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Abstract. Spatial interaction models of the gravity type are widely used to model origin-
destination flows. They draw attention to three types of variables to explain variation in 
spatial interactions across geographic space: Variables that characterise an origin region of a 
flow, variables that characterise a destination region of a flow, and finally variables that 
measure the separation between origin and destination regions. These models are said to be 
misspecified if their residuals are spatially autocorrelated, violating the independence 
assumption. This paper outlines and compares two approaches, the spatial econometric and 
the eigenfunction-based spatial filtering approach, to deal with the issue of spatial 
autocorrelation among flow residuals.  An example using patent citation data that capture 
knowledge flows across 112 European regions serves to illustrate the application and the 
comparison of the two approaches. 
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1 Introduction 

 
Spatial autocorrelation in geocoded data can be a serious problem, rendering conventional 
statistical analysis unsound and requiring specialised spatial analytical tools. Spatial 
autocorrelation refers to the pairwise correlation of georeferenced observations for a single 
variable. Correlation retains its classical meaning of association, whereas ‘auto’ means self 
and spatial describes the manner in which self-correlation arises. Autocorrelation is 
attributable to the configurational arrangement of observations. The problem arises in 
situations where the observations are nonindependent over space. That is, nearby spatial units 
(regions) are associated in some way. Sometimes, this association is due to a poor match 
between the spatial extent of a phenomenon of interest and the administrative units for which 
data are available. Sometimes, it is due to a spatial spillover effect. The complications are 
similar to those found in time series analysis, but are exacerbated by the multidirectional, two-
dimensional nature of dependence in space rather than the unidirectional, one-dimensional 
nature in time. 
 
Spatial interaction or flow data pertain to measurements each of which is associated with a 
link or a pair of origin-destination locations that represent points or areas (regions) in space. 
While a voluminous literature exists for spatial autocorrelation with a focus of interest on the 
specification and estimation of models for cross-sectional attribute data, there is scant 
attention paid to its counterpart in spatial interaction data. For example, there is no explicit 
reference to spatial flows data in some of the commonly cited spatial econometric and 
statistics texts, such as Anselin (1988) and Cressie (1991). But Griffith (1988, pp. 66-79) 
implicitly addresses this topic, and Griffith and Jones (1980) treat this very problem. 
Furthermore, some relevant research has been done about network autocorrelation (see Black 
1992, Black and Thomas 1998, Tiefelsdorf and Braun 1999); but this work treats flows in an 
indirect way. 
 
Modelling spatial interactions has a long and distinguished history in geography and regional 
science (see, especially, Wilson 1970, Sen and Smith 1995). Spatial interaction models focus 
on dyads of regions rather than on individual regions. They aim to explain variation of spatial 
interaction across geographic space. In doing so, they draw attention to three types of push-
pull variables: those relating to properties of the origin regions (origin factor); those relating 
to properties of the destination region (destination factor); and, those relating to the spatial 
separation between origin and destination regions (separation factor). Spatial interaction 
models are said to be misspecified if the residuals are spatially autocorrelated, violating the 
independence assumption. This problem has been largely neglected so far, with very few 
exceptions [see, for example, Brandsma and Ketellapper 1979, Griffith and Jones 1980, 
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Bolduc et al. 1992, 1995, LeSage and Pace 2005, Fischer et al. 2006a]. This neglect may be 
because spatial interaction models are more complex than models for the geographic 
distribution of attribute data, with each region being associated with several values as an 
origin as well as a destination so that specification of the autocorrelation structure is less 
obvious. 
 
This paper outlines and compares two approaches that might be used to account for spatial 
autocorrelation in a spatial interaction modelling context. One approach involves directly 
modelling spatial autocorrelation among flow residuals by introducing a spatial error structure 
that reflects origin and/or destination autoregressive dependence among origin-destination 
flows. This view leads to spatial autoregressive model specifications that represent not only 
extensions of the conventional spatial interaction models, but also extensions of the spatial 
regression models, the workhorses of applied spatial econometrics. 
 
The other approach, eigenfunction spatial filtering, starts from the misspecification 
interpretation perspective of spatial autocorrelation, which assumes that spatial 
autocorrelation among flow residuals is induced by missing origin and destination variables, 
which themselves are spatially autocorrelated. The approach itself is a non-parametric 
technique that removes the inherent spatial autocorrelation from spatial interaction models by 
introducing appropriate synthetic surrogate variates (i.e., spatial filters) for the origin and 
destination variables, and exploiting hereby an eigenfunction decomposition associated with 
Moran’s I (MI) statistic of spatial autocorrelation. 
 
The structure of the paper is as follows. The section that follows sets forth the context and 
framework for the discussion, with a particular focus on the log-additive spatial interaction 
model version, one of the most common specifications employed in applied spatial interaction 
data analysis, as well as the Poisson regression generalised linear model version, today’s 
preferred specification. Section 3 outlines the spatial econometric approach that generalises 
the classical spatial interaction models to spatial econometric origin-destination flow models. 
These models are formally equivalent to conventional spatial regression models. But they 
differ in terms of the data analysed and the way in which the spatial weights matrix is defined. 
Section 4 moves attention to the eigenfunction-based spatial filtering approach that accounts 
for the inherent spatial autocorrelation from spatial interaction models with a composite map 
pattern component (i.e., a spatial filter), rather than simply identifying a global spatial 
autocorrelation parameter for a spatial autoregressive process. The aim of this non-parametric 
approach is to control spatial autocorrelation by introducing appropriate synthetic variables 
that serve as surrogates for spatially autocorrelated missing origin and destination variables. 
This shift in focus leads to spatial filter variants of the classical spatial interaction model. 
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Patent citation data that capture knowledge flows across 112 European regions are used in 
Section 5 to compare the workings of the two approaches. The final section concludes the 
paper with a final comparison of the two approaches. 
 
 
2 Background 

 
Suppose we have a spatial system consisting of n regions. Let ijm  (i, j=1, …, n) denote 
observations on random variables, say Mij, each of which corresponds to a movement of 
people, information or communication from region i to region j. The Mij are assumed to be 
independent random variables. They are sampled from a specified probability distribution 
dependent upon some mean, say .ijμ  Let us assume that no a priori information is given about 
the row and column totals of the flow matrix [ ]ijm . Then the expected flows [ ]ijij = E Mμ  
between origin i and destination j may be modelled by 
 

( )ij i j ij ijc a b f dα βμ θ=  (1) 

 
with 
 

( )

1

exp
K

k
k ij

k
ijf dθ

=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑    (2) 

 
and with ( ) (1) ( )( ,..., )k K

ij ij ijd d d=  and 1( ,..., ),Kθ θ θ=  where c is a constant of proportionality, and 
α , β  and θ  indicate the relative importance of the origin, destination and separation 
variables. The singly indexed variables ia  and jb  characterise the origin and destination of 
interaction, respectively. These can be the number of opportunities in either the origins or the 
destinations. The doubly indexed variable ijd   is a multivariate measure of spatial separation 
that jointly varies across all origin and destination combinations, and represents the deterring 
influence of the separation between origins and destinations. On the one hand, the larger the 
number of opportunities becomes at an origin or destination, the larger the expected 
interaction flow will be; on the other hand, the larger the separation becomes between i and j, 
the smaller the interaction flow is expected to be. The origin specific parameter α  and the 
destination specific parameter β  as well as the cross-regional parameter θ  and the overall 
baseline parameter c  are estimated in order to match the expected flows ijμ  as closely as 
possible with the observed flows ijm . 
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The log-transformed model specification 
 
For linear model analysis purposes, two implicit assumptions are that , anda b f  are positive, 
and that the factors anda b  are independent of .f  Thus, model (1)-(2) can be expressed 
equivalently as a log-additive model1 of the form  
 

( )

1
( ) ( ) ( , )( , ) ( , )k

K k

k

i j i ji j i jy a b d εα θκ β
=

= + + + +∑  (3) 

 
where ( , ) ln ( )iji jy μ≡ , ln ( )cκ ≡ , ( ) ln ( )iia a≡ , ( ) ln ( )jjb b≡  and ( , ) iji jd d≡ . Of note is that 
the back-transformation of this log-linear specification results in the error structure being 
multiplicative. Assume that ( ) 0E ε =  and that ( )ia  and ( )jb are measured without error [the 
standard minimal assumptions for least squares regressions]; then we obtain the ordinary least 
squares estimator (OLS), say γ , for 1, ...,, ,( )

K

Tβ θ θακ=γ , as the solution to the matrix 
equation  
 
( )T T=X X γ X y   (4) 

 
with 
 

[ ](1,1) (1, ) ( ,1) ( , ), ..., , ..., , ...,T n n n ny y y y=y  (5) 

 
given that the (N, 1)-vector ( )

( ) ( )

, ...,(1,1) ( , )[ ]k T
k k

n nd d=d  is the vectorised form of the n-by-n 
separation matrix ( )[ ],k

ijd  (1) (1) ( ) ( )[ , ..., , ..., , ..., ]Tn na a a a=a  and (1) ( ) (1) ( )[ , ..., , ..., , ..., ]Tn nb b b b=b  

are N-by-1 vectors, appropriately indexed over the N = n2 values, and where y denotes the N-
by-1 vector of observations on the interaction variable, X is the  
(N, K+3)-matrix of observations on the explanatory variables including the origin, destination, 
separation variables and an intercept. γ  is the associated  (K+3)-by-1 parameter vector. The 
N-by-1 vector (1,1), ..., ( , )[ ]Tn nε ε=ε  denotes the vectorised form of [ ]ijε . 
 
Depending upon the assumptions made about the variance-covariance matrix of ,ε  the 
estimators derived from equation (4) may or may not be efficient. But equation (4) is an 
unbiased equation (Durbin 1960) in the sense that  
 

                                                 
1  Note in some cases yij = 0 indicating the absence of flows from i to j. This leads to the so-called zero problem since the 

logarithm then is undefined. There are several pragmatic solutions to this problem, with adding a small constant to the  

zero elements of [yij ] being widely used.   
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ˆ ˆ[ ] [ ] [ ]T T T TE E E= = =X X γ X X γ X y X X γ  (6) 

 
where E[.] denotes the expectation operator. From equation (6) we see that 
 

ˆ[ ]E =γ γ   (7) 

 
provided that 1( )T −X X  exists. That is, the data must not be perfectly collinear. This result 
holds whatever dispersion matrix, 2 ,σ V  is postulated for the disturbance, ε .  
 
A violation of the above assumptions may lead to two problems: (i) spatial autocorrelation 
among the X-variables, and (ii) spatial autocorrelation among the residuals, ε . Both problems 
may well arise, but neither implies the other. If (i) holds, this will affect the matrix 1( )T −X X , 
or 1 1( )T − −X V X  in general, and thus the variance estimates of the coefficients. If (ii) holds, 
then the basic assumption of a scalar dispersion matrix for the disturbances, ε , is violated; 
that is, 2TE σ=⎡ ⎤⎣ ⎦ε ε V  where ≠V I . Thus, there will be an extra V matrix in the 
expressions, and generalised rather than ordinary least squares should be used for estimation 
purposes. If V is unknown, as is generally the case, then some form of iterative generalised 
least squares should be performed. In this case the parameter estimates will be consistent, but 
not necessarily unbiased. But this is true for every regression problem (Cliff et al. 1974). 
 

The Poisson model specification 
 
Flowerdew and Aitkin (1982) argue that Equation (3) coupled with a normal probability 
model provides an incorrect specification for spatial interaction models. They specify the 
following alternative model: 
 

( , )exp( ( , )) ( , )P{ ( , )}
( , )!

y i ji j i jy i j
y i j

λ μ−
=  (8) 

 
where P{.} denotes probability, and the expected value, ( , )i jμ , is given by equation (1). 
Equation (8) models flows between origin i and destination j as inter-point movement counts; 
hence the specification of a discrete distribution. Flowerdew and Aitkin show the superiority 
of Poisson regression over OLS log-linear regression based on equation (3). Later, Flowerdew 
and Lovett (1988) extend equation (8) to singly- and doubly-constrained spatial interaction 
models (see Wilson 1970), again assuming independent origin/destination factors. 
Unfortunately, this Poisson probability model formulation does not incorporate spatial 
dependencies in the origin and destination terms. Consequences of overlooking such spatial 
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structure effects are conceptualized in Curry (1972), with their presence empirically 
demonstrated by Griffith and Jones (1980). One possible reformulation to account for them 
was posited by Bolduc et al. (1989, 1992, 1995), with a more recent discussion of this topic 
by Tiefelsdorf (2003). 
 
 
3 The Spatial Econometric Perspective 

 
The spatial econometric perspective involves capturing spatial dependence in the error term 
by means of spatial weight structures that model dependence between the N origin-destination 
pairs in a manner consistent with the conventional log-additive spatial interaction model given 
by equation (3).  This perspective results in the following spatial econometric origin-
destination flow model: 
 

ρ η= + +y X γ W ε  , (9) 

 
which is a log-additive spatial interaction model with a N-by-1 error vector ρ η= +ε W ε , 
where η  is an uncorrelated – and homoscedastic – normal error term that satisfies the 
classical assumptions of independent and identically distributed with zero mean and constant 
variance 2σ , W is a row-standardized spatial weights matrix that represents an N-by-N non-
negative, sparse matrix, and ρ  is a scalar parameter that reflects the nature and degree of 
spatial dependence and which is typically referred to as the spatial autoregressive parameter. 
This latter matrix captures dependency relations among the observations that reflect flows 
from origins to destinations in the system of n regions,. Use of matrix W allows the restriction  
| | 1ρ <  to be invoked; if | | 1,ρ >  the models would be explosive and non-stationary.  
 
A key issue here is how to construct a meaningful spatial weights matrix in the case where the 
N-by-N vector of observations reflects flows from all origins to all destinations. We follow 
Fischer et al. (2006a) to construct a weights matrix, oW + ,dW  that captures origin and 
destination spatial dependence. Origin spatial dependence refers to the tendency for a flow 
from origin region i to any destination region to be of similar magnitude to its neighbours. 
Destination spatial dependence conveys the idea that the flow to a destination region j from 
any origin region tends to involve flows of similar magnitudes to its neighbours (see LeSage 
and Pace 2005).  
 
Specification of origin-based spatial dependence. To capture origin-based spatial 
dependence, we define  
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1 if and 1
( , ; , )

0 otherwise,
iro j s c

w i j r s
= =⎧

= ⎨
⎩

 (10) 

 
where cir is the element of a conventional n-by-n first order contiguity matrix that defines 
whether or not the origin regions i and r are contiguous: 
 

1 if , and and have a common border
0 otherwise.ir

i r i r
c

≠⎧
= ⎨
⎩

 (11) 

 
This origin-based spatial weights matrix specifies an origin-based neighbourhood set for each 
origin-destination pair (i, j). An element ( , ; , )ow i j r s  defines an origin-destination pair (r, s) 
as being a ‘neighbour’ of (i, j) if the origin regions i and r are contiguous spatial units and  
j = s. It is convenient to work with a row-standardised form of .oW  In order to achieve this, 
each element of the matrix has to be divided by its respective row sum so that the row 
elements of the standardised matrix sum to one. 
 
Specification of destination-based spatial dependence. Analogously, we define a row-
standardised destination-based N-by-N spatial weights matrix { ( , ; , )}d w i j r s=dW  in which 
we capture destination-based dependence as follows: 
 

1 if and 1
( , ; , )

0 otherwise,
jsd i r c

w i j r s
= =⎧

= ⎨
⎩

 (12) 

 
and 
 

1 if , and and have a common border
0 otherwise.js

j s j s
c

≠⎧
= ⎨
⎩

 (13) 

 
Maximum Likelihood estimation of the origin-destination flow model described above 
involves maximisation of the log-likelihood function [concentrated for γ  and 2σ ] with 
respect to the spatial autoregressive parameter :ρ  
 

( ) ( ) ( )ln | | ln ( ) ( ) ( ) ( )T TN I Iρ ρρ ρ ρ ρ⎡ ⎤= − − − − − −⎣ ⎦I W y X γ W W y X γL  (14) 

 
1 1( ) ( ( ) ( ) ) [( ) ( )]T T T TI I I Iρ ρ ρ ρ ρ− −= − − − −γ X W W  X X W W y  (15) 
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2 1( ) ( ) ( )( ) ( ) ( ) ( ).T T
N I Iρ ρ ρσ ρ ρ= − − − −y X γ W W y X γ  (16) 

 
Equation (14) is maximised with respect to ρ  where ρ  is restricted to the interval 

1 1
min max( , )λ λ− −− , the inverse of the extreme eigenvalues of the spatial weights matrix; min 0λ <  

and max 1λ =  represent the minimum and maximum eigenvalues of .W  ML estimates of γ  and 
2σ  are found by substituting the optimal value of ρ  into equations (15) and (16). 

 
The major difficulty in numerical maximisation of the concentrated log-likelihood function is 
the necessity of evaluating the N-by-N log-determinant of ( )ρ−I W  at each step. The 
eigenvalue approach to computing this term suggested by Ord (1975) becomes 
computationally intensive even when N is small. But W is a large sparse N-by-N matrix by 
construction so that the use of sparse matrix Cholesky factorisation techniques means 
maximum likelihood estimation of these models is computationally feasible for larger spatial 
interaction systems. Execution time speed improvements come at no cost to statistical 
accuracy, as is illustrated in Fischer et al. (2006a). 
 
Some simplification can be attained here because the N-by-N matrices can be rewritten in 
Kronecker product form. Consequently, the original set of n eigenvalues is repeated n times 
for the origin and n times for the destination spatial autoregressive terms. Griffith (e.g., 1992, 
2004b) shows how the Jacobian term based upon these eigenvalues can be approximated, 
resulting in a dramatic simplification for computational purposes. One example of this type of 
decomposition is presented by Griffith (1996b) for space-time data. 
 

 

4 The Eigenfunction Spatial Filtering Approach 

 
The eigenfunction spatial filtering approach represents an alternative methodology to account 
for spatial autocorrelation in a spatial interaction model. The primary motivation for this 
approach in the current context is to allow spatial analysts to compute OLS estimators for the 
parameters of the log-additive spatial interaction model, as well as generalised linear model 
Poisson regression spatial interaction parameter estimates, while ensuring that the required 
model assumptions are met. The approach outlined in this section derives from the 
eigenfunction spatial filtering approach devised by Griffith (1996a, 2000, 2002, 2003, 2004a) 
for attribute data. This approach is non-parametric in nature and aims to control for spatial 
autocorrelation by introducing appropriate synthetic variables that serve as surrogates for 
spatially autocorrelated missing origin and destination variables. These synthetic variables are 
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derived as linear combinations of eigenvectors of the following modified version of the 
conventional n-by-n binary 0-1 contiguity matrix C: 
 

1 1( ) ( )T T
n n− −I 11 C I 11 , (17) 

 
where I is the n-by-n identity matrix, and 1 an n-by-1 vector of ones. This particular matrix 
expression appears in the numerator of Moran’s I (MI) statistic of spatial autocorrelation 
defined for attribute data. Tiefelsdorf and Boots (1995) show that all of the eigenvalues of 
expression (17) relate to distinct MI values. 
 
An eigenfunction linked to some geographic contiguity matrix C may be interpreted in the 
context of latent map pattern as follows (Getis and Griffith 2002): The first eigenvector, say 

1E , is the set of numerical values that has the largest MI value achievable for any set of 
numerical values, for the given geographic contiguity matrix. The second eigenvector,  2 ,E  is 
the set of numerical values that has the largest achievable MI for any set of numerical values 
that is uncorrelated with 1.E  This sequential construction of eigenvectors continues through 

,nE  which is the set of numerical values that has the largest negative MI achievable by any 
set of numerical values which is uncorrelated with the preceding (n-1) eigenvectors. These n 
eigenvectors describe the full range of all possible mutually orthogonal and uncorrelated map 
patterns, and may be interpreted as synthetic map variables that represent specific natures 
(that is, positive or negative) and degrees (that is, negligible, weak, moderate, strong) of 
potential spatial autocorrelation. 
 
The eigenvector spatial filtering approach, based upon a stepwise selection criterion, adds a 
minimally sufficient set of eigenvectors as proxies for missing origin and destination 
variables, and in doing so eliminates spatial autocorrelation among the observations by 
inducing mutual dyad error independence. This leads to a spatial filter specification of the 
spatial interaction model (1)-(2) that may be described as 
 

( )

1 1 1
( , )exp[ ] exp[ ] exp[ ]

Q R K k

ij iq q i jr r j k
q r k

i jc E a E b dα βμ ψ ϕ θ
= = =

= ∑ ∑ ∑  (18) 

 
where ijμ , 

( )

( , )
k

i jd , c, α, β, kθ (k=1, …, K), ai and bj  are defined as above, Q and R denote 
selected subsets of the n eigenvectors that have been chosen by supervised selection to furnish 
a good description of the original origin and destination variables, respectively, and qψ  and 

rϕ  are the respective coefficients for the linear combinations of eigenvectors that constitute 
the origin and destination spatial filters, namely 

1

Q
iq qq

E ψ
=∑ and 

1

R
jr rr

E ϕ
=∑ . For these spatial 

filters, which are linear combinations of the eigenvectors of expression (17) and represent the 
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spatial autocorrelation components of the missing origin and destination variables, 
( 1,..., )q q Qψ =  and ( 1,..., )r r Rϕ =  are regression coefficients that indicate the relative 

importance of each distinct map pattern in accounting for spatial autocorrelation in the flows 
structure.  
 
The spatial filtering model specification of the log-normal additive model 
 
Spatial filter spatial interaction model (18) can be expressed equivalently in log-additive 
form, in order to link it to a normal probability distribution for the error term, as 
 

( )

1 1 1

( , )( , ) ( ) ( ) ( , )
Q R K k

iq q ir r k
q r k

i jy i j E a i E b j d i jκ ψ α ϕ β θ ε
= = =

= + + + + + +∑ ∑ ∑ . (19) 

 
OLS can be employed to estimate the model parameters. All conventional diagnostic statistics 
developed for linear regression analysis can be computed and interpreted without having to 
develop spatially adjusted counterparts. The major numerical difficulty of the spatial filter 
model version is that eigenfunctions have to be calculated, a formidable computational task 
for larger spatial interaction systems (i.e., large n). But this drawback is no more severe than 
computing the eigenvalues to calculate an n2-by-n2 matrix determinant. 
 
 
Specification of a conventional Poisson spatial interaction model. Following the data 
organisation convention of Lesage and Pace (2005), an n-by-n spatial interaction matrix can 
be unfolded and have covariates attached to dyad flows data as follows: 

 
Dyad 
label 

IDorigin IDdestination Flow Origin 
covariates 

Destination 
covariates 

Distance(origin, 
destination) 

1 1 1 y(1, 1) x1 x1 d(1, 1) 
2 2 1 y(2, 1) x2 x1 d(2, 1) 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

n n 1 y(n, 1) xn x1 d(n, 1) 
n+1 1 2 y(1, 2) x1 x2 d(1, 2) 
n+2 2 2 y(2, 2) x2 x2 d(2, 2) . . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

2n n 2 y(n, 2) xn x2 d(n, 2) 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

(n-1)n 1 n y(1, n) x1 xn d(1, n) 
(n-1)n+1 2 n y(2, n) x2 xn d(2, n) 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

n2 n n y(n, n) xn xn d(n, n) 
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The lower-case xs are 1-by-p vectors containing p covariates. The “flow” and “distance” 
column entries are extracted directly from n-by-n matrices. The “origin covariates” column 
entries are obtained from an n-by-p matrix X of covariates as follows: ⊗1 X , where 1 is an 
n-by-1 vector of ones, and ⊗  denotes Kronecker product. The “destination covariates” 
column entries are obtained as follows: ⊗X 1 . Equation (3) as mean response and hence , 
and hence without the error term, can be estimated with this data organization via Poisson 
regression through the use of a generalised linear model algorithm coupled with a Poisson 
distribution link function. Intraregional unit flows can be eliminated by removing the n cases 
for which the origin and destination ids are the same (i.e., IDorigin = IDdestination). Parameter 
estimation can be achieved either with iteratively reweighted least squares or maximum 
likelihood techniques. 

 

Specification of a spatial filter spatial interaction model. Spatial filter counterparts to the 
spatial econometric specification can be obtained in one of two ways: (i) by augmenting the 
set of covariates with the set of candidate eigenvectors – relating to equation (19); and, (ii) by 
estimating parameters for this augmented set with a Poisson regression – relating directly to 
equation (18). The origin candidate eigenvectors are obtained from K⊗1 E , whereas the 
destination candidate eigenvectors are obtained from K ⊗E 1 , where EK is the set of candidate 
eigenvectors (e.g., those whose associated Moran Coefficient, when divided by the maximum 
possible Moran Coefficient, exceeds 0.25). 
 
 
5 An Illustrative Application of the Approaches 

 
Patent citation data are used to illustrate the way the two approaches might be applied to 
control for spatial autocorrelation among the residuals in a spatial interaction model. Such 
data recorded in patent documents are widely recognised as a rich and fruitful source for the 
study of the spatial dimension of innovations and technological change (see, for example, 
Jaffe and Trajtenberg 2002, Fischer et al. 2006b). 
 

The Context  
 
We use interregional patent citation flows as the dependent variable in the models. The data 
specifically relate to citations between European high-tech patents. By European patents we 
mean patent applications at the European Patent Office assigned to high-tech firms located in 
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Europe. High-technology is defined to include the ISIC-sectors of aerospace (ISIC 3845), 
electronics-telecommunication (ISIC 3832), computers and office equipment (ISIC 3825) and 
pharmaceuticals (ISIC 3522). Self-citations (i.e., citations from patents assigned to the same 
firm) have been excluded, given our interest in pure externalities as evidenced by interfirm 
knowledge spillovers.  
 
It is well known that the observation of citations is subject to a truncation bias, because we 
observe citations for only a portion of the life of an invention. To avoid this bias in the 
analysis we have established a five-year window (e.g., 1985-1989, 1986-1990, 1987-1991) to 
count citations to a patent2. The observation period is 1985-1997 with respect to cited patents 
and 1990-2002 with respect to citing patents. The sample used in this contribution is restricted 
to inventors located in n = 112 regions, generally NUTS-2 regions, covering the core of ‘Old 
Europe,’ including Germany (38 regions), France (21 regions), Italy (20 regions), the Benelux 
countries (24 regions), Austria (8 regions) and Switzerland (one region), resulting in N = 
12,432 interregional flows3. 
 
Subject to caveats relative to the relationship between citations and spillovers, these data 
allow us to identify and measure spatial separation effects for interregional knowledge 
spillovers in this interaction system of 112 regions. Our interest is focused on K = 3 measures: 

(1)d  is a N-by-1 vector that represents geographic distance measured in terms of the great 
circle distance [in km] between the regions represented by their economic centres; (2)d  is a  
N-by-1 country dummy variable vector that represents border effects measured in terms of the 
existence of country borders between the regions; and, technological proximity (3)d . 

 
As we consider the distance effect on interregional patent citations, it is important to control 
for technological proximity between regions, as geographical distance could be just proxying 
for technological proximity. To do this we use a technological proximity index sij that defines 
the proximity between regions i and j in technology space. We divide the high-technology 
patents into 55 technological subclasses following the International Patent Code classification 
system. Each region is assigned a (55, 1)-technology vector that measures the share of 
patenting in each of the technological subclasses for a region. The technological proximity 
index sij between regions i and j is given by the uncentred correlation of their  

                                                 
2  For details on data construction see Fischer et al. (2006b). To obtain citations by any one patent application in year t, one 

needs to search the references made by all patent applications after year t. This is called the inversion problem that arises 
because the original data on citations come in the form of citations made, whereas we need dyads of cited and citing 
patents to construct interregional patent citations flows.  

3  Note that intraregional flows are left out of consideration. In the case of cross-regional inventor teams, the procedure of 
multiple full counting has been applied. 
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technological vectors. Two regions that patent exactly in the same proportion in each subclass 
have an index equal to one, while two regions patenting only in different  
subclasses have an index equal to zero. This index is appealing because it allows for a 
continuous measure of technological distance by the transformation 1ij ijd s= − . Appropriate 

ordering leads to the N-by-1 vector (3) .d  

 
The product ai bj in equation (1) may be interpreted simply as the number of distinct (i, j)-
interactions that are possible. Thus, it is reasonable to measure the origin factor in terms of the 
number of patents in the knowledge producing region i in the time period 1985-1997, and the 
destination factor in terms of the number of patents in the knowledge absorbing region j in the 
time period 1990-2002 to produce the N-by-1 vectors a and b. 
 

Application of the Spatial Autoregression Approach 
 
This section reports the ML estimates of the spatial autoregressive model specification that 
reflects origin-destination spatial dependence of flows. We used the spdep package running 
on a Sun Fire V250 with 1.28 GHz and 8 GB RAM to create the spatial weights matrix from 
polygon contiguities, and the errorsarlm procedure based on Ng and Peyton’s (1993) sparse 
matrix Cholesky algorithm to generate the ML estimates for the model. Using this algorithm, 
computation of the maximum likelihood estimates of the spatial econometric model required 
only 836 seconds, a remarkably short time considering that each iteration required calculating 
the determinant of a 12,432-by-12,432 matrix. Using the aforementioned Jacobian 
approximation approach could dramatically reduce this computation time. 
 
Table 1 contains the parameter estimates of the model specification and its associated log-
likelihood function value, together with those of the conventional log-additive spatial 
interaction model. Moving from the conventional spatial interaction model to the spatial 
econometric flow model reflecting spatial dependence at the origins and destinations 
increases the log-likelihood from -21,024.13 to -20,212.013. This is to be expected given the 
significance of the spatial autoregressive parameter that points to origin-destination spatial 
dependence ( 0.613).ρ =  It is clear that least squares, which ignores spatial dependence and 
assumes residual flows to be independent, produces a much lower likelihood function value. 
Capturing the dependences greatly reduces the residual variance and strengthens the 
inferential basis affiliated with the models. 



 

 

 

Table 1. Log-normal additive spatial interaction models: The conventional model, the spatial autoregressive model 
specification using ,o dW + W  and the spatial filter model specification with 20 origin and 21 destination spatial filters 

 The Conventional Log-Normal  
Additive Model [OLS] 

The Spatial Autoregressive  
Model [ML] 

The Spatial Filter Model Specification 
[OLS] 

 Estimates 
 (Standard Error) 

95% Confidence 
Limits 

Estimates 
 (Standard Error) 

95% Confidence 
Limits 

Estimates 
(Standard Error) 

95% Confidence 
Limits 

Constant 

Origin Variable 

Destination Variable 

Geographical Distance 

Country Border 

Technological Distance 

Spatial Autoregressive Parameter 

Origin Spatial Filter 

Destination Spatial Filter 

-4.851 (0.236) 

 0.594 (0.007) 

 0.562 (0.007) 

-0.181 (0.020) 

-0.592 (0.034) 

-2.364 (0.203) 

– 

– 

– 

-5.315 

0.580 

0.548 

-0.220 

-0.658 

-2.763 

– 

– 

– 

-4.388 

0.608 

0.576 

-0.142 

-0.526 

-1.966 

– 

– 

– 

-4.658 (0.320) 

0.593 (0.009) 

0.553 (0.009) 

-0.224 (0.038) 

-0.651 (0.054) 

-2.183 (0.212) 

       0.613 (0.011) 

– 

– 

-5.414 

0.576 

0.536 

-0.296 

-0.754 

-2.586 

0.592 

– 

– 

-4.532 

0.610 

0.570 

-0.152 

-0.548 

-1.780 

0.634 

– 

– 

-4.045 (0.249) 

 0.587 (0.008) 

 0.551 (0.008) 

 -0.238 (0.023) 

-0.671 (0.036) 

-2.638 (0.206) 

– 

1 (0.374) 

1 (0.258) 

-4.533 

0.571 

0.534 

-0.283 

-0.742 

-3.041 

 

 0.626 

 0.742 

-3.558 

0.603 

0.567 

-0.193 

-0.600 

-2.235 

 

1.374 

1.258 

Sigma Square 1.724 1.442 1.614 

Pseudo-R2 0.563 0.597 0.719 

Log-likelihood -21,024.128 -20,212.013 -20,591.301 

Moran’s I (p-value) 0.193 (0.000) -0.006 (0.939) 0.145 (0.000) 

Likelihood Ratio Test (p-value) – 

 

1,624.23 (0.000) 

 

– 
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But some important differences arise in the estimates and inferences that we would draw from 
the spatial econometric origin-destination flow model and the conventional spatial interaction 
model that ignores spatial dependence and assumes residual flows to be independent. 
Maximum likelihood, for example, ascribes a greater negative influence to geographical 
distance and national borders in creating friction that inhibits knowledge flows. Another 
difference in inferences pertains to the role of technological distance. The maximum 
likelihood estimate from the model specification reflects spatial dependence at origin and 
destination locations indicates a slightly less important negative influence.  
 

Application of the Eigenfunction Spatial Filtering Approach 
 
This section reports the OLS estimates of the spatial filter model specification of the log-
normal additive model (see Table 1), and the ML estimates of the conventional Poisson model 
and its spatial filter model specification that reflects origin-destination spatial dependence of 
flows. A separate spatial filter is constructed for the origins and for the destinations. The 27 
candidate eigenvectors (those, out of a total of 112, whose Moran Coefficient divided by the 
maximum Moran Coefficient is at least 0.25) were computed with a FORTRAN program 
using IMSL routines, and Poisson regression was executed with the SAS PROC GENMOD 
procedure. 
 
Table 2. Poisson spatial interaction models: The conventional model and the spatial filter 

model specification with 23 origin and 16 destination spatial filters 
 The Conventional Poisson Model 

[ML] 
The Spatial Filter Model Specification 

[ML] 
 Estimates 

 (Standard Error) 
95% Confidence 

Limits 
Estimates 

 (Standard Error) 
95% Confidence 

Limits 

Constant 

Origin Variable 

Destination Variable 

Geographical Distance 

Country Border 

Technological Distance 

Scale 

Origin Spatial Filter 

Destination Spatial Filter 

-8.983 (0.112) 

0.857 (0.006) 

0.835 (0.005) 

-0.258 (0.012) 

-0.364 (0.017) 

-0.584 (0.064) 

1.508 

– 

– 

-9.202 

0.846 

0.825 

-0.387 

-0.291 

-0.709 

 

– 

– 

-8.763 

0.846 

0.846 

-0.341 

-0.225 

-0.458 

 

– 

– 

-7.428 (0.125) 

 0.817 (0.007) 

 0.783 (0.006) 

 -0.583 (0.019) 

-0.330 (0.012) 

-1.553 (0.077) 

1.356 

1 (0.412) 

1 (0.202) 

-7.674 

0.803 

0.771 

-0.619 

-0.353 

-1.703 

 

0.588 

0.798 

-7.183 

0.831 

0.795 

-0.546 

-0.307 

-1.402 

 

1.412 

1.202 

Sigma Square 57.736 34.855 

Pseudo-R2 0.764 0.858 

Log-likelihood 40,919.915 51,973.184 

Moran’s I (p-value) 0.163 (0.000) 0.094 (0.000) 

Likelihood Ratio Test (p-value)  
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Table 3. Eigenvectors used to construct the origin and the destination spatial filters 

Log-Normal Approximation Poisson Approximation Eigenvector Moran 
Coefficient Origin Destination Origin Destination 

E1 1.11180  1.42741  0.93952  1.6058  1.1994 
E2 1.08506  0.81432  0.46405  1.5152  0.6819 
E3 0.99199 0 0 -0.6757 0 
E4 0.98400 -0.55321 -0.46187 -0.4873 0 
E5 0.93913 -0.74278 -0.32688 -0.5387 0 
E6 0.88555 0 0  0.5759  0.3286 
E7 0.85454  0.48859  0.29019  0.8276  0.2586 
E8 0.81034  1.04167  0.64129  0.9957 0 
E9 0.78716  0.44417 0  0.8188 -0.3755 
E10 0.74424  0.75294  0.28025  1.9399  0.9524 
E11 0.67839 -0.41013 -0.47184 -0.2653 -0.6082 
E12 0.65070 0  0.21490 -0.3584 -0.3663 
E13 0.62828  0.55030  0.30766 0 0 
E14 0.61328 -0.37897 -0.61055 0 -0.5046 
E15 0.56651  0.50432  0.50477 0 0 
E16 0.53836 -0.41588  0.36152 -0.3242  0.2610 
E17 0.51970 -0.37527 0 -0.2258 0 
E18 0.51434  0.51669  0.28619  0.3962 -0.2542 
E19 0.48048  0.91238  0.76615  0.7568  0.4077 
E20 0.44250 -0.34447 0 -0.4618 0 
E21 0.42450 0  0.20912  0.6667  0.5700 
E22 0.39132 0 -0.36015 -0.7781 -0.7835 
E23 0.35404  0.43412 0  1.1175  0.6778 
E24 0.34998 -0.56182 -0.29573 0 0 
E25 0.32231 -0.78679 -0.43436 -0.8296 0 
E26 0.29816 0 -0.28623  0.3795  0.2891 
E27 0.28422 0 -0.24553  0.3501 0 

 

 
The selected eigenvectors together with their estimated coefficients and associated levels of 
spatial autocorrelation, are summarized in Table 3. The origin and destination spatial filters 
for the log-normal additive model respectively contain 20 and 21 eigenvectors, and capture 
moderate positive spatial autocorrelation contained in the conventional spatial interaction 
model residuals. Maps of these two spatial filters appear in Figures 1a and 1b. The origin and 
destination spatial filters for the Poisson model contain 23 and 16 eigenvectors respectively, 
and capture moderate positive spatial autocorrelation contained in the basic Poisson model 
residuals. Maps of these two spatial filters appear in Figures 1c and 1d. Pairwise relationships 
between these four spatial filters are portrayed in Figure 2. 
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Figure 1. Spatial filters for the patent citation data, whose relative values are proportional to the 
darkness of the gray scale. (a) Top left: log-linear additive model origin spatial filter; 
Moran Coefficient = 0.778, Geary Ratio = 0.331. (b) Top right: log-linear additive 
model destination spatial filter; Moran Coefficient = 0.731, Geary Ratio = 0.349. (c) 
Bottom left: Poisson model origin spatial filter; Moran Coefficient = 0.781, Geary 
Ratio = 0.328. (d) Bottom right: Poisson model destination spatial filter; Moran 
Coefficient = 0.751, Geary Ratio = 0.370 

 

 
Again some important differences arise in parameter estimates and inferences that we would 
draw from the spatial filter specification of the conventional log-normal additive spatial 
interaction model (see Table 1) as well as the spatial filter specification of the Poisson spatial 
interaction model (see Table 2). First, for the log-normal additive model, standard errors 
increase, as expected, but only slightly. In addition, accounting for spatial autocorrelation 
effects results in the importance of the origin and destination factors decreasing, while a 
greater negative influence is ascribed to geographical and technological distances as well as 
national borders in creating friction that inhibits knowledge flows. Second, Moran’s I 
indicates that spatial autocorrelation among residuals is captured, but only modestly. Third, 
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similar slight increases in standard errors occur with the Poisson specification. This 
respecification coupled with an accounting for spatial autocorrelation effects indicates that 
origin and destination factors play a more important role in generating spatial interaction than 
is revealed by the log-normal additive model, with geographic distance playing a much more 
important role, too, whereas the importance of technological distance and national borders 
appears to be overemphasized by the log-normal additive model. 
 

 
Figure 2. Scatterplots for spatial filter cross-correlations. The corresponding bivariate 

correlations range from 0.529 to 0.835 
 
 
Considerable similarities exist between the map patterns captured by each of the four spatial 
filters. The bivariate correlation between the two origin spatial filters is 0.803 (see Figure 2), 
both highlighting a Switzerland-southern France-northern Italy focal region. This focus is less 
conspicuous with the two destination spatial filters, whose correlation is only 0.593. Both 
pairs of spatial filters suggest that much of the northern part of continental Europe forms a 
cluster, too. But the log-normal additive model noticeably differs from the Poisson model in 
terms of southern Italy, for both origin and destination spatial filters. 
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6  Summary and Conclusions  

 
Two effective approaches to account for spatial autocorrelation in a spatial interaction model 
are described and demonstrated. Both approaches give researchers tools that aid in the proper 
specification of spatial interaction models. These approaches seem to yield similar results, but 
are somewhat different in the perspective within which each views the problem of spatial 
autocorrelation. 
 
The spatial econometric approach is derivative of the literature on spatial autocorrelation in a 
cross-sectional spatial regression context. As such, it expresses spatial autocorrelation through 
the specification of a spatial stochastic process. But while the notion of spatial autocorrelation 
in a conventional spatial regression context involving a sample of n regions relies on a n-by-n 
spatial weights (connectivity) matrix, the notion of spatial autocorrelation in a spatial 
interaction context relies on a N-by-N (i.e., n2-by-n2) spatial weights matrix. The spatial 
weights matrix captures origin-based and destination-based dependency relations among the 
observations that influence flows from origins to destinations in a system of n regions. The 
resulting spatial econometric origin-destination flow models are formally equivalent to 
conventional spatial regression models, but differ in terms of the data analysed and the 
manner in which the spatial weights matrix is defined. Although one drawback of this 
approach is the computation of an N-by-N matrix determinant, the use of sparse matrix 
techniques puts maximum likelihood estimation of these models within the computational 
reach for larger spatial interaction systems. 
 
Eigenvector spatial filtering furnishes an alternative methodology that enables to capture 
spatial autocorrelation effects within a spatial interaction model. This approach makes use of 
the misspecification interpretation of spatial autocorrelation and shifts attention from spatial 
autocorrelation in the dependent variable and, thus, the residuals, to spatial autocorrelation 
arising from origin and destination factors that is reflected in flows between pairs of these 
locations. In doing so, it allows for spatial interaction models where the desire is to avoid 
especially a log-linear spatial autoregressive specification coupled with a log-normally 
distributed error term, and to employ a generalized linear model formulation coupled with a 
Poisson distributed response variable. Although one drawback of this approach is the 
computer intensive eigenfunction calculations followed by time-consuming stepwise selection 
of eigenvectors, advances in computer technology continually increase the size of a 
geographic system for which these models are computationally feasible.  
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