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ABSTRACT 
 
The purpose of this paper is to improve the knowledge of the Spanish urban system. We study 
the evolution of population growth among the group of 722 municipalities included in the 
Spanish urban areas over the period from 1900-2001. Urban population cross-sectional 
distribution is characterized by means of nonparametric estimations of density functions, and 
the growth process is modeled as a first-order stationary Markov chain. A spatial SUR model 
is also estimated for the Zipf’s law. Spatial effects are then introduced within the Markov 
chain framework using regional conditioning and spatial Markov chains. 
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1. INTRODUCTION 

 

 The purpose of this paper is to improve the knowledge of the Spanish urban system. 

The urbanization process has mainly taken place during the 20th century producing 

significant processes of industrialization and economic growth. Specifically in Spain, this 

process has not been uniform and it produces different results depending on the definition of 

“urban area”. In fact, there is no official definition of “urban area” in Spain and it is not easy 

to obtain statistical data at the level of municipalities. Hence, the analysis of the Spanish 

urban system is still scarce. Nevertheless, some authors have considered the group of “main 

cities” –above 50,000 inhabitants- as urban units (e.g. Lanaspa et al., 2003, 2004, Mella and 

Chasco, 2006). 

 In this paper, we propose to work with the set of municipalities that forms the Spanish 

“urban areas”, as defined by the Ministerio de Fomento (2000). It is a heterogeneous 

municipality group that not only includes the main cities but also all the satellite towns that 

conforms the complete metropolitan area. We study the evolution of population growth 

among this set of 722 municipalities included in the present Spanish urban areas over the 

period from 1900-2001. Urban population cross-sectional distribution is analyzed by means of 

nonparametric estimations of density functions and the growth process is modeled as a first-

order stationary Markov chain. The evolution of the shape of the population cross-sectional 

distribution and the changes in the municipalities’ relative positions within this distribution 

show the existence of alternate divergence/convergence trends. 

 The article is organized as follows. In the first section, the evolution of the disparities 

between the Spanish urban municipalities is characterized by examining the population cross-

sectional distribution over the period from 1900 to 2001. For that purpose, we use 

nonparametric estimation of density functions, the growth process is modeled as a stationary 

first-order Markov chain, and mobility indices are computed. In the second section, we 

explicitly consider the spatial dimension within the Markov chain framework using spatial 

Markov chains (Rey 2001). This tool allows studying how geographical environment can 

explain the population growth of an urban municipality. It also measures the extent to which 

this environment influences the urban municipalities’ relative position within the population 

cross-sectional distribution. The article concludes with a summary of key findings. 

 

 



2. THE EVOLUTION OF SPANISH URBAN SYSTEM 1900-2001 

  

 This section examines growth in the Spanish urban system, changes in the relative size 

distribution of urban municipalities, and mobility of these nuclei through the distribution, over 

a 100-year period. 

 

2.1. Data 

 

 To explore these issues, we want to construct a data set with urban areas defined 

consistently over the century. For that purpose, we have considered the classification 

proposed by the Ministerio de Fomento (2000). It divides the Spanish territory into urban 

areas, which include a set of 722 municipalities: 1) a set of 495 towns included in the 65 

“Large Urban Areas” (areas above 50,000 inhabitants each); 2) the group of 227 

municipalities considered as “Small Urban Areas” (towns above 10,000 inhabitants not 

included in the Large Urban Areas, with minor corrections). This is rather different from the 

approach in Lanaspa et al. (2003), who operated with a sample of 100 largest cities1 as 

proxies of the Spanish urban system. 

 On its side, the sample of 722 urban municipalities comprises the set of towns 

considered as “urban areas” by the Spanish Ministry of Urbanism and Public Works 

(Ministerio de Fomento, 2000)2. These urban settlements are also located across the whole 

Spanish territory: Andalusia (137), Aragón (10), Asturias (25), Balearics (13), Canary Islands 

(29), Cantabria (5), Castille and León (23), Castille-La Mancha (17), Catalonia (192), 

Valencian Community (96), Extremadura (11), Galicia (32), Madrid (33), Murcia (19), 

Navarre (18), Bask Country (58), Rioja (2), Ceuta and Melilla. 

 The evolution of population distribution is analyzed using the Census data over the 

period from 1900 to 2001. The data on per capita GDP are extracted from the Spanish Office 

for Statistics (INE) databank3. 

 

 
                                                 
1 These authors chose a relatively arbitrary number of “largest cities” after finding that the results were 
qualitatively robust to different sample sizes. In a posterior paper, Lanaspa et al. (2004) chose different subsets 
with the 100, 300, 500 and 700 most-populated municipalities. 
2 The Ministry of Urbanism and Public Works divides the Spanish territory into urban areas, which include a set 
of 722 municipalities: 1) a set of 495 towns included in the 65 “Large Urban Areas” (areas above 50,000 
inhabitants each); 2) the group of 227 municipalities considered as “Small Urban Areas” (towns above 10,000 
inhabitants not included in the Large Urban Areas, with minor corrections). 
3 This data are available in the INE webpage: http://www.ine.es 



2.2. The evolution of the shape of urban population distribution 

 

 The evolution of the shape of urban size may be detected by estimating the non-

parametric kernel density estimates of the urban set population distribution and by analyzing 

its monomodality or multimodality characteristics. We examine relative urban municipality 

size distribution in 1900 and the way this distribution has changed over time in 1950, 1970 

until 2001. Figure 1 shows the relative log urban municipality size distributions in 1900, 

1950, 1970 and 2001. This density plot may be interpreted as the continuous equivalent of a 

histogram in which the number of intervals has been set to infinity and then to the continuum. 

From the definition of the data, 1 on the horizontal axis indicates Spanish average city size, 2 

indicates twice this average, and so on. 

 

Figure 1 Densities of log relative urban municipality size 
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 Figure 1 plots an interesting graph where the distribution is bimodal in 1900 and goes 

to a unimodal distribution in 2001 (minor mode around 70-80%). This may reflect the 

existence, in 1900, of a group of urban municipalities with sizes below the average, 

converging toward a lower population level than the rest of the towns. Compared with 1900, 

more urban municipalities reported in 2001 population are about the Spanish average. The 



distributions in 1900 and 1950 are quite similar, while the central mass significantly increased 

in the 1970 to reach the highest point in 2001 distribution. This progressive concentration of 

probability mass around 100% can be interpreted as an evidence for slight convergence. This 

result is similar to others in the literature (Lanaspa et al., 2003, 2004, for Spanish largest 

cities; Anderson and Ge, 2005, for Chinese cities), though differs from the Black and 

Henderson (2003) results for US metropolitan areas. 

 

2.3. The Zipf’s law, or the rank-size rule 

 

 We begin our exploration of the evolution of the Spanish urban municipality size 

distribution by using Zipf’s law, or the rank-size rule. Zipf (1949) claimed that the size 

distribution of cities follows a Pareto law (Pareto, 1897), or can be described by a potential 

law, when it holds that: 

 
bR a S −= ⋅  (1)  

 

where, R is the city rank order of the population distribution; S is the population of the cities; 

and a and b are parameters, with the latter being the Pareto exponent, always positive by 

construction. 

 The rank size rule, which emerged from regularly observed features of the data lacking 

any economic theoretic foundation, has recently been analyzed especially by Gabaix and 

Ioannides (2004); as well as Rossi-Hansberg and Wright (2004), Cordoba (2003), Ioannides 

and Overman (2003), Dobkins and Ioannides (2000), Overman and Ionannides (2001), 

Gabaix (1999), Eaton and Eckstein (1997), Krugman (1996), between others.  

 The size distribution of cities is more or less equal, depending on the value of the 

Pareto exponent (b). At the limit, if b tends to infinity, then all the cities will be of an equal 

size. When b is equal to one, we obtain the well-known rank–size rule or Zipf’s law. The 

Pareto exponent can be interpreted as a convergence indicator. In effect, values that fall over 

time indicate relatively more important roles (increasing weight) for the largest cities and, 

therefore, a divergence trend inside the group of urban municipalities or greater metropolitan 

concentration. By contrast, increasing values represent a convergence dynamics, or in other 

words, greater dispersion of the population outside the large metropolitan areas and a more 

balanced population distribution between urban centers of different sizes. 



 Empirically, departing from equation (1), we take logarithms on both sides and 

estimate the resulting linear expression for the set of 722 urban municipalities (i) for each 

decade (t): 

ln ln lnit t t it itR a b S ε= − ⋅ +  (2)  
 

 We have followed the strategy suggested by Anselin (1988, pp. 203) for the 

specification of spatial SUR models. In a first stage, we have estimated Equation (2) by 

Ordinary Least Squares (OLS) for the 11 spatial equations individually considered. For each 

model, we have tested the presence of spatial effects as well as the non-diagonality of the 

inter-equation covariance matrix (temporal correlation)4. As shown in Table 1, the OLS errors 

of the 11 equations are non-normal and exhibit heteroskedasticity and spatial autocorrelation 

(as pointed out by Jarque-Bera, Koenker-Basset and Kelejian-Robinson tests, respectively). 

Therefore, we can conclude that both spatial effects are present in the 11 models. Regarding 

spatial autocorrelation, the non-normality of the errors does not allow using the Lagrange 

Multiplier (LM) tests. The Kelejian-Robinson –though highly significant- cannot orient 

towards a spatial lag or spatial error formulation. 

 In addition, we can also test for the existence of temporal correlation between the 11 

equations. For this purpose, we estimate by maximum likelihood Equation (2) as a spatial 

SUR model. The computation of the LM and LIK diagonality tests of the error covariance 

matrix –as well as the Wald test on the homogeneity of the parameters across equations- 

points out the superiority of a SUR specification over 11 individual ones. On the other side, 

both LM tests on spatial dependence allow rejecting the null of no spatial autocorrelation. The 

higher value of the LM test on spatial-error dependence is an indication that the correct 

specification is a spatial SUR spatial-error model (3) –instead of a spatial lag one (4)- as it 

shows a better performance in terms of goodness of fit (higher LIK and lower AIC). 

( )ln ln ln lnit t it t t it itR W R a b Sρ ε= ⋅ + − ⋅ +  (3)  

[ ]ln ln lnit t t it t itR a b S I Wλ ε= − ⋅ + − ⋅  (4)  
 

where W is a spatial weight matrix, such that each element, wij, is set equal to 1 if urban 

municipality i is at most 160 km far from urban municipality j. The role of the spatial weight 

                                                 
4 The spatial SUR model can be defined as Yt = Xt βt + εt, where Yt and εt are N by 1 vectors, and Xt is a N by Kt 
matrix of explanatory variables.  In this model, the error terms are correlated in time. This specification 
generates a covariance matrix Ω for the error term: E[ε ε’] = Ω = Σ ⊗ I, being Σ ={σts} a T by T matrix, and ⊗ 
the Kronecker product. 



matrix is to introduce the notion of a neighborhood set for each urban municipalities. Similar 

results have been obtained with other specifications5. 

 

Table 1 Rank-size regressions, Spanish urban municipalities 1900-2001 
 

 
OLS 

Basic model 
Spatial SUR 
model (ML) 

Spatial SUR spatial-
error model (ML) 

Spatial SUR spatial 
lag model (ML) 

  α̂  b̂  JB KB KR α̂  b̂  α̂  b̂  λ̂  α̂  b̂  ρ̂  

1900 11.04 -0.66 728 116 188 10.66 -0.62 10.68 -0.62 0.16 10.43 -0.62 0.04 
1910 11.06 -0.66 748 111 249 10.65 -0.61 10.67 -0.61 0.19 10.29 -0.60 0.05 
1920 11.04 -0.65 794 100 287 10.59 -0.60 10.61 -0.60 0.19 10.18 -0.59 0.06 
1930 11.05 -0.64 668 89 313 10.55 -0.58 10.56 -0.58 0.20 9.99 -0.57 0.08 
1940 10.91 -0.62 757 85 418 10.40 -0.56 10.41 -0.56 0.22 9.85 -0.55 0.08 
1950 10.82 -0.60 682 82 493 10.30 -0.54 10.32 -0.54 0.22 9.69 -0.53 0.09 
1960 10.81 -0.59 616 62 540 10.30 -0.53 10.32 -0.53 0.23 9.66 -0.52 0.09 
1970 10.78 -0.57 614 37 580 10.31 -0.52 10.32 -0.52 0.26 9.48 -0.50 0.12 
1981 10.67 -0.54 721 31 509 10.21 -0.50 10.23 -0.50 0.27 9.25 -0.48 0.14 
1991 10.90 -0.56 744 25 369 10.39 -0.51 10.41 -0.51 0.25 9.51 -0.49 0.13 
2001 11.39 -0.60 837 13 237 10.83 -0.54 10.87 -0.55 0.30 9.81 -0.52 0.14 

   Diagonality tests        
    LM test: 30,274 -  -
     LIK ratio: 22,531  2,928   2,849
   Wald homogeneity test        
    b parameter: 687 616  513
     spatial parameter:     21   45
   Spatial dependence        
    LM-spatial-error: 217 -  -
    LM-spatial lag: 81  -   -
   Goodness of fit         
    LIK   - 6,833  6,778
     AIC     -  26.34   48.36
         
 

Notes: α=lna. * Null-hypothesis rejection between 1%-5%. OLS indicates ordinary least squares estimation. JB is the Jarque-
Bera non-normality test on the residuals. KB is the Koenker-Basset test for heteroskedasticity. KR is the Kelejian-Robinson 
test for spatial autocorrelation in the error term. ML is the Langrange multiplier tests on spatial autocorrelation in the error 
terms. LIK is the log-likelihood ratio test. AIC is the Akaike Information Criterion. 
 

 Figure 2 shows the evolution through time of these three estimations of the Pareto 

exponent. Though the OLS estimators for this parameter are always higher, they follow a 

similar evolution. 

 From Figure 2, it is clear that, in general terms, the estimation over time of the b 

parameter displays a decreasing trend until 1980, from which it starts to augment. As a result, 

we can deduce two different patterns of behavior over the course of the 20th century: from 

1900 to 1980, the size distribution of the set of 722 urban municipalities is increasingly 

divergent whilst from the 1980s to the end of the period this distribution becomes growingly 

                                                 
5 We have also used a contiguity spatial weight matrix using a Thiessen polygonalization of the Spanish territory for the 722 
urban municipalities. 



equal. Looking in depth, we can also distinguish two other sub-periods in the first moment: 

from 1900 to 1930 (smaller divergence) and 1930-1981 (steeped divergence). This result is 

more or less consistent with Lanaspa et al. (2003, 2004) that found the inflexion date in 1970 

for the group of 100 Spanish largest cities, and 1981 for other sets of municipalities. 

 

Figure 2 Evolution of the estimations of the Pareto exponent (N=722)* 
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* Note: OLS is the OLS estimation; SSURLAG is the spatial SUR spatial lag model; SSURERR is 
the spatial SUR spatial-error model. 

 

 Consequently, the Zipf’s law leads us to an interesting result –i.e., the existence of two 

main phases in the evolution of Spanish urban municipalities. The main one, which extends 

over 80 years, consists of a reduction of urban concentration only broken after the 80’s. Inside 

the first stage, we can distinguish two sub-periods, in which the divergence course between 

urban municipalities has different speeds: 

• From 1900 to the 30’s, the b parameter shows a slower decreasing trend coinciding 

with a significant industrialization and urbanization expansion that led to progress and 

social changes in Spain. In the first decade, though most of the active population was 

located in the countryside, labor force began to migrate to the main industrial cities, 

e.g. Barcelona and Bilbao, as well as to Madrid and Valencia. Neutrality during the I 

World War and a capital stock growth (that came from the Americas and the 

international investment) helped the development of some industrial activities (located 

only in certain cities) that demanded more workers (Tuñón de Lara et al., 1982). 

Moreover, during the 20's, industrialization and urbanization went on growing, 

especially in the Axis Madrid-North-Barcelona leading to an incipient development of 



other satellite towns along the Cantabric Coast (Bilbao Estuary area, Santander, 

Asturian cities) and the Mediterranean Coast (Valencia and Alicante). However, 

during the mid 30's, the economic crisis and the Civil War stopped the urbanization 

process (Tuñón de Lara and Malerbe, 1982). 

• From 1940 to the 70’s, the b parameter experiments a quicker decline or in other 

words, during this period, the largest cities grew at significantly greater rates than the 

smallest population nuclei, exhibiting an intense divergent pattern of growth. In effect, 

during the 40’s, Spain lived an autarkical regime that led to a real ruralization process: 

the main cities –destroyed after the Civil War- has to be re-built, hunger and poverty 

expelled a lot of people to the villages and, in general, urban population and active 

population decreased significantly. Nevertheless, some big cities grew a lot like 

Madrid (due to the huge centralization and burocratization of the Regimen), Barcelona 

and other capitals (Valencia, Saragossa, Alicante and Seville). The incipient political 

and economic openness lived during the 50’s stopped the ruralization derive and put 

the basis for the decisive industrialization and tertiarization process lived during the 

60’s and 70’s (Tuñón de Lara and Viñas, 1982). The industrial sector was severely 

constrained to be more competitive and lot of workers had to migrate to Europe or to 

the Spanish capitals and new economic centers. Development was geographically 

irregular and affected only the cities located in richer provinces: Guipúzcoa, Biscay, 

Barcelona, Navarre, Madrid and Álava. Nevertheless, the Development Plans also 

created new economic poles, such as Vigo, Pontevedra, Coruña and Ferrol (in 

Galicia), Valladolid and Burgos (in Castile), Huelva, Cádiz, Seville (in Andalusia), 

Saragossa (in Aragón) and Badajoz (in Extremadura). If in 1960 only the 30% of 

Spanish population lived in cities above 100,000 inhabitants, in 1975, the urban 

population raised to the 50%: Spain was no more rural to become an industrial and 

urban country (Fusi et al., 1983). 

 During the two last decades of the 20th Century, the Zipf’s parameters change the 80-

years decreasing tendency by a noteworthy increasing one. That is to say, the group of 722 

urban municipalities displayed a clear convergence pattern of growth since the smallest towns 

grew faster than the largest cities. Actually, Spain lived a strong counter-urbanization process 

than has not finished yet. By the beginning of the 80’s, there was a peculiar urban structure 

similar to a star, with its centre in Madrid (Informe Foessa, 1970). In the axis, there were the 

vast Mediterranean metropolitan areas (Girona-Barcelona-Tarragona, Castellón-Valencia-

Alicante-Murcia), Andalusia (Seville and Cádiz), Galicia (A Coruña-Ferrol, Vigo) and the 



Cantabric Coast (Bilbao-San Sebastián, Santander, Gijón-Oviedo). In addition, inside this big 

star, there was a big rural desert, only broken by a few urban oases, like Valladolid, 

Saragossa, Badajoz, Burgos, Vitoria and Pamplona. In the Islands, we had a similar process 

due to the huge growth of Palma (the Balearics), Las Palmas and Santa Cruz de Tenerife (the 

Canary Islands). The cities of Madrid and Barcelona grew towards their respective peripheries 

and so did -with less strength- Valencia and Bilbao. Indeed, the whole Bask Country was 

declared an "urban area", as well as the triangle Oviedo-Gijón-Avilés (in Asturias) and the 

cities along the Mediterranean coast from Tarragona (in Catalonia) to Cartagena (in Murcia). 

 The logical problems of the big cities (with an uncontrolled growth in the peripheries 

and an incipient depopulation process of their historical centers) broke their later expansion in 

favor of middle-sized -even small- cities and certain rural areas. Moreover, this des-

urbanization of the largest cities became a "metropolization" of their neighbor towns: 

suburban settlements gained many people and city centers were depopulated, restored and 

converted into CBD's and/or historical/cultural cores. 

 

 

3. MOBILITY WITHIN THE SPANISH URBAN SYSTEM 1900-2001 

 

 The density functions and Zipf’s law allow characterizing the evolution of the global 

distribution, but they do not provide any information about the movements of the urban 

municipalities within this distribution. Indeed, they do not say whether the right tail of the 

initial distribution (year 1900) contains the same regions as the right tail in the final 

distribution (year 2001). A possible way to answer these questions is to track the evolution of 

each urban municipality’s relative size over time by estimating transition probability matrices 

associated to Markov chains (Kemeny and Snell, 1976). 

 

3.1. Markov Chains 

 

 Denote Ft the cross-sectional distribution of municipal size (population) at time t 

relative to the Spanish average. Define a set of K different size classes, which provide a 

discrete approximation of the population distribution. We assume that the frequency of the 

distribution follows a first-order stationary Markov process. In this case, the evolution of the 

municipal size distribution is represented by a transition probability matrix, M, in which each 

element (i, j) indicates the probability that a municipality that was in class i at time t ends up 



in class j in the following period6. Formally, the (K, 1) vector Ft, indicating the frequency of 

the urban municipalities in each class at time t, is described by the following equation: 

1t tF MF+ =  (5)  
 

where M is the (K, K) transition probability matrix representing the transition between the two 

distributions as follows: 

11 12 1

21 22 2

1 2

..

..
..... ...... .. ......

..

K

K

K K KK

p p p
p p p

M

p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6)  

where each element pij≥0, 
1

1
K

ij
j

p
=

=∑ . The stationary transition probabilities pij capture the 

probability that the class i in t–1 is followed by state j in t. 

 

 The elements of M can be estimated from the observed frequencies in the changes of 

state from one period to another. Thus, following Amemiya (1985) or Hamilton (1994), the 

maximum likelihood estimator of pij is: 

ˆ ij
ij

i

n
p

n
=  (7)  

 

where nij is the total number of urban municipalities moving from class i in decade t – 1 to 

class j in the immediate following decade t over all the 10 decades of transitions and ni is the 

total sum of municipalities ever in i over the 10 decades. 

 If the transition probabilities are stationary, that is, if the probabilities between two 

classes are time-invariant, then: 
s

t s tF M F+ =  (8)  
 

 In this framework, one can determine the ergodic distribution (also called the long-

term, long-run, equilibrium or steady state distribution) of Ft, characterized when s tends 

toward infinity in equation 8, that is to say, once the changes represented by matrix M are 

repeated an arbitrarily number of times. Such a distribution exists if the Markov chain is 

regular, that is, if and only if for some m, Mm has no zero entries. In this case, the transition 

probability matrix converges to a limiting matrix M* of rank 1. 
                                                 
6 The so-called Markov property implies that the future of a process depends only on its present state and not on 
its history. 



 The existence of an ergodic distribution, F*, is then characterized by: 

F M F∗ ∗=  (9)  
 

 This vector F* describes the future distribution of the urban municipalities if the 

movements observed in the sample period are repeated to infinity. Each row of Mt tends to the 

limit distribution as t→∞. According to equation 9, this limit distribution is therefore given by 

the eigenvector associated with the unit eigenvalue of M. 

 The assumption of a first-order stationary Markov process requires the transition 

probabilities, pij, to be of order 1, that is, to be independent of states at the beginning of 

previous periods (at time t – 2, t – 3, . . .). If the chain is of a higher order, the transition 

matrix will be misspecified. It will contain only part of the information necessary to describe 

the true evolution of the population distribution. Moreover, the Markov property implicitly 

assumes that the transition probabilities, pij, depend on i (i.e., that the process is not of order 

0). 

 In order to test this property, Bickenbach and Bode (2003) propose a test of time 

independence. In determining the order of a Markov chain, they suggest, first, to test order 0 

versus order 1; second, to test order 1 versus order 2; and so on (Tan and Yilmaz, 2002). If the 

test of order 0 against order 1 is rejected, and the test of order 1 against order 2 is not rejected, 

the process may be assumed to be of order 1. 

 To test for order 0, the null hypothesis ( )0 : : 1,...,ij jH i p p i K∀ = =  is tested against 

the : :a ij jH i p p∃ ≠ . The appropriate likelihood ratio (LR) test statistic reads as follows: 

( )( ) ( ) ( )20 2

1

ˆ
2 ln 1

ˆ
i

K
O ij

ij
i j A i

p
LR n t asy K

p
χ

= ∈

⎡ ⎤= −⎣ ⎦∑∑ ∼  (10) 

 
assuming that ( )ˆ 0, 1,...,p j j K> ∀ = . { }ˆ: 0i ijA j p= > is the set of nonzero transition 
probabilities under Ha. 
 

 To test for order 1 versus 2, a second-order Markov chain is defined by also taking 

into consideration the population size classes k (k=1, . . ., K) in which the regions were at time 

t–2 and assuming that the pair of successive states k and i forms a composite state. Then, the 

probability of an urban municipality moving to state j at time t, given it was in k at t–2 and in i 

at t–1, is pkij. The corresponding absolute number of transitions is nkij(t), with the marginal 

frequency being nki(t – 1) = Σj nkij(t – 1). 

 



 To test ( )0 : : 1,...,kij ijH k p p k K∀ = = against : :a kij ijH k p p∃ ≠ , the pkij are estimated 

as ˆ kij kij kip n n= , where ( )2

T
kij kijt

n n t
=

= ∑ and ( )2
1T

ki kit
n n t

=
= −∑ . The pij are estimated from 

the entire data set as ˆ ij ij ip n n= .The appropriate LR test statistic reads as follows: 

( )( ) ( ) ( )1 2

1 1 1

ˆ
2 ln 1 1

ˆ
hi

K K K
O kij

kij i i
k i j C iij

p
LR n asy c d

p
χ

= = ∈ =

⎡ ⎤= − −⎢ ⎥⎣ ⎦
∑∑ ∑ ∑∼  (11) 

 

 Similar to the notation above, { } { }ˆ ˆ: 0 , # , : 0i ij i i ki kijC j p c C C j p= > = = >  and 

{ }# : 0i i kid D k n= = > . 

 If both Markovity of order 0 and of order 1 are rejected, the tests can be extended to 

higher orders by introducing additional dimensions for population size at time t–3, t–4, and so 

on. However, since the number of parameters to be estimated increases exponentially with the 

number of time lags, while the number of available observations decreases linearly for a given 

data set, the reliability of estimates and the power of the test decrease rapidly. Therefore, Tan 

and Yilmaz (2002) suggest setting an a priori limit up to which the order of the Markov chain 

can be tested. 

 

3.2. Empirical results 

 

 We distinguish between six different classes: (1) less than 20 percent of the Spanish 

average, (2) between 20 and 50 percent of the Spanish average, (3) between 50 and 80 percent 

of the Spanish average, (4) between 80 and 135 percent of the Spanish average (5) between 

135 and 185 percent of the Spanish average, and (6) more than 185 percent of the Spanish 

average. The discretization has been chosen attending to the best performance of the test for 

first-order, though we have tried to set up balanced classes even if it comes at the cost of this 

test7. 

 Table 2 contains the first-order transition probability matrix between 1900 and 2001 

with the maximum likelihood estimates ˆ ijp  of the transition probabilities for population. For 

example, during the century period, there were 2,567 instances of an urban municipality 

having a population size lower than 20 percent of the Spanish average. The majority of these 

municipalities (94.4 percent) remained in that size class at the end of the year, while 5.3 
                                                 
7 The first-order test (against the second order) is a test of time homogeneity (time stationarity), which is 
appropriate for deciding whether the transition probabilities of the first-order Markov chain can be assumed 
constant over time (Bickenbach and Bode, 2003). 



percent moved up one class by the end of the year. Note also that the transition probability 

matrix is regular. 

 

Table 2 Probability transition matrix, 1900-2001: Spain-relative population size 
 

 
1 

<20% 
2 

<50% 
3 

<80% 
4 

<135%
5 

<185%
6 

>185%
Number of 

observations 
1 0.944 0.053 0.002 0 0 0 2567 
2 0.040 0.879 0.074 0.005 0.002 0.001 1751 
3 0 0.162 0.752 0.078 0.005 0.003 1029 
4 0 0.001 0.184 0.741 0.066 0.008 852 
5 0 0 0 0.273 0.632 0.095 315 
6 0 0 0 0.001 0.061 0.938 706 

 

 We can make several comments about this matrix in Table 2, related to the interclass 

movements, mobility speed, convergence pattern and influence of space. 

 First, the elevated probabilities on the diagonal show a low interclass mobility –i.e., a 

high-persistence of urban municipalities to stay in their own class from one decade to another 

over the whole period. However, the larger and smallest urban municipalities (classes 1 and 6, 

respectively) have higher persistence while medium-sized cities (categories 3, 4 and 5) have 

more probability to move to smaller categories. In addition, in classes 2 and 3, a small number 

of urban municipalities move up to higher categories more than two steps, even reaching the 

top, whilst they only move down one cell. Nevertheless, only in class 2 the probability of 

moving up a state exceeds that of moving down. 

 For the process in Table 2, Markovity of order 0 is tested by comparing each row of 

the transition matrix to the population distribution at time t using the test statistic (10). The 

result (LR =16,602.90; prob=0; df=25) leaves no doubt that the process strongly depends on 

the initial condition at time t–1, i.e. that the chain is at least of order 1. 

 To test Markovity of order 1, six subsamples k=1,…,6 are defined, representing the 

urban municipalities’ size at time t–2. Observations for municipalities that were in the first 

size class at time t–2 are allocated to the first subsample (k=1) and so on. For each of these 

subsamples, a separate matrix is estimated for observed transitions from time t–1 to t in the 

usual way. The general test comparing the matrices for all five subsamples to the matrix for 

the entire sample simultaneously, similar to equation (11) above, results in LR = 198.12. This 

statistic is highly significant with 63 degrees of freedom (prob=0), indicating that the process 

under consideration is of a higher order, at least of order 2, if Markovian at all. However, 



there are a number of classes within subsamples for which we cannot expect reliable estimates 

of transition probabilities because there are only very few observations available. In addition, 

this LR statistic seems to be inflated in presence of spatial autocorrelation, which is proved to 

exist. So that, we keep the assumption of order 1 for the Markov chain. 

 Second, in order to determine the speed with which the urban municipalities move 

within the distribution, we consider the matrix of mean first passage time MP, where one 

element MP,ij indicates the expected time for a region to move from class i to class j for the 

first time. For a regular Markov chain, MP is defined as (Kemeny and Snell 1976, chap. 4): 

( )p K dgM I Z SS Z D′= − +  (12) 
 

where IK is the identity matrix of order K, Z is the fundamental matrix: ( ) 1

KZ I M M
−∗= − + , 

M* is the limiting matrix, S is the unit vector, Zdg results from Z setting off-diagonal entries to 

0, and D is the diagonal matrix with diagonal elements 1 jm∗ .  

 

Table 3 Mean first passage time matrix in decades, 1900-2001: Spain-relative population 
 

 
1 

<20% 
2 

<50% 
3 

<80% 
4 

<135%
5 

<185%
6 

>185% 
1 3.93 18.67 39.00 78.88 158,83 311.07 
2 51.88 2,82 21.99 62.01 142.50 294.48 
3 63.87 11.99 5.53 45.12 127.61 279.61 
4 73.55 21.67 9.90 10.20 95.73 251.82 
5 82.74 30.86 19.08 9.19 28.87 189.41 
6 98.57 46.69 34.92 25.02 18.22 12.89 

 

 Table 3 displays the matrix of mean first passage time for population. The mean 

number of years to reach any class is relatively high: the shortest passage of time is 91.9 years 

and the largest is 3110.7 years. Globally, movements up are slower than movements down, 

especially for high-size classes –i.e., the expected time to first move from class 5 to class 6 is 

1,894.1 years. Remember that these calculations account for the fact that starting from class 5, 

a site might visit classes 4, 3, 2 or 1 before going to class 6. From class 1 it is 3,110.7 years to 

first visit class 6. This result of faster declines shows that urban municipalities are more likely 

to loose population than to gain it, especially in the inlands, big capitals and old industrial 



centers8. This conclusion is compatible with the 80-year phase of divergence –in size- 

between urban municipalities, only reversed during the last two decades, as pointed out by the 

Zipf’s parameter in Figure 2. 

 Third, we consider the ergodic distribution that can be interpreted as the long-run 

equilibrium urban municipality-size distribution in the urban areas system. Explicitly, given a 

transition matrix, if many periods pass, there will be a time where the distribution of urban 

municipalities will not change any more: that is the ergodic or limit distribution. It is used to 

asses the form of convergence in a distribution.  Concentration of the frequencies in a 

certain class would imply convergence (if it is the median class, it would be convergence to 

the mean), while concentration of the frequencies in some of the classes, that is, a multimodal 

limit distribution, may be interpreted as a tendency toward stratification into different 

convergence clubs. Finally, a dispersion of this distribution among all classes is interpreted as 

divergence. 

 

Table 4 Initial versus ergodic distributions 1900-2001: Spain-relative population size 
 

 1 
<20% 

2 
<50% 

3 
<80% 

4 
<135% 

5 
<185% 

6 
>185% 

Initial 
distribution 0.356 0.243 0.143 0.118 0.044 0.098 

Ergodic 
distribution 0.254 0,355 0,181 0,098 0,035 0,078 

 

 Ergodic distributions are computed for population size in Table 4. It appears that the 

ergodic distribution is more concentrated in the small-size municipalities (1st and 2nd classes) 

what would reveal the existence of convergence towards smaller-size populations. In addition, 

we find stability of ergodic distribution compared to the initial one, though there is slightly 

more probability in category 2. This outcome points out a very slight downward convergence, 

what is compatible with the kernel density function (Figure 1) and transition matrix (Table 2) 

results. 

 Fourth, we have computed the influence of space on the transition probabilities, as in 

Rey (2001). The relationship between the direction of an urban municipality’s transition in the 

population distribution and the relative populations of its neighbors is considered more 

generally in Table 5. Reported is the probability of a particular transition (Down, None, or 

Up) conditioned on the populations of the urban municipality’s neighbors at the beginning of 

                                                 
8 Again, this result contrasts with the US metro areas behavior (Black and Henderson, 2003; pp. 358) 



the year. There is clear evidence that the probability of an upward or downward move is 

different depending on the urban area context. For example, the probability for an urban 

municipality of moving up in the hierarchy is 7.1% when the spatial lag contains on average 

less population whereas it is 8% when it contains on average more population. Conversely, 

the probability for an urban municipality of moving down in the hierarchy is 18.9% when the 

spatial lag contains on average less population whereas it is only 3.9% (almost five times 

lower) when it contains on average more population. Therefore, the influence of space on the 

urban municipality transition probabilities seems more important for downward movements.  

 There seems to be an influence of neighbors, which is confirmed by the χ2 test statistic 

of independence of direction of move and neighbors population size, with 4 degrees of 

freedom, generated a value of 398.087, which is significant at prob=0. In conclusion, 

direction of movement in the population distribution of urban municipalities is not 

independent from the geographic environment. 

 

Table 5 Transition probabilities conditioned on the spatial lag of population 
 

Move spatial lag down same up 
Less population 0.189 0.740 0.071 

Same 0.057 0.898 0.045 
More population 0.039 0.881 0.080 

 

 

4. MAIN CONCLUSIONS 

 

 The urbanization process has mainly taken place during the 20th century producing 

significant processes of industrialization and economic growth. Specifically in Spain, this 

process has not been uniform and exhibits different shapes depending on the definition of 

“urban area”. In our case, we work with a set of 722 municipalities that conforms the Spanish 

urban areas: main cities and their satellite towns. 

 The Zipf’s law shows the existence of two main phases in the evolution of these urban 

municipalities: 1900-1980 (divergence) and 1980-2001 (convergence). The main one extends 

over 80 years and consists of a reduction of urban concentration, though two different sub-

periods should be distinguished: 1900-1940 and 1940-1980. In effect, from 1900 to the 30’s, 

divergence is not so deep coinciding with a significant industrialization and urbanization 

expansion that led to progress and social changes. However, this dynamism is violently 



broken by the end of the decade due to the Civil War. From 1940 to the 70’s, the largest cities 

grew much quicker than the smallest population nuclei, what led to a more intense divergent 

pattern of growth.  

 During the last decades of the 20th Century, the Zipf’s parameters change the 80-years 

decreasing tendency by a noteworthy increasing one. That is to say, the group of 722 urban 

municipalities displayed a clear convergence pattern of growth since the smallest towns grew 

faster than the largest cities. The logical problems of the big cities (with an uncontrolled 

growth in the peripheries and an incipient depopulation process of their historical centers) 

broke their later expansion in favor of middle-sized -even small- cities and certain rural areas. 

Moreover, this des-urbanization of the largest cities became a "metropolization" of their 

neighbor towns: suburban settlements gained many people and city centers were depopulated, 

restored and converted into CBD's and/or historical/cultural cores. 

 The Markov Chains analysis shows a low interclass mobility –i.e., a high-persistence 

of urban municipalities to stay in their own class from one decade to another over the whole 

period. However, the largest and smallest urban municipalities have higher persistence than 

the medium-sized cities, which have more probability to move to smaller categories. In 

general terms movements up are slower than movements down, especially for high-size 

classes. This result of faster declines shows that urban municipalities are more likely to loose 

population than to gain it, especially in the inlands, big capitals and old industrial centers. 

This conclusion is compatible with the 80-year phase of divergence –in size- between urban 

municipalities, only reversed during the last two decades. This is why population convergence 

is still slight and mainly “downwards” inside the group of urban municipalities. 

 Finally, the probability for an urban municipality of loosing population (moving down 

in the hierarchy) is almost five times higher when it is surrounded by towns that contain on 

average less population. This result confirms the influence of space on urban population 

dynamism, also being more important for downward movements. 

 

 

5. REFERENCES 
 
Amemiya T. 1985. Advanced Econometrics. Cambridge, MA: Harvard University Press. 
 
Anselin L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer 

Anderson G, GE Y. 2005. The size distribution of Chinese cities. Regional Science and Urban 
Economics 35(6):756-776 



Bickenbach F, Bode E. 2003. Evaluating the Markov property in studies of economic convergence. 
International Regional Science Review 26 (3): 363-392 
 
Cordoba JC. 2003. On the Distribution of City Sizes. Mimeo, Economics Department, Rice University. 
 
Dobkins L, Ioannides YM. 2000. Dynamic evolution of the U.S. city size distribution. In Economics of 
Cities, Huriot JM, Thisse JF (eds). Cambridge University Press, pp. 217– 260 
 
Eaton J. Eckstein Z. 1997. City and growth: theory and evidence from France and Japan. Regional 
Science and Urban Economics 17: 443–474 
 
Fusi JP, Vilar S, Preston P. 1983. De la dictadura a la democracia. Desarrollismo, crisis y transición. 
Historia 16, vol. XXV. 
 
Gabaix X, Ioannides YM. 2004. The evolution of city size distributions. In Handbook of Regional and 
Urban Economics, Vernon Henderson J, Thisse JF (eds). North Holland, Amsterdam, vol. 4, chapter 
53, pp. 2341–2378. 
 
Hamilton JD 1994. Time Series Analysis. Princeton, NJ: Princeton University Press. 
 
Informe Foessa, 1970. 
 
Ioannides YM, Overman HG. 2003. Zipf’s law for cities: an empirical examination. Regional Science 
and Urban Economics 33: 127– 137 
 
Kemeny J, Snell L. 1976. Finite Markov chains. New York: Springer-Verlag. 
 
Lanaspa L, Perdiguero AM, Sanz F. 2004. La distribución del tamaño de las ciudades en España, 
1900-1999. Revista de Economía Aplicada 34: 5-16. 
 
Lanaspa L, Pueyo F, Sanz F. 2003. The evolution of Spanish urban structure during the Twentieth 
Century. Urban Studies 40 (3): 567–580 
 
Le Gallo J. 2003. Space-time analysis of GDP disparities among European regions: a Markov Chains 
approach. International Regional Science Review 27 (2): 138–163 
 
Mella JM, Chasco C. 2006. A spatial econometric analysis of urban growth and territorial dynamics: a 
case study on Spain. In Spatial evolution and modeling, Nijkamp P, Reggiani A (eds.). Edward Elgar 
(in press). 
 
Ministerio de Fomento 2000. Atlas Estadístico de las Áreas Urbanas en España, Subdirección 
General de Urbanismo, Madrid. 
 
Overman HG, Ioannides YM. 2001. Cross-sectional evolution of the U.S. city size distribution. 
Journal of Urban Economics 49: 543– 566 
 
Pareto V. 1897. Cours d’Economie Politique. Rouge et Cie Paris. 
 
Rey S. 2001. Spatial empirics for economic growth and convergence. Geographical Analysis 33 (3): 
195-214 
 
Rossi-Hansberg E, Wright M. 2004. Urban Structure and Growth. Mimeo, Stanford University, 
Economics Department. 
 



Tuñón de Lara M, Malerbe PC. 1982. La caída del rey. De la quiebra de la Restauración a la 
República (1917-36). Historia 16, vol. XXIII. 
 
Tuñón de Lara M, Viñas A. 1982. La España de la Cruzada. Guerra Civil y primer franquismo (1936-
1959). Historia 16, vol. XXIV. 
 
Tuñón de Lara M, Bahamonde A, Toro, J, Arostegui J. 1982. La España de los caciques. Del sexenio 
democrático a la crisis de 1917. Historia 16, vol. XXII. 
 
Zipf GK. 1949. Human Behavior and the Principle of Least Effort. Cambridge, MA: Addison-Wesley. 
 


