information and 

its exogeneity. Since uncertainty is largely about the future benefits of preservation, the 

most appropriate procedure would seem to be the inclusion into the formal model of re-

search a~tivities that eventually result in removing uncertainty. Similar approaches have 

been discussed in the literature on backstop technologies e.g. by Dasgupta, Heal and Ma-

jumdar (1976) and by Kamien and Schwartz (1977). In the context of land development an 

interesting step in this direction has been taken by Clarke and Reed (1988). 

It is certainly somewhat unsatisfactory to assume that the uncertainty about the 

future benefits of preservation vanishes altogether at some specific future point in time. 

One would like to see a model in which the variance of the probability distribution over the 

set of "possible valuations" decreases over time (and as a response to research efforts). In 

such a framework the optimal pollution control policy would have to be derived by me-

thods of stochastic dynamic programming. Consequently, The length of the time period (Cl) 

for which the preservation decision has to be made would be an endogenous decision vari-

able in its own right. The study by Clarke and Reed (1988) on land development gives 

some indications how the problem of pollution control could be extended in that direction. 

Some people may have an ethical mental reservation against the proposition that 

creating irreversible environmental damage might be - or even might be called - an opti-

mal decision. In the present paper the term optimal was used purely technically refering to 

the maximisation under constraints of a utilitarian objective function. The dispute over 

what the proper welfare function "should" be is old and controversial in environmental and 

resource economics. In my view this normative issue certainly applies also to the issue of 

irreversibities but not in a way differing from decision making that does not involve irre-

versible environmental damage. 

_, 

•• 
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