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Abstract: Taking as a starting point the evidence of growing disparities in the 1977-2003 

years, the paper investigates the pure hysteresis hypothesis for regional unemployment rates 

in Italy. Relying both on univariate and panel unit-root tests, we can confidently reject the 

unit-root hypothesis. The implication of this result is that, however persistent, shocks to 

regional unemployment will be temporary. We, then, proceed to estimate the NAIRU for each 

of the 20 Italian regions. Our estimates of the regional NAIRUs turn out to be fairly precise 

and allow us to draw two interesting conclusions. Firstly, the hypothesis of constant regional 

NAIRUs between 1977 and 2003 is supported by the data. Secondly, we find that there is a 

significant degree of heterogeneity among the regional NAIRUs. Finally, we investigate the 

cyclical behaviour of regional unemployment and find that region-specific demand shocks 

play a major role. 
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The nature of regional unemployment in Italy 
 
 

 

1. Introduction 

 

After the low levels of the post-war years, the Italian unemployment rate started to rise 

significantly from the mid-1970s, reached the 10% threshold in the early 1980s and remained 

above it until the end of the 1990s. The high-unemployment regions, located in the 

Mezzogiorno, saw unemployment grow more consistently and are now experiencing to a 

lesser extent the recent reversion to lower rates recorded at the national level (see Figure 3 in 

the Appendix). As a result, the last three decades have been characterised by a widening of 

regional unemployment differentials in Italy, a distinctive feature of the Italian economy.    

This pattern does not constitute an anomaly at the EU level. Indeed, the high and 

highly persistent unemployment rates experienced by many countries and regions in Europe 

in the same period are commonly cited as evidence in favour of the “hysteresis” hypothesis. 

While the traditional view of unemployment changes describes them as cyclical deviations 

from the natural rate or NAIRU, theories which describe the unemployment rate as a 

hysteretic process suggest that temporary shocks will have permanent effects. Formally, while 

the first approach implies that the unemployment rate follows a stationary, mean-reverting 

path, the latter depicts it as a non-stationary, unit root process1.  

Several studies have recently investigated the issue, both on a cross-country and cross-

regional basis, but very little work has so far addressed systematically this problem in the 

context of the Italian regions2. The first part of this paper aims at filling this gap in the 

literature using an array of unit-root tests to assess the stochastic properties of the Italian 

regional unemployment rates. Though performing several time-series tests as well, we rely 

primarily on the results of the more powerful panel unit root tests that we also make use of.  

                                                 
1 At a theoretical level the notion of a non-stationary unemployment rate is clearly problematic since, 

strictly speaking, a bounded variable cannot be a random walk. However, as León-Ledesma and McAdam 
(2004) point out, “hysteresis as a unit root should not necessarily be understood as a ‘true’ description of the data 
generating process but as local approximation over a sample period” (p. 384). Moreover, as argued by Brunello 
et al. (2000), the time required for the series to manifest its stationarity may be quite long and “during this 
interval the unemployment rate is exactly equivalent to a standard unrestricted random walk” (p. 158).       

2 One study that presents evidence pointing to the presence of a unit root in (relative) regional 
unemployment rates in Italy is that of Brunello et al. (2001). See also Eichengreen (1993) and Brunello et al. 
(2000). 
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To preview our results, the panel unit root tests lead us to confidently reject the 

hysteresis hypothesis in favour of the NAIRU approach. Thus, in the second part of the paper, 

we move on to the estimation of region-specific NAIRUs and find a significant degree of 

heterogeneity between them. Moreover, our results suggest that the assumption of a constant 

NAIRU in the 1977-2003 period fits well the experience of most Italian regions. 

Though ultimately mean-reverting, the Italian regions’ unemployment rates do display 

a fairly high degree of persistence, so that they may take a rather long time to recover from 

temporary deviations from the NAIRU. Taking this into account, we devote the final part of 

the paper to an analysis of the short-term variation of regional unemployment and again find a 

high degree of heterogeneity across regions. 

The results of our analysis and their implications are finally summarised in the 

concluding section of the paper.       

  

 

 

2. Theoretical background 

 

The seminal contributions of Friedman (1968) and Phelps (1967, 1968) established the 

notion of the natural rate of unemployment in macroeconomics, characterising it as the 

(unique) equilibrium rate which unemployment will return to after any temporary deviations3. 

The hypothesis of a stationary, mean-reverting unemployment rate fits well the European and 

US data for the 1950s and 1960s, but started to be questioned in the 1970s when, particularly 

in Europe, shocks to unemployment displayed an unusual, by historical standards, degree of 

persistence. Phelps (1972) firstly suggested that the natural rate of unemployment may not be 

unique but path-dependent, its value a positive function of the actual unemployment rate, so 

that it could rise as a consequence of negative shocks leading to prolonged departures from 

equilibrium4. Blanchard and Summers (1986, 1987) argued along the same lines and linked 

these ideas to the concept of hysteresis to provide an explanation for the high persistence of 

European unemployment.  

Though many studies have since investigated the issue in a variety of ways, the 

economic meaning of hysteresis, as currently used in the literature, is not unambiguous. 
                                                 

3 Friedman described the natural rate of unemployment as the unemployment rate that would be 
“ground out by the Walrasian system of general equilibrium equations” [Friedman (1968, p. 102)]. 

4 Thirlwall (1983) shows that the dependence of the NAIRU on the actual unemployment rate is 
implicit in the estimation framework of the expectations-augmented Phillips curve. 
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Formally, a variable is subject to hysteresis when it is linearly dependent on a combination of 

its past values, with coefficients summing up to one. Econometrically, this is equivalent to a 

unit root process and implies that temporary shocks will have permanent effects on the 

evolution of the variable under analysis (e.g. the unemployment rate). However, the term 

hysteresis is also used more “loosely” to identify cases of high persistence, i.e. near unit root 

processes, in which the variable in question displays mean-reversion, albeit at a very slow 

speed [Bean (1992)]. The two phenomena have been referred to as, respectively, “pure 

hysteresis” and “partial hysteresis” [Layard et al. (1991), León-Ledesma and McAdam 

(2004)].   

Unit root tests provide a natural framework to test for “pure hysteresis” and there is 

now a sizable and growing literature on the topic. The findings of early studies were generally 

in favour of the unit root hypothesis for the European unemployment, while the evidence for 

the US was more mixed5. However, the reliance of these initial analyses on univariate unit 

root tests, characterised by low power when the available time series is short and/or the 

variable under consideration is subject to a high degree of persistence, meant that their results 

were soon questioned. Critically, given their drawbacks, these tests are particularly unreliable 

when the unemployment rate is subject to “partial hysteresis”. 

Following the general improvements in unit-root testing techniques, two different 

routes were followed to correct for the low-power problem. The first involves the use of time 

series tests which allow for the presence of one or more structural breaks in the series6. As 

shown by Perron in his 1989 seminal paper, traditional time series tests are likely to provide 

evidence in favour of the unit root hypothesis in the presence of a structural break, even 

though the series under analysis is in fact stationary. Unit root tests with structural breaks 

allow the researcher to use the entire time series available, as opposed to splitting the sample 

at the time of the breaks and performing the tests on sub-samples. Thus, they represent a more 

powerful alternative and have been widely used in the literature on unemployment hysteresis. 

Examples include Arestis and Mariscal (1999), Papell et al. (2000), Ewing and Wunnava 

(2001). The second route is that followed by those who rely on the implementation of panel 

unit root tests, in which case it is the exploitation of cross-sectional information that confers a 

                                                 
5 See, among others, Nelson and Plosser (1982), Blanchard and Katz (1992), Mitchell (1993), Decressin 

and Fatás (1995), Røed (1996), Leslie et al. (1995).  
6 Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992) and Perron (1997) develop unit 

root tests allowing for one break whose location in the series is endogenously determined. Lumsdaine and Papell 
(1997) extend the test to allow for two breaks.   
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greater power to the test. Song and Wu (1997, 1998), Johansen (2002) and León-Ledesma 

(2002) are but a few papers in a fast-growing literature.  

Both the univariate unit root tests with breaks and the panel unit root tests have 

consistently provided little support for the hysteresis hypothesis, either in the US or Europe. 

This is even more so, however, for the latest advance in unit root testing which combines the 

advantages of these two testing procedures in developing panel unit root tests with structural 

breaks. Murrey and Papell (2000), Camarero et al. (2006), Strazich et al. (2001) have used 

different versions of this new type of tests to investigate unemployment hysteresis in OECD 

countries and decidedly rejected the unit-root hypothesis. 

The most recent evidence, therefore, is in favour of the natural rate or NAIRU 

approach. The first objective of this paper is that of assessing if this can be confirmed in the 

case of the Italian regions.   

 

 

 

3. Data issues and stylised facts 

 

The unemployment series used in this paper consists of annual data covering the 

period 1977-2003 and has been reconstructed relying on data collected by ISTAT, the Italian 

national statistical agency, through its “Quarterly Labour Force Survey” (Rilevazione 

Trimestrale sulle Forze di Lavoro, RTFL).  

The design of the RTFL survey and its definition of unemployment have undergone 

various changes over the years7 which, since an official ISTAT reconstruction for the entire 

period is not as yet available, create some complications for empirical work and, in particular, 

for unit-root testing8. In our case, two modifications introduced in 1984 and 1992 create two 

breaks in the series which must be dealt with in our search for a unit root in regional 

unemployment rates.  

One way of doing so is by carrying out the analysis on the “break-free” 1992-2003 

sub-sample. Though feasible, this approach is not very promising as it reduces significantly 

                                                 
7 The most recent and profound revision occurred in 2004, when, apart from further definition changes, 

the survey data collection became continuous, i.e. it is now conducted on a weekly basis as opposed to the 
previous one-week-per-quarter method. As a consequence, the survey is now named “Continuous Labour Force 
Survey” (Rilevazione Continua sulle Forze di Lavoro, RCFL). All the relevant information on the RTFL and the 
RCFL can be found on the ISTAT website at http://www.istat.it/.  

8 Some authors have relied on homogenous series, characterized by longer times series but usually 
available for a smaller number of cross-sections [see, for instance, Brunello et al. (2000)]. 
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the already short time-series dimension of our dataset. A viable alternative, which we will 

primarily rely upon, is that of exploiting the versatility of techniques that allow for the 

presence of structural breaks in the series, so as to extend the analysis to a longer sample 

period. Given the short time-span covered by our dataset, the use of multiple-break tests 

would be problematic, so that we choose to restrict the number of the breaks to one and our 

search of a unit root in Italian regional unemployment rates to the years 1984-20039. The 

latter sub-sample allows us to exclude the year 1979 and those immediately following the 

second oil shock, as well as the recession of the early 1980s, which are likely to present 

further break problems in the data. 

 

 

 
Figure 1 - Regional unemployment rates 
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9 Examples of time series unit-root tests allowing for two breaks include those developed by 
Lumesdaine and Papell (1997) and Lee and Strazich (2003). For a multiple-break panel unit-root test see 
Carrion-i-Silvestre et al. (2004). 
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A narrower focus on the most recent years may be interesting in itself since, as 

illustrated in Figure 1, starting from the late 1990s the Italian regions’ unemployment rates 

show some signs of mean-reversion. The two straight vertical lines in the figure indicate the 

1984 and 1992 RTFL breaks. The 1984 modifications of the survey involved primarily an 

overhaul of the questionnaire, with a significant increase in the number and detail of the 

questions being asked. Though not immediately apparent from the figure, this resulted on 

average in an increase of the measured unemployment rate. As for the 1992 revision, the most 

significant adjustment introduced was the exclusion from the RFTL definition of 

unemployment of those workers who, though jobless, have not concretely searched for a job 

in the thirty days preceding the interview. The impact of this methodological change in 

reducing the measured unemployment rate is clearly visible for most of the regions 10. 

Similarly, the higher dispersion of the regional rates at the end of the period 

considered is apparent and it can be noted that, with the exception of Abruzzo, all the 

Southern regions’ rates display a divergent pattern, both from their values at the beginning of 

the period and from the remaining regions’ rates. Using the coefficient of variation (CV) for a 

rough check of this visual impression shows that the degree of dispersion of regional 

unemployment rates has nearly doubled between 1977 and 2003. Furthermore, it increased 

also within the two sub-groups of the Northern and Southern regions, but much more so 

among the latter (Table 1)11.   

 

 

Table 1 – Coefficient of variation of regional unemployment rates, 
selected years. 

 All regions Northern regions Southern regions 

1977 0.378 0.337 0.186 
 
2003 0.754 0.369 0.352 

    
Percentage  
Change  

99.47 9.49 89.25 

                                                 
10 On the general effects of the RTFL 1992 revision see, among others, Casavola and Sestito (1994) and 

Trivellato (1993).   
11 If one excludes Abruzzo, the degree of dispersion between the Southern regions rises by just about 

17.43 per cent in the period. Since the early 1980s, this small region, belonging to the so called “Adriatic Belt”, 
has significantly reduced its gap with the most advanced part of the country, consistently outperforming the other 
Mezzogiorno economies. In fact, by many economic indexes, Abruzzo is now more similar to the average 
Northern region than it is to the Southern. For comparability purposes with other studies, we follow the 
traditional North-South division, while recognising that the inclusion of Abruzzo in the Mezzogiorno sub-group 
may be questionable.            
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All of this suggests that devoting attention to the geographical dimension of the 

problem may be fruitful. Following Blanchard and Katz (1992), researchers have generally 

done so relying on some type of relative regional unemployment rates, that is measuring 

regional rates with respect to some aggregate (national, EU, etc…) average. Brunello et al. 

(2001) adopt this approach to analyse the growing unemployment disparities between Italian 

regions and their degree of persistence. Using a reconstructed series for the 1964-1994 period, 

they perform several univariate unit-root tests on relative regional unemployment rates, 

defined as the ratios of the regional to the national rates, and conclude that “not only 

unemployment differentials exist, but they also diverge in a nonstationary way. In other 

words, there are no signs of a reversion of the observed diverging tendency towards a 

common equilibrium” (p. 111). In what follows we re-examine this issue. 

 

 

 

4. Unit root tests: a brief overview of the theory 

 

We make use of two univariate unit root tests which allow for the presence of one 

structural break in the series, occurring at a known date. These tests were developed by 

Perron (1989, 1990) and are hereafter termed P89 and P90. The first includes a time trend, 

while the second is appropriate for non-trended data12. We choose to perform both of them 

because in many cases it is not clear which alternative hypothesis between trend- and level-

stationarity is more appropriate for the time series we consider. Similarly, we take advantage 

of the flexibility of these tests in modelling the impact of a structural break on the mean 

and/or trend of the series and present the results of all the versions of the P89 and P90 tests.    

Furthermore, we will rely upon three panel unit root tests developed by Pesaran 

(2005), Murray and Papell (2000) and Im et al. (2005). The latter two, henceforth respectively 

referred to as MP and ILT tests, allow for the presence of a structural break in the series13. 

Both the Pesaran (2005) and ILT panel tests are derived from univariate counterparts, so that, 

for completeness purposes, we will present the results of the latter as well.  

                                                 
12 The inclusion of a deterministic trend is subject to similar critiques as those relating to the use of unit-

root tests (see footnote 1) so that, likewise, similar arguments can be used to justify it. For instance, Papell et al. 
(2000) observed that “while a nonzero trend for unemployment does not make sense asymptotically, a slowly 
increasing natural rate could be represented by a trend stationary process in small samples” (p. 309). 

13 The ILT test allows for a maximum of two breaks. 
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When using unit root tests with breaks, i.e. the P89, P90, MP and ILT tests, we will 

exogenously impose the 1992 break and perform them on the whole 1984-2003 sample 

period14. However, as it does not consider the possibility of breaks in the series, the 

implementation of Pesaran’s (2005) test is necessarily restricted to the 1993-2003 years. 

 

 

 

Perron’s tests 

 
In his seminal paper, Perron (1989) showed that, in the presence of a structural break, the 

traditional univariate tests can lead to the erroneous non-rejection of the null of a unit root 

when the time series under consideration is trend-stationary. Assuming the break date is 

known, he proposes unit-root tests which correct for this problem allowing for a one-time 

change in the intercept and/or the slope of the trend function, under both the null and 

alternative hypotheses. Nesting the latter, three different models arise: 

  

• A “Crash” or “Additive outlier” (AO) model, which allows for an instantaneous 

change in the slope and is specified as  

 

( ) 1
1

k

t t t i tt
i

y DU t D TB y c yµ θ β δ α − −
=

= + + + + + ∆ +∑ i te

T

                                        (1) 

 

where  indexes time, TB  is the break date, 1,....,t = 1DU =  if t  and 0 

otherwise,  if  and 0 otherwise. 

TB>

( ) 1D TB = 1t TB= +

 

• Two versions of a “Changing growth” or “Innovational outlier” model, where the 

trend function is assumed to undergo a gradual change. The first model (IO1) allows 

only for a change in the intercept and can be formalised as follows   

 

1
1

*
k

t t t i t
i

y DU t DT y c yµ θ β δ α − −
=

= + + + + + ∆ +∑ i te

                                                

           (2) 

 
14 This is why, in briefly describing the characteristics of the MP and ILT tests, we do not dwell upon 

the methods for the endogenous selection of the break date, which both tests include. The reader is referred to the 
relevant papers. 
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where *DT t TB= −  if t  and 0 otherwise. The second (IO2) includes a change in 

both the intercept and the trend function:  

TB>

 

( ) 1
1

k

t t t t i tt
i

y DU t DT D TB y c yµ θ β γ δ α − −
=

= + + + + + + ∆ +∑ i te                             (3) 

 

where DT t=  if t  and 0 otherwiseTB> 15. 

 

In all cases, the null hypothesis of a unit root is rejected if the t-statistic on 1α =  is 

larger (in absolute terms) than the critical values provided by Perron (1989). 

 

  

In subsequent work, Perron (1990) and Perron and Vogelsang (1992b) adapted the test to 

the case of non-trended data.  

 

• In its AO version, the P90 test is carried out with a two-step procedure. Firstly, the 

deterministic part of the series is removed using the estimates from 

 

ty DUt tyµ θ= + +                                                                                                 (4) 

 

The test is then performed using the t-statistic for 1α =  in the regression 

 

( ) 1
0 1

k k

t i t i t it i
i i

y D TB y c yδ α − −−
= =

= + + ∆∑ ∑ te+                                                             (5) 

 

where  are the residuals from (4) and the dummy variables ty ( )t i
D TB

−
 are included 

to ensure that the t-statistic on α  is invariant to the value of the truncation lag 

parameter k and has the same asymptotic distribution as in the IO model [Perron and 

Vogelsang (1992a)]. 

 
                                                 

15 The test requires the absence of serial correlations in the residuals, thus the inclusion of lagged 
differences of the data as regressors. As for all the tests considered in this paper, the truncation lag parameter k is 
selected using data-dependent methods. 
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• The IO model results from excluding the deterministic trend component from equation 

(1) above. Thus, it is formalised as follows: 

 

( ) 1
1

k

t t t i tt
i

y DU D TB y c yµ θ δ α − −
=

= + + + + ∆ +∑ i te                                                 (6) 

 

and the null of a unit root is, as usual, tested using the t-statistic on 1α = . 

 

 

 

Panel unit-root tests 

 

• The test proposed by Pesaran (2005) is an extension of the widely used IPS test [Im et 

al. (2003)], devised to make it suitable even in the presence of cross-sectional 

correlation. It is based on the following dynamic linear heterogeneous model for a 

panel of N cross-sectional units and T time series observations 

 

( ), , 11 ,j t j j j j t j ty yδ µ δ −= − + + 1,......,j Nu ,         = ,      1,......,t T=                      (7) 

 

It is assumed that the initial values ,0jy  are given and that the error term, ,j tu , has the 

one-factor structure 

, ,j t j t ju tλ η ε= +                                                                                                       (8) 

 

where tη  is the unobserved common effect and ,j tε  is a unit-specific idiosyncratic 

shock. Equations (7) and (8) can be conveniently rewritten as 

 

, , 1 ,j t j j j t j ty y j tα β λ η−∆ = + + + ε               (9) 

 

where ( )1j j jα δ µ= − , ( )1j jβ δ= − −  and , , , 1j t j t j ty y y −∆ = − . The unit root hypothesis 

considered is  
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0 : jH 0β =  for all  j              (10) 

 

tested against the possibly heterogenous alternatives 

 

1 : 0jH β < , 11, 2,......,j N= , 0jβ = , 1 11, 2,......,j N N N= + +         (11) 

 

It is further assumed that 1N N , the fraction of the individual processes that is 

stationary, is non-zero and tends to the fixed value φ  such that 0 1φ< ≤  as . 

The assumptions made imply that the composite error, 

N →∞

,j tu , is serially uncorrelated but 

this restriction can be relaxed considering stationary error processes of the type 

 

, , , 1
1

k

j t j i j t j t j t
i

u u ,ρ λ η ε−
=

= +∑ + .  

 

Since the common factor tη  is assumed to be stationary, any non-stationarity in this 

setting will arise from the autoregressive part of (7), i.e. 1jδ =  so that 0jβ =  in (9). 

To test the null hypothesis (10) in the general case of serially correlated errors, 

Pesaran (2005) proposes to use the t-ratio of the OLS estimate of jb  ( )ˆ
jb  in the 

following cross-sectionally augmented Dickey-Fuller (CADF) regression 

 

, , 1 1 , , ,
0 1

k k

j t j j j t j t j i t i j i j t i j t
i i

y a b y c y d y y eγ− − − −
= =

∆ = + + + ∆ + ∆ +∑ ∑ ,          (12) 

 

where 1
,

1

N

t j t
1

,
1

N

t j
j

y N y−

=

∆ = ∆∑ ,
j

y N y−

=

= ∑ , t  and j te  is the regression error. The cross-

sectional average 1ty −  is included as a proxy for the unobserved common factor tη , 

while the lagged values of ty∆  and ty∆  correct for autocorrelation. The testing 

procedure can readily be extended to models containing linear trends.  

The panel unit root test is a cross-sectionally augmented version of the IPS test, given 

by  
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1

1

N

i
j

CIPS N CADF−

=

= ∑              (13) 

  

where  is the cross-sectionally augmented DF statistic for the j-th unit given by 

the t-ratio of 

iCADF

jb  in equation (12). A truncated version of the test is also proposed, 

where the  statistics are truncated to avoid undue influences of extreme 

outcomes when the time series is short (i.e. when T is in the region of 10-20). The 

truncated versions of the tests are named, respectively,  and . 

iCADF

*
iCADF *CIPS

 

 

• Building on Perron and Vogelsang (1992a) and Papell (1997), Murray and Papell 

(2000) construct a panel unit root test for non-trended data which allows for a one-

time change in the mean. The test is based on an AO model, the break date and speed 

of mean-reversion are assumed to be common across the panel units (e.g. regions), 

while the intercepts, the coefficients on the break dummy and the serial correlation 

structure are unit-specific. The testing procedure is a panel adaptation of the two-steps 

method outlined in (4) and (5) above, so that it is based on the following two 

equations 

 

, , ,j t j j t jy DU tyµ θ= + +                                                                                        (14) 

 

( ), , , 1 , ,,
0 1

jkk

j t j i j t j i j t i j tj t i
i i

y D TB y c yδ α − −−
= =

= + + ∆∑ ∑ ,e+

N

                                            (15) 

 

 

where  indexes the cross-sections, 1,....,j = 1,....,t T= ,  is the break date, 

 if  and 0 otherwise, 

TB

, 1j tDU = t TB> ( ) ,
1

j t
D TB =  if 1t TB= +  and 0 otherwise and 

,j ty  are the residuals from (14). To allow for contemporaneous correlation, equation 

(15) is estimated by feasible generalised least squares (SUR) and the unit-root test is 

then performed using the t-statistic for 1α = . 
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• Im et al. (2005) develop a panel version of the Lagrangian Multiplier (LM) unit-root 

test proposed by Schmidt and Phillips (1992) and, following Amsler and Lee (1995), 

extend it to allow for a structural shift in the trend of each individual time series. 

Amsler and Lee (1995) showed that the asymptotic distribution of the (no-break) LM 

test does not change when dummy variables are included in the model, implying that 

“the asymptotic validity of the SP test statistic under the null is not affected by the 

incorrect placement of the structural break, by the allowance for a break when there is 

no break, or by no allowance for a break when there is a break” (p. 359). Im et al. 

(2005) prove that this invariance property carries over to the panel unit-root test under 

a very mild condition, i.e. that N T p→ , where p is a finite constant, as both 
16,N T →∞ . 

We give a brief description of the extended version of the test, in which a structural 

shift occurs at time jTB , in the jth time series. In this case the assumed data-

generating process (DGP) is 

 

1 2

, 1

,

,
jt jt jt

jt j j j jt

jt j i t jt

y z x

z t

x x

γ γ δ

φ ε−

= +

= + +

= +

D

T

1

            (16) 

 

for , , where 1,....,j N= 0,....,t =

 

0
1

j
jt

j

t TB
D

t TB
≤⎧

= ⎨ ≥ +⎩
             (17) 

 

The DGP in (16) can be compactly expressed as 

 

( )( ) ( ), 1 1 2 , 11 1 1jt j j t j j j j jt j j t j jty y t D Dβ β γ β γ β δ ε− −
⎡ ⎤∆ = − + − + − + ∆ − +⎣ ⎦        (18) 

 

where ( )1j jβ φ= − −  and , 1jt jt j tD D D −∆ = − , i.e. 

 

                                                 
16 The authors do not consider structural changes which affect the slopes of the time trend. In such a 

case the invariance property of the LM test statistic does not hold [Strazicich et al. (2001)]. 
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1 1
0

j
jt

t TB
D

otherwise
= +⎧

∆ = ⎨
⎩

            (19) 

 

The null hypothesis of a unit root is 

 

0 : jH 0β =  for all  j              (20) 

which is tested against the alternative 

 

1 : jH 0β <  for some j              (21) 

 

Assuming that the error terms jtε  are independent normal variables with zero mean 

and variance 2
jσ , Im et al. (2005) show that the LM statistic derived from the ensuing 

pooled-likelihood function is just equal to the sum of the individual LM statistics for 

each time series. Following Amsler and Lee (1995), the LM statistic for the jth time 

series, , is equivalent to a t-statistic on ,
B
LM jTt 0jβ =  in 

 

2 , 1jt j j jt j j ty D S errorγ δ β −∆ = + ∆ + +            (22) 

 

where 

 

( ), 1 , 1 2 , 11j t j t j j j tS y t Dγ δ− −= − − − −             (23) 

 

and 2 jγ  and jδ  are OLS estimates of 2 jγ  and jδ  in the following restricted regression 

 

2jt j j jty D jtγ δ∆ = + ∆ + ε              (24) 

 

The distributions of  are asymptotically independent from the location of the 

shift point 

,
B
LM jTt

j
j

TB
T

λ = , but this property does not hold for the panel unit root statistic. 

Specifically, the expected values of the mean and variance of  under the null ,
B
LM jTt
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hypothesis, which are needed for the construction of the panel LM test, are a function 

of jλ . However, Im et al. (2005) show that, unless N T  diverges as , it is 

possible to use the same expected values for the means and variances as calculated for 

the “no-shift” case, denoted 

,N T →∞

( ),LM TE τ  and ( ),LM TV τ , regardless of the presence of a 

structural shift in the series. Thus, assuming this condition holds, they suggest the 

following panel unit-root test statistic    

 

( )
( )

(, ,

,

0,1
B

LM NT LM TB
LM

LM T

N t E
N

V

τ

τ

⎡ ⎤−⎣ ⎦Γ = ⇒ )                                      (25) 

 

where 

 

,
1

1 N
B

LM NT LM jT
j

t
N =

= ∑ ,
Bt              (26) 

 

Finally, the test assumes cross-sectional independence but serial correlation in the 

errors jtε  of equation (18) can be corrected for via the introduction of the lagged 

differences , i.e. ,j t iS −∆

 

, 1 ,
1

ik

jt j jt j j t ji j t i
i

y intercept D S S errorδ β ρ− −
=

∆ = + ∆ + + ∆ +∑         (27) 

 

As before, the LM statistic for the jth time series is given by the t-statistic on 0jβ = , 

which is denoted ( ),
B
LM jT it k . Assuming N T  does not diverge as , the 

corresponding panel unit-root LM statistic is 

,N T →∞

 

  ( )
( ) ( )

( )
(

, ,1

,1

1

0,1
1

NB
LM NT LM T ij

B
LM

N
LM T ij

N t k E k
Nk N
V k

N

τ

τ

=

=

⎧ ⎫⎡ ⎤−⎨ ⎬⎣ ⎦⎩ ⎭Γ = ⇒
⎡ ⎤⎣ ⎦

∑

∑
)                           (28) 

 

where 
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( ) ( ),
1

1 N
B B

LM NT LM jT i
j

t k t k
N =

= ∑ ,

)

                       (29) 

 

The values of ( ,LM TE τ  and ( ),LM TV τ  for various combinations of T of k are 

computed by Im et al. (2005) via stochastic simulations and reported in their Table 1. 

 

 

Before proceeding to performing the tests on the Italian regional data, we briefly 

discuss two issues which relate to the use of panel unit root tests in general and, thus, could 

have some bearing on the results of our analysis. The first is the assumption of a homogenous 

root for all the series in the panel that is often imposed under the null, as it significantly 

increases the power of the test. Pesaran and Smith (1995) and Pesaran et al (1996) 

demonstrate the inconsistency of pooled estimators in dynamic heterogeneous panel models 

and show that, if the autoregressive roots differ across units, pooled estimation will provide an 

upward-biased estimate. Thus, tests which rely on the homogeneity assumption, such as the 

MP test we make use of, can potentially be biased in favour of the non-rejection of the null of 

a unit root. Consequently, the results from these tests must be treated with some care. 

The second issue is that many panel unit root tests, such as the ILT test we use, 

assume the absence of any cross-sectional dependence between the series in the panel. This is 

generally recognised as a strong assumption and when it is wrongly imposed a size distortion 

of the test ensues which lowers its power in rejecting the null of a unit root [see O’Connel 

(1998), Jönsson (2005)]. Cross-sectionally demeaning the series can partly deal with the 

problem, removing some of the correlation17. We resort to this method when performing the 

ILT test. 

 

 

 

                                                 
17 The demeaning procedure will entirely wipe out cross-sectional dependence only if the pair-wise 

cross-section covariances of the error terms are homogenous across the panel units. This will not be true in 
general, so that a number of new tests have recently been proposed to correct for this problem, such as Chang’s 
(2002), Bai and Ng’s (2004) and Pesaran’s (2005). Among them, and potentially suitable in our case, are also 
Phillips and Sul’s (2003) and Moon and Perron’s (2004). These two papers develop similar approaches based on 
the modelling of cross-sectional correlation as dependent on a number of unobserved common factors. The 
authors suggest estimating the latter in order to “de-factor” the series and eliminate any cross-sectional 
dependence, before proceeding to the panel unit-root testing. Their procedures, however, are valid only 
asymptotically so that, given the uncertainty as to their small sample performance and the short time-series of 
our panel, we choose not to rely on them.    
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5. Unit root tests: results 

 
Given the low-power problems which afflict univariate tests, we place primary weight 

on the panel unit root tests. Thus, here we focus on the general conclusions which can be 

drawn from the implementation of the time series tests, while reporting the complete set of 

results in the Appendix (Tables A1 to A7).  

 
 
 

Table 2 – Univariate Unit root tests on the 20 Italian regions, number of rejections of the null 
hypothesis at the 1%, 5% and 10% significance levels. 

 CADF* P89 P90 ILT 

 Intercept Intercept 
& trend 

AO IO1 IO2 AO IO  

1% 3 0 0 1 0 2 0 3 
5% 0 2 0 0 1 1 0 3 

Absolute 
Unemployment 
rates 10% 0 0 1 1 0 1 1 1 
          
Average root 
(Half life) 

 0.761 
(2.538) 

0.618 
(1.440) 

0.776 
(2.733) 

0.273 
(0.534) 

0.550 
(1.159) 

0.661 
(1.674) 

0.670 
(1.731) 

0.519 
(1.057) 

          
          

1% 1 0 4 8 4 0 1 1 
5% 2 1 1 0 0 4 2 4 

Relative  
Unemployment 
rates 10% 1 3 1 2 0 4 1 5 
          
Average root 
(Half life) 

 0.594 
(1.331) 

0.137 
(0.349) 

0.189 
(0.416) 

0.112 
(0.317) 

0.149 
(0.364) 

0.583 
(1.285) 

0.641 
(1.559) 

0.450 
(0.868) 

 
Notes: 
The CADF* tests are performed on the 1993-2003 period, while the P89, P90 and ILT tests consider the 
1984-2003 time span, with an exogenously imposed break in 1992; 
The half life is expressed in years and computed as -ln(2)/ln(ξ), where ξ is the estimated autoregressive 
root. 

 

 

 

 

Table 2 considers the four univariate tests we rely upon in their different versions and, 

for each one of them, reports the number of rejections of the null of a unit root at three 

different significance levels. With the possible exception of the ILT test, which rejects the 

null for 7 out of the 20 Italian regions (one of them only at the 10% level of significance), the 

results for the absolute unemployment rates are decidedly in favour of the hysteresis 
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hypothesis. However, the estimated roots are generally much smaller than one, indicating that 

the non-rejection of the null may well depend largely on the low power of the tests. 

When we turn our attention to the relative unemployment rates the results are less 

clear-cut. The total number of rejections increases considerably (from 21 to 50) and both the 

P89-IO1 and the ILT tests provide evidence of stationarity in 50 per cent of the cases. 

Moreover, the estimated roots are consistently smaller, sometimes significantly so. Using as 

an example the most striking case, the P89-AO test gives an average estimated root of 0.776 

for the absolute unemployment rates, while the corresponding value for the relative 

unemployment rates is only 0.189. Taking these results at face value, and abstracting for a 

moment from the possible presence of a unit root, the calculated half lives tell us that the 

average region’s absolute unemployment rate will take nearly three years to absorb half of the 

impact of a shock, while 50 per cent of the reversion to its equilibrium value with respect to 

the national unemployment rate will be completed in less than two quarters. In other words, 

region-specific shocks seem to be less persistent than common, national shocks18.  

It may, thus, be interesting to investigate to what extent the shocks affecting regional 

unemployment rates have a national character, as one could expect national economic policies 

to be largely effective in addressing the short-term volatility of regional unemployment rates 

if the latter share a common cycle. This issue will be taken up in the last section of the paper.  

Before doing so, however, we need to gather stronger evidence against the unit root 

hypothesis. An analysis of the cyclical behaviour of unemployment, in fact, is only legitimate 

if we can convincingly exclude “pure hysteresis”. The results in Table 1 do not allow us to do 

so, but confirm the concerns expressed as regards the reliability of univariate tests in our case. 

The 1992 break imposes a constraint on the CADF* regressions, which necessarily use only 

the 11 observations between 1993 and 2003. With such a short time-series the small number 

of rejections is not a surprise. The time-span extension granted by the use of tests which allow 

for a break in the series reduces to some extent the low-power problem, but this is still 

apparent when one considers the size of the estimated roots. We, thus, take a further step in 

following the course suggested in the literature to deal with these issues and move on to 

performing panel unit-root tests and panel unit-root tests with structural breaks.  

 

 

 

                                                 
18 On this point, see Decressin and Fatás (1995). 

 18



Table 3 – Panel Data unit-root tests on regional unemployment rates 

Region CIPS* MP ILT 
 Intercept Intercept & trend   

 T-ratio Root 
(half life) 

T-ratio Root 
(half life)

T-ratio Root 
(half life)

T-ratio Root 
(half life) 

  
Absolute unemployment rates 

 
All regions 
 
 

-1.701 0.761 
(2.533) 

-1.849 0.618 
(1.440) 

-22.762^ 0.711 
(2.033) 

-3.591^ 0.519 
(1.057) 

Northern 
regions 
 

-2.728* 0.631 
(1.507) 

-2.156 0.509 
(1.027) 

 -8.193 0.740 
(2.306) 

-1.634 0.581 
(1.279) 

Southern 
regions 

-0.161 0.955 
(14.927) 

-1.389 0.781 
(2.806) 

-6.728 0.557 
(1.186) 

-3.664^ 0.425 
(0.811) 

 
 

        

 Relative unemployment rates 
 

All regions 
 
 

-1.873 
 

0.594 
(1.329) 

-2.513
 

0.137 
(0.349) 

-20.463^ 0.287 
(0.556) 

-4.649^ 0.450 
(0.868) 

Northern 
regions 
 

-1.935 
 

0.589 
(1.308) 

-2.314
 

0.125 
(0.333) 

-10.549* 0.341 
(0.644) 

-4.178^ 0.406 
(0.769) 

Southern 
regions 

-1.780 
 

0.601 
(1.361) 

-2.812
 

0.156 
(0.373) 

-9.070^ 0.584 
(1.289) 

-2.232* 0.517 
(1.049) 

 
Notes: 
The CIPS* tests are performed on the 1993-2003 period, while the MP and ILT tests consider the 
1984-2003 time span, with an exogenously imposed break in 1992; 
^ and * indicate, respectively, rejection of the null of unit root at the 1% and 5% level of 
significance; 
In each case, the reported roots are simple averages of the relevant regional estimates;   
The MP test on “All regions” for the absolute unemployment rates excludes the regions Valle 
d’Aosta, Umbria, Campania and Calabria;  
The MP test on “All regions” for the relative unemployment rates excludes the regions Valle 
d’Aosta, Lazio, Campania, Puglia and Basilicata. With the inclusion of Valle d’Aosta the absolute 
value of the t-statistic increases to 24.010. 
 

 

 

Table 3 reports the results of the three panel unit-root tests which we make use of, i.e. 

the CIPS*, MP and ILT tests. As well as considering all the regions together, we also run the 

tests on the two sub-samples of the Northern and Southern regions. However, because of the 

insufficient time dimension, the MP test could not be performed on the entire sample of 20 

regions19. We, thus, selected a sub-sample excluding the small region of Valle d’Aosta and 

                                                 
19 SUR estimation requires the number of equations to be strictly smaller than the number of time points 

available for estimation. 
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those regions for which the unit root hypothesis was rejected by the correspondent univariate 

tests, i.e. the P90-AO tests (see Tables A2 and A4 in the Appendix). Since the null hypothesis 

being tested is that of a unit root for all regions in the sample, this seems a convenient way of 

solving the problem as it makes the results of the MP test more meaningful. 

The CIPS* confirms the evidence gathered using univariate tests, rejecting the unit 

root hypothesis only in one case, i.e. that of the Northern regions’ absolute unemployment 

rates. Given the short time-series used, this result is not unexpected and reinforces our 

arguments for the implementation of panel unit root tests that allow for a structural break, 

which are further borne out by the MP and ILT estimates20.  

The MP test strongly rejects the null of a unit root both for the absolute and relative 

rates of unemployment. However, when the sample is split according to the North-South 

distinction, the null cannot be rejected in the case of the absolute unemployment rates. Given 

the sensitivity of this test to the time dimension of the panel, this result may be due to the 

larger number of lags included in the latter estimations. As for the ILT test, it consistently 

rejects the unit root hypothesis in all of the cases except that of the Northern regions’ absolute 

unemployment rates21. 

Finally, even breaking down the analysis according to the North-South distinction, the 

estimated roots and half-lives reflect the pattern already noticed for the univariate tests, with 

the absolute unemployment rates displaying a higher degree of persistence than the relative 

rates22. 

To sum up, the results from the panel unit root tests lead us to reject the “pure 

hysteresis” hypothesis in the case of the Italian regions in favour of the NAIRU approach. In 

turn, contrary to the non-stationary divergence process depicted by Brunello et al. (2001), this 

suggests that the regional unemployment differentials observed in the 1984-2003 period 

reflect mainly differences in mean rates and, thus, structural components.  

We now turn to the assessment of these differences via the estimation of the region-

specific NAIRUs. 

 

 
                                                 

20 In assessing the Monte Carlo evidence on the small sample performance of various versions of his 
test in the no-trend case with serially uncorrelated errors, Pesaran (2005) notes that none “exhibit much power 
when , irrespective of the size of N. Only when T is increased to 20 and beyond one can begin to see the 
benefit of increasing N on the power of the tests” (p. 22). This remark remains valid even when serial correlation 
is corrected for and/or the model is modified with the introduction of a linear trend.    

10T =

21 The probability value is in this case 10.3%. 
22 The CIPS* and ILT roots for the “All regions” case in Table 2 are the same as in Table 1, as they are 

again calculated as simple averages of the individual CADF* and ILT estimates.  
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6. NAIRU: Theory and estimation 

 

McAdam and McMorrow (2003) identify two broad modelling approaches which have 

been followed in the literature to measure the NAIRU. The first defines the NAIRU as that 

particular unemployment rate at which a stable Phillips-curve-type relationship exists between 

the deviation of unemployment from the NAIRU and unexpected inflation. Within this 

framework there is a further distinction between the single-equation inflation approach and 

the multiple-equation wage-price model. The latter involves the modelling of the labour 

market, wage- and price-setting behaviour and defines the NAIRU as the unemployment rate 

which characterises equilibrium with fully-realised expectations [Layard et al. (1991)]. An 

example of the application of such a methodology in the case of Italy is provided by Brunello 

et al. (2000), who use it to measure the NAIRU for the Northern and Southern macro-regions 

for the period 1954-1994.  

Though providing a robust theoretical framework, the use of these structural models to 

estimate the NAIRU is problematic in many respects, e.g. the choice and specification of the 

appropriate theoretical model, statistical identification and data availability [see Richardson et 

al. (2000)]. While all of these issues represent a concern, in our case the lack of data 

availability precludes the utilisation of this approach to achieve our primary objective in this 

section, i.e. bringing the analysis of the NAIRU to the regional level in Italy.  

We, thus, opt for the second, alternative strategy of measuring the NAIRU by relying 

solely on the univariate properties of unemployment. This is based on the assumption that 

over time the unemployment rate reverts to its mean or natural rate, so that a necessary 

preliminary step for the implementation of this approach is the ruling out of hysteresis in 

unemployment. While the latter problem has been dealt with in the previous section, before 

proceeding with the statistical estimation of the NAIRU we need to discuss a further 

theoretical issue relating to its stability over time.  

Three different methodologies can be followed to address this: the first, corresponding 

to the traditional view, assumes that the NAIRU is constant; the second relates to the case in 

which unemployment is a stationary process around an occasionally changing mean, so that 

the NAIRU is subject to sudden permanent changes, possibly following particularly large 

shocks; the third assumes the NAIRU is smoothly changing over time and provides a visual 

illustration of its time-varying nature by decomposing the actual unemployment rate in a 

trend-cycle fashion, using filtering techniques such as the Hodrick-Prescott or Kalman filters. 
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While not without merits, the latter approach is subject to many critiques, particularly 

because the displayed time-evolution of the NAIRU will depend on the degree of smoothness 

chosen for the filtering technique. The possibility of an infrequently changing NAIRU 

appears more appealing and a few recent papers have applied the likes of multiple-break or 

Markov-switching techniques to tackle it23. However, as already mentioned, the 

characteristics of our data-set would make the use of these techniques very problematic in our 

case. 

We, thus, opt for the first strategy and start by estimating the Italian regions’ NAIRUs 

assuming they are constant in the period under analysis. Subsequently, we formally test the 

accuracy of this assumption and rely on recursive OLS regressions to provide some evidence 

as regards the time-evolution of the regional NAIRUs in the last decade. 

 

 

    

The univariate approach 

 

Staiger et al. (1997) set up the univariate approach to the NAIRU estimation starting 

with the following autoregressive model   

 

( )( )1 1t t t tU U L U U tβ ε− −− = − +               (30) 

 

where tU  is the NAIRU and  is a lag polynomial, introduced to account for persistence 

effects, also referred to as “speed-limit” effects. If the NAIRU is constant, equation (30) can 

be expressed as 

( )Lβ

 

( ) 1tU L Ut tµ β −= + +ε              (31) 

 

and the NAIRU is thus equal to 

 

( )1 1tU µ
β

=
−

                    (32) 

                                                 
23 See, for instance, León-Ledesma and McAdam (2004) and Camarero et al. (2006). 
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where ( ) 0
1 k

iβ β=∑  and k is the order of the lag polynomial ( )Lβ .  

Using the entire 1977-2003 sample period, we follow this approach and estimate the 

NAIRU by SUR methods, to correct for the likely presence of cross-sectional correlation24. 

Heterogeneous intercepts and slopes are allowed for and the lag selection is performed with a 

general-to-simple procedure, with the maximum number of lags set to 3 because of the short 

time-series available. 

In our case, the measurement of the regional NAIRUs is somewhat complicated by the 

presence of the 1984 and 1992 definition changes. We deal with these breaks using two 

intercept dummies and use the values of the estimated coefficients on these to compute the 

NAIRUs according to the post-1992 definition of unemployment. Formally, we regress the 

following version of (31)  

 

( ) 1 84 92t tU L U tµ β θ θ−= + + + +ε             (31’) 

 

where 84θ  and 92θ  are the two intercept dummies. Thus, the estimated NAIRU is 

 

( )
84 92

1 1tU µ θ θ
β

+ +
=

−
            (32’). 

 

Next, we compute the delta-method standard errors and the corresponding confidence 

interval (CI) for each regional NAIRU as formalised in (32’). To do so, we apply the 

procedure suggested by Papke and Wooldridge (2005). Briefly stated, in our case this 

involves the following steps. 

  

(1) First, defining the parameter of interest given in (32’) as ( )rλ β= , find the gradient 

( )g β  of ( )r β , which involves computing the p partial derivatives ( ) hr β β∂ ∂  for 

.  1,....,h p=

(2) Using the vector of parameter estimates β  from (31’), evaluate ( )g β  at β  to obtain 

( )1 2, ,.... pg g g g≡ . 

                                                 
24 Single-equation results are found to be slightly different in size and much less precise than the SUR 

estimates, thus confirming the presence of significant cross-sectional correlation. The results are not reported 
here. 

 23



(3) Choose a non-zero element of g , for example jg . For each observation of the 

regressors 'hx s , define transformed regressors ( )h h h j jx x g g x⎡ ⎤≡ −⎣ ⎦  for , and h ≠ j

j j jx x g≡ .    

(4) Substitute the transformed regressors hx , 1,....,h p=  and re-estimate equation (31’). 

The estimated coefficient on jx  is λ , i.e. the estimate of the NAIRU given in (32’), 

while the associated standard error is the delta-method standard error.  

 

 

We choose the estimated constant from (31’) as the non-zero element jg  to be used in the 

transformation of the regressors. As a result, the intercepts from the re-estimation of (31’) 

with the transformed regressors will provide us with the values of (32’), i.e. the region-

specific NAIRUs. This, in turn, allows us to analyse other NAIRU-related issues by 

conducting direct hypothesis-testing on these intercepts. 

 

 

 

Estimation results 

    

The regional NAIRU estimates and the associated confidence intervals are reported in 

Table 4 below. The difficulty in obtaining precise estimates of the NAIRU is a fairly well-

established fact in the literature [see Staiger et al (1997)]. In our case the 95% CI width is on 

average about 1.46 percentage points, while the comparable measure from Brunello et al. 

(2000) is about 2%. It can also be noted that the precision of the estimates is higher for the 

northern regions (the CI width is on average 1.14%) than for the southern regions (1.94%). 

We formally assess the constancy-assumption using Hansen’s (1992) instability test 

and this indicates that the constant-NAIRU hypothesis cannot be rejected at conventional 

significance levels. Moreover, the RESET test rejects the null hypothesis of a linear 

functional form only in 3 out of 20 cases. This provides supportive evidence for the reliability 

of the results. 
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Table 4 – Regional NAIRU estimates 
Region Root 

 
Half life NAIRU 

(CI) 
Hansen 
p-value 

Reset F 
(p-value) 

Piemonte 0.583 1.285 6.16 
(5.51 – 6.82) 

0.086 1.732 
(0.202) 

Valle d’Aosta 0.440 0.844 5.16 
(4.68 – 5.63) 

0.150 0.666 
(0.424) 

Lombardia 0.634 1.521 4.42 
(3.92 – 4.93) 

0.079 0.238 
(0.631) 

Trentino Alto 
       Adige 

0.236 0.480 3.43 
(3.03 – 3.84) 

0.063 0.137 
(0.715) 

Veneto 0.689 1.861 3.87 
(3.39 – 4.35) 

0.073 0.966 
(0.337) 

Friuli Venezia 
Giulia      

0.524 1.073 5.80 
(5.42 – 6.19) 

0.069 0.143 
(0.709) 

Liguria 0.844 4.087 6.69 
(5.63 – 7.75) 

0.105 0.377 
(0.546) 

Emilia  
       Romagna 

0.779 2.775 3.66 
(3.26 – 4.05) 

0.103 0.069 
(0.795) 

Toscana 0.751 2.421 5.39 
(4.82 – 5.97) 

0.067 2.407 
(0.136) 

Umbria 0.510 1.029 6.77 
(6.02 – 7.53) 

0.092 0.207 
(0.654) 

Marche 0.570 1.233 5.05 
(4.47 – 5.62) 

0.087 6.142* 
(0.022) 

Lazio 0.508 1.023 10.42 
(9.83 – 11.00)

0.095 0.035 
(0.852) 

Abruzzo 0.425 0.810 7.58 
(6.90 – 8.26) 

0.113 11.501^ 
(0.003) 

Molise 0.745 2.355 14.05 
(13.30 – 14.81)

0.100 0.488 
(0.492) 

Campania 0.466 0.908 22.07 
(20.95 – 23.19)

0.053 1.368 
(0.255) 

Puglia 0.542 1.132 15.63 
(14.64 – 16.62)

0.080 1.829 
(0.191) 

Basilicata 0.180 0.404 16.48 
(15.40 – 17.56)

0.075 0.235 
(0.633) 

Calabria 0.523 1.069 23.55 
(22.35 – 24.74)

0.080 0.069 
(0.795) 

Sicilia 0.750 2.409 20.77 
(19.63 – 21.92)

0.066 2.647 
(0.119) 

Sardegna 0.379 0.714 19.05 
(18.25 – 19.84)

0.069 4.675* 
(0.042) 

      
All regions 0.554 1.472 10.30   
Northern regions 0.589 1.636 5.57   
Southern regions 0.501 1.225 17.40   
 
Notes:  
CI is the NAIRU confidence interval, computed using delta method standard errors; 
The “All regions”, “Northern regions” and “South regions” estimates are computed as 
simple averages of the relevant regional values. 
^ and * indicate, respectively, rejection at the 1% and 5% level of significance. 
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As an additional check and to give a visual illustration of the evolution of the regional 

NAIRUs over time, we investigate the stability issue further via recursive OLS estimations 

and, for every region, plot the results in Figure 3A in the Appendix. Because of the 

uncertainty related to the initial estimates and the presence of the two breaks, we choose a 

fairly long window of 16 years and focus on the last 10 years of our sample, so that the 

recursive regression plots display the evolution of the regional NAIRUs between 1994 and 

2003. Though covering a longer time-span would be desirable, arguably it is the assessment 

of the NAIRUs in the last decade that conveys the most useful information in terms of current 

economic policy implications. 

For most of the regions, the NAIRU appears fairly stable over the period 1994-2003. 

A clear exception is represented by Abruzzo, while Liguria is another uncertain case. To 

check formally for the possible presence of significant breaks, we perform 1-step and break-

point Chow tests and find that these cannot reject the null hypothesis of parameter stability for 

any of the regions except Abruzzo25.  

Overall, the evidence gathered leads us to conclude that the regional NAIRUs have not 

changed significantly in the period under consideration and, thus, that the constant-NAIRU 

hypothesis is a reasonable assumption in our case.  

Turning to a closer discussion of the results reported in Table 4, it can be noted that 

there is considerable heterogeneity between the estimated regional NAIRUs. This is in line 

with the results of the unit-root tests. As mentioned, the ascertained stationarity of 

unemployment rates suggests that the persistent differentials observed between the Italian 

regions over long periods of time depend on structural factors, i.e. reflect underlying different 

region-specific NAIRUs. We test formally whether our estimation results support this 

hypothesis.  

Taking the versions of (31’) with transformed regressors obtained from the Papke and 

Wooldridge’s (2005) procedure, we pool the regional equations and estimate them by SUR 

allowing for unit specific NAIRUs and then imposing the cross-equation restriction of a 

homogenous intercept. We do this for the whole sample of 20 regions as well as for the sub-

samples of the Northern and Southern regions and then compute the appropriate likelihood 

ratio (LR) test statistics, as well as multivariate versions of the Akaike Information Criterion 
                                                 

25 The results of the Chow tests for all the regional recursive regressions are not reported here, but they 
provide significant evidence of a break in 2001 in Abruzzo’s unemployment rate. Indeed, in that year the 
region’s unemployment rate fell by about 2 percentage points, from 7.8 to 5.8 per cent. However, in 2002 it went 
back up to 6.1 per cent, before decreasing again by 0.8 percentage points in 2003. Given this evidence, it is yet 
not possible to determine whether the year 2001 can be considered as just an outlier or, rather, it is a structural 
break signalling a permanent downward shift of the NAIRU.  
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(AIC) and the Schwartz Bayesian Criterion (SBC) to compare the constrained and 

unconstrained regressions26. 

As can be seen from the results reported in Table 5, in each of the three cases 

considered, the LR test strongly rejects the null of cross-regional homogeneous NAIRUs, 

while the AIC and the SBC indicate that the unconstrained model provides the best fit of the 

data27.  

  

 

 

Table 5 – Hypothesis testing of cross-regional NAIRU homogeneity 

Region LR test AIC SBC 
  Unconstrained Constrained Unconstrained Constrained 
      
All regions 
 

354.019^ -5024.384 -4595.834 -4922.190 -4493.640 

Northern regions
 

128.730^ -2989.097 -2833.265 -2925.509 -2769.678 

Southern regions 112.751^ -1724.778 -1589.476 -1684.723 -1549.422 
 
Notes:  
^ indicates rejection at the 1% level of significance. 

 

 

 

Based on this, we conclude that regional NAIRUs are indeed significantly different 

from each other, even within the two Northern and Southern macro-regions. This suggests 

that studies analysing the Italian NAIRU should be conducted at the regional level, as any 

type of aggregation, either national of sub-national, is likely to be misleading. 

This is why we compute the values reported at the bottom of Table 4 as simple 

averages of the relevant regional values. That is, the estimate of 10.3 per cent for the “All 

regions” case, for instance, does not measure Italy’s aggregate NAIRU in the period but, 

rather, gives an indication of the average Italian region’s NAIRU. We may also observe that, 

despite the significant heterogeneity found within the two sub-groups, there is a clear divide 

between the average Northern and Southern regions, with the latter featuring a NAIRU more 

than three times higher than the former. Taking the national average of about 10 per cent as a 

                                                 
26 The likelihood ratio statistic is based on asymptotic theory, so that the AIC and SBC are usually also 

relied upon when the sample available is relatively small. 
27 The exclusions of Abruzzo and Lazio from, respectively, the Southern and Northern regions sub-

samples do not change the outcome. 
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threshold, one notes that all of the Northern regions except Lazio are below it, while all of the 

Southern regions except Abruzzo are above. 

Finally, apart from a handful of cases, the size of the estimated roots is fairly 

homogenous across regions, so that the average value of about 0.55 gives a meaningful 

indication of the degree of persistence characterising regional unemployment in Italy. This 

holds even when splitting the sample according to the North-South distinction and, more 

generally, is in line with the results of the unit root tests (see Table 3).            

In conclusion, our investigation of the Italian regions’ NAIRUs brings support to the 

idea that the observed unemployment disparities reflect underlining structural differences 

between the regional NAIRUs, which in turn appear fairly stable in the last three decades or 

so. In terms of economic policy indications, this suggests that policies aimed at combating 

persistently high regional unemployment and regional unemployment disparities should be 

largely region-specific in character. Neglecting regional differences, national policies, i.e. 

policies which are homogenous across regions, are likely to be unsuccessful in achieving 

either target. 

 

 

 

7. Cyclicality, common and region-specific shocks 

 

The absence of a unit-root in regional unemployment rates implies that any divergence 

from the NAIRU will be temporary, with unemployment returning to its equilibrium rate in 

the medium- to long-term. Nonetheless, the short-term deviations of regional unemployment 

rates can be significant and, as noted, rather persistent, so that their effects on regional 

economies are not trivial. Thus, together with the primary objective of reducing long-term 

regional unemployment disparities via policies aimed at decreasing the NAIRU in high-

unemployment regions, moderating the short-term volatility of regional unemployment rates 

may be rightly considered as an additional valuable policy target. To this end, an accurate 

analysis of the cyclical pattern of regional unemployment is essential.  

Following the original work of Thirlwall (1966) and Brechling (1967), several papers 

over the years have studied the cyclical behaviour of regional unemployment rates examining 

their relationship with the national rate28. The procedure involves a simple regression of the 

                                                 
28 Recent examples include Gray (2004), Martin (1997) and Payne et al. (1999). 
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regional rate on the national one and can be performed with the variables in absolute or 

logarithmic form, either in levels or first differences. In such a framework, the coefficient on 

the national unemployment rate is usually held to provide a measure of the regional sensitivity 

to the national cycle, with values higher (lower) than one characterising sensitive (non-

sensitive) regions. In addition, the regression R2 indicates how much of the variation in the 

regional unemployment rate is accounted for by aggregate unemployment changes, i.e. 

“national” shocks29.  

The technique has been criticised in various respects, mainly related to the lack of an 

explicit theoretical foundation30. Recently, however, Dixon and Shepherd (2001) have also 

argued against its use as a method of data description, suggesting, among other things, that the 

Engle and Kozicki’s (1993) (hereafter EK) “common-feature” test should be preferred 

instead, as this approach provides a more rigorous assessment of the common-cycle 

hypothesis than the Brechling-Thirlwall (hereafter BT) framework31.  

The EK technique can be used to assess whether some feature characterising each of 

several stationary time series in a dataset is common to them32. Examples of such features 

include heteroskedasticity, trends, seasonality, ARCH and serial correlation, which we will be 

focusing on since, as shown by Vahid and Engle (1993), the presence of serial correlation in a 

stationary series implies the existence of a cyclical component. 

Briefly stated, the estimation methodology consists of two steps. Firstly, tests are 

carried out to establish whether a certain feature  is present in the individual series. Once 

the presence of the feature has been established, the second step of the procedure involves 

assessing whether it is common to the series under analysis. This is done by ascertaining 

whether there exists a linear combination of the series which does not have the feature. More 

specifically, take as an example the model 

tz

                                                 
29 A closely related and commonly applied procedure is that proposed by Blanchard and Katz (1992), 

who tackle the “common or region-specific shocks” issue focusing on employment instead. Specifically, they 
regress the first differences of the logarithms of regional employment levels on the first difference of the 
logarithms of the national employment level. See also Brunello et al. (2001) and Jimeno and Bentolila (1998). 

30 On this point see, among others, Chapman (1991) and Martin (1997). 
31 Dixon and Shepherd also argue against regressing the regional unemployment rates on the national, 

as part of the correlation will be “spurious”. To avoid this problem, they suggest using regional bilateral 
comparisons. The initial proponents of the procedure were aware of the potential spuriousness problem, but 
argued against the view that it could invalidate its results. According to Brechling (1967), for instance, “There is, 
however, nothing spurious about the results on this account; on the contrary, the results would be deficient if 
they did not measure, amongst other things, the weight given to regional unemployment ratios” (p. 5). 
Furthermore, as the character of short-term policy intervention (e.g. monetary or fiscal policies) is mostly 
national, in our view, it is the region vis-à-vis nation relationship which conveys the most useful information 
from an economic policy viewpoint. We, thus, choose to focus on the latter, rather than on bilateral comparisons 
between regions.         

32 See also Vahid and Engle (1993, 1997). 
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t t ty x z tβ γ ε= + +                (33) 

 

where  is the variable under analysis, ty tx  could be a constant, relevant trends and/or other 

weakly exogenous variables and, in the case of serial correlation,  would simply be lags of 

 and possibly other variables. Then, the presence (absence) of the feature can be defined in 

terms of whether 

tz

ty

γ  is (is not) significantly different from zero. That is: 

 

0

1

: 0,  No Feature
: 0,  Feature

H
H

γ
γ
=
≠

                  (34)   

  

and the feature test is the usual Lagrange Multiplier (LM) test of over-identifying restrictions, 

which has a limiting chi-squared distribution. 

If two series  and  are both found to have the feature, it is then possible to assess 

whether the latter is common between them by testing whether there exists a 

1y 2y

λ  such that 

1t tu y y2tλ= −  does not have the feature. Engle and Kozichi (1993) show that an 

asymptotically valid estimate of λ  can be obtained from the two-stage least squares (2SLS) 

regression of 

 

1 2t t t ty y x z tλ β γ= + + +ε              (35) 

   

where the instrument list is { },x z . In its LM form, the common-feature test statistic can then 

be derived from the auxiliary regression of the 2SLS residuals on { },x z  and computed as 

, i.e. as the product of the number of observations and the 2TR 2R  of the regression. 

To better appreciate the difference between the BT and the EK methodologies, 

following Hall and Shepherd (2003), we can lay out the argument as follows. Consider the 

simple correlation coefficient between the two series  and , respectively the regional 

and national unemployment rates 

RU NU

 

( )cov ,
R N

R N

R N
U U

U U

U U
r

σ σ
=               (36) 
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Now, assume that the data generating processes for  and  are RU NU

 

( ) ( ) ( )R R RU t C t e t= +              (37) 

  

( ) ( ) ( )N N NU t C t e t= +              (38) 

 

 

The features  and  represent serial correlation processes, i.e. cycles, which may 

or may not be common, while  and are contemporaneous shocks that may or may not be 

correlated. One can think of the cyclical component of unemployment as being dependent on 

the fluctuations of output about trend and, thus, being (mainly) demand-led, while the shocks 

may be considered as labour supply “disturbances”, giving rise to temporary deviations of 

unemployment from equilibrium independently from the ups and downs of the business cycle, 

i.e. changes in frictional unemployment. 

RC NC

Re Ne

The formulations in (37) and (38) are based on the unobserved-component model and 

reflect the idea that the cyclical behaviour of a series is revealed by a well-defined serial 

correlation feature. This, in turn, suggests that it is possible to capture a predictable element in 

the series cycle, once the irregular-component has been taken account of.  

If  and  are well described by (37) and (38), the correlation coefficient can be 

re-written as 

RU NU

 

( ) ( )
( ) ( )

cov ,
R N

R R N N
U U

R R N N

C e C e
r

C e C eσ σ
+ +⎡ ⎤⎣=

+ +
⎦              (39) 

 

To simplify matters, assume the cycles (i.e. the C’s) are uncorrelated with the 

contemporaneous shocks (i.e. the e’s). When that is so, the correlation coefficient becomes 

 

 ( ) ( )
( ) ( ) ( ) ( )1 2 1 2

cov , cov ,

var var var varR N

R N R N
U U

R R N N

C C e e
r

C e C e

+
=

+ +⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎤⎦
         (40) 
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Thus, the overall correlation between  and  depends on the values of the two 

covariances between the C terms and the e terms. If the series are characterised by different 

serial correlation processes (i.e. non-common cycles), there is no covariance between the C 

terms, and the correlation between  and  reflects the covariance between the 

contemporaneous shock terms  and . However, if the cycles are common, i.e. 

RU NU

RU NU

Re Ne R NC Cλ= , 

the correlation between the regional and national unemployment rates will reflect both the 

covariance between the serial correlation terms and that between the contemporaneous 

shocks. Simply regressing  on , as prescribed by the BT approach, does not allow one 

to establish how much of the observed co-movement is the result of common cycles and how 

much derives from common contemporaneous shocks.  

RU NU

The common-feature approach developed by EK directly tests whether the cycles are 

common or not. If the EK test cannot reject the common-cycle hypothesis, the implication is 

that unemployment rates respond fairly homogeneously to common demand disturbances 

across regions. As a result, national demand-management policies will be effective in 

reducing the short-term variation of regional unemployment in most cases. The opposite holds 

when the EK test does reject the common-cycle hypothesis, suggesting that regional 

unemployment rates are subject to region-specific demand shocks and/or react in a 

significantly different fashion to common shocks. The BT regressions, on the other hand, can 

be used to obtain an indication of how much of the contemporaneous shocks have a national 

character, i.e. to assess the extent to which frictional unemployment movements are common 

across regions.     

 

 

  

The Engle-Kozichi and Brechling-Thirlwall techniques 

 

In applying the EK technique to each Italian regional unemployment series, we start 

by testing for the presence of a serial correlation feature via the following bivariate VAR(1)33

 

                                                 
33 While it is also possible to test for serial correlation via running AR models for the individual series, 

the VAR models should be preferred as they allow for any system interdependence.  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

84 92

84 92

1 1

1 1

Rt R R Nt R Rt R Nt R

Nt N N Rt N Rt N Nt N

U t U t U t U t

U t U t U t U t

α δ β φ θ θ ε

α δ β φ θ θ

= + + − + − + + +

= + + − + − + + +ε
                             (41) 

 

where, as before, 84θ  and 92θ  are the two intercept dummies introduced to deal with the 1984 

and 1992 definition breaks in the series. In this framework, the feature test is an LM test on 

the significance of lagged unemployment rates, i.e. a test of whether lagged unemployment 

rates contain useful information for forecasting current unemployment rates.  

When the presence of a serial correlation feature in the regional unemployment series 

cannot be rejected, we proceed to ascertaining whether this feature is common to the national 

rate. Using as instruments a constant, the two dummies, ( )1RtU t −  and , the 

common-feature test is carried out via the 2SLS estimation of   

( 1NtU t − )

 

( ) ( ) 84 92Rt Nt RtU t U tλ θ θ ε= + + +                           (42) 

 

and the subsequent LM test of overidentifying restrictions, which is distributed as a chi-

squared with one degree of freedom. To avoid the possibility that the results of the common-

feature test may hinge on the normalisation imposed by the 2SLS procedure, the estimations 

are also carried out reversing the dependent and independent variables in (42). 

The results reported in Table 6 show that the LM test rejects the null hypothesis of no 

serial correlation (cycle) feature at the 1 per cent level of significance in 17 regions and at the 

5 per cent in the remaining 3. As for the national unemployment series, each of the 20 

bivariate VAR regressions confirms the presence of a serial correlation feature at the 1 per 

cent significance level. Though all the regional series appear to be characterised by a cyclical 

behaviour, however, the common-feature test rejects the null hypothesis of a common cycle 

with the national unemployment rate in every single case. The chi-squared statistics are 

almost always significant at the 1 per cent level and the results are robust to the choice of the 

normalising variable34. 

  

 

                                                 
34 In only two cases, i.e. those of Valle d’Aosta and Liguria, the value of the chi-squared statistic drops 

consistently going from the feature- to the common-feature test, but still remains significant at the 5 per cent 
level. 
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Table 6 - Engle-Kozichi feature and common feature tests 

 Dependent variable ( )RtU t  Dependent variable  ( )NtU t

     
Region Feature  

Test  
Common Feature  

Test 
Feature  

Test  
Common Feature  

Test 
     
Piemonte 14.085^ 17.231^ 11.818^ 15.864^ 
Valle d’Aosta 11.553^ 5.556* 12.769^ 8.696^ 
Lombardia 16.412^ 18.523^ 11.649^ 15.148^ 
Trentino Alto 
       Adige 

16.540^ 16.257^ 11.712^ 10.684^ 

Veneto 18.360^ 21.375^ 11.264^ 17.612^ 
Friuli Venezia 

Giulia      
19.878^ 18.789^ 13.041^ 6.727^ 

 
Liguria 15.168^ 12.769^ 11.869^ 6.118* 
Emilia  
       Romagna 

21.009^ 21.285^ 12.045^ 11.121^ 

Toscana 18.800^ 18.994^ 12.562^ 9.238^ 
Umbria 10.578^ 14.873^ 11.172^ 15.075^ 
Marche 11.283^ 7.697^ 11.157^ 7.316^ 
Lazio 8.943^ 10.742^ 11.378^ 12.519^ 
Abruzzo 9.020* 4.442* 11.412^ 9.580^ 
Molise 13.715^ 9.293^ 14.169^ 10.279^ 
Campania 11.670^ 17.043^ 11.207^ 16.871^ 
Puglia 11.095^ 18.796^ 11.413^ 18.829^ 
Basilicata 6.420* 17.505^ 11.659^ 19.359^ 
Calabria 13.286^ 16.971^ 12.822^ 16.591^ 
Sicilia 16.706^ 20.096^ 11.237^ 17.130^ 
Sardegna 7.582* 7.192^ 11.161^ 9.209^ 
 
Notes:  
^ and * indicate, respectively, rejection at the 1% and 5% level of significance. 

 

 

 

The absence of a common serial correlation feature between the regional and national 

unemployment rates indicates that the cyclical patterns of the regional rates are sufficiently 

dissimilar across regions that they cannot be properly proxied by the short-term variation of 

their weighted average, i.e. the national cycle. As mentioned, the implication is that national 

economic policies will have fairly heterogeneous effects on the short-term volatility of 

regional unemployment rates. It is thus interesting to investigate further the determinants of 

this result. 
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Table 7 – Engle-Kozichi feature and common feature tests with sector value-added 
shares   

 Dependent variable ( )RtU t  Dependent variable  ( )NtU t

     
Region Feature  

Test  
Common Feature  

Test 
Feature  

Test  
Common Feature  

Test 
     
Piemonte 10.476^ 15.083^ 9.770^ 14.824^ 
Valle d’Aosta 13.923^ 11.990^ 14.711^ 5.535* 
Lombardia 15.706^ 16.673^ 9.290^ 10.767^ 
Trentino Alto 
       Adige 

11.310^ 17.922^ 1.557 3.535** 

Veneto 15.523^ 22.827^ 6.481* 18.960^ 
Friuli Venezia 

Giulia      
14.199^ 20.185^ 5.726** 0.678 

 
Liguria 7.175* 8.911^ 5.213** 0.304 
Emilia  
       Romagna 

20.020^ 22.203^ 8.063* 10.078^ 

Toscana 16.586^ 19.748^ 7.617^ 6.430* 
Umbria 5.339** 13.651^ 6.089* 13.034^ 
Marche 2.839 4.167* 4.936** 11.929^ 
Lazio 4.942** 9.886^ 15.933^ 10.332^ 
Abruzzo 10.030^ 14.647^ 5.654* 0.207 
Molise 12.996^ 3.425** 16.409^ 12.989^ 
Campania 7.790* 14.890^ 9.702^ 15.218^ 
Puglia 9.749^ 15.208^ 10.083^ 15.273^ 
Basilicata 3.945 20.930^ 7.205* 22.626^ 
Calabria 3.784 12.751^ 8.673* 18.805^ 
Sicilia 11.925^ 12.971^ 9.696^ 13.916^ 
Sardegna 7.717* 0.319 13.512^ 16.308^ 
 
Notes:  
^ , * and ** indicate, respectively, rejection at the 1%, 5% and 10% level of significance. 

 

 

 

Strictly speaking, the absence of a common cycle may indicate that regional 

unemployment rates are subject to dissimilar demand shocks and/or are responding in a 

different fashion to common demand shocks, with some being more cyclically sensitive than 

others35. One rationale for the latter scenario is that regional structural differences may lead to 

                                                 
35 It is worth noting that the outcome of the common-feature tests may also depend on the fact that the 

hypothesis being tested by the EK procedure is a very stringent one. As noted by Ericsson (1993), the finding of 
a common-cycle implies that the impulse response functions (IRFs) of the variables under analysis are perfectly 
collinear. Vahid and Engle (1997) suggests that a reasonable alternative is that the cycles may be co-dependent, 
i.e. that the IRFs are not exactly collinear, but linearly dependent after one or more lags. They devise a test for 
co-dependent cycles, but this is impractical for time series as short as ours. A viable, though less satisfying, 
alternative to explore this issue is that of investigating the cross-correlations between the regional and national 
unemployment rates at different lag-lengths or, as proposed by Hall and Shepherd (2003), that of introducing 
further lags in the EK test and judge on the presence of one or more co-dependent cycles according to their 
significance. 
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different speeds of adjustment to the same aggregate shocks, the reason being that 

unemployment may be diversely affected across regions if the shocks have a sectoral 

character. We briefly explore the latter possibility introducing the shares of total value added 

produced in agriculture, industry and services as additional exogenous variables in the EK 

regressions, to control for regional structural differences. 

From the estimates reported in Table 7 it appears that controlling for regional 

production structure differences goes some way in reducing the value of the chi-squared 

statistics, so that there is evidence for the absence of a cycle in at least five of the regional 

unemployment series. Moreover, the common feature test provides some evidence for a 

common-cycle for Friuli Venezia Giulia, Liguria, Abruzzo, Molise and Sardegna. However, 

in many respects, the results are now also much less clear-cut, e.g. in many cases, 

normalisation seems to matter and the common-test feature provides strong evidence of 

rejection even when the correspondent feature-test points to the absence of a feature in at least 

one of the series36. For these reasons, we do not place primary weight on the results in Table 

7, which still show the EK common-feature test rejecting the hypothesis of a common cycle in 

nearly all cases.  

The evidence gathered, thus, points to the alternative explanation for the rejection of 

the common-cycle hypothesis, i.e. that demand shocks are largely region-specific, as the most 

interesting. Indeed, using Blanchard and Katz’s (1992) approach, Brunello et al. find that only 

about 30 per cent of demand shocks seem to be common across the Italian regions37. In an 

integrated economy, high labour mobility should ensure that the effects of region-specific 

shocks are fairly evenly distributed across regions, as workers migrate in or out of their 

regions following a positive or negative demand shock. However, Leonardi (2004) finds that, 

for the Italian regions in the 1960-1999 period, migration played a negligible role in the 

adjustment process following a region-specific demand shock, with the bulk of the correction 

coming about via changes in the participation rate (60-70 per cent) and the unemployment 

rate (around 30 per cent). Our finding that the regional unemployment cycles are significantly 

different from the national cycle is in line with this evidence.           

The heterogeneity in the short-run volatility of regional unemployment will also be 

greater the more diverse the evolution of the frictional component of unemployment across 

                                                 
36 In this case, the expectation is for the common-feature test not to reject the null hypothesis, as only 

one of the two series contains a feature. 
37 This figure falls to only about 16 per cent for the average Southern region, while it is about 41 per 

cent for the Northern region [see Brunello et al. (2001), Table 3, p. 112]. 
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regions, i.e. the more the above-defined contemporaneous shocks will have a region-specific, 

as opposed to national, character. We investigate this issue in a BT framework.  

 

 

 

Table 8 – BT regressions, variables in logs, first differences 

 Feature Test BT regression 

Region  β  1Hβ =  Adjusted R2

Piemonte 2.389 1.630^ 0.004 0.786 
Valle d’Aosta 0.058 1.465^ 0.353 0.318 
Lombardia 0.058 1.846^ 0.007 0.626 
Trentino Alto 
       Adige 

0.507 1.527^ 0.280 0.262 

Veneto 1.642 1.633^ 0.027 0.620 
Friuli 
Venezia 

Giulia      

1.409 1.534^ 0.140 0.396 

Liguria 0.048 1.133^ 0.611 0.481 
Emilia  
       Romagna 

1.423 1.184^ 0.444 0.472 

Toscana 3.100** 1.183^ 0.292 0.702 
Umbria 2.248 1.166^ 0.470 0.717 
Marche 3.575** 1.256^ 0.268 0.640 
Lazio 1.545 0.592^ 0.061 0.439 
Abruzzo 3.041** 0.933^ 0.817 0.446 
Molise 1.391 0.464 0.094 0.069 
Campania 0.198 0.867^ 0.534 0.572 
Puglia 0.530 1.107^ 0.354 0.883 
Basilicata 3.053** 0.625* 0.219 0.616 
Calabria 0.317 0.446 0.071 0.263 
Sicilia 1.031 0.700^ 0.138 0.528 
Sardegna 3.339** 0.559^ 0.026 0.414 
     
All regions  1.093  0.513 
Northern 
regions 

 1.346 
 

0.538 

Southern 
regions 

 0.713 
 

0.474 

 
Notes:  
^ , * and ** indicate, respectively, rejection at the 1%, 5% and 10% 
level of significance; 

1Hβ =  is the p-value for the null hypothesis 1β = . 

 

 

 

To avoid any possible influence of the serial correlation features in the regional and 

national unemployment rate series, the BT regressions are performed using first-differences of 

 37



the variables, as the EK feature test cannot reject the null of no serial correlation in any of the 

latter38. Thus, adopting a log-linear structure, for each of the 20 Italian regions we estimate  

 

 

( ) ( ) 84 92ln lnRt Nt RtU t U tα β ζ ζ ε∆ = + ∆ + + +           (43) 

  

 

where 84ζ  and 92ζ  are two impulse dummy variables, introduced to avoid any undue 

influence of the 1984 and 1992 breaks, and β  is the coefficient of regional sensitivity, which 

provides the elasticity of the regional unemployment rate to the national one.  

The results in Table 8 show that β  turns out to be significant in all cases except for 

Molise and Calabria, and the hypothesis that the regional sensitivity coefficient is equal to one 

cannot be accepted only in a handful of cases, at conventional significance levels. However, 

for the average Italian region only about half of the contemporaneous shocks are common 

and, by and large, this holds also for the average Northern and Southern regions39. Thus, 

movements in frictional unemployment seem to be fairly diverse across regions as well. 

To sum up, our analysis of the cyclical behaviour of regional unemployment led us to 

conclude that unemployment cycles are fairly diverse across regions, so much so that the EK 

test rejects the hypothesis of a common-cycle with the nation in all cases. Looking for a 

common-cycle controlling for regional production structure differences does not change the 

picture much, suggesting that region-specific demand shocks and low labour mobility are 

likely to lie at the heart of the heterogeneous cyclical behaviour of regional unemployment. 

Further, the BT regression results suggest that a varied evolution of frictional unemployment 

across regions adds to the observed heterogeneity in the short-term variation of regional 

unemployment rates. 

    

 

 

 

                                                 
38 Even if not sizeable enough to be picked up by the EK common-feature test as significant, any 

covariance between the regional and national serial correlation features will have an effect on the BT regressions 
R2’s, as equation (40) shows. First-differencing the variables eliminates serial correlation, so that the BT 
regressions R2’s will solely reflect covariance between contemporaneous shocks. 

39 In one excludes Molise and Calabria, the average R2 for all regions rises to about 55 per cent and that 
of the Southern regions to about 57 per cent.  
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8. Conclusion 

 

This chapter investigates the nature of regional unemployment in Italy, both in the 

long- and the short-run.  

Taking as a starting point the evidence of growing disparities in the 1977-2003 years, 

we assess whether regional unemployment rates are diverging from each other in a non-

stationary way, i.e. as a result of pure hysteresis. Because there seem to be geographical 

differences in the divergent pattern of unemployment, with the Southern regions’ rates 

displaying greater divergence, we perform our analysis not only on absolute but, following 

Blanchard and Katz (1992) and others, also on relative unemployment rates.    

Relying both on univariate and panel unit-root tests, we show that the finding of a unit 

root in the Italian regional unemployment rates, which previous studies provided evidence of, 

is largely dependent on the use of low power tests. Exploiting the greater power of panel unit 

root tests allows us to confidently reject the unit root and, thus, the pure hysteresis hypothesis. 

The implication of this result is that, however persistent, shocks to regional unemployment 

will be temporary, in the sense that unemployment will return to its natural rate or NAIRU in 

the long-run.  

We, then, proceed to estimate the NAIRU for each of the 20 Italian regions. Our 

estimates of the regional NAIRUs turn out to be fairly precise, at least if compared to similar 

studies in the literature, and allow us to draw two interesting conclusions. Firstly, the 

hypothesis of a constant NAIRU between 1977 and 2003 is supported by the data for all of 

the Italian regions, with the possible exception of Abruzzo. Secondly, we find that there is a 

significant degree of heterogeneity among the regional NAIRUs. Thus, long-term regional 

unemployment disparities do seem to reflect structural or equilibrium unemployment 

differences across regions, as indicated by the results of the unit root tests. 

This suggests that economic policy intervention aimed at reducing long-term regional 

unemployment differentials in Italy should, as much as possible, be region-specific in 

character. National policies, homogenous across regions, are likely to have diverse effects on 

the regional NAIRUs. 

We, then, turn our attention to the short-term variation and cyclical behaviour of 

regional unemployment. Again, we find evidence pointing to a significant degree of 

heterogeneity. The EK test rejects the hypothesis of a common-cycle between regional and 

national unemployment for each of the 20 regions and the results do not change significantly 

when we control for regional production structure differences. We interpret this outcome as 
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indicating that region-specific demand shocks play a major role in shaping the cyclical pattern 

of regional unemployment. Finally, the BT regressions show that more than half of the 

movements in frictional unemployment are region-specific, thus adding to heterogeneity in 

the short-term variation of regional unemployment. Just as noted for the reduction of 

structural unemployment, this suggests that the effects of national demand-management 

policies on the short-term variation of unemployment will be different across regions. 
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Appendix 
 

 
Table A1 – Perron (1989) test on regional unemployment rates, 1984-2003, TB = 1992 

Region MODEL A – AO MODEL B – IO1 MODEL C – IO2 

 k T-ratio Root 
(half life) 

K T-ratio Root 
(half life) 

k T-ratio Root 
(half life) 

Piemonte 0 -2.081 0.403 
(0.763) 

0 -2.103 0.329 
(0.623) 

0 -2.071 0.437 
(0.837) 

Valle d’Aosta 0 -3.256 0.194 
(0.422) 

0 -3.701** 0.283 
(0.548) 

0 -3.345 0.154 
(0.370) 

Lombardia 0 -1.997 0.250 
(0.499) 

0 -1.084 0.431 
(0.824) 

0 -1.081 0.434 
(0.830) 

Trentino Alto 
       Adige 

0 -2.072 0.512 
(1.034) 

0 -2.504 0.075 
(0.268) 

0 -2.467 0.069 
(0.259) 

Veneto 0 -2.790 0.243 
(0.490) 

0 -1.942 -0.086 
(-) 

0 -1.702 0.052 
(0.234) 

Friuli Venezia 
Giulia      

0 -3.458** 0.211 
(0.445) 

0 -2.820 0.369 
(0.694) 

0 -3.301 0.212 
(0.447) 

Liguria 0 -1.267 0.738 
(2.280) 

0 -1.994 0.575 
(1.252) 

0 -3.243 0.440 
(0.843) 

Emilia  
       Romagna 

0 -1.997 0.492 
(0.976) 

0 -0.792 0.732 
(2.225) 

1 -1.953 0.211 
(0.445) 

Toscana 0 -0.749 0.807 
(3.239) 

0 -2.378 0.312 
(0.595) 

0 -2.423 0.399 
(0.754) 

Umbria 0 -2.782 0.377 
(0.710) 

0 -3.325 0.077 
(0.270) 

1 -3.309 0.256 
(0.508) 

Marche 0 -1.438 0.529 
(1.089) 

0 -3.196 0.095 
(0.294) 

3 -2.256 -0.606 
(-) 

Lazio 0 -1.227 0.786 
(2.886) 

0 -2.303 0.405 
(0.767) 

0 -3.142 0.490 
(0.973) 

Abruzzo 0 -2.031 0.483 
(0.953) 

0 -3.511 0.114 
(0.318) 

0 -2.750 0.275 
(0.537) 

Molise 0 -0.864 0.855 
(4.442) 

0 -2.455 0.400 
(0.756) 

0 -4.888* 0.218 
(0.455) 

Campania 1 -3.148 0.468 
(0.911) 

0 -2.485 0.398 
(0.752) 

2 -3.694 0.053 
(0.235) 

Puglia 0 -0.885 0.848 
(4.211) 

0 -2.088 0.513 
(1.039) 

2 -2.925 0.272 
(0.531) 

Basilicata 0 -2.598 0.608 
(1.394) 

0 -5.857^ -0.001 
(-) 

0 -3.559 0.364 
(0.685) 

Calabria 0 -1.129 0.763 
(2.560) 

1 -3.313 0.045 
(0.223) 

0 -1.220 0.715 
(2.069) 

Sicilia 2 -1.268 0.776 
(2.732) 

1 -2.293 0.186 
(0.411) 

2 -1.971 0.218 
(0.455) 

Sardegna 0 -2.484 0.283 
(0.549) 

0 -2.849 0.070 
(0.260) 

0 -2.045 0.384 
(0.724) 

          
North 0 -1.965 0.352 

(0.664) 
0 -1.769 0.370 

(0.696) 
0 -1.891 0.427 

(0.814) 
South 0 -3.035 0.249 

(0.499) 
0 -3.560 0.232 

(0.475) 
1 -3.888 -0.105 

(-) 
Italy 0 -1.021 0.776 

(2.734) 
0 -2.701 0.273 

(0.534) 
0 -2.257 0.550 

(1.159) 
Notes: * and ** indicate, respectively, rejection at the 5% and 10% level of significance. 
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Table A2 – Perron (1990) test on regional unemployment rates, 1984-2003, 
TB = 1992 

Region MODEL A - AO MODEL B – IO 

 k T-ratio Root 
(half life) 

k T-ratio Root 
(half life) 

Piemonte 2 -2.891 0.572 
(1.241) 

0 -0.852 0.832 
(3.780) 

Valle d’Aosta 0 -1.981 0.590 
(1.313) 

0 -1.805 0.604 
(1.376) 

Lombardia 2 -3.054 0.630 
(1.890) 

0 -1.372 0.760 
(2.534) 

Trentino Alto 
       Adige 

2 -2.880 0.548 
(1.153) 

0 -1.381 0.803 
(3.155) 

Veneto 1 -1.701 0.815 
(3.388) 

0 -1.904 0.744 
(2.344) 

Friuli Venezia 
Giulia      

1 -1.412 0.823 
(3.568) 

1 -1.108 0.819 
(3.470) 

Liguria 0 -0.637 0.893 
(6.140) 

0 -0.458 0.919 
(8.223) 

Emilia  
       Romagna 

1 -1.788 0.781 
(2.799) 

0 -1.180 0.869 
(4.927) 

Toscana 1 -1.164 0.854 
(4.390) 

0 -0.215 0.967 
(20.950) 

Umbria 4 -4.518^ -0.075 
(-) 

2 0.049 1.012 
(55.800) 

Marche 0 -1.336 0.686 
(1.843) 

0 -1.039 0.742 
(2.321) 

Lazio 0 -1.392 0.746 
(2.363) 

0 -1.211 0.768 
(2.630) 

Abruzzo 0 -1.648 0.618 
(-1.439) 

0 -1.371 0.664 
(1.695) 

Molise 0 -1.334 0.781 
(2.805) 

0 -1.149 0.806 
(3.215) 

Campania 1 -4.417^ 0.349 
(0.659) 

0 -2.143 0.667 
(1.713) 

Puglia 1 -2.815 0.558 
(1.188) 

0 -1.379 0.768 
(2.628) 

Basilicata 0 -3.199** 0.511 
(1.032) 

0 -3.150** 0.577 
(1.259) 

Calabria 4 -3.971* -0.161 
(-) 

0 -2.406 0.705 
(1.979) 

Sicilia 0 -1.633 0.793 
(2.993) 

0 -1.470 0.833 
(3.796) 

Sardegna 0 -2.226 0.372 
(0.702) 

0 -1.988 0.385 
(0.726) 

       
North 2 -3.498* 0.703 

(1.964) 
0 -0.672 0.888 

(5.860) 
South 0 -3.199** 0.333 

(0.631) 
0 -1.802 0.765 

(2.590) 
Italy 2 -1.411 0.661 

(1.674) 
0 -0.670 0.850 

(4.264) 
Notes: ^ , * and ** indicate, respectively, rejection at the 1%, 5% and 10% level 
of significance. 
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Notes: Reported roots for “Italy” are averages of regional values; ^ , * and ** indicate, respectively, rejection 
at the 1%, 5% and 10% level of significance. 

 
 
Table A3 – Perron (1989) test on relative regional unemployment rates, 1984-2003, TB = 1992.  

Region MODEL A – AO MODEL B – IO1 MODEL C – IO2 

 k T-ratio Root 
(half life) 

K T-ratio Root 
(half life) 

k T-ratio Root 
(half life) 

Piemonte 1 -3.061 0.243 
(0.489) 

0 -1.474 0.534 
(1.105) 

1 -1.326 0.517 
(1.050) 

Valle d’Aosta 0 -3.881* -0.115 
(-) 

0 -5.820^ -0.021 
(-) 

0 -3.799 -0.122 
(-) 

Lombardia 0 -1.049 0.750 
(2.409) 

2 0.166 1.062 
(11.394) 

0 0.574 1.286 
(2.758) 

Trentino Alto 
       Adige 

0 -1.220 0.775 
(2.716) 

1 -0.816 0.724 
(2.150) 

0 -1.891 0.329 
(0.624) 

Veneto 0 -1.920 0.724 
(2.146) 

0 0.073 1.027 
(26.385) 

0 0.569 1.218 
(3.519) 

Friuli Venezia 
Giulia      

0 -1.013 0.702 
(1.963) 

0 -5.743^ -0.028 
(-) 

0 -2.558 0.057 
(0.241) 

Liguria 0 -2.330 0.455 
(0.880) 

5 -1.868 0.128 
(0.337) 

0 -4.843^ 0.108 
(0.311) 

Emilia  
       Romagna 

0 -1.701 0.761 
(2.535) 

4 -5.079^ -0.335 
(-) 

0 -0.582 0.842 
(4.036) 

Toscana 0 -2.009 0.482 
(0.949) 

1 -4.708^ -0.125 
(-) 

1 -2.381 0.046 
(0.224) 

Umbria 0 -3.188 0.362 
(0.683) 

0 -2.643 0.308 
(0.588) 

0 -2.739 0.371 
(0.698) 

Marche 3 -4.371^ -4.124 
(-) 

3 -4.691^ -2.654 
(-) 

3 -4.935^ -3.604 
(-) 

Lazio 1 -4.469^ -0.153 
(-) 

1 -5.695^ -0.378 
(-) 

1 -5.509^ -0.385 
(-) 

Abruzzo 0 -3.639** 0.067 
(0.256) 

0 -3.655** 0.044 
(0.222) 

0 -3.568 0.028 
(0.193) 

Molise 0 -2.270 0.446 
(0.860) 

0 -4.263^ -0.061 
(-) 

0 -4.453^ -0.310 
(-) 

Campania 0 -2.157 0.525 
(1.077) 

5 -1.082 0.268 
(0.527) 

5 -0.121 0.844 
(4.078) 

Puglia 1 -3.373 0.450 
(0.868) 

1 -3.691** 0.338 
(0.639) 

1 -3.190 0.440 
(0.844) 

Basilicata 0 -4.559^ 0.284 
(0.550) 

0 -5.214^ 0.168 
(0.389) 

0 -3.454 0.265 
(0.522) 

Calabria 0 -1.302 0.549 
(1.156) 

3 -3.274 0.408 
(0.772) 

1 -2.049 0.225 
(0.464) 

Sicilia 3 -5.622^ -0.080 
(-) 

0 -1.226 0.530 
(1.090) 

0 -1.227 0.508 
(1.024) 

Sardegna 0 -1.625 0.677 
(1.775) 

0 -2.713 0.304 
(0.582) 

0 -2.741 0.321 
(0.609) 

          
Italy   0.189 

(0.416) 
  0.112 

(0.317) 
  0.149 

(0.364) 
North 1 -2.180 0.712 

(2.042) 
2 -0.313 0.920 

(8.368) 
0 1.211 1.378 

(2.159) 
South 0 -3.237 0.503 

(1.008) 
0 -2.550 0.618 

(1.440) 
0 -3.089 0.474 

(0.928) 
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Table A4 – Perron (1990) test on relative regional unemployment rates, 1984-
2003, TB = 1992. 

Region MODEL A – AO MODEL B - IO 

 k T-ratio Root 
(half life) k T-ratio Root 

(half life) 
Piemonte 2 -3.176** 0.449 

(0.866) 
1 -2.234 0.689 

(1.863) 
Valle d’Aosta 0 -2.752 0.408 

(0.774) 
0 -2.500 0.439 

(0.843) 
Lombardia 1 -3.355** 0.723 

(2.139) 
0 -2.081 0.759 

(2.511) 
Trentino Alto 
       Adige 

2 -3.370** 0.455 
(0.879) 

0 -1.602 0.815 
(3.397) 

Veneto 1 -2.442 0.760 
(2.524) 

0 -3.390** 0.744 
(2.343) 

Friuli Venezia 
Giulia      

0 -1.350 0.859 
(4.558) 

4 -2.481 0.526 
(1.080) 

Liguria 0 -1.511 0.754 
(2.454) 

0 -1.316 0.784 
(2.847) 

Emilia  
       Romagna 

0 -2.347 0.778 
(2.755) 

0 -2.788 0.809 
(3.271) 

Toscana 0 -2.200 0.775 
(2.726) 

0 -2.433 0.813 
(3.345) 

Umbria 1 -3.225** 0.522 
(1.067) 

0 -1.584 0.758 
(2.503) 

Marche 0 -2.833 0.441 
(0.848) 

0 -2.608 0.473 
(0.925) 

Lazio 1 -3.770* 0.005 
(0.133) 

1 -4.112^ 0.052 
(0.234) 

Abruzzo 0 -2.985 0.298 
(0.572) 

0 -2.727 0.321 
(0.609) 

Molise 0 -2.367 0.633 
(1.101) 

0 -2.222 0.537 
(1.113) 

Campania 1 -3.877* 0.492 
(0.978) 

0 -2.174 0.729 
(2.196) 

Puglia 1 -3.641* 0.571 
(1.239) 

1 -3.596* 0.638 
(1.545) 

Basilicata 0 -3.489* 0.489 
(0.970) 

0 -3.557* 0.530 
(1.093) 

Calabria 1 -1.848 0.774 
(2.706) 

0 -1.084 0.873 
(5.124) 

Sicilia 1 -1.590 0.795 
(3.030) 

0 -1.457 0.838 
(3.926) 

Sardegna 0 -1.740 0.681 
(1.807) 

0 -1.581 0.697 
(1.917) 

       
Italy   0.583 

(1.285) 
  0.641 

(1.560) 
North 1 -3.157** 0.763 

(2.561) 
1 -4.924^ 0.764 

(2.577) 
South 1 -4.455^ 0.261 

(0.516) 
0 -2.065 0.844 

(2.577) 
Notes: Reported roots for “Italy” are averages of regional values; ^ , * and ** indicate, 
respectively, rejection at the 1%, 5% and 10% level of significance. 
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Table A5– Pesaran (2005) CADF* and CIPS* tests on regional 
unemployment rates, 1993-2003. 

Region With intercept With intercept and 
trend 

 k T-ratio Root 
(half life) k T-ratio Root 

(half life) 
Piemonte 0 -1.771 0.814 

(3.370) 
0 -1.757 0.698 

(1.929) 
Valle d’Aosta 1 -6.190^ 

 
0.073 

(-) 
0 -1.408 0.096 

(0.295) 
Lombardia 0 -1.754 0.787 

(2.894) 
0 -3.203 0.374 

(0.704) 
Trentino Alto 
       Adige 

2 -6.190^ 
 

-0.692 
(-) 

0 -2.419 0.101 
(0.302) 

Veneto 1 -6.190^ 
 

0.683 
(1.816) 

1 -5.058* 0.586 
(1.297) 

Friuli Venezia 
Giulia      

0 -2.380 0.751 
(2.419) 

0 -2.004 0.460 
(0.893) 

Liguria 0 -2.486 0.874 
(5.158) 

0 -1.542 0.843 
(4.054) 

Emilia  
       Romagna 

0 -0.615 0.899 
(6.490) 

0 -1.870 0.429 
(0.819) 

Toscana 0 -2.080 0.878 
(5.328) 

0 -0.725 0.895 
(6.219) 

Umbria 0 -1.905 0.767 
(0.767) 

0 -2.868 0.559 
(1.192) 

Marche 0 -0.765 0.806 
(3.222) 

0 -1.475 0.439 
(0.841) 

Lazio 0 -0.406 0.935 
(10.234) 

0 -1.545 0.630 
(1.502) 

Abruzzo 0 -0.668 0.859 
(4.566) 

0 0.033 1.015 
(47.945) 

Molise 1 0.471 1.083 
(8.672) 

0 -2.991 0.399 
(0.754) 

Campania 0 -0.498 0.879 
(5.370) 

1 -6.190* 
 

0.198 
(0.428) 

Puglia 0 0.248 1.038 
(18.867) 

0 0.193 1.037 
(18.987) 

Basilicata 0 -2.191 0.590 
(1.316) 

0 -2.417 0.502 
(1.007) 

Calabria 0 -0.529 0.725 
(2.157) 

0 -0.283 0.837 
(3.900) 

Sicilia 0 0.516 1.098 
(7.448) 

0 0.080 1.022 
(32.497) 

Sardegna 0 1.363 1.365 
(2.226) 

0 0.465 1.239 
(3.235) 

       
CIPS*        

All regions  -1.701 0.761 
(2.533) 

 -1.849 0.618 
(1.440) 

North  -2.728* 0.631 
(1.507) 

 -2.156 0.509 
(1.027) 

South  -0.161 0.955 
(14.927) 

 -1.389 0.781 
(2.806) 

Notes: CIPS* roots are averages of CADF* regressions estimates; ^ , * and ** 
indicate, respectively, rejection at the 1%, 5% and 10% level of significance. 
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 Table A6 – Pesaran (2005) CADF* and CIPS* tests on relative regional 
unemployment rates, 1993-2003. 

Region With intercept With intercept and 
trend 

 k T-ratio Root 
(half life) k T-ratio Root 

(half life) 
Piemonte 0 -0.529 0.891 

(6.020) 
0 -2.349 0.234 

 (0.477) 
Valle d’Aosta 0 -1.853 0.302 

(0.579) 
0 -3.029 -0.395 

(-) 
Lombardia 0 -1.524 0.826 

(3.636) 
0 -0.604 0.710 

(2.020) 
Trentino Alto 
       Adige 

0 -1.314 0.805 
(3.203) 

0 -1.068 0.586 
(1.298) 

Veneto 0 -1.237 0.801 
(3.132) 

0 -1.213 0.396 
(0.749) 

Friuli Venezia 
Giulia      

0 -0.928 0.901 
(6.678) 

0 0.007 1.005 
(135.953) 

Liguria 2 -5.481* 0.463 
(0.900) 

0 -1.859 0.511 
(1.032) 

Emilia  
       Romagna 

0 -1.597 0.798 
(3.078) 

0 -2.282 0.056 
(0.240) 

Toscana 0 -1.190 0.899 
(6.532) 

1 -4.461** -0.444 
(-) 

Umbria 0 -0.438 0.885 
(5.686) 

0 -2.537 0.328 
(0.622) 

Marche 0 -1.425 0.595 
(1.335) 

0 -3.553 -0.265 
(-) 

Lazio 1 -5.700* -1.102 
(-) 

0 -4.820** -1.222 
(-) 

Abruzzo 0 -0.667 0.766 
(2.601) 

0 -1.421 0.375 
(-0.706) 

Molise 0 -6.190^ -0.456 
(-) 

0 -6.383* -0.456 
(-) 

Campania 0 -0.984 0.811 
(3.314) 

0 -1.828 0.264 
(-0.521) 

Puglia 1 -2.241 0.596 
(1.340) 

1 -2.373 0.388 
(0.732) 

Basilicata 0 -0.189 0.930 
(9.560) 

0 -1.399 0.266 
(0.523) 

Calabria 0 -0.481 0.932 
(9.833) 

0 -3.270 -0.013 
(-) 

Sicilia 0 0.275 1.038 
(18.746) 

0 -4.106** -0.077 
(-) 

Sardegna 2 -3.760** 0.191 
(0.418) 

0 -1.716 0.498 
(0.994) 

       
CIPS*        

All regions  -1.873 
 

0.594 
(1.329) 

 -2.513 
 

0.137 
(0.349) 

North  -1.935 
 

0.589 
(1.308) 

 -2.314 
 

0.125 
(0.333) 

South  -1.780 
 

0.601 
(1.361) 

 -2.812 
 

0.156 
(0.373) 

Notes: CIPS* roots are averages of CADF* regressions estimates; ^ , * and ** 
indicate, respectively, rejection at the 1%, 5% and 10% level of significance. 
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Table A7 - Im et al. (2005) test, 1984-2003. 

Region Absolute Regional 
Unemployment Rates 

Relative Regional 
Unemployment Rates 

 k T-ratio Root 
(half life) k T-ratio Root 

(half life) 
Piemonte 2 -4.000^ 0.255 

(0.508) 
2 -3.195* 0.469 

(0.914) 
Valle d’Aosta 0 -1.899 

 
0.632 

(1.512) 
1 -4.499^ -0.604 

(-) 
Lombardia 1 -3.362* 0.587 

(1.299) 
1 -3.156** 0.483 

(0.952) 
Trentino Alto 
       Adige 

1 -2.936** 0.683 
(1.816) 

2 -2.966** 0.509 
(1.026) 

Veneto 2 --1.223 0.800 
(3.102) 

1 -1.771 0.688 
(1.857) 

Friuli Venezia 
Giulia      

0 -1.167 0.843 
(4.058) 

2 -2.937** 0.344 
(0.650) 

Liguria 0 -2.189 0.539 
(1.121) 

1 -1.595 0.726 
(2.162) 

Emilia  
       Romagna 

1 -1.935 0.721 
(2.116) 

1 -2.152 0.681 
(1.803) 

Toscana 0 -2.105 0.899 
(6.532) 

0 -2.267 0.514 
(1.041) 

Umbria 0 -1.862 0.644 
(1.574) 

0 -1.533 0.744 
(2.344) 

Marche 0 -2.779 0.349 
(0.658) 

0 -3.105** 0.248 
(-0.497) 

Lazio 1 -4.319^ 0.027 
(0.191) 

1 -3.864* 0.068 
(0.258) 

Abruzzo 0 -3.542* 0.121 
(0.328) 

0 -3.645* 0.093 
(0.292) 

Molise 0 -2.020 0.593 
(1.328) 

0 -2.371 0.480 
(0.945) 

Campania 1 -3.741* 0.351 
(0.662) 

1 -3.465* 0.322 
(0.612) 

Puglia 1 -2.793 0.635 
(1.525) 

1 3.139** 0.481 
(0.947) 

Basilicata 0 -1.646 0.710 
(2.026) 

0 -1.496 0.754 
(2.460) 

Calabria 3 -4.213^ -0.231 
(-) 

1 -1.475 0.761 
(2.533) 

Sicilia 1 -2.647 0.632 
(1.508) 

1 -2.792 0.541 
(1.128) 

Sardegna 0 -2.027 0.591 
(1.319) 

1 -1.678 0.701 
(1.950) 

       
Panel unit root test        

All regions  -3.591^ 0.519 
(1.057) 

 -4.649^ 0.450 
(0.868) 

North  -1.634 0.581 
(1.279) 

 -4.178^ 0.406 
(0.769) 

South  -3.664^ 0.425 
(0.811) 

 -2.232* 0.517 
(1.049) 

Notes: ^ , * and ** indicate, respectively, rejection at the 1%, 5% and 10% level of 
significance. 
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Figure 1A – Regional unemployment rates 
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Figure 2A – Relative regional unemployment rates 
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Figure 3A – Regional NAIRUs, recursive estimates (broken-line) and +/- 2SE-band. 
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Figure 3A – Continued. 
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