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Abstract

This paper studies optimal investment and the dynamic cost of in-

come uncertainty, applying a stochastic programming approach. The

motivation is given by a case study in Finnish agriculture. Invest-

ment decision is modelled as a Markov decision process, extended to

account for risk. A numerical model for computing the dynamic un-

certainty cost is presented, applying the classical expected value of

perfect information. The uncertainty cost depends on the volatility

of income; e.g. with stationary income, the dynamic uncertainty cost

is equivalent to a dynamic option value of postponing investment. In

the case study, the investment decision is sensitive to risk. The model

can be applied e.g. in planning investment subsidies for maintaining

target investments.

Keywords: OR in agriculture, real options, investment analysis, stochas-
tic programming
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1 Introduction

Income variability is a persistent problem in agriculture. Currently, common
Agricultural Policy (CAP) after EU enlargement implies many uncertainties
regarding future agricultural income in Northern Europe. This paper ad-
dresses the cost of income uncertainty, focusing on a case study in Finnish
agriculture. In the case study, due to a high degree of policy uncertainty,
the rate of return on investment can be uncertain. Applying a stochastic
programming approach [Birge and Louveaux1997, Prekopa1995], a model for
dynamic uncertainty cost is presented, modifying the classical expected value
of perfect information. The model is based on assuming a risk-neutral de-
cision maker. Risk implies an additional cost of uncertainty. To study the
effect of risk on investment, the model is extended to explicitly account-
ing for risk, based on the stochastic programming approach introduced in
[Levitt and Ben-Israel2001] (previously with applications to inventory con-
trol and the maintenance problem).

Optimal investment is studied applying real investment options, see e.g.
[Dixit and Pindyck1994, Keswani and Shackleton2006]. Investment options
typically involve three parameters: the initial and accumulated costs, the
flexibility in timing the investment and the uncertainty regarding the future
rewards. [Dixit and Pindyck1994] studies the optimal investment decision
as a Markov decision process (MDP) defined in continuous time (Ito pro-
cess) and with a continuous state space. To simplify numerical analysis,
this paper applies a discrete time MDP with discretized state space to study
optimal investment. Mean reverting processes are frequently used in real
option models; this paper assumes a mean reverting income process with a
non-increasing expected value.

The main results can be summarized as follows:

• A numerical model for quantifying the dynamic uncertainty cost is
presented, modifying the expected value of perfect information (EVPI)
[Birge and Louveaux1997] to a dynamic setting.

• In the special case of stationary income, the proposed dynamic uncer-
tainty cost is equivalent to a dynamic option value of postponing invest-
ment. In case study examples, the dynamic cost of income uncertainty
is approximately 5% of the expected value of investment, exceeding 15
% in examples with higher income volatility.
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• The dynamic investment decision is sensitive to risk.

It remains a topic for future work to obtain the subjective probability dis-
tributions 1, e.g. by conducting a survey similar to that in [Lagerkvist2005]
using a visual impact method [Hardaker et al.1997]. Then the model can be
applied e.g. in planning investment subsidies. The lack of complete informa-
tion causes inefficiency by inducing under-investment, cf. [Lagerkvist2005]; a
high uncertainty cost deteriorates the efficiency of investment subsidies. For
an alternative empirical approach to measuring the cost of income uncer-
tainty (risk representing the variance-covariance structure of firm’s income),
see e.g. [Amegbeto and Featherstone1992].

That risk matters to optimal investment is a result reached in this pa-
per within a dynamic model. Related work [Alvarez and Stenbacka2004]
applies an analytical continuous time model, whereas in this paper simi-
lar results are obtained via simulation in a discrete time setting. On the
other hand, previous work discussed in [Lagerkvist2005] (with reference to
[Knapp and Olson1996]) suggests risk aversion to be of less importance in a
dynamic model than in a static setting.

Recently, related work in [Verkammen] has applied a discrete time MDP
model to study optimal farmland investment assuming a price subsidy or a
decoupled direct payment. The investment results, assuming a risk-neutral
decision maker, are not very sensitive to the variability in the income. This
is due to the assumed stationarity of the revenues. However, as emphasized
in [Dixit and Pindyck1994], in general both the growth in the value of invest-
ment and uncertainty (as modelled by the variability in income) affect the
optimal investment decision. Recent econometric evidence supports a nonlin-
ear uncertainty-investment relation: for low levels of uncertainty an increase
in uncertainty has a positive effect on investment, while for high levels of un-
certainty an increase in uncertainty lowers investment [Bo and Lensink2005].
The investment model presented in this paper suggests that taking risk into
account in general affects the uncertainty-investment relation.

1In some of the case examples the mean uncertainty cost is quite robust to changes in

underlying probabilities.
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2 Optimizing Investment

The notations are introduced in what follows, considering the investment
decision of a representative firm in a discrete time model. Letting ρ denote
the internal rate of return, denote the discount factor of the firm by b:

b = 1/(1 + ρ) ∈ (0, 1].

Let rt denote the return on investment (%) per time period at time t. The
timing of the investment is considered as the decision variable. The flexibility
in timing the investment affects the value of investment [Dixit and Pindyck1994,
Keswani and Shackleton2006]. In this paper the decision-maker is assumed
to have full flexibility in timing the investment. Denoting by I the total
available budget for the investment at t, the decision It at t satisfies

It ∈ {0, I} ∀t. (1)

The future value of investment is random, due to variability in the rate
of return. Letting Ia denote the aggregate budget, the aggregate budget
constraint requires:

T∑

t=1

It ≤ Ia. (2)

The dynamic optimization problem can be written as:

max E[
∞∑

t=1

bt(rt +
∞∑

k=t+1

bkrk)It − It] (3)

where E denotes the expectation operator. Two versions of problem (3)
subject to (2) are studied in what follows; in the first model, it is assumed that
rt is observable when the investment decision is made at time t; in the second
model only rt−1 is observable at time t. To begin with it is assumed that the
total available amount for investment can be spent at any time; later this
simplification is removed by introducing period-specific budget constraints.

Since the future values of the investment are unknown, there is an oppor-
tunity cost to making the investment decision at t = 1 [Dixit and Pindyck1994];
the firm has the option to postpone the investment decision. In what follows
a time-correlated income process is assumed, to study optimal investment
under decreasing income expectations, allowing the firm to make the invest-
ment decision at any time. Assuming time-correlated income, the optimal
investment rule will be threshold-based, with time-dependent thresholds.
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3 Investment with Time-Correlated Income

In what follows the income process is assumed to be non-increasing, captur-
ing decreasing expectations regarding income subsidies. The motivation is
given by a case study from Finnish agriculture, summarized in what follows
applying a discrete time Markov model. A stochastic programming model
for measuring the uncertainty cost is introduced, based on two optimization
models. In the first model (Model 1), the value of investment is observable
at the time the investment decision is made; in the second model (Model 2),
the value of investment is unobservable.

A Case Study

Milk production is the most important production line in Finnish agricul-
ture [Lehtonen2004]. Table 1 summarizes the expected profitability of in-
vestment in milk production in Finland, based on [Uusitalo et al.2004]. For
example, assuming the investment subsidy grows by 20 % (or by 50 %, de-
pending on production unit) and assuming the producer price decreases by
15 % from 2003 level by 2007, the profitability of a livestock-place is 11 %
2007, assuming herd size 130. The expected producer price changes reflect
expected policy changes including the removal of production-based support.
For details regarding Table 1, see [Uusitalo et al.2004]. Recent survey studies
support pessimistic expectations regarding future profitability. In a deter-
ministic continuous time model postponing investment is not optimal under
decreasing income expectations [Dixit and Pindyck1994].

Markov Model

In Table 1 the states of future rate of return depend on the herd size and fu-
ture producer price. Assume the possible Markov states are defined in terms
of the future rate of return, corresponding to different scenarios regarding
producer price change (for a given herd size). Denote the matrix of transi-
tion probabilities by A. Let rit denote the rate of return at time t in state i.
The expected return E(rt) at time t is defined as:

E(rt) =
∑

i

Pitrit (4)
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Table 1: Return on investment (ROI %) in milk production (2007 -10 %

means 2007 ROI (including subsidy) when producer price decreases by 10 %

from 2003 and investment subsidy increases by 20 % or 50 % depending on

production unit

ROI % ROI %

herd size 60 herd size 130

2003 24 30

2007 -10 % 10 16

2007 -12 % 7 14

2007 -15 % 4 11

2007 -17 % 2 8

2007 -20 % 0 5

where Pit is the probability that the rate of return is determined by state i
at time t. The probabilities Pt = {Pit} associated with the different states
rit at time t are determined from:

P′
t = P′

0A
t, (5)

where P0 denotes the vector of initial probabilities of the different return
rates and corresponding subsidy levels.

In general, the transition probabilities at time t can be defined as function
of the investment decision at time t. Formally, letting rt denote the state at
time t and It denote the investment decision at time t, the state transition
probability is given as a function P (rt|rt−1, It). A Markov Decision Process
(MDP) is a Markov Model with the above modification, i.e. the transition
probability matrix depends on the action taken in each stage 2. For example,
investment may increase productivity: this can be modelled by an MDP with
a more advantageous transition matrix whenever investment takes place.

2Furthermore, in general the transition probabilities depend on the timing of the in-

vestment (e.g. due to fixed term investment subsidy programs).
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Expected Value of Information

In stochastic programming literature [Birge and Louveaux1997], the expected
value of perfect information measures the maximum amount a decision maker
would be willing to pay for complete information:

Definition 1 Let f(x) denote the objective function to be maximized with

respect to decision variable x. Let z denote a random variable. The ex-

pected value of perfect information (EVPI) can be measured as the difference

[Birge and Louveaux1997]

EV PI = E[max f(x, z)] − max E[f(x, z)]. (6)

The first term in equation (6) corresponds to a ”wait-and-see” solution and
the second term to an expected value maximizing solution. EVPI can be used
to measure the cost of imperfect information due to uncertain income and
subsidies.

Before presenting numerical examples of the uncertainty cost, two opti-
mization models of investment are introduced: a ”wait-and-see” model and
an expected value model, respectively.

Model 1: Investment in a Wait-and-See Model

In Model 1, like in [Dixit and Pindyck1994], the value of investment is ob-
servable at any time but the future values are random. The future value
of investment is assumed to follow the same mean-reverting Markov process
as the producer price does (cf. ibid.); with high probability, the value of
investment remains unchanged. Specifically, at time t, the rate of return rt

is observed, and future return rate rt+1 is determined by a transition matrix
modelling non-increasing income expectations (Table 2). The hypothetical
Markov model as summarized in Table 2 is a simplified model of a mean-
reverting income process, with a long run mean return rate 0.06. With high
probability, the value of investment remains the same (except for the highest
rate of return r = 0.3 associated with decreasing expectations).
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Table 2: Transition Probabilities between States (ROI %)

0.3 0.16 0.11 0.05 0

0.3 0.01 0.3 0.4 0.28 0.01

0.16 0.01 0.8 0.1 0.09 0

0.11 0.01 0.05 0.7 0.15 0.09

0.05 0.01 0.01 0.08 0.8 0.1

0 0 0 0.05 0.15 0.8

Formally, let yt denote the value of investment in terms of income obtained
when investing It at t, assuming infinite time horizon T = ∞:

yt(It) = rtIt + E[
∞∑

k=t+1

bkrk]It. (7)

At each time t = 1, ..., T the firm makes a decision on the level of investment
It subject to constraint (2), with an aggregate budget Ia. The dynamic
optimization problem subject to budget constraint (2) can be stated as

max E[
∑

t

btyt(It) − btIt] (8)

Problem (8) subject to (1)-(2) can be solved recursively applying Bellman
equation:

v(rt) = max
It

{(yt − It) + bEv(rt+1)}, (9)

where v(rt) denotes the value function given state rt.
In this paper, for simplicity, the investment model is formalized as an

MDP as follows: Define an additional state ra = 0 corresponding to a state
where the budget has been used up. After investment has been made a new
transition probability matrix applies: one where each state leads to state ra

with probability one.

Model 2: Expected Value Maximization

In Model 1, like in [Dixit and Pindyck1994], the value of investment at any
time t is observable. In the case study summarized above, due to a high
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degree of policy uncertainty, the return rate rt can be uncertain at the be-
ginning of period t. Assuming rt is observed at the end of period t, all terms
affecting the value of investment are random. A risk-neutral decision maker
in this case solves the Bellman equation:

v(E(rt)) = max
It

{E[yt(rt, It) − It] + bv[E(rt+1)]}. (10)

Using the terminology in [Keswani and Shackleton2006], the special case
where the investment decision is made at the beginning of the time horizon
corresponds to optimizing forward start net present value (NPV). According
to formulation (10) the decision maker has the flexibility to make the in-
vestment decision at any time; the expected return can be determined based
on the return observed previous time period. Assuming a stationary income
process, however, there is no motivation for postponing investment; in this
case NPV maximization is optimal.

4 Optimal Investment and Dynamic Cost of

Uncertainty

In what follows, the uncertainty cost is studied applying the stochastic pro-
gramming approach introduced above. First, a measure of dynamic (time-
varying) uncertainty cost relative to expected investment is presented. This
is based on a modification of Definition 1 to a dynamic context. Second,
numerical examples are presented for the case study summarized above.

Consider the dynamic objective function f({It}, {rt}) defined as:

f({It}, {rt}) =
∑

t

btyt(rt, It) − btIt, (11)

where yt is formalized in (7), cf. problem (8). Directly applying Definition 1
for the expected value of perfect information (EVPI) to the dynamic objective
(11), implies:

EV PI = E[max
{It}

f({It}, {rt})] − max
{It}

E[f({It}, {rt})]. (12)

The first term on the right hand side in (12) corresponds to the expected
value of the wait-and-see model (Model 1), based on assuming the value of
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investment is observable when the investment decision is made. The second
term on the right hand side in (12) corresponds to maximizing the expected
forward start NPV, i.e. to determining the optimal timing of investment
at the beginning of the time horizon. Thus, the classical option value of
postponing the investment decision [Dixit and Pindyck1994] can be seen as
equivalent to EVPI in (12).

Assuming the investment decision can be made at any time even when
the value of investment is not fully observable, EVPI can be modified to
a dynamic uncertainty cost as follows. Let {I∗

t } denote the solution to (9)
(Model 1) and let {I∗∗

t } denote the solution to (10) (Model 2). Applying
expression (6) to the dynamic optimization problem (3), implies a dynamic
uncertainty cost, EVPI(t), defined for period t as

EV PI(t) = E[yt(I
∗
t ) − I∗

t ] − E[E(yt(I
∗∗
t )|rt−1) − I∗∗

t ] (13)

where the first term corresponds to the expected value obtained at t when
solving the wait-and-see model (Model 1) and the second term formalizes the
corresponding expected value when the investment decision at time t is based
on E(rt), given the observed return previous period (Model 2). Note that
assuming a stationary income process, the second term in (13) is equivalent
to maximizing expected NPV (postponing investment is not optimal); in
this case dynamic EVPI(t) in (13) corresponds to a dynamic option value of
postponing investment.

Consider the wait-and-see model, assuming the return from future invest-
ments is determined by transition probabilities in Table 2, where the different
states are given in terms of different levels of return on investment, follow-
ing the case study example. The net return when investing It at time t is
given by expression (7). Letting Ia = 10000, r0 = 0.05 and b = 0.94, prob-
lem (8) subject to (2) is solved numerically with backward recursion 10000
times, using Matlab [Fackler]. Figure 1 depicts the probability of investment,
with mean 1 %. The investment probability decreases over time, reflecting
decreasing income expectations.

Let Prt(I) denote the probability of investment at time t when the state
rt is observed, and let Pr′t(I) denote the corresponding probability with ex-
pected value maximization (Model 2). A modification of EVPI (Definition
1) is to consider a cost measure relative the expected value of investment:

Definition 2 A dynamic relative EVPI, REPVI, can be defined for time
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Figure 1: Probability of investment with b = 0.94, r0 = 0.05 (dash-dotted

curve), r0 = 0.11 (solid curve)

period t as the weighted difference (cf. Definition 1):

REV PI(t) =
E[yt(I

∗
t ) − I∗

t ]

Prt(Ia)Ia

−
E[E(yt(I

∗∗
t )|rt−1) − I∗∗

t ]

Pr′t(Ia)Ia

(14)

With a large number of iterations, the expected net value of the invest-
ment at time t, E[yt(I

∗
t )− I∗

t ] in (14), can be approximated by the mean net
value. Figure 2 depicts REVPI(t) in the above example, assuming both ex-
pected net value terms in (14) are approximated by the corresponding mean
net values over 150000 iterations. Assuming b = 0.94 the relative EVPI
as defined in (14), when averaged over time, is 0.061. The outcome with
r0 = 0.11 is similar. The value of perfect information EVPI(t) is at least 5
% of total expenditure on investment. Increasing the stability of the value
of investment e.g. by increasing the probability of no change in return to
0.95 (for all r < 0.3), reducing the probabilities of a change in return, im-
plies a mean relative EVPI 0.046. On the other hand, if all the states are
equally likely to follow from any given start state, the mean relative EVPI
is approximately 0.07. Increasing the volatility of income thus increases the
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Figure 2: Relative EVPI, b = 0.94, r0 = 0.05 (150000 runs)

cost of uncertainty. However, in this example, the mean uncertainty cost is
quite robust to changes in underlying probabilities.

Dynamic Relative Option Value

The value of perfect information depends on the flexibility of decision-making
in optimizing the expected value of investment. Let t∗ denote the optimal
timing of investment when maximizing expected forward start NPV at the
beginning of the time horizon. A dynamic relative option value, O(t), can
be defined as:

O(t) =
E[yt(I

∗
t ) − I∗

t ]

Prt(Ia)Ia

−
max{maxt btE(yt − It), 0}

bt∗Ia

. (15)

O(t) in (15) formalizes the dynamic option value relative to the expected
value of investment. With r0 = 0.05 the relative option value (not depicted)
varies between 40 % and 42 % (the second term in (15) is zero). With
r0 = 0.11, keeping other parameters unchanged, the mean O(t) (not depicted)
is 0.35, even if in this case the second term in (15) is positive.

In the special case where rt has a stationary distribution, the two relative
uncertainty cost measures, REVPI in (14) and the relative option value (15)
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are equivalent. Assuming a stationary distribution, the cost of imperfect
information can be high. E.g. if r0 = 0.11 and b = 0.91, assuming all states
are equally likely, REVPI (and the relative option value) is on average more
than 11 % of the expected investment.

Income Volatility and Uncertainty Cost

Increasing income volatility increases the cost of uncertainty. For example,
assume the same transition probabilities as in Table 2 apply for states given
in terms of ROI % defined for 3 time periods (instead of one period as above).
This modification increases the variance between the states (ROI %). A mo-
tivation for this case is given by policy programs with fixed duration of 3
years. Assuming the same parameters as in Figure 2, this modification im-
plies the mean REVPI over time is 17 % 3. The mean investment probability
is 2 %, twice the mean investment probability with the original definition of
the transition probabilities (cf. Figure 1). In this case an increase in income
volatility increases the investment probability.

The value of information is the higher the longer the time period with
a certain income in the wait-and-see model, compared to expected value
maximization with uncertain income. Consider a special case of stable income
where the rate of return in the wait-and-see model remains at rt for all
future periods whenever investment is made at time t. For example, with
b = 0.94, the mean REVPI in this case is approximately 72 % of the expected
investment. With b = 0.91, average REVPI over time is more than 130 % of
expected investment.

An Application to Policy Planning

Previous work based on a sector model of agriculture suggests that decou-
pling direct payments from production weakens the incentive for investment
in dairy production and causes a temporary but significant slowdown in dairy
investments [Lehtonen2004]. A key issue in planning an investment subsidy
program is to ensure a target level of productivity-enhancing investments,
despite decreasing expectations regarding future income. The return rate

3Further assuming the different states are equally likely, the average REVPI over time

is more than 23 %.
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Figure 3: Cumulative investment probability as function of subsidy level,

b = 0.94, r0 = 0.05 (dash-dotted curve), r0 = 0.11 (solid curve)

can be modelled as a Markov process that depends on the investment sub-
sidy level. Assuming b = 0.94 in the wait-and-see model gives Figure 3,
depicting the cumulative investment probability over the first 5 time periods
as function of the investment subsidy (% of investment expenditure). E.g.
with r0 = 0.05, it can be observed that to affect investments, the subsidy
must increase from its current level 35 % to 45 %: this more than triples
cumulative investments during first five periods.

A high uncertainty cost deteriorates the efficiency of investment subsidies.
For example, if the start state is r0 = 0.05, and the investment subsidy is
0.35, the cumulative investment probability in the wait-and-see model with
observable ROI is 8%, compared to 5% with expected value maximization
with unobservable ROI.
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Figure 4: Probability of investment with I = 200, b = 0.94, r0 = 0.05

Financial Constraints

Like in [Verkammen], assume now that the decision-maker decides at each
time t on investment with period-specific financial constraints:

It ∈ {0, I}, t = 1, ..., T. (16)

With I = 200, b = 0.94 and r0 = 0.05, the investment probability is depicted
in Figure 4. Period-specific financial constraints may explain the postpone-
ment of part of the investments.

5 Investment by a Risk-Averse Agent

The above investment models are based on assuming the decision-maker is
a risk neutral. To take risk explicitly into account, a modification of a stan-
dard MDP is presented, following [Levitt and Ben-Israel2001]. Examples
suggest that the investment decision is sensitive to risk. Furthermore, the
uncertainty-investment relation is nonlinear.
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Risk in a Markov Decision Process

The idea that risk affects decision-making is not new in agricultural eco-
nomics [Hardaker et al.1997]; A traditional approach can be summarized as
follows. Consider a utility function in exponential form:

U(x) = 1 − e−βx, (17)

where β is a risk-aversion parameter. The expected value of utility (17) can
be evaluated as [Hazell and Norton1986]

E(x) −
β

2
V ar(x). (18)

Stochastic programming [Prekopa1995] has been previously applied to decision-
making in agriculture under uncertainty, see e.g. [Hazell and Norton1986].
A dynamic objective function accounting for risk is defined next based on
a stochastic programming approach presented in [Levitt and Ben-Israel2001]
(with applications to inventory control and the maintenance problem).

A Stochastic Programming Model

Definition 3 The recourse certainty equivalent (RCE) of a scalar random

variable Z is defined as

SU(Z) = sup
z
{z + EU(Z − z)}.

where U is a concave function.

Consider the quadratic utility function:

u(x) = x −
β

2
x2, (19)

where β is a risk parameter. Applying Definition 3 to utility function (19)
gives the RCE associated with this utility:

Sβ(X) = E(X) −
β

2
V ar(X) (20)

where β is a risk parameter. An agent maximizing the criterion in (20) is
risk averse if β > 0.
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Definition 4 The quadratic recourse certainty equivalent (RCE) of the ran-

dom sequence X = (X1, ..., XT ) is defined as [Levitt and Ben-Israel2001]

Sβ1,...,βT
(X) =

T∑

t=1

bt−1Sβt
(Xt) =

T∑

t=1

bt−1{E(Xt) −
βt

2
V ar(Xt)} (21)

where the βt parameters allow to model different risk attitudes in different

stages. The ”utility” obtained at time t, Sβt is defined as the difference:

E(Xt) −
βt

2
V ar(Xt). (22)

The definition of the period-t RCE in equation (22) is analogous to RCE
in equation (20). An alternative motivation for the definition of period t
objective in equation (22) is given in equation (18).

The wait-and-see model (Model 1) can be modified to take risk into ac-
count, applying the utility model (22). This implies investment probabilities
corresponding to maximizing quadratic recourse certainty equivalent (Defi-
nition 4). A numerical example is depicted in Figure 5, with β = 10−4 4,
applying the exponential utility model in equation (17) (cf. (18) and (20)).
In this example uncertainty lowers cumulative investment probability by al-
most 50%, compared to the case with observable value depicted in Figure
1 (with r0 = 0.05). The investment probability depends on the amount of
investment, dropping to zero at Ia = 10300. The relation between Ia and
cumulative investment probability (not depicted) is nonlinear.

A positive uncertainty-investment relation was exemplified in section 4,
when addressing the impact of increasing income volatility, assuming a risk-
neutral decision maker. Taking risk into account in general modifies the
uncertainty-investment relation.

Optimizing Forward Start NPV with Risk

In general, transition probabilities between different states of return on in-
vestment (cf. Table 1) depend on the timing on the investment. The proba-

4The Arrow-Pratt relative risk aversion (RRA) is defined at Ia as −IaU ′′(Ia)/U ′(Ia).

Using β = 10−4 the RRA equals 1 at Ia; Arrow’s conjecture that RRA approximately

equals 1 is a common reference point. Recent empirical work considering the case of

Turkish farmers [Binici et al.2003] suggests β varies between 0.04 and 0.49.
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Figure 5: Investment probability (b = 0.94, r0 = 0.05), first with risk-neutral

firm as in Fig. 1 (upper curve), second assuming exponential utility with risk

parameter β = 10−4 (lower curve)
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bilities may change e.g. due to a potential change in income and/or invest-
ment subsidies. Consider the special case of optimizing forward start NPV,
assuming time-varying transition probabilities. Examples (not depicted) sug-
gest that a time-varying variance can be a motivation for postponing the
investment. However, the risk cost associated with valuable investments can
be high enough to make the net utility negative, whereas risk does not affect
the optimal timing of small investments at t = 1.

6 Conclusion

This paper has addressed the cost of income uncertainty in agricultural in-
vestment. Applying a stochastic programming approach, an operational
formula for dynamic uncertainty cost is presented, modifying the classical
expected value of perfect information. The cost of uncertainty depends on
income volatility; in the special case of stationary income, the dynamic uncer-
tainty cost is equivalent to a dynamic option value of postponing investment.
Furthermore, numerical examples suggest that the investment decision is sen-
sitive to risk. A cost associated with risk (variance) can be a source of an
option value of postponing investment (along with period-specific financial
constraints), even if the income process is non-increasing in time.

A topic for future work is a survey study of the subjective probability
distributions. In some case study examples, the mean uncertainty cost is
quite robust to changes in underlying probabilities. In future work, the model
can be applied to e.g. studying the investment subsidy needed to maintain
target investments under uncertainty. The efficiency of investment subsidy
programs is deteriorated by the uncertainty regarding future income. The
numerical optimization model presented in this paper is applicable to other
dynamic resource allocation problems where the dynamic cost of uncertainty
is relevant.
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