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ABSTRACT: 
Spatial econometric methods measure spatial interaction and incorporate spatial structure 
into regression analysis. The specification of a matrix of spatial weights W plays a crucial 
role in the estimation of spatial models. The elements wij of this matrix measure the spatial 
relationships between two geographical locations i and j, and they are specified exogenously 
to the model. Several alternatives for W have been proposed in the literature, although 
binary matrices based on contiguity among locations or distance matrices are the most 
common choices. One shortcoming of using this type of matrices for the spatial models is 
the impossibility of estimating “heterogeneous” spatial spillovers: the typical objective is 
the estimation of a parameter that measures the average spatial effect of the set of locations 
analyzed. Roughly speaking, this is given by “ill-posed” econometric models where the 
number of (spatial) parameters to estimate is too large. In this paper, we explore the use of 
generalized maximum entropy econometrics (GME) to estimate spatial structures. This 
technique is very attractive in situations where one has to deal with estimation of “ill-
posed” or “ill-conditioned” models. We compare by means of Monte Carlo simulations 
“classical” ML estimators with GME estimators in several situations with different 
availability of information. 
 

Keywords: spatial econometrics, generalized maximum entropy econometrics, spatial 
spillovers, Monte Carlo simulations. 
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1. INTRODUCTION 

Spatial econometrics is a subdiscipline that has gained a huge popularity in the last twenty 

years, not only in theoretical econometrics but in empirical studies as well. Basically, spatial 

econometric methods measure spatial interaction and incorporate spatial structure into 

regression analysis. On the one hand, the literature shows several methodological 

suggestions for including spatial relationships in econometric regression models. In the 

early 1980s Cliff and Ord (1973,1981) already provided an introduction to hypotheses 

testing and models of spatial process. Later, Anselin (1988) studied the performance of 

various estimators of spatial econometric models like least squares (LS), maximum 

likelihood (ML) which was first outlined by Ord (1975), instrumental variable (IV), and 

method of moment (MM). More recently, the generalized two-stage least squares (2SLS) 

and generalized moments method (GMM) have been examined by Kelejian and Prucha 

(1998, 1999). On the other hand, its empirical applications to several fields of economic 

analysis have mushroomed lately including, among others, studies in demand analysis 

international economics, labor economics, public economics and local public finance and 

agricultural and environmental economics. 

 

Although there are other approaches to address the spatial interactions in an econometric 

model, the most common procedure followed in the literature is to specify a determined 

spatial structure by means of a spatial lag operator (Anselin, 1988). In this point is where 

the specification of a matrix W, with elements wij plays a very important role. Each cell wij 

of this matrix measures the spatial interaction between the locations i and j and, roughly 

speaking, can be interpreted as the influence that a variable located in j has over other 

variable located in i. 1 It is crucial to note that the values of these elements are fixed 

exogenously to the model; in other words, the W matrix is imposed by the researcher 

somehow.  

 

Various possibilities have been suggested to define W, although most generally they are 

based on some concept of geographical proximity. Following this approach, a very simple 

way to characterize the elements wij is by defining them as binary variables that take value 1 

                                                 
1 Most usually it is assumed that wii = wjj = 0. Another frequent issue is that the elements wij are row-
standardized, and consequently ij

j
w 1=∑ . It also ensures that the spatial parameters are comparable between 

models because of the spatial autoregressive parameters must be constrained to the interval 
min

1
ω  y 

max
1
ω where minω  and maxω  are the smallest and largest eigenvalues of W. 
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when locations i and j have a common border and 0 otherwise. The geographical distance 

between locations i and j (dij) can be used in a more direct way, defining wij as a function of 

this distance wij(dij), with the first derivative being negative, 0)( <′ ijij dw . Other authors 

claim for using not physical but economic measures of distance, based on interregional 

trade flows, income differences, etc.2  

 

Once the values wij are a priori imposed by the researcher, they are employed together with 

the data of the variables to estimate the model. Depending on the assumptions made about 

the way the spatial correlation affects the dependent variable, the literature distinguishes 

between several possibilities, being the so-called spatial autoregressive (SAR) structures 

perhaps the most commonly used. Formally, for a set of N cross-sectional data, a SAR 

model is expressed as 

 

εXβWyy ++= ρ  (1)

Where y is the ( 1×N ) vector with the values o the dependent variable, W is the ( NN × ) 

matrix of spatial weights, X is a ( KN × ) matrix of exogenous variables, β  is a ( 1×K ) 

vector of parameters and ε  is a ( 1×N ) stochastic error. In addition, ρ  is a spatial 

interaction parameter that measures how the endogenous variable y is spatially influenced 

in average. The previous specification is a simple way to model the spatial interactions 

among regions, but it is possible to claim some weakness for estimate it. Firstly, the model 

(1) has a single parameter ρ . Hence, it is necessary to see the spatial interaction as an effect 

"in average" among regions. Furthermore, the estimated parameter ρ  depends on the rule 

followed by the researcher to define the matrix W, as the literature clearly shows. The 

election of this matrix is always in some sense a question of subjectivity introduced in the 

estimation. As a result, the estimation of the effect of the spatial-lag variables is a mix 

between data and chosen values for W. In other words, the previous specification is in fact 

a rather rudimentary way to express a much more complex spatial structure, as it follows in 

this system of equations 

  

                                                 
2 Good examples of this other approach can be found in Case et. al(1993), Vayá et al. (1998, 1998b) and 
López-Bazo et al (1999). These papers define the spatial weights based on commercial relationships, while in 
Boarnet (1998) the weights increase with the similarity between the investigated regions. Molho (1995) and 
Fingleton (2001) propose a hybrid spatial weight based on economic variable and decreasing interaction force 
with distance. 
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Or, in matricial terms 

 

εΩyXβy ++=  (2d)

Where Ω is a NN×  matrix with zeros in its main diagonal and elements ijρ  elsewhere; i.e., 

the model includes a spatial parameter for each pair of regions. If this is the “real” spatial 

structure, the number of parameters to be estimated increases enormously. Model (1) 

requires the estimation of K+1 parameters from N observations. In contrast, in the spatial 

structure represented in equations (2a)-(2c) the number of parameters to be estimated now 

is K+N(N-1), which obviously is implausible by means of classical econometrics (OLS or 

ML, for example) given the negative number of degrees of freedom. Technically, this 

problem is labeled as an “ill-posed” econometric problem. If the number of observations 

N increases, this does not solve the problem but makes it worse, since the number of 

spatial parameters ijρ  to estimate also grows.3 When several observations of the variables 

are available along T periods of time, the cross-section model can be transformed into a 

panel data model, although usually the length of the time series is not large enough to 

achieve efficient estimates. Even if the number of time periods was sufficient, and the 

problem became not “ill-posed”, most probably it would be “ill-conditioned” given the 

high degree of multicollinearity between the variables yij. 

 

These problems are circumvented estimating spatial models like (1): just one spatial 

parameter ρ is estimated and interpreted as the average spatial effect. This means that the 

set of equations shown in (2a-2c) is reduced to 

 

                                                 
3Remember that the number of spatial parameters is N(N-1). 
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In such a situation, the spatial spillover from a region j to other location i (the element ρij), 

could be obtained as the product ijwρ , but then the estimated spillover is a mix between 

data and (exogenous) values of W. The choice of the spatial weight matrix is a key step in 

the spatial econometric modelling and nowadays there is not a unique method to select an 

appropriate specification of this matrix. In fact, this problem is suggested for future 

research by Anselin et al. (2004), and Paelink et al. (2004) among others. Note that if the 

spatial weights wij are based on a measure of simply geographical distance, then the 

spillover from location i to location j will be exactly the same as the spillover from j to i.4 

This could turn into a strong simplification of the spatial relationships in an economy. 

Furthermore, if the W matrix is constructed as a contiguity matrix, then the spatial 

structure imposed is even simpler: between every pair of contiguous locations the spatial 

spillover is always the same and equal to ρ. The use of spatial weights based on some type 

of economic variables (instead of or besides geographical distance) could avoid the 

imposition of these symmetric relationships, but some problems of endogenity can emerge. 

Cohen and Morrison (2004) and Case et al. (1993) analyzed this problem and modified the 

weights in order to guarantee the ortogonality between the weights and the explanatory 

variables. 

 

Note that models like (1) rely very much on the choice of matrix W. This issue can be 

considered as an important question for the estimation of the spatial econometric models, 

although it has not received much attention in the literature. One exception is the work by 

Stetzer (1982), where a numerical experiment by a series of Monte Carlo simulations is 

carried out to test the effects on the forecasting accuracy of misspecifying the elements of 

                                                 
4 The row standardization of the W matrix implies that bcomes asymmetric even though the original matrix 
may nave been symmetric. Very recently, Bhattacharjee and Jensen-Butler (2005) propose the estimation of 
the spatial weight matrix which is consistent with a given or estimated spatial autocovariance without the 
non-negativity constraint on the off-diagonal elements. 
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W. More recently, Florax and Rey (1995) and Griffith (1996) made a similar exercise 

examining the consequences of misspecifications. 5 In a few words, one can see that all 

these papers agree in that a wrong specification of W is an important problem. Another 

reflection about the importance of W can be found in Case et al. (1993), where they point 

out that “in principle, it would be desirable to estimate the elements of the W matrix along 

with the other parameters. In practice, such an approach is out of the question because of 

insufficient degrees of freedom”.6 Both characteristics (excessive simplicity and too much 

dependence on the choice of W) can be seen as drawbacks of the classical “spatial” 

autoregressive models. As summary, Anselin (2002) asserts: “the specification of the weight 

matrix is a matter of some arbitrariness and is often cited as a major weakness of the lattice 

approach”. 
 

In this paper we propose the use of Generalized Maximum Entropy (GME) econometrics 

to estimate spatial structures. This technique is very attractive in situations where one has 

to deal with estimation of “ill-posed” models or “ill-conditioned” models, as those shown 

in equations (2a-2c). An application of GME methodology for estimating spatial models 

has been already proposed by Marshall and Mittelhammer (2004), but in a different fashion. 

The structure of the paper is as follows: in section 2 we give an overview and some 

intuitions of the GME methodology. In section 3 we explain how GME can be used to 

estimate econometric models where some spatial interrelationships are present. Section 4 

compares the performance of GME estimators with the competing estimators based on 

Maximum Likelihood (ML) technique and the GME technique proposed by Marshal and 

Mittelhammer (GME-MM hereafter). A series of Monte Carlo simulations are computed to 

evaluate both techniques under several spatial structures. Finally, section 5 concludes.  

 

2. GENERALIZED MAXIMUM ENTROPY ECONOMETRICS: AN OVERVIEW 
In this section, we will give an introduction to GME econometrics, a collection of tools 

that can be very convenient to use scarce additional information in producing estimates for 

the unknown parameters of an econometric model. The aim of this section is just to give a 

brief introduction and some intuitions to the rationale of GME to the non-expert reader, 

                                                 
5 Other works where the effects of misspecification are treated are Anselin (1985) or Anselin and Rey (1991). 
Other more recent works that study the impact of different specifications of the weight matrices are Bavaud 
(1998), where he introduces the possibility of using non-zero weights for the elements in the main diagonal; 
or Getis and Aldstadt (2004), where they search a W matrix that measures all the spatial dependence  
6 Case, A. C., H. S. Rosen and J. R. Hines Jr. (1993): “Budget spillovers and fiscal policy interdependence”, 
Journal of Public Economics, 52, page 292. 
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rather than making an exhaustive review. The popularity of GME technique has increased 

remarkably since the comprehensive work by Golan, Judge and Miller (1996); the reader 

interested in a deeper analysis of this topic is strongly encouraged to read it7. 

 

To start with, let us assume that a random event can have K possible outcomes E1, E2,..., EK 

with the respective distribution of probabilities Kppp ,...,, 21=p  such that 1
1

=∑
=

K

k
kp . 

Following the formulation of Shannon (1948), the entropy of this distribution p will be 

 

∑
=

−=
K

k
kk ppH

1
ln)(p  (4)

which reaches its maximum when p is a uniform distribution ( k ,∀=
K

pk
1 ). The entropy 

measure H indicates the ‘uncertainty’ of the outcomes of the event. If some information 

(i.e., observations) is available, it can be used to estimate an unknown distribution of 

probabilities for a random variable x which can get values { }Kxx ,...,1 . 

 

Suppose that there are N observations { }Nyyy ,...,, 21  available such that 

  

Ni1  , ≤≤=∑
=

i

K

k
kik yxfp )(

1
 (5)

with { })(),...,(),( 21 xfxfxf N  is a set of known functions representing the relationships 

between the random variable x and the observed data { }Nyyy ,...,, 21 . In such a case, the 

ME principle can be applied to recover the unknown probabilities. This principle is based 

on the selection of the probability distribution that maximizes equation (4) among all the 

possible probability distributions that fulfil (5). In other words, the ME principle chooses 

the “most uniform” distribution that agrees with the information. The following 

constrained maximization problem is posed: 

 

∑
=

−=
K

k
kk ppHMax

1
ln)(p

p
  (6)

                                                 
7 Kapur & Kesavan (1992) is another good reference for an extensive analysis of entropy-based econometric 
tools. 
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subject to:  

Niyxfp i

K

k
kik 1,...,  ; ==∑
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∑
=

=
K

k
ip

1
1  

In this problem, the last restriction is just a normalization constraint that guarantees that 

the estimated probabilities sum to one, while the first N restrictions guarantee that the 

recovered distribution of probabilities is compatible with the data for all N observations. It 

is important to note that even for N=1 (a situation with only one observation), the ME 

approach yields an estimate of the probabilities. Hence, in situations in which the number 

of observations is not large enough to apply econometrics based on limit theorems, this 

approach can be used to obtain robust estimates of unknown parameters.  

 

For our current purposes, it is important that the above-sketched procedure can be 

generalized and extended to the estimation of unknown parameters for traditional linear 

models. Let us suppose that the problem at hand is the estimation of a linear model where 

a variable y depends on K explanatory variables xi: 

 

eXβy +=  (7)

where y is a ( )1N×  vector of observations for y, X is a ( )KN×  matrix of observations for 

the xk variables, β  is the ( )1K×  vector of unknown parameters ( )K1 ,...,ββ=′β  to be 

estimated, and e is a ( )1N×  vector reflecting the random term of the linear model. For 

each kβ , it will be assumed that there is some information about its 2≥M  possible 

realizations by means of a ‘support’ vector ( )Mbbb ,...,,...,' *
1=b , the elements of which are 

symmetrically distanced around a central value *
k b=β (the prior expected value of the 

parameter), with corresponding probabilities ( )kM1kk p,...,p=′p . The construction of the 

vector b is based on the researcher’s prior knowledge (or beliefs) about the parameter. 

Golan et al. (1996, chapter 8) devote more attention to consequences of choices concerning 

the elements of the vector b. For the sake of convenient exposition, it will be assumed that 

the M values are the same for every parameter, although this assumption can easily be 

relaxed. Now, vector β can be written as  
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where B and p have dimensions ( KMK× ) and ( 1KM× ), respectively.  The value for each 

parameter is then given by 

 

∑
=

==
M

m
kmmkk pb

1
'pbβ ; Kk ,...,1=  (9)

For the random terms, a similar approach is chosen. To express the lack of information 

about the actual values contained in e, we assume a distribution for each ie , with a set of 

2R ≥  values ( )R1 v,...,v'=v  with respective probabilities ( )iR2i1ii q,...,q,q=′q .8 Hence, we 

can write 
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and the value of the random term for an observation i equals 

 

∑
=

==
R

r
irrii qve

1
'qv ; N,...,1i =  (11)

And, consequently, equation (7) can be transformed into 

 

VqXBpy +=  (12)

Now, the estimation problem for the unknown vector of parameters β is reduced to the 

estimation of KN+  probability distributions, and the following maximization problem 

(similar to problem (6)) can be solved to obtain these estimates 

 

∑ ∑∑∑
= = ==

−−=
K

k

N

i

R

r
irir

M

m
kmkm qqppHMax

1 1 11,
)ln()ln(),( qp

qp
 (13)

subject to:  

                                                 
8 Usually, the distribution for the errors is assumed symmetric and centered about 0, therefore R1 vv −= . 
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By solving this GME program, we recover the estimated probabilities that allow us to 

obtain estimates for the unknown parameters.9 The estimated value of kβ  will be 

 

∑
=

=
M

m
mkmk bp

1
ˆβ̂ ; Kk ,...,1=  (14)

 Note that the solution of the constrained maximization problem (13) without additional 

information yields estimates equal to the expected value b* of the prior distribution, since in 

such a situation the recovered distribution would be uniform. 

 

3. THE GME APPROACH FOR ESTIMATING SPATIAL STRUCTURES 

3.1. THE GENERAL MODEL 

In this section, we suggest the use of GME to estimate spatial models with the general 

structure described in equation (2d). As commented previously, this is not the first 

proposal of using GME in this context: Marshall and Mittelhammer (2004) already 

proposed the use of GME data constrained estimator (GME-D) and GME normalized 

moment constrained estimator (GME-NM) in the context of spatial models, but only for 

estimating spatial structures expressed as equation (1). Our aim is to extent the use of 

GME estimators for more complex spatial structures.10  

 

The starting point is the linear model of equation (7) where a spatial autoregressive term is 

added and, consequently, transformed into equation (2d) 

 

εΩyXβy ++=  (2d)

                                                 
9 Golan et al. (1996, Chapter 6) show that these estimators are consistent and asymptotically normal. In Golan 
et al. (1996, Chapter 7) the finite sample behaviour of the GME estimators is numerically compared to 
traditional least squares and maximum likelihood estimators. In experimental samples with limited data, the 
ME estimators are found to be superior.  
10 For the shake of simplicity in this paper we focus only on the GME-D estimator. More details about their 
properties for linear models can be found in Golan et al. (1996, chapter 6) or Mittelhammer and Cardell 
(1998).  
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The GME procedure for the βk parameters and the ei error terms is the same as explained 

in section 3. Following this same reasoning, for each ρij, it will be assumed that there are 

2≥L  possible realizations (assumed the same for all ρij) that appear in a support vector 

( )Lzz ,...,' 1=z , with corresponding probabilities ( )ijLijij ss ,...,1=′s . Therefore, the matrix Ω 

with elements ρij will be expressed as  
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Where ⊗  denotes the Kronecker product. Consequently, equation (2d) can be rewritten as 

 

VqSyzXBpy +⊗′+=  (16)

Now, the GME program for the unknown set of parameters β and Ω is turned into the 

estimation of K+N(N-1)+N probability distributions, in the following terms: 
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By solving this GME program, we recover the estimated probabilities that allow us to 

obtain estimates for the unknown parameters. The estimated value of the spatial spillovers 

will be:11 

 

                                                 
11 The expressions of estimators for β parameters would be exactly as in the general linear model (12) 
described in the previous section. 
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ˆρ̂ ; ji ≠∀  (18)

 

3.2. THE USE OF ADDITIONAL “A  PRIORI”  INFORMATION  

The spatial model written in equation (2d) is the “most general” structure within a wide 

range of first-order spatial autoregressive processes. We speak about the “most general” 

because we are not imposing any prior belief that constraints the presence of spatial 

spillovers among the locations, which implies that many spatial parameters have to be 

estimated. Note that we allow the presence of spatial spillovers between any pair of 

locations, depending their magnitude or sign on the z values: the only prior information we 

are using refers to the values of the supporting vectors of the parameters.  

 

A more restricted spatial structure can be estimated by means of GME, however, including 

some extra a priori information in the model; basically this can be done by making some 

extra assumptions. A natural way to exemplify this is referring to the type of spatial models 

estimated by Marshall and Mittelhammer (2004). Basically, as commented previously, they 

estimate autoregressive models like (1) using GME to obtain estimates of the parameter ρ. 

Since they use a contiguity matrix for the spatial weights wij, they assume that the spatial 

spillovers between any two locations with a common border are symmetric and with 

identical value. This a priori information included in the GME procedure reduces the 

number of spatial parameters to estimate, just 1 in such a case, and obviously the 

complexity of the computations is also decreased. But other not so straightforward spatial 

models can be estimated by using different prior information. The possibilities of 

incorporating prior beliefs are almost infinite and vary very much depending on the specific 

problem analyzed; in the following sub-sections we will consider two different sources of 

this information a priori: assumptions about the properties of the spatial spillovers and the 

use of a spatial weight matrix.  

 

3.2.1 Assumptions about the properties of the ρij’s 

One way for reducing the complexity of models like (2d) would be that the researcher 

assumed that the spatial spillovers from a region j are exactly the same, not depending on 

the region they are going to. In other words, imposing that ji,hjhjij ≠∀==   ;ρρρ . This 

would transform the Ω matrix in a new matrix Π  such as 
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Obviously, in contrast with the general equation (2d) the number of spatial parameters to 

estimate reduces to N. The structure of the spatial autoregressive model looks  
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Or in a more compact form as 

 

εΠyXβy ++=  (20d)

A similar prior, but in a different direction, can be incorporated if the researcher believes 

that a region i receives exactly the same spillover from any other location, i. e., supposing 

that ij,liilij ≠∀==   ;ρρρ . In such a situation the matrix Ω would become Θ , being this 

new matrix  
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In such a case we would have a set of equations as 
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 (22c)

Or 

 

εΘyXβy ++=  (22d)

Again, the number of spatial parameter to estimate is N. The form of the GME programs 

to estimate both types of models (20d) and (22d) would be very similar to (17), but with 

some minor changes in the objective function and the constraints. Evidently, the type of 

spatial model depicted in (1) is a stronger assumption than structures as (20d) or (22d) 

because it supposes that jiij ≠∀=   ;ρρ . 

 

3.2.2 Using the W matrix as prior information 

In the previous subsection it has been explained how the GME methodology to estimate 

spatial models can be implemented without necessarily using a matrix of spatial weights W. 

However, if the researcher firmly believes that the wij elements chosen truly reflect the 

spatial structure examined, this belief can be incorporated to the GME estimation 

procedure as prior information that may reduce the complexity of the model. A 

straightforward way to do this is modifying the form of equations (2a-2c) and transforming 

them into 
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Or, in matricial terms, as 

 

εyΩXβy ++= w  (23d)

Where 
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Consider the case when the W matrix is binary (a contiguity matrix, for example), so the wij 

elements can only take values 1 or 0. In such a situation is quite clear that the number of 

spatial parameters to be estimated will almost certainly decreases: the number of spatial 

parameters to estimate (non-zero cells of matrix wΩ ) would be equal to the number of 

cells of W with value 1, let say S, and evidently )1( −≤ NNS .  

 

Of course, both types of information considered in these two subsections can be combined 

(or enhanced with other possible sources of prior beliefs). Although the use of this prior 

information can be helpful to alleviate the computational problems given by estimating a 

large number of parameters, note that the same problems commented in section 1 

concerning the use of a misspecified weight matrix W or an excessively simple (non-

realistic) spatial structure hold now.  

 

4. MONTE CARLO SIMULATIONS  

In this section, a numerical experiment will be carried out to compare the performance of 

GME methodology with other rival estimators in several scenarios, changing the features 

of the spatial first-order autoregressive process, as well as the a priori information 

incorporated to the GME programs.  

 

4.1. DESIGN OF THE EXPERIMENT 

The model to be simulated for a grid of 15=N  artificially generated locations will be  

 

Niyxy i

N
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jijii ,...,1;10 =+++= ∑
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  ερββ  (25)

 Or equation (2d) in matricial terms, where 
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[ ] Nii ,...,1;1,0 =≈   Nε  (26b)
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and [ ] Nixi ,...,1  ;10,0 =≈ U , which are kept constant along the simulations (26c)

For simulating several spatial structures, the elements ρij of matrix Ω have been generated   

in different scenarios 

 

[ ] jiij ≠∀≈   ;1,0Uρ  (27a)

[ ] jiij ≠∀−≈   ;5.0,5.0Uρ  (27b)

In the first case (27a) the spatial spillovers are generated uniformly and constrained to take 

only positive values not greater than 1. In (27b) they can take negative or positive values 

either, with the limit of 0.5 in absolute value. In both cases they are generated from a 

uniform distribution and they both keep constant along the simulations. For the situation 

(27a) we denote the Ω matrix as ΩF1 and for (27b) as ΩF2. The superscript F is used to call 

the attention to the point that all the off- diagonal elements of the matrix are not zero, so 

the matrix is completely “filled”. In contrast to these situations, we additionally simulate 

two alternative scenarios where just some cells of the matrix (out of its trace) are allowed to 

be non-zero; specifically  

 

[ ]
   

otherwise
border commona  have  and   if
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≈

0
1,0

ij

ij ji
ρ

ρ U
 (27c)

[ ]
   

otherwise
border commona  have  and  if





=
−≈

0
5.0,5.0

ij

ij ji
ρ

ρ U
 (27d)

In order to decide when two locations i and j can be considered as neighbors, a rook 

criterion has been applied to our grid of 15 simulated locations.12 The remaining 

characteristics are the same as in the two previous scenarios. The spillovers matrices 

simulated for cases (27c) and (27d) are labeled as ΩR1 and ΩR2 respectively. Clearly, the 

spatial processes generated by matrices ΩF1 and ΩF2 are more complex than those 

produced by ΩR1 and ΩR2, in the sense that the number of spatial relationships among the 

locations is greater in the former cases. Summing up, four different spatial autoregressive 

processes will be simulated 100 times, namely 

 

                                                 
12 If a contiguity matrix is specified, two cells of the regular grid are contiguous if they have a common border 
of non-zero length, but the common border may be defined in different ways. The rook criterions consider as 
common border the common edge. Following a queen criterion, the common borer would a common vertex.  
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εyΩXβy R1 ++=  (28a)

εyΩXβy R2 ++=  (28b)

εyΩXβy F1 ++=  (28c)

εyΩXβy F2 ++=  (28d)

 

4.2. COMPARING THE ESTIMATORS 

Next, we will compare the performance of various spatial GME estimators proposed along 

this paper with other more classical proposals that will be taken as a benchmark. 

Specifically, our yardstick will be the Maximum Likelihood (ML) estimator and the GME 

estimator (GME-MM) proposed in Marshall and Mittelhammer (2004). Note that both 

estimation procedures suggest estimating models like that depicted in equation (1). 

Therefore, in order to implement them, it is necessary to construct a matrix of spatial 

weights W for the grid of 15 locations. Among all the wide range of possibilities we have 

considered two very simple and popular binary configurations for this matrix, being both 

of them based on a contiguity criterion: one is defined following a rook criterion and 

another following a queen criterion, labeled respectively as WR and WQ. So we have models 

like 

 

εXβyWy R ++= ρ  (29a)

εXβyWy Q ++= ρ  (29b)

As an alternative, we have considered the GME estimators for the models shown in 

equations (2d), (20d) and (22d). Following the reasoning of the GME procedure, it will be 

necessary to specify some support for the set of parameters to estimate and for the errors. 

Obviously, this is also required for obtaining the GME-MM estimators. For all them, we 

have chosen the following supporting vectors: [ ]2,1,0=b  will be the discrete common 

support for β0 and β1, [ ]1,0,1−=s  will be the discrete common support for every ρij, and 

finally the support v for the error will be generated as a three-point vector centered about 0 

following the 3-sigma rule of variable y in each trial of the simulation, which is the most 

common practice.13  

 

                                                 
13 A deeper discussion about the choice of these supports will be realized in the following subsection, where a 
sensitivity analysis is made.  
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For the GME estimators proposed in this paper it is not strictly necessary to employ a W 

matrix, although it can be incorporated into the GME programs in the form of prior 

information. This information can be integrated in those models in the form of a belief 

provided by the researcher. Consequently, besides equations (2d), (20d) and (22d), we have 

taken into account the following models14 

 

εyΠXβy R ++=  (30a)

εyΠXβy Q ++=  (30b)

εyΘXβy R ++=  (31a)

εyΘXβy Q ++=  (31b)

εyΩXβy R ++=  (32a)

εyΩXβy Q ++=  (32b)

Which are basically extensions of the model (23d).  

 

All this battery of models will be used to estimate the spatial structures simulated by 

equations from (28a) to (28d) and their estimates will be compared with the ML and GME-

MM estimators under the two described configurations of matrix W. To realize the 

comparison we have computed along the 100 simulations the mean of several measures of 

error: the bias when estimating β0 and β1, the squared error (MSE) when estimating β0, β1 

and the spatial parameters ρij,15 and the squared forecasting error (MSFE). The following 

tables summarize the results of this comparison: 

                                                 
14 Again, the superscript R and Q are used to indicate the criterion followed (rook or queen) to define the 
matrix W used as prior information in the GME programs.  
15 In the case of MSE for ρij spillovers, we show the average computed for every i≠j. 
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Table 1. Comparison of the estimators in scenario (28a), true matrix is ΩR1 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR -1.956 -3.456 0.908 0.407 12.210 0.181 4.304 1169.431
ML with WQ -5.656 -7.156 0.893 0.393 54.936 0.216 14.502 732.333

GME-MM with WR 0.894 -0.606 0.606 0.106 0.368 0.015 6.081 612.916
GME-MM with WQ 0.871 -0.629 0.561 0.061 0.396 0.008 14.417 730.154

         
GME ΠR (30a) 0.911 -0.589 0.537 0.037 0.347 0.003 10.872 949.624
GME ΠQ (30b) 0.903 -0.597 0.523 0.023 0.560 0.002 15.025 1101.191
GME ΘR (31a) 0.954 -0.546 0.767 0.267 0.298 0.074 16.545 639.978
GME ΘQ (31b) 0.935 -0.565 0.624 0.124 0.319 0.020 17.810 1068.749
GME ΩR (32a) 0.907 -0.593 0.396 -0.104 0.352 0.013 12.383 682.534
GME ΩQ (32b) 0.915 -0.585 0.460 -0.040 0.342 0.003 13.998 900.810
GME Π   (20d) 0.918 -0.582 0.516 0.016 0.339 0.006 16.597 672.380
GME Θ   (22d) 0.985 -0.515 0.793 0.293 0.265 0.008 21.302 846.583
GME Ω   (2d) 0.950 -0.550 0.778 0.278 0.303 0.008 13.596 272.706

 

 

Table 2. Comparison of the estimators in scenario (28b), true matrix is ΩR2 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR 2.104 0.604 0.483 -0.017 1.296 0.026 3.272 60.129
ML with WQ -0.428 -1.928 0.511 0.011 18.709 0.086 5.772 98.179

GME-MM with WR 1.112 -0.388 0.478 -0.022 0.152 0.006 3.041 39.186
GME-MM with WQ 1.061 -0.439 0.447 -0.053 0.195 0.007 3.154 39.661

         
GME ΠR (30a) 0.951 -0.549 0.560 0.060 0.303 0.006 4.093 6.066
GME ΠQ (30b) 0.952 -0.548 0.564 0.064 0.300 0.006 4.096 3.536
GME ΘR (31a) 0.953 -0.547 0.616 0.116 0.300 0.018 6.544 22.264
GME ΘQ (31b) 0.959 -0.541 0.572 0.072 0.315 0.009 4.578 35.661
GME ΩR (32a) 0.970 -0.530 0.474 -0.026 0.282 0.002 3.419 9.089
GME ΩQ (32b) 0.922 -0.578 0.610 0.110 0.334 0.014 3.441 5.228
GME Π   (20d) 0.985 -0.515 0.906 0.406 0.265 0.165 3.673 2.022
GME Θ   (22d) 1.015 -0.485 0.619 0.119 0.236 0.025 6.839 25.692
GME Ω   (2d) 0.959 -0.541 0.677 0.177 0.293 0.074 3.296 1.908
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Table 3. Comparison of the estimators in scenario (28c), true matrix is ΩF1 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR -4.311 -5.811 0.827 0.327 34.959 0.169 67.558 41.187
ML with WQ -4.191 -5.691 0.802 0.302 32.233 0.154 66.631 39.178

GME-MM with WR 0.343 -1.157 0.003 -0.497 1.354 0.250 57.498 87.437
GME-MM with WQ 0.456 -1.044 0.011 -0.489 1.098 0.240 57.082 43.757

    
GME ΠR (30a) 0.498 -1.002 0.026 -0.474 1.106 0.225 66.447 41.935
GME ΠQ (30b) 0.416 -1.084 0.004 -0.496 1.183 0.246 63.568 37.405
GME ΘR (31a) 0.389 -1.111 0.016 -0.484 1.240 0.235 66.504 30.420
GME ΘQ (31b) 0.492 -1.008 0.098 -0.402 1.021 0.214 69.328 29.266
GME ΩR (32a) 0.443 -1.057 0.024 -0.476 1.122 0.227 64.837 35.655
GME ΩQ (32b) 0.505 -0.995 0.023 -0.477 0.992 0.228 64.426 22.588

GME Π   (20d) 0.667 -0.833 0.054 -0.446 0.695 0.200 45.204 13.369
GME Θ   (22d) 0.811 -0.689 0.121 -0.379 0.476 0.146 77.781 24.323
GME Ω   (2d) 0.760 -0.740 0.103 -0.397 0.549 0.158 65.490 21.246

 

 

Table 4. Comparison of the estimators in scenario (28d), true matrix is ΩF2 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR 5.841 4.341 -2.160 -2.660 65.287 18.198 19.099 7718.992
ML with WQ 8.730 7.230 -2.705 -3.205 78.772 18.488 18.353 10361.023

GME-MM with WR 0.946 -0.554 0.754 0.254 0.307 0.069 19.693 648.593
GME-MM with WQ 0.975 -0.525 0.897 0.397 0.276 0.163 19.120 338.425

    
GME ΠR (30a) 0.913 -0.587 0.312 -0.188 0.345 0.039 18.893 371.365
GME ΠQ (30b) 0.360 -1.140 0.008 -0.492 0.360 0.008 19.761 210.943
GME ΘR (31a) 0.938 -0.562 0.491 -0.009 0.316 0.003 20.258 314.012
GME ΘQ (31b) 0.975 -0.525 0.677 0.177 0.276 0.033 25.215 283.881
GME ΩR (32a) 0.896 -0.604 0.484 -0.016 0.365 0.004 18.697 202.635
GME ΩQ (32b) 0.936 -0.564 0.664 0.164 0.319 0.030 18.141 182.675
GME Π   (20d) 0.960 -0.540 0.754 0.254 0.292 0.073 23.282 82.636
GME Θ   (22d) 1.011 -0.489 0.712 0.212 0.239 0.047 21.657 290.845
GME Ω   (2d) 0.958 -0.542 0.743 0.243 0.295 0.060 18.320 136.584

 

Table 1 shows the average results for all these estimation alternatives for a scenario where 

the spillovers are bounded between 0 and 1 and they have been generated for every pair of 

locations with a common border following a rook criterion; i.e., the situation shown by 

equation (28a) where the matrix of spatial spillovers employed to simulate the results is 

ΩR1. Analogously, Tables 2, 3 and 4 do the same for the remaining 3 different scenarios 
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generated by, respectively, spatial matrices ΩR2, ΩF1 and ΩF2. In every table the first group 

of results (first four rows) refers to the performance of ML and GME-MM estimators 

under the two configurations of W considered. The following six rows are connected with 

the GME estimators of the spatial models in equations from (30a) to (32b). Note that these 

models also impose the spatial structure specified in W. Finally, the set of the last three 

rows refers to the GME estimators for models where no a priori information about W has 

been considered.   

 

The first two tables refer to scenarios where the ΩR matrices were generated following a 

rook criterion. Consequently, a rational feeling would be that the models that include the 

belief that the W matrix is like WR are going to yield lower measures of error than those 

that impose a spatial structure derived from a WQ matrix or those that do not use at all any 

configuration of the spillovers as a priori information. If we examine the results of the 

simulation, it can be observed how the imposition of the right spatial configuration has 

special transcendence only in the case when we use a ML estimator. The first two rows of 

Tables 1 and 2 show how, for ML estimators, if we make wrong choice in the design of W 

matrix, then the consequences over the accuracy of our estimates and/or the forecasting 

capabilities of the model can be serious.16 

 

The importance of this choice decreases if we use some of the GME based models. This 

can be seen as an advantage of using these techniques instead of more classical ML 

estimators since it seems that the gravity of a misspecification in W is reduced. Even if we 

do not include any a priori specified spatial structure, as in models (20d), (22d) or (2d) the 

measures of error present much smaller variability than for ML estimators. Note that this 

pattern holds for all the GME based estimators, including the GME-MM. Actually, in such 

scenarios where the spatial configuration can be more or less well described by the prior 

information included in the GME programs, there are not clear gains derived of using the 

type of GME estimators proposed in the paper (taking the GME-MM estimators as 

benchmark). Only models like (2d), which imply a considerable increase in the 

computational complexity, improve the forecasting accuracy of the GME-MM model, but 

they do not yield unquestionably better estimates for the β or ρij parameters. 

 

                                                 
16 This numerical result agrees with the conclusions of some previously mentioned papers, like Stetzer (1982) 
or Florax and Rey (1995). 
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The question now is: what happen if the actual spatial structure is more complex than the 

configuration of the W matrix we are specifying for our model? Tables 3 and 4 can give 

some clues about the answer. For the last two scenarios (28c) and (28d), one would expect 

that the GME estimators that do not include the structure contained in the W matrices 

somehow outperformed the ML and GME-MM estimators (since these impose a spatial 

structure derived from a rook or queen W matrix). The reason for this thought is given by 

the fact that these two scenarios are characterized by matrices of spatial spillovers ΩF1 and 

ΩF2, which implies spatial structures with a higher number of correlations among locations 

than are not taken into account when we use the rook or queen criterion. In other words, 

the type of models that uses a rook or queen W matrix includes “wrong” prior information, 

which forces the model to estimate a much more simple spatial structure than the actual 

one. 

 

The results of our Monte Carlo simulations do not disagree with this idea: in general terms 

the results of the MSE for the parameters and the MSFE measure present the lowest values 

for models (2d), (20d) and (22d). Note that the gains are notable if we refer to the ML 

estimator. Even if we consider the GME-MM estimator as a yardstick the gains are more 

modest but still remarkable. The most important ones refer to the estimation of the β 

parameters and to the forecasting capabilities of the models (in all the cases the squared 

errors are lower) rather than to the estimation of spatial spillovers ρij. An in-between 

possibility between models (2d), (20d) and (22d) and ML and GME-MM estimators is the 

use of models like those expressed in equations (30a) to (32b): they contain the spatial 

structure imposed by the W matrices considered (like ML and GME-MM models), but they 

avoid the assumption that just one single average spatial parameter ρ describes well the 

spatial configuration analyzed (unlike ML and GME-MM procedures). The figures of 

Tables 3 and 4 show clear improvements in the estimate of the β parameters and in the 

forecasting errors with respect to the ML estimators, but some doubts with their 

performance when estimating the spatial spillovers ρij. Compared to the GME-MM 

estimator, this same pattern holds although the gains derived from decreases in the squared 

errors are more moderate. 

 

All in all, the results of the simulation suggest that it may be better not imposing any spatial 

structure in the estimation than considering an excessively simple one. The use of models  

like those in equations (2d), (20d) or (22d) do not require the imposition of a prior belief 
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about the exact configuration of the spatial structure analyzed, but they estimate all the 

possible spatial relationships with no more assumptions than the functional form 

considered and the values included in the support vectors. The procedure proposed could 

be used successfully when there is not a clear certainty about what is the right specification 

for matrix W. 

 

4.3. TESTING THE SENSITIVITY OF THE RESULTS 

A potential drawback of the GME estimators is an excessively high dependence of the 

estimates on the support vectors specified. This is an important issue since when we 

compared the performance of GME with ML in the previous subsection we were not 

being completely “fair”, since we gave supports b and z that were quite well specified given 

how we simulate the different scenarios. For example, the GME estimates of spatial 

spillovers β parameters should necessarily lay between 0 and 2, which limits the potential 

error that we can yield compared with ML technique (which does not restrict their values a 

priori). In order to check if the relatively good performance of the proposed GME 

estimators is just a consequence of this correct prior belief included in the supports, a 

sensitivity analysis is required.  

 

To do that, we have taken the maximum and minimum estimates of β0, β1 and ρ obtained 

along the 100 simulations by the ML procedure. In the cases where the spillovers were 

generated between 0 and 1 these bounds were: 

 

0β̂  max.     0.439 1β̂  max. 1.605 ρ̂  max.  0.511 

0β̂  min. -11.326 1β̂  min. 0.297 ρ̂  min. -0.178 

And when the spillovers were generated between -0.5 and 0.5: 

 

0β̂  max.  25.535 1β̂  max.   6.467  ρ̂  max.  0.452 

0β̂  min. -10.664 1β̂  min. -13.215 ρ̂  min. -0.260 

If we take these extreme estimates as the bounds for new support vectors b’ and z’ note 

that we will augment the wideness of these vectors and we will increase, therefore, the 

uncertainty about the plausible values of the parameters. More important, we are providing 

the GME programs with “bad” information since the central points of the new support are 

far from being the true values of the parameters; in contrast with the original supports 
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chosen (this is especially clear for the case of the β parameters). Furthermore, note that the 

true β parameters are out of the range of the maximum and minimum values specified in 

the first case. 

 

Considering the same measures of error to evaluate all the rival estimating procedures we 

obtain the following results:17 

 

Table 5. Sensitivity analysis, scenario (28a), true matrix is ΩR1 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR -1.956 -3.456 0.908 0.407 12.210 0.181 4.304 1169.431
ML with WQ -5.656 -7.156 0.893 0.393 54.936 0.216 14.502 732.333

GME-MM with WR -4.934 -6.434 0.887 0.387 41.400 0.150 5.496 833.770
GME-MM with WQ -4.852 -6.352 0.753 0.253 40.473 0.068 14.231 1128.866

    
GME ΠR (30a) -5.543 -7.043 0.750 0.250 49.619 0.063 8.408 1303.408
GME ΠQ (30b) -5.422 -6.922 0.896 0.396 47.932 0.157 14.302 1138.529
GME ΘR (31a) -4.812 -6.312 0.895 0.395 39.858 0.156 14.544 686.022
GME ΘQ (31b) -5.374 -6.874 0.875 0.375 47.269 0.142 14.255 1115.650
GME ΩR (32a) -4.944 -6.444 0.798 0.298 41.554 0.089 8.524 805.401
GME ΩQ (32b) -5.274 -6.774 0.830 0.330 45.910 0.110 14.246 1220.308

GME Π   (20d) -4.506 -6.006 0.921 0.421 36.098 0.178 13.094 1287.435
GME Θ   (22d) -4.753 -6.253 0.866 0.366 39.122 0.134 13.863 1329.451
GME Ω   (2d) -2.345 -3.845 0.973 0.473 15.091 0.225 13.002 62.3409

 

                                                 
17 Obviously, the results obtained by ML estimators are identical to those obtained previously. 
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Table 6. Sensitivity analysis, scenario (28b), true matrix is ΩR2 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR 2.104 0.604 0.483 -0.017 1.296 0.026 3.272 60.129
ML with WQ -0.428 -1.928 0.511 0.011 18.709 0.086 5.772 98.179

GME-MM with WR 1.701 0.201 0.290 -0.210 0.779 0.050 3.381 38.441
GME-MM with WQ 2.068 0.568 0.322 -0.178 0.676 0.036 3.370 28.305

    
GME ΠR (30a) 1.503 0.003 0.192 -0.308 0.322 0.101 4.328 11.632
GME ΠQ (30b) 0.65 -0.850 0.294 -0.206 0.938 0.049 3.691 9.311
GME ΘR (31a) 0.671 -0.829 0.412 -0.088 0.949 0.018 5.435 36.588
GME ΘQ (31b) -0.430 -1.930 0.533 0.033 3.886 0.009 5.122 44.990
GME ΩR (32a) 0.045 -1.455 0.533 0.033 2.272 0.008 3.913 28.150
GME ΩQ (32b) 0.302 -1.198 0.307 -0.193 1.608 0.043 3.531 29.100

GME Π   (20d) -0.482 -1.982 0.005 -0.495 4.052 0.252 5.420 2.522
GME Θ   (22d) -1.109 -2.609 0.415 -0.085 6.630 0.019 5.125 38.876
GME Ω   (2d) -2.699 -4.199 0.302 -0.198 18.084 0.055 5.481 10.914

 

 

Table 7. Sensitivity analysis, scenario (28c), true matrix is ΩF1 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR -4.311 -5.811 0.827 0.327 34.959 0.169 67.558 41.187
ML with WQ -4.191 -5.691 0.802 0.302 32.233 0.154 66.631 39.178

GME-MM with WR -3.105 -4.605 0.329 -0.171 21.260 0.029 64.841 98.721
GME-MM with WQ -1.980 -3.480 0.305 -0.195 12.158 0.038 68.710 50.024

    
GME ΠR (30a) -3.208 -4.708 0.487 -0.013 22.296 0.003 59.228 47.413
GME ΠQ (30b) -2.071 -3.571 0.332 -0.168 12.792 0.029 56.070 62.529
GME ΘR (31a) -1.989 -3.489 0.331 -0.169 12.196 0.030 40.667 36.741
GME ΘQ (31b) -2.440 -3.940 0.376 -0.124 15.567 0.016 42.339 105.203
GME ΩR (32a) -2.341 -3.841 0.392 -0.108 14.826 0.014 58.846 42.114
GME ΩQ (32b) -2.131 -3.631 0.331 -0.169 13.251 0.029 55.422 52.947

GME Π   (20d) -1.624 -3.124 0.384 -0.116 9.791 0.015 43.048 40.054
GME Θ   (22d) -1.976 -3.476 0.331 -0.169 12.141 0.030 42.870 40.053
GME Ω   (2d) -1.026 -2.526 0.443 -0.057 6.427 0.005 38.475 46.694
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Table 8. Sensitivity analysis, scenario (28d), true matrix is ΩF2 

Average results 0β̂  Bias 0β̂ 1β̂ Bias 1β̂ MSE 0β MSE 1β  MSE ijρ  MSFE

    
ML with WR 5.841 4.341 -2.160 -2.66 65.287 18.198 19.099 7718.992
ML with WQ 8.730 7.223 -2.705 -3.2045 78.772 18.488 18.353 10361.023

GME-MM with WR -0.195 -1.695 0.582 0.082 3.186 0.011 18.034 667.669
GME-MM with WQ -0.518 -2.018 0.832 0.332 5.541 0.132 18.088 333.742

    
GME ΠR (30a) 4.930 3.430 -0.699 -1.199 13.185 1.467 18.619 419.983
GME ΠQ (30b) 0.359 -1.141 0.138 -0.362 2.338 0.540 19.455 333.416
GME ΘR (31a) 1.576 0.076 -0.009 -0.509 0.304 0.269 20.352 369.882
GME ΘQ (31b) 1.731 0.231 -0.154 -0.654 0.231 0.434 20.351 476.251
GME ΩR (32a) 1.677 0.177 0.235 -0.265 0.672 0.048 18.662 452.720
GME ΩQ (32b) 0.046 -1.454 0.218 -0.282 2.802 0.093 19.322 390.753

GME Π   (20d) -0.215 -1.715 0.185 -0.315 3.944 0.135 19.883 284.965
GME Θ   (22d) 1.806 0.306 0.052 -0.448 0.360 0.209 18.928 403.105
GME Ω   (2d) 0.081 -1.419 -0.013 -0.513 2.200 0.276 19.925 203.191

 

Tables 5 to 8 show the behavior of the GME estimators do under these new support 

vectors. Obviously, the measure errors for the β parameters increase and the forecasting 

errors are also larger almost in all the situations. The change in the MSE’s for parameters ρij 

is not so important, since the new supports are not radically different from the true range 

specified of these parameters. Even so, the general proposal explained in the previous 

subsection still remains: from tables 7 and 8 we can observe how the GME models (2d), 

(20d) and (22d) that do not employ a W matrix still outperform competing estimators 

based on models that consider  a wrong (too simple) configuration of the actual spatial 

structure.  

 

When one wants to estimate a spatial econometric model it is necessary to assume some 

prior information. One possibility is using a classical a approach and specifying a matrix W 

of spatial weights: this could imply important consequences for the accuracy of the 

estimates if this belief is not correct. Other possibility is using some of the GME estimators 

assuming that the support vectors that we have to define for the parameters really bound 

their actual value. One might think that, in most cases, for the researcher is easier to define 

plausible values of the economic parameters rather than giving an accurate description of 

spatial structure by means of defining a matrix W. The basic idea that suggest the results of 

this sensitivity analysis is that the performance of the spatial models are more vulnerable to 
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wrong priors of the first type than to bad specifications of the vectors used as support by 

the GME estimators.  

 

5. CONCLUDING REMARKS 

Generalized Maximum Entropy (GME) econometrics is an attractive methodology in 

situations where one has to deal with estimation of “ill-posed” or “ill-conditioned” models. 

In this paper we propose the use of this technique to estimate complex spatial structures, 

which fit with these “ill-behaved” situations where the number of observations is not large 

enough to estimate the desired number of parameters. To compare the performance of the 

proposed technique to other more traditional estimation methodologies a series of Monte 

Carlo simulations are carried out under different scenarios. The outcomes of the 

simulations suggest that the proposed GME technique outperforms other competing 

estimators if the actual spatial structure is different from the assumptions specified in the 

W matrix, which is inevitably used by these other methodologies. 

 

The two most important advantages of the proposed GME procedure are: 1) the possibility 

of obtaining “individual” estimates of ρij spatial parameters for each pair of locations 

(instead of a single “average” spatial parameter ρ) , and 2) it does not requires necessarily 

the assumption of an (exogenously specified) matrix of spatial weights W. On the other 

hand, it requires the specification of priors for the values of the parameters to be estimated. 

Consequently, the use of the GME procedure implies switching from assumptions about 

the underlying spatial structure to beliefs about the values of the parameters. However, our 

feeling is that for the researcher is generally easier to make more accurate assumptions 

about the plausible values of the parameters than about the structure of the spatial 

relationships among the locations studied. Nevertheless, this paper must be seen just as a 

first approximation to an approach that potentially can be very useful for the estimation of 

spatial models. However, much further research in this direction must be done with the 

GME technique proposed. Its performance has to be evaluated under more sophisticated 

definitions of W, different types of spatial correlation, sizes of sample, etc.  
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