Laukkanen, Marita

Working Paper

Transboundary Fisheries Management under Implementation Uncertainty

Nota di Lavoro, No. 118.2003

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Laukkanen, Marita (2003) : Transboundary Fisheries Management under Implementation Uncertainty, Nota di Lavoro, No. 118.2003, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/118144

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Transboundary Fisheries Management under Implementation Uncertainty

Marita Laukkanen

NOTA DI LAVORO 118.2003

DECEMBER 2003

CTN – Coalition Theory Network

Marita Laukkanen, *MTT Economic Research*

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Transboundary Fisheries Management under Implementation Uncertainty

Summary

This paper examines how non-binding co-operative agreements on marine fisheries management can be sustained when management plans in participating countries are implemented with error. The effects of implementation uncertainty on voluntary co-operation are compared to those of recruitment uncertainty. A self-enforcing co-operative solution can only be sustained when uncertainty is not too pronounced. Even when a co-operative agreement can be achieved, frequent phases of reversion to non-co-operative harvest levels are needed to support the agreement. The implications of recruitment uncertainty for implicit co-operation are less detrimental than those of implementation uncertainty.

Keywords: Fisheries management, Transboundary fisheries, Non-cooperative games, Implementation uncertainty

JEL: Q22, C72

Research for this paper was carried out at the Fondazione Eni Enrico Mattei in Venice, Italy. The research was supported through a European Community Marie Curie Fellowship and a Finnish Cultural Foundation research grant. The author is solely responsible for information communicated. The author would like to thank Prof. Carlo Carraro and Dr. Phoebe Koundouri for insightful comments.

Address for correspondence:

Marita Laukkanen
MTT Economic Research
Luutnantintie 13
00410 Helsinki
Finland
E-mail: marita.laukkanen@mtt.fi
1 Introduction

Problems in marine resource management have over the years received increasing attention among the media and policy makers. Disputes over the management of fish stocks have been heated both at the national and international level. At times conflicts have culminated in military vessels being summoned to the fishing grounds. Conflicts in fisheries management are difficult enough to resolve within a single jurisdiction. The difficulties are compounded when a fish stock is divided among separate jurisdictional regions, each with their own management authority. Despite a mutual advantage in cooperative harvesting of shared stocks, agreements on cooperative harvesting have proved to be difficult to establish. Why is cooperation in the international management of fisheries such a fragile endeavor?

One challenge to transboundary fisheries management is the lack of international jurisdiction with the authority to enforce agreements. Any agreement on cooperative management has to be self-enforcing. A large literature of game theory models illustrates mechanisms designed to resolve conflicts over the international harvesting of fish. Munro (1979), Clark (1980), Kaitala and Pohjola (1988), Levhari and Mirman (1980), and Vislie (1987), among others, study simultaneous harvest of a single fish stock by competing fleets. Hannesson (1997) examines how critical the number of agents sharing a fish stock is for realizing the cooperative solution. Hannesson (1995) and McKelvey (1997) address the management of a sequentially harvested fish stock. Hannesson examines cooperative management as a self-enforcing equilibrium in a non-cooperative game. McKelvey studies the transboundary fishery problem in a principal-agent setting. Kaitala and Munro (1997) and Kaitala and Lindroos (1998) study the related question of the management of straddling fish stocks.

With the exception of McKelvey (1997), the game theoretic literature reviewed above neglects uncertainty. Yet fisheries are plagued by uncertainty regarding biological processes as well as implementation of management objectives. When stock recruitment varies stochastically or management plans are implemented with error, parties negotiating over cooperative management cannot monitor adherence to the agreement by other fleets.

Enforcement of agreements becomes more difficult. Laukkanen (2003) considers stochastic stock recruitment in a transboundary fishery where two fleets operate sequentially, and describes a self-enforcing agreement that can support cooperative harvesting. Another important source of variation is the ability of management in each country participating in negotiations to achieve management targets in any one year. We study the effects of this source of uncertainty, which we refer to as implementation uncertainty, on the prospects of international cooperation. We compare the implications of implementation uncertainty and recruitment uncertainty for cooperative harvesting. Differing from the sequential fishery model in Laukkanen (2003), we consider a shared fishery where the competing countries harvest simultaneously. Growth and reproduction depend on how much each fleet leaves behind after harvesting.

The results indicate that non-binding cooperation in a shared fishery with implementation uncertainty can only be sustained when uncertainty is not too prevalent. Even when cooperative harvesting can be agreed upon, the parties engage in frequent punishment phases of reversion to the non-cooperative harvesting strategies. The implications of recruitment uncertainty for non-binding cooperation are less detrimental than those of implementation uncertainty. The agreement obtains for larger fluctuations, and less frequent punishment phases are necessary to sustain cooperation.

2 The Bioeconomic Model

We extend Hannesson’s (1997) model of a transboundary fishery to consider uncertainty in the form of inaccurate implementation of target escapements. Consider two countries that harvest a shared stock of fish. Each country harvests in its own area where harvest is controlled by a single management authority. The fish migrate only slowly between the areas. Each country harvests the portion of the stock that is present in its fishing area. Stock growth depends on the aggregate size of the stock. Such interdependency arises for example when fish migrate in a seasonal pattern or when eggs and larvae are distributed over the entire habitat of the stock irrespective of where they are spawned. Following Hannesson (1997) we let the stock be measured as a density, i.e. units of fish per unit area. The unit cost of harvest depends on the density of the stock and thus indirectly on the size of the stock, provided that the area that the stock occupies remains constant throughout the fishing season. Without loss of generality we define the area that the stock occupies as the unit area.
The aggregate stock available for harvest in the beginning of a fishing season is $$X'$$. The stock is uniformly distributed over the fishing area shared by two agents. Agent $$i$$ has access to the stock $$\gamma_i X'$$, where $$\gamma_i$$ is agent $$i$$’s share of the fishing area. By assumption, the fish do not migrate from one agent’s area to another during the fishing season. Each agent then controls harvest and escapement in his area. After the fishing season the stock grows and redistributes itself over the entire area. The growth of the fish stock is determined by how much is left behind in total after harvesting. In the absence of uncertainty, the fish stock changes from one period to the next as follows:

$$X^{t+1} = R \left(\sum_{i=1}^{2} S_{i,t} \right),$$

where $$S_{i,t}$$ is the escapement set by fishery manager $$i$$ and $$R \left(\sum_{i=1}^{2} S_{i,t} \right)$$ is a differentiable and strictly concave spawning stock–recruitment function.

Implementation uncertainty occurs when there are discrepancies between the intended consequences of management actions and the actual consequences. We model this discrepancy by including random variation in the form of a multiplicative shock on the intended escapement $$S_{i,t}^\gamma$$ of Agent $$i$$. The actual escapement in subfishery $$i$$ then is $$S_{i,t}^\theta = \theta_{i,t} S_{i,t}^\gamma$$. The random shocks $$\theta_{i,t}$$, $$i = 1,2$$, are independent of each other and $$t$$. Each shock is distributed on a finite interval $$[a_{i,t},b_{i,t}]$$, where $$0 < a_{i,t} < 1 < b_{i,t} < \infty$$, with a cumulative distribution function $$F$$ and continuous density $$f$$. By assumption, the fishery managers know the distributions.

Let $$x$$ denote the size of the stock available to Agent $$i$$ at any moment in time, $$c$$ the unit cost of fishing effort, and $$p$$ the price of catch. Assuming that the harvest follows the Schaefer production function, the marginal cost of harvest for each agent is $$c / x$$. In period $$t$$ Agent $$i$$’s profits from harvesting the stock from $$\gamma_i X'$$ down to $$S_{i,t}^\theta = \theta_{i,t} S_{i,t}^\gamma$$ are

2 As noted by Hannesson (1997), the assumption that the fish are uniformly distributed over the fishing area is not necessary for maintaining constant share parameters. It is sufficient to assume that the stock redistributes itself in the same way after each fishing period.
The expected present value of harvest is $E_{\theta,t} \sum_{t=0}^{\infty} \delta^t \pi_i$, where δ denotes the common discount factor δ raised to the tth power. Each agent can either act alone to maximize the expected flow of profits from his share of the fishery, or cooperate with the other fishery manager in order to maximize the joint profit and then bargain for a fair share of that profit.

The action available to Agent i is setting the target escapement $S_{i,t}^T$, which together with the initial stock $\gamma_i X_i$ feeding in Agent i’s area and the stochastic multiplier θ_i, determines Agent i’s profits. Agent i’s strategy $s_i^t: \mathbb{R}^{2t+1} \rightarrow \mathbb{R}_+$ defines Agent i’s target escapement as a function of past and present recruitments and Agent i’s past target escapements by $S_{i,t}^T = s_i^t(\gamma_i X_0, ..., \gamma_i X_i, S_{i,0}^T, ..., S_{i,t-1}^T)$. The choice of domain reflects the fact that Agent i does not observe target escapements set by the competitor but only observes the initial stock $\gamma_i X_i$ available in Area i in the beginning of the fishing season. A contingent strategy for agent i is an infinite sequence $s_i = \{s_i^0, s_i^1, ..., \}$. A Nash equilibrium is a strategy profile $(s_{i_1}, s_{i_2}, ...)$. A Nash equilibrium is a strategy profile (s_{i_1}, s_{i_2}) that satisfies

$$E_{s_{i_1}, s_{i_2}} \left[\sum_{t=0}^{\infty} \delta^t \pi_1(s_{i_1,t}^T, S_{2,t}^{T*}) \right] \leq E_{s_{i_1}, s_{i_2}} \left[\sum_{t=0}^{\infty} \delta^t \pi_1(s_{i_2,t}^{T*}, S_{1,t}^{T*}) \right]$$

$$E_{s_{i_1}, s_{i_2}} \left[\sum_{t=0}^{\infty} \delta^t \pi_2(s_{2,t}^T, S_{1,t}^{T*}) \right] \leq E_{s_{i_1}, s_{i_2}} \left[\sum_{t=0}^{\infty} \delta^t \pi_2(s_{1,t}^T, S_{2,t}^{T*}) \right]$$

for each agent i and all feasible strategies s_i. \hfill 5
We will next consider the implications of non-cooperative harvest in the shared fishery where target escapements are implemented with error. We will then describe a cooperative agreement that can be supported in the presence of implementation uncertainty. We will conclude with a numerical example of the joint management game under implementation uncertainty, and compare the results to an agreement in the case of recruitment uncertainty.

3 Non-cooperative harvesting

We first describe the consequences of non-cooperative harvesting, where each fishery manager sets a target escapement without accounting for its effect on the expected payoff to the other fleet. There are no negotiations or understandings between the agents. Each agent maximizes his expected payoff, taking as given the other fleet’s target escapement which he can only infer from his knowledge of the other fleet’s objective function. Fleet i will participate in harvest in period t only if its marginal net revenue $p - \frac{c}{\gamma_i X_{it}}$ at the outset of harvest is positive. By assumption, $\gamma_j R(\sum \theta_j S_{jt}^\gamma i,j > c/p$ for all $\theta_j \in (a_j, b_j)$, $j = 1, 2$, where S_{jt}^γ is Agent j’s non-cooperative target escapement. Both agents then participate in non-cooperative harvest in any state of nature.

Agent i’s non-cooperative expected discounted payoff in period t is

$$ EV_i^\gamma = \mathbb{E} \left[\sum_{t=0}^{\infty} \delta^t \{ p(\gamma_i X_{it} - \theta_j S_{jt}^\gamma i,j - c(\ln \gamma_i X_{it} - \ln \theta_j S_{jt}^\gamma i,j) \} \right] $$

subject to

$$ X_i = R \left(\frac{\sum_{j=1}^{k} \theta_j S_{jt}^\gamma} {\sum_{j=1}^{k} \theta_j} \right). $$

By assumption, at time t the current stock X_{it} is known but $X_{it+n}, n \geq 1$ is not. That is, θ_j is realized after the period t target escapement S_{jt}^γ has been set. The first order condition for maximizing (3) subject to (4) is
We call the target escapement S_{i}^{T} that solves equation (5) the non-cooperative target escapement S_{i}^{T*}. The non-cooperative escapements give rise to the expected non-cooperative equilibrium profits $E\pi_{i}^{*}$. Note that the predictions from the shared fishery model, where each fishery controls the portion of the stock feeding in its exclusive fishing area, are less pessimistic that those from the sequential fishery models by Hannesson (1995), McKelvey (1997), and Laukkanen (2003). Instead of harvesting down to the zero marginal profit level c/p, the agents now partially account for the expected effect of their harvest on the stock available next year.

We next study how the solution to the individual agent’s problem in equation (5) compares to the global optimum where one agent controls the entire fishery. The expected payoff EV_{TOT} is the sum of the two agents’ payoffs,

$$EV_{TOT} = E\left[\sum_{j=0}^{N} \delta^{j} \sum_{i=1}^{2} \left(p \gamma_i X_i - \theta_{i}, S_{i}^{T}\right) - c \left[ln \gamma_i X_i - ln \theta_{i}, S_{i}^{T}\right] \right].$$

The first order condition for the globally optimal target escapement S_{i}^{T} that maximizes equation (6) subject to the stock equation in (4) is

$$p - \frac{c}{S_{i}^{T}} = E\left[\delta \theta_{i} R \left(\sum_{j=1}^{2} \theta_{j} S_{j}^{T}\right) \sum_{j=1}^{N} \gamma_j \left(p - \frac{c}{\gamma_j R \left(\sum_{j=1}^{2} \theta_{j} S_{j}^{T}\right)} \right) \right].$$

We denote the globally optimal target escapement that solves (7) by S_{i}^{O}.

3 Appendix 1 presents the derivation of equation (5).

4 Appendix 1 presents the derivation of equation (7).
The individual agent’s first order condition in (5) balances the marginal benefit of an additional unit of harvest this year to the expected marginal loss of profits next year that follows reduced recruitment. An individual agent does not account for the effect of reduced recruitment on the expected benefits accruing to the other fleet harvesting the stock. The global first order condition in (7) instead accounts for the effect of additional harvest in one fishery on the expected benefits to both fisheries in the following year. Since \(p - c / S_i \) is increasing in \(S_i \), the \(S_i \) solving (5) is smaller than the \(S_i \) solving (7). An individual agent that makes harvest decisions independently of other fleets targeting the shared stock leaves a suboptimal escapement from the point of view of the fishery as a whole.

We next study whether negotiating on a joint harvesting strategy enables the agents to manage the resource more successfully. We describe an agreement that is designed to support cooperation when management plans are implemented with error and commitment is not possible. What is the likelihood that two agents sharing a fish stock will cooperate in setting their management objectives? How does the likelihood of cooperation depend on the degree of uncertainty in implementing escapement targets?

4 Cooperative harvesting

Suppose that the agents negotiate, and agree on a cooperative management strategy that yields higher expected payoffs to each agent. Hannesson (1997) provides a deterministic model to study cooperative harvesting in a shared fishery. Cooperative management is supported by the threat of reverting to non-cooperative harvesting if deviation is detected. Uncertainty in implementation of target escapements complicates the enforcement of harvesting agreements. Agents are no longer able to observe the management actions of the competitor, and agents themselves cannot be sure of what will be interpreted as defection. Reverting to non-cooperative harvest for ever if low stock levels are observed, the punishment strategy used in most repeated game models of shared resource management, would be unnecessarily harsh in that non-cooperative harvest could be triggered by bad luck rather than cheating. Instead, we follow Green and Porter (1984) and consider an agreement where the agents settle on the threat strategies of reversion to the non-cooperative target escapements for a finite number of periods if violations of the agreement are detected.

Suppose that the agents agree on constrained Pareto efficient cooperative escapement levels that maximize the expected joint benefit from the fishery, subject to the constraint that
it is in each agent’s interest to adhere to the agreement. Side payments are not considered and each agent must harvest to earn a profit. In order to enforce cooperation the agents settle on the trigger strategy of reverting to the non-cooperative target escapements \(S_i^{T*} \) if stock levels below an agreed upon trigger stock level \(\bar{X} \) are observed. The punishment phase will last for \(T - 1 \) periods. At the conclusion of the punishment phase, the agents return to the cooperative target escapement levels. The agents commence harvesting in accordance with their cooperative target escapement levels \(S_i^{TC} \) in a Nash equilibrium in trigger strategies. They continue to do so until the recruitment \(X' \) falls below the trigger level \(\bar{X} \). Once an \(X' \) below \(\bar{X} \) has been observed, \(T - 1 \) periods of punishment follow, during which the agents harvest to the non-cooperative target escapements \(S_i^{T*} \) regardless of what \(X' \) is. At the conclusion of the \(T - 1 \) punishment periods cooperation is resumed. Once resumed, cooperation prevails until the next time that \(X < \bar{X} \).

The agreement is defined as follows. The game has normal and reversionary stages. Agent \(i \) regards period \(t \) as normal if

(a) \(t = 0 \),

(b) \(t - 1 \) was normal and \(X' > \bar{X} \), or \(X^{t-T} < \bar{X} \) and \(t - T - 1 \) was normal, and reversionary otherwise.

The agents’ strategies are

\[
\begin{cases}
S_i^{TC} \text{ if } t \text{ is normal} \\
S_i^{T*} \text{ if } t \text{ is reversionary.}
\end{cases}
\]

The target escapement that Agent \(i \) sets in a normal period determines his expected current payoff and the probability of triggering a punishment phase. Cooperative target escapements result in stock recruitment \(\tilde{X}^C = R(\sum_j \theta_j S_j^T) \). The probability that cooperation continues in the following period is \(P(\tilde{X}^C \geq \bar{X}) \) and the probability of a punishment phase \(P(\tilde{X}^C < \bar{X}) \).

When setting the period \(t \) target escapement, the agents know the current stock \(X_i \) but future stocks \(X_{i+n}, n \geq 1 \) are not known. Given the current stock \(X \), the expected payoff from setting a target escapement \(S_i^T \) in a normal period is
\[EV_i^C(X, S_i^T) = E\pi_i(X, \theta S_i^T) + P\left(\tilde{X}^C \geq \bar{X}\right)\delta EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C \geq \bar{X}} + P\left(\tilde{X}^C < \bar{X}\right)\delta EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C < \bar{X}},\]

(8)

where

\[E\pi_i(X, \theta S_i^T) = E\left[p\left(\gamma, X - \theta S_i^T\right) - c\left(ln \gamma, X - ln \theta S_i^T\right)\right] \]

is the expected current period payoff given the current stock \(X\), and

\[EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C \geq \bar{X}} = E_{\theta, \theta'} \pi_i\left(\tilde{X}^C, \theta, S_i^T\right) + P\left(\tilde{X}^C \geq \bar{X}\right)\delta EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C \geq \bar{X}} + P\left(\tilde{X}^C < \bar{X}\right)\delta EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C < \bar{X}},\]

(8b)

\[EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C < \bar{X}} = \omega_{i,j} + \sum_{\tau=1}^{\tau-1} \delta^{\tau} \omega_{i,j} + \delta^{\tau-1} \omega_{i,j} + P\left(\tilde{X}^C \geq \bar{X}\right)\delta T EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C \geq \bar{X}} + P\left(\tilde{X}^C < \bar{X}\right)\delta T EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C < \bar{X}},\]

(8c)

are the expected cooperative and reversionary payoffs evaluated at time \(t\) when the future stock \(\tilde{X}^C\) is unknown. The terms in the expected reversionary payoff \(EV_i^C\left(\tilde{X}^C, S_i^T\right)_{\tilde{X}^C < \bar{X}}\) are

\[\omega_{i,j} = E\left[p\left(\gamma, \tilde{X}^C - \theta S_i^T\right) - c\left(ln \gamma, \tilde{X}^C - ln \theta S_i^T\right)\right]_{\tilde{X}^C < \bar{X}} \]

(8d)

\[\omega_{i,j} = E\left[p\left(\gamma, \tilde{X}^C - \theta S_i^T\right) - c\left(ln \gamma, \tilde{X}^C - ln \theta S_i^T\right)\right] \]

(8e)

\[\tilde{X}^N = R\left(\sum \theta, S_i^T\right) \]

(8f)

\[\omega_{i,j} = E\left[p\left(\gamma, \tilde{X}^C - \theta S_i^T\right) - c\left(ln \gamma, \tilde{X}^C - ln \theta S_i^T\right)\right]. \]

(8g)

In the first period of a reversionary phase the agents revert to their non-cooperative target escapements \(S_i^{T*}\). The expected profit \(\omega_{i,j}\) in the first reversionary period is conditioned on the stock falling below the trigger stock level, \(\tilde{X}^C < \bar{X}\). For the following \(T-2\) periods stock recruitment is \(\tilde{X}^N\) and the agents receive the expected non-cooperative profit \(\omega_{i,j}\). In period
The agents resume the cooperative target escapements which at the non-cooperative stock recruitment \bar{X} yield the expected profit ω_{s_i}.

We first solve for $EV_i^\star(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}$ in (8c) and insert the solution into the equation for $EV_i^C(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}$ in (8b). We then derive a closed form solution for $EV_i^C(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}$. We next insert $EV_i^C(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}$ and $EV_i^*(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}$ into (8) and solve for the optimal target escapement S_i^T under cooperation in trigger strategies.

The probability of reversion $P(\bar{X}^C < \bar{X})$ is given by the distribution of \bar{X}^C at \bar{X}, defined by $F(\bar{X},S_i^T,S_i^T)$. The distribution of the random variable $\bar{X}^C = R(\sum_i \theta_i S_i^C)$ is derived from the distributions of the θ_i, $i=1,2$. Appendix 2 presents the derivation for uniformly distributed random multipliers θ_i. The expected payoff $EV_i^*(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}$ in (8c) can then be written as

$$EV_i^*(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T} = \frac{\omega_{p_i}^p + \sum_{r=1}^{T-2} \delta^r \omega_{p_i}^p + \delta^{T-1} \omega_{p_i}^p + \left[1 - F(\bar{X},S_i^T,S_i^T)\right] \delta^T EV_i^C(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}}{1 - F(\bar{X},S_i^T,S_i^T)\delta^T}$$

Inserting (9) into equation (8b), writing out $\sum_{r=1}^{T-2} \delta^r \omega_{p_i}^p$ using the formula for the geometric sum, and solving for $EV_i^C(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T}$ yields

$$EV_i^C(\bar{X}^C,S_i^T)_{\bar{X}^C,S_i^T} = \frac{\delta \pi_i(\bar{X}^C,\theta_i S_i^T) + \delta F(\bar{X},S_i^T,S_i^T) \left[\omega_{p_i}^p \frac{\delta - \delta^{T-1}}{1 - \delta} + \delta^{T-1} \omega_{p_i}^p - \delta^{T-1} \delta \pi_i(\bar{X}^C,\theta_i S_i^T) \right]}{1 - \delta + (\delta - \delta^T) F(\bar{X},S_i^T,S_i^T)}$$

Adding and subtracting $\omega_{p_i}^p$ in the numerator yields
Agent i’s expected cooperative payoff in (11) is the sum of the expected payoff under non-cooperation, and the expected per period gain from cooperation plus the expected payoff accruing from transition to and from punishment period.

By assumption, the agents observe the current stock before setting their period t target escapement. Equation (8) yields the expected payoff from leaving an escapement S_i^T in period t, evaluated after the current stock X has been observed. Inserting (9) and (11) into (8) yields

$$
EV_i^C(X, S_i^T) = EV_i^C(\bar{X}_i, S_i^T) \bigg|_{X=\bar{X}} + \frac{\omega_i^c}{1-\delta} + \frac{\omega_i^c}{1-\delta}.
$$

The agents’ actions are not observed. After measuring the current stock X, each agent chooses the target escapement that maximizes his expected cooperative payoff in (12). Given $S_{j\neq i}^T$, \bar{X}, and T, Agent i’s optimal cooperative target escapement S_i^{TC} must satisfy

$$
EV_i^C(X, S_i^{TC}) \geq EV_i^C(X, S_i^T) \quad \text{for all } S_i^T.
$$

Assuming an interior solution, the first order condition for maximizing $EV_i^C(X, S_i^T)$ is

$$
\frac{\partial EV_i^C(X, S_i^T)}{\partial S_i^T} = 0.
$$

The first order condition can be written as

$$
p - \frac{c}{S_i^T} = (1 - F(X, S_i^T, S_{j\neq i}^T))\delta E\left[\frac{\partial \bar{X}_i^C}{\partial S_i^T} \gamma_i \left(p - \frac{c}{\gamma_i \bar{X}_i^C} \right)\right]
+ F(\bar{X}, S_i^T, S_{j\neq i}^T)\left[\delta \frac{\partial w_i}{\partial S_i^T} + \delta^T E\left[\frac{\partial \bar{X}_i^C}{\partial S_i^T} \gamma_i \left(p - \frac{c}{\gamma_i \bar{X}_i^C} \right)\right] \right]
- \frac{\partial F(\bar{X}, S_i^T, S_{j\neq i}^T)}{\partial S_i^T} \left(\delta - \delta^T \right) \left(E\pi_i(\bar{X}_i^C, \theta, S_i^T) - \omega_i^c \right)
+ \frac{\partial F(\bar{X}, S_i^T, S_{j\neq i}^T)}{\partial S_i^T} (1 - \delta) \left[\delta (\omega_i^c - \omega_i^c) + \delta^T \left[\omega_i^c - E\pi_i(\bar{X}_i^C, \theta, S_i^T) \right] \right]
+ \frac{\partial F(\bar{X}, S_i^T, S_{j\neq i}^T)}{\partial S_i^T} (1 - \delta) \left[\delta (\omega_i^c - \omega_i^c) + \delta^T \left[\omega_i^c - E\pi_i(\bar{X}_i^C, \theta, S_i^T) \right] \right]$$

12
The optimal target escapement again balances the expected marginal benefit of additional harvest to the loss of expected benefits next season, now caused by two factors: reduced recruitment, and an increased probability of entering a punishment phase. With probability $1 - F(X, S^r_1, S^r_2)$, cooperation continues in the next period. With probability $F(X, S^r_1, S^r_2)$, the agents revert to non-cooperative harvest and return to cooperation only in period T. The increased probability of reversion is weighed by the expected loss of gains from cooperation relative to non-cooperative harvest, and the expected punishment phase payoff.

We next examine the optimal design of the cooperative agreement. Countries negotiate on the length of the punishment phase and the trigger stock level knowing that each country sets its target escapement to maximize $EV_i^c(X, S^r)$. We next describe how the countries choose the length of the punishment phase T and the trigger stock level \bar{X} in an optimal manner, given that for any T and \bar{X} pair each fishery manager’s optimal target escapement under cooperation is $S^r_i = \arg\max_{S^r} EV_i^c(X, S^r)$. Formally, T and \bar{X} are set to maximize the expected joint payoff

$J(X^0, S_1, S_2, \bar{X}, T) = \alpha EV_i^c(X^0, S_1, S_2, \bar{X}, T) + (1 - \alpha) EV_{-i}^c(X^0, S_1, S_2, \bar{X}, T),$

subject to each S^r_i maximizing $EV_i^c(X, S^r)$, and each agent obtaining at least his expected non-cooperative payoff. The share α in (15) is the weight on Agent 1’s payoff in the joint maximization problem. A cooperative solution that maximizes the joint payoff in (15) subject to $S^r_i = \arg\max_{S^r} EV_i^c(X, S^r)$ is a self-enforcing equilibrium, and the strategies are subgame perfect. The cooperative solution is not renegotiation proof. At the outset of a punishment phase, the countries could confer and decide to continue cooperative harvest. However, renegotiation would unravel the rational for cooperation. It will then be in each country’s interest to follow the agreement in punishment periods as well.

If the cooperative solution is such that $F(\bar{X}, S^T_1, S^T_2) > 0$, punishment phases of reversion to non-cooperative harvests are observed with a positive probability even if the countries agree on a cooperative harvesting strategy. The punishment periods are necessary to support the cooperative agreement. We next examine how frequently retaliatory periods will
occur if two countries have agreed upon a joint harvesting strategy. We determine the expected ratio of cooperative to non-cooperative periods and the expected percentage of time spent in cooperation during a cycle. Denote the number of consecutive periods during which the agents cooperate by M. The number of cooperative periods is a random variable whose distribution depends on $F(\bar{X}, S_1^{TC}, S_2^{TC})$. The probability of cooperation in a normal period t is $1 - F(\bar{X}, S_1^{TC}, S_2^{TC})$, and the probability of reversion is $F(\bar{X}, S_1^{TC}, S_2^{TC})$. The probability of cooperation in M successive periods then is $[1 - F(\bar{X}, S_1^{TC}, S_2^{TC})]^M F(\bar{X}, S_1^{TC}, S_2^{TC})$. Given the distribution of M, the expected number of successive cooperative periods is given by

$$Q = \frac{1}{T - 1} \sum_{M=0}^{\infty} M [1 - F(\bar{X}, S_1^{TC}, S_2^{TC})]^M F(\bar{X}, S_1^{TC}, S_2^{TC}).$$

The expected percentage of time spent in cooperation, denoted by R, becomes

$$R = 100 \sum_{M=0}^{\infty} \frac{M}{M + T - 1} [1 - F(\bar{X}, S_1^{TC}, S_2^{TC})]^M F(\bar{X}, S_1^{TC}, S_2^{TC}).$$

5 A Numerical Illustration of Cooperation in Trigger Strategies

5.1 Parameter Values and Functional Forms

This section presents a numerical example that illustrates the joint management game. Table 1 displays the parameter values. The parameter values were chosen to reflect a realistic range. Prices and costs are the same for both countries. Prices are normalized to one. Average recruitment follows the Ricker spawning stock – recruitment relation $R(S) = kSe^{iS}$. We consider the case of uniformly distributed random multipliers θ_i, $i = 1, 2$. The probability density function for θ_i is
where $a_i = 1 - \varepsilon_i$ and $b_i = 1 + \varepsilon_i$. The mean of θ_i is 1 and the variance is $\sigma_i^2 = \varepsilon_i^2 / 3$. We explore small, moderate, and large fluctuations in realized escapements, corresponding to values of ε_i ranging through $\varepsilon_i = 0.1$, $\varepsilon_i = 0.3$, and $\varepsilon_i = 0.5$. The coefficient of variation ranges from 0.18 ($\varepsilon_i = 0.1$) to 0.41 ($\varepsilon_i = 0.5$).

5.2 Computation of the Joint Management Game

The numerical results were computed using Mathematica 4.0. The optimal agreement is the set $\{T, \bar{X}, S^*_1, S^*_2\}$ that maximizes the expected joint payoff $J(x, t, \bar{X}, S^*_1, S^*_2)$ in (15). We proceeded by searching over T and \bar{X} and computing the individually optimal target escapements S^*_i for each T, \bar{X} pair. We considered values of T ranging from 2 to 51 years and values of \bar{X} ranging from $\sum_{i=1}^2 \alpha_i S^*_i$ to the maximum of the recruitment function $R(S)$, denoted by X_{max}. In terms of the expected payoffs a punishment phase of 50 years is practically equivalent to a punishment phase of infinite length. The probability of reversion is 0 for values of \bar{X} less than $R(\sum_{i=1}^2 \alpha_i S^*_i)$ and 1 for values of \bar{X} greater than X_{max}. Examining the set $T \in [2, 51]$, $\bar{X} \in [R(\sum_{i=1}^2 \alpha_i S^*_i), X_{\text{max}}]$ thus suffices to consider all possible agreement outcomes. The initial stock was set equal to the expected stock at the non-cooperative target escapements. The weight α on Agent i’s payoff was 0.5. The proportion of the stock that each agent controls, γ_i, varied between 0.1 and 0.9.

We computed the optimal target escapements and the agents’ expected benefits in the non-cooperative equilibrium, in the globally optimal equilibrium, and under the trigger stock agreement. The optimal trigger stock agreement is in addition characterized by the optimal
length of the punishment phase and the optimal trigger stock. The length of the punishment phase and the trigger stock in turn determine the ratio of cooperative periods to punishment periods, and the percentage of time spent in cooperation. Tables 2 and 3 display the full results. Figures 1 to 6 illustrate the optimal agreement.

In order to compare the prospects of cooperation in the presence of two different types of uncertainty, we also computed the non-cooperative, globally optimal and trigger stock equilibria with stochastic variation in recruitment. Tables 4 to 6 report the full results for the recruitment uncertainty case. Figures 7 to 15 illustrate the optimal agreement. Table 7 compares the implications of the two sources of variation for implicit cooperation in trigger strategies.

5.3 The Optimal Agreement under Implementation Uncertainty

The cooperative agreement in trigger strategies is supported as a self-enforcing equilibrium for a limited range of parameter values (Figures 1 and 2). The equilibrium in trigger strategies only exists when implementation shocks are small or moderate ($\varepsilon = 0.1$, $\varepsilon = 0.3$), and when the stock is relatively evenly split between the two agents ($\gamma_1 = 0.4$ to $\gamma_1 = 0.6$). When large fluctuations are possible ($\varepsilon = 0.5$), the agents are better off harvesting in accordance with their non-cooperative strategies. With large implementation shocks, the likelihood of a low stock level launching a punishment phase is noticeable, and cooperation becomes a volatile exercise. The target escapement needed to balance the tradeoff between the expected current period profit and the probability of triggering a punishment phase is so large that the non-cooperative target escapement yields higher expected payoffs. A fishery with a large share of the stock is also better off following its individual harvesting strategy. It controls the size of the stock available in its fishing zone in the next period to a considerable extent even if it operates on its own. Setting a large target escapement in order to account for an increased probability of triggering a reversionary phase is not profitable.

[Figures 1 and 2]

The probability of reversion is markedly above 0 for all parameter values (Figures 3 and 4). When implementation shocks are moderate ($\varepsilon = 0.3$) and the agents control uneven shares of the fishery ($\gamma_1 = 0.4, 0.6$), the probability of reversion is 0.02. The probability of
reversion increases to 0.07 when the agents control equal shares of the fishery. The probability of reversion is even higher with small implementation shocks ($\varepsilon = 0.1$), ranging from 0.05 when the shares differ, to 0.13 when agents control equal shares of the fishery. When the shares differ, the target escapements are close to the non-cooperative target escapements. With equal shares, both agents gain noticeably more from cooperation, but the target escapements are also markedly larger than in the case of unequal shares. The temptation to decrease the target escapement is notable, and a higher probability of reversion is needed to support cooperation.

[Figures 3 and 4]

The length of the punishment phase is greater when implementation shocks are moderate ($\varepsilon = 0.3$) than when the shocks are small ($\varepsilon = 0.1$). As a result, the ratio of cooperative to non-cooperative periods and the percentage of time spent in cooperation are higher when fluctuations are small, regardless of the higher probability of reversion (Figures 5 and 6). The agents cooperate as much as 75% of time when fluctuations are small, as opposed to at most 57% of time when fluctuations are moderate. Some asymmetry makes cooperation more likely. For both small and moderate amounts of implementation uncertainty, the percentage of time spent in cooperation is greater when the agents’ shares of the fishery differ than when the shares are equal.

[Figures 5 and 6]

The expected payoffs under trigger strategies are greater than the non-cooperative ones but smaller than those obtaining under the globally optimal policy. Even when the target escapements are close to the globally optimal levels ($\varepsilon = 0.1$), punishment strategies are applied as much as 47% of time in a cycle. The frequent punishment phases decrease the expected payoffs. Because each fishery controls a part of the stock and partially accounts for the effect of current harvest on future stock levels, the differences between the expected payoffs under the three different management scenarios are not substantial (Figures 1 and 2). The gains from cooperation are more pronounced when non-cooperative harvest entails harvesting down to the zero marginal profit level, as in high seas fisheries where competing
fleets harvest in one area. The shared fishery model allows for partial ownership of the resource, and the consequences of uncoordinated harvest are less detrimental than in the case of simultaneous harvest by competing fleets.

5.4 The Optimal Agreement under Recruitment Uncertainty

The biological model with stochastic recruitment is

\[X^{t+1} = \theta_{R,t} R \left(\sum_{i=1}^{2} S_{i,t}^T \right), \]

where the \(\theta_{R,t} \) are uniformly distributed random variables with probability density function

\[f_R(\theta_R) = \begin{cases} \frac{1}{b_R - a_R} & \text{for } a_R \leq \theta_R \leq b_R \\ 0 & \text{elsewhere,} \end{cases} \]

where \(a_R = 1 - \epsilon_R \) and \(b_R = 1 + \epsilon_R \). The mean of \(\theta_R \) is 1 and the variance is \(\sigma_R^2 = \epsilon_R^2 / 3 \). The non-cooperative, globally optimal and trigger stock equilibria with a multiplicative shock on recruitment are derived similarly to the implementation uncertainty case. The expected payoffs and the agents’ first order conditions under recruitment uncertainty are as in the implementation uncertainty model, but stochastic variation is only present in stock recruitment as defined by equation (19). The cumulative distribution function of \(X = \theta_R R(S_1 + S_2) \) is \(F_R(x, S_1, S_2) = F_R \left(x / R(S_1 + S_2) \right) \), where \(F_R(\cdot) \) is the cumulative distribution of \(\theta_R \). The details of the derivation are available from the author upon request.

The cooperative equilibrium in trigger strategies is supported for small, moderate, and large fluctuations in recruitment \((\epsilon = 0.1, \epsilon = 0.3, \text{ and } \epsilon = 0.5) \). The initial stock determines whether a period is cooperative or reversionary. When stochastic shocks occur in recruitment only, the stock is a function of one random variable. When target escapements are implemented with error, the stock is a function of two random variables. For identically distributed recruitment and implementation shocks, the variance of the stock is smaller under recruitment uncertainty than under implementation uncertainty, and cooperation is easier to sustain. (Tables 4 to 6, figures 7 to 9).
When fluctuations in recruitment are large or small ($\varepsilon = 0.5, 0.1$), cooperation can be sustained for the same range of share parameters γ_1 as in the case of escapement uncertainty ($\gamma_1 = 0.4$ to $\gamma_1 = 0.6$). When recruitment uncertainty is moderate ($\varepsilon = 0.3$), cooperation can be sustained for a somewhat wider range of share parameters (from $\gamma_1 = 0.3$ to $\gamma_1 = 0.7$).

Why is asymmetry less detrimental for cooperation when fluctuations are moderate than when they are large or small? An agent with a large share of the fishing area has considerable control of the stock available in its fishing zone in the next period. In the case of stochastic recruitment, the expected payoff increases as fluctuations become larger. At moderate levels of uncertainty, the gains from cooperation are sufficiently large to make cooperation profitable even for an agent with a large share of the stock. However, the probability of reversion that is necessary to sustain cooperation also increases as fluctuations become larger. When large recruitment shocks occur ($\varepsilon = 0.5$), the tradeoff between the expected payoff from the individual harvesting strategy and the cooperative target escapement that is required to account for the increased probability of a reversionary phase becomes too large for an agent with a sizeable share of the stock.

The probability of entering a reversionary period is close to zero for large and moderate fluctuations ($\varepsilon = 0.5, 0.3$), but considerably higher when fluctuations are small ($\varepsilon = 0.1$). The length of the punishment phase ranges from 2 to 21 periods. The range of T is similar for small, moderate and large fluctuations (Figures 10 to 12). Even though the punishment phases are relatively short when fluctuations are small, the percentage of time spent in cooperation is markedly lower for small fluctuations than for large and moderate fluctuations: The agents cooperate 48 to 55% of time when fluctuations are small, as opposed to as much as 92 to 97% of time when fluctuations are moderate and 86 to 99% of time when fluctuations are large. Why does more uncertainty make cooperation more likely in the case of recruitment uncertainty? The expected payoffs increase in the size of the fluctuations. The agents have more to gain from cooperation, and the agreement is easier to sustain. Regardless of the amount of uncertainty, the percentage of time spent in cooperation is higher when the agents control equal shares of the stock than when the shares differ. Uneven shares give rise to markedly uneven relative gains from cooperation. As a result, the probability of
reversion and the length of the punishment phase that are necessary to sustain cooperation are greater. (Figures 10 to 15).

[Figures 10 to 15]
[Table 7]

6 Conclusion

We examine cooperative and non-cooperative harvesting in a stochastic transboundary fishery shared by two agents. We consider the effects of both implementation and recruitment uncertainty on implicit cooperation in the management of the transboundary fishery. Even when each agent controls harvest in his share of the area that the fish stock occupies, the non-cooperative target escapements are suboptimal. We define conditions under which cooperative harvesting can be sustained as a self-enforcing equilibrium when the actions of the agents are not observed. Even when the agents cooperate, reversionary periods occur with a positive probability. While the agents know that a low stock level may reflect a negative shock rather than cheating on behalf of the competitor, it is rational to participate in reversionary periods. Otherwise, there would be no incentive to cooperate. The equilibrium is subgame perfect but not renegotiation proof. Supposedly the agents could renegotiate and agree to continue cooperation after low stock levels have been observed. However, the parties realize that renegotiating would unravel the rational for cooperation.

The numerical example shows that the trigger stock agreement can be implemented for a range of parameter values. The agreement can only be supported as a self-enforcing equilibrium when uncertainty is not too pronounced. Even when the cooperative agreement in trigger strategies does obtain, a substantial part of time in each cycle is spent in reversion to the punishment strategies. In the presence of implementation uncertainty, the agents may have to apply the reversionary strategies as much as 72 % of time in a cycle in order to support the implicit cooperative agreement. Furthermore, the trigger stock agreement only obtains when the agents control close to equal shares of the fishery. The numerical results indicate that the implications of recruitment uncertainty for implicit cooperation in transboundary fisheries management are less detrimental than those of implementation uncertainty. The agreement is supported for larger fluctuations, and less frequent punishment phases suffice to enforce the agreement. The parties engage in cooperative play as much as 99 % of time in a cycle.
Recruitment uncertainty arises from environmental factors that are only partially and indirectly controlled by management efforts. Implementation uncertainty instead occurs when management provisions fail to have the intended consequences. While noise and uncertain states of nature can contribute to implementation uncertainty, its basis is in how fishers react to management actions (Peyton 1987, White and Mace 1988). Rice and Richards (1996) argue that management system performance can be improved to reduce implementation uncertainty. Our results indicate that controlling implementation uncertainty would facilitate cooperation in transboundary fisheries management and improve the economic performance of shared fisheries. Addressing implementation uncertainty in each participating country can help create an environment where non-binding cooperation will succeed.

This paper focuses on the effects of implementation uncertainty on international cooperation. Comparison of the implications of implementation uncertainty and recruitment uncertainty on international cooperation indicates different sources of uncertainty have different effects on the chances of non-binding cooperation. Future work would include investigating the prospects of international cooperation in fisheries management in the presence of more than one source of variation.
References:

12. V. Kaitala and M. Pohjola, Optimal recovery of a shared resource stock: a differential
(1988).

13. M. Laukkanen, A bioeconomic analysis of the northern Baltic salmon fishery: coexistence
versus exclusion of competing sequential fisheries, *Environ. Resource Econom.* 18,

14. M. Laukkanen, Cooperative and Non-cooperative Harvesting in a Stochastic Sequential

15. D. Levhari, R. Michener and L. J. Mirman, Dynamic programming models of fishing:

16. D. Levhari and L. J. Mirman, The great fish war: an example using a dynamic Nash-

17. R. McKelvey, Game-theoretic insights into the international management of fisheries,

18. G. R. Munro, The optimal management of transboundary renewable resources, *Canad. J.

19. R. G. Peyton, Mechanisms affecting public acceptance of resource management policies

(1978).

21. W. J. Reed, Optimal escapement levels in stochastic and deterministic harvesting models,

22. J. C. Rice and L. J. Richards, A Framework for Reducing Implementation Uncertainty in

Appendix 1. Derivation of the individually optimal and globally optimal target escapements under non-cooperation.

Agent i’s objective is to maximize his expected payoff

\[
EV_i^* = E \left[\sum_{t=0}^{\infty} \delta^t \left\{ p(\gamma_i X_i - \theta_{ij} S_{ij}^T) - c[\ln \gamma_i X_i - \ln \theta_{ij} S_{ij}^T] \right\} \right]
\]

subject to

\[
X_{t+1} = R \left(\sum_{j=1}^{2} \theta_{ij} S_{i}\right).
\]

By assumption, X_0 is known and given at $t = 0$, and X_i is known at time t but $X_{t+j}, j \geq 1$ is not. The θ_{ij} are realized after the period t target escapement S_{ij}^T has been set.

Given the period t stock X_i, fishery manager i’s problem is to maximize (A1.1) subject to (A1.2) by choice of the target escapement S_{ij}^T. The dynamic programming equation for the manager’s problem is

\[
V(X_i) = \max_{S_{ij}} E \left[p(\gamma_i X_i - \theta_{ij} S_{ij}^T) - c[\ln \gamma_i X_i - \ln \theta_{ij} S_{ij}^T] + \delta E[V(X_{t+1})] \right]
\]

subject to the stock equation (A1.2).

The first order necessary condition for the problem on the right hand side of (A1.3) is

\[
E \left\{ -p \theta_{ij} + \frac{c}{S_{ij}^T} \right\} + \delta E \left[\frac{\partial X_{t+1}}{\partial S_{ij}^T} V'(X_{t+1}) \right] = 0
\]

Applying the Benveniste-Scheinkman formula to evaluate $V'(X_{t+1})$ gives
(A1.5) \[V'(X_{ri}) = \frac{\partial \pi_i}{\partial X_{ri}}(X_{ri}, S_i^T) = p \gamma_i - \frac{c}{X_{ri}}. \]

Substituting (A1.5) into the first order necessary condition in (A1.4) and using the stock equation in (A1.2) gives the stochastic Euler equation

\[E \left[-p \theta_j + \frac{c}{S_{ij}} \right] + E \left[\delta \theta_j R \left(\sum_{j=1}^{2} \theta_j S_{ij}^T \right) \gamma_i \left(\frac{c}{R \left(\sum_{j=1}^{N} \theta_j S_{ij}^T \right)} \right) \right] = 0 \leftrightarrow \]

(A1.6) \[p \frac{c}{S_{ij}} = E \left[\delta \theta_j R \left(\sum_{j=1}^{2} \theta_j S_{ij}^T \right) \gamma_i \left(\frac{c}{R \left(\sum_{j=1}^{N} \theta_j S_{ij}^T \right)} \right) \right] \]

The global fishery manager’s objective is to maximize the total expected payoff, which is the sum of the individual agents’ payoffs

(A1.7) \[EV_{TOT} = E \left[\sum_{i=0}^{\infty} \sum_{j=1}^{2} p \left[\gamma_j X_i - \theta_j S_{ij}^T \right] - c \left[\ln \gamma_j X_i - \ln \theta_j S_{ij}^T \right] \right] \]

subject to the stock equation in (A1.2).

The dynamic programming equation for the society’s problem is

(A1.8) \[V(X_i) = \max_{S_{ij}} \left[\sum_{j=1}^{2} p \left[\gamma_j X_i - \theta_j S_{ij}^T \right] - c \left[\ln \gamma_j X_i - \ln \theta_j S_{ij}^T \right] + \delta E[V(X_{ri})] \right]. \]

The first order necessary condition for maximizing the right hand side of (A1.8) is
Applying the Benveniste-Scheinkman formula to evaluate $V'(X_{t+1})$ and using (A1.2) now gives

$$V'(X_{t+1}) = \sum_{j=1}^{2} \frac{\partial \pi_j}{\partial X_{t+1}} (X_{t+1}, S_{t}) = \sum_{j=1}^{2} \gamma_j - \frac{c}{X_{t+1}}.$$ \hfill (A1.10)

Substituting (A1.10) into (A1.9) gives the stochastic Euler equation

$$E \left[-p \theta_{i,j} + \frac{c}{S_{i,j}} \right] + \delta E \left[\frac{\partial X_{t+1}}{\partial S_{i,j}} V'(X_{t+1}) \right] = 0 \leftrightarrow$$

$$p - \frac{c}{S_{t+1,j}} = \delta E \left[\theta_{i,j} R \left(\sum_{j=1}^{2} \theta_{j,i} S_{t+1,j} \right) \sum_{j=1}^{2} \gamma_j \left(\frac{p \gamma_j - \frac{c}{R \sum_{j=1}^{2} \theta_{j,i} S_{t+1,j}}}{} \right) \right].$$ \hfill (A1.11)
Appendix 2. Derivation of the probability distribution function of $X = R(\theta_1 S_1 + \theta_2 S_2)$.

We start out with a pair of independent random variables $\theta = [\theta_1, \theta_2]'$ with a bivariate density $f_\theta(\theta_1, \theta_2) = f_1(\theta_1)f_2(\theta_2) = \frac{1}{(b_1 - a_1)(b_2 - a_2)}$. We consider the case where the stochastic multipliers θ_i have equal support: $a_1 = a_2 = a$ and $b_1 = b_2 = b$. We undertake deriving the distribution of $X = R(\theta_1 S_1 + \theta_2 S_2)$. We first derive the distribution of $Y_i = \theta_i S_i + \theta_j S_j$ using the algorithm described in De Groot (1986) for computing the distribution of a function of two random variables. The algorithm describes a transformation from \mathbb{R}^2 to \mathbb{R}^2, whereas we are interested in a transformation from \mathbb{R}^2 to \mathbb{R}^1. To this end, we construct a dummy random variable $Y_2 = \theta_2$ and derive the distribution of $Y = [Y_1, Y_2]' = S \theta$, where $S = \begin{bmatrix} S_1 & S_2 \\ 0 & 1 \end{bmatrix}$. Integrating out Y_2 from the distribution of Y yields the distribution of Y_1. Given the distribution of Y_1, it is straightforward to derive the distribution of $X = R(Y_1) = R(\theta_1 S_1 + \theta_2 S_2)$.

The density g_Y of Y is defined as $g_Y(Y) = f(ZY)|J(Y)|$, where Z is the inverse of S and ZY is the inverse map $\theta = [\theta_1, \theta_2]' = z(Y) = ZY$, and $J(y)$ denotes the Jacobian matrix of $z(Y)$ and $|J(Y)|$ denotes the Jacobian determinant. (see De Groot 1986). We have $Z = \begin{bmatrix} 1 & -S_2 \\ S_1 & S_1 \end{bmatrix}$. The Jacobian matrix is simply Z and the Jacobian determinant is $|J(Y)| = \frac{1}{S_1}$. The density g_Y of Y then becomes

\[(A2.1)\]

$$g_Y(Y) = f(ZY)|J(Y)| = f \left(\frac{Y_1 - S_1 Y_2}{S_1}, Y_2 \right) \frac{1}{S_1} = f_2 \left(\frac{Y_1 - S_1 Y_2}{S_1 - S_2} \right) f_2(Y_2) \frac{1}{S_1} = \frac{1}{(b-a)^2 S_1}$$

for $Y \in T$,

where T is the range of the function $Y = S \theta$, and $g(Y) = 0$ otherwise.
The distribution $g_1(y) \in (A2.1)$ is the joint distribution of $(Y_i, Y_j) = (S_i \theta_i + S_j \theta_j, \theta_j)$. The distribution of Y_i is obtained by integrating out Y_j. In order to obtain the limits of integration, we first have to determine the range T of the function $Y = [Y_i, Y_j] = S \theta$. Figure A2.1 shows T, which is a trapezoid. We depict Y_i on the horizontal axis and Y_j on the vertical axis. In order to determine the shape of T, we fix $Y_j = Y_j = \theta_j \in [a, b]$ and examine which values Y_i can take. For $Y_j = a$, Y_i ranges from $a(S_1 + S_2)$ to $bS_1 + aS_2$. For $Y_j = b$, Y_i ranges from $aS_1 + bS_2$ to $b(S_1 + S_2)$. The range T is defined by the trapezoid with the corners at $(a(S_1 + S_2), a)$, $(bS_1 + aS_2, a)$, $(b(S_1 + S_2), b)$, $(aS_1 + bS_2, b)$. We integrate out Y_j for every value of Y_i in the support of the marginal, which is $[a(S_1 + S_2), b(S_1 + S_2)]$. As we can see from Figure A2.1, the integral has to be computed in three pieces. Two cases arise depending on whether (i) $aS_1 + bS_2 \leq bS_1 + aS_2$ or (ii) $aS_1 + bS_2 > bS_1 + aS_2$.

Consider first case (i). The interval associated with Y_j on the vertical axis is

I $a \leq y_j \leq a + \frac{1}{S_2}(y_i - a(S_1 + S_2))$ for $y_i \in [a(S_1 + S_2), aS_1 + bS_2]$

II $a \leq y_j \leq b$ for $y_i \in [aS_1 + bS_2, bS_1 + aS_2]$

III $a + \frac{1}{S_2}(y_i - (bS_1 + aS_2)) \leq y_j \leq b$ for $y_i \in [bS_1 + aS_2, b(S_1 + S_2)]$.

Integrating out Y_j yields the density of Y_i:

$$g_i(y_i) = \frac{1}{(b-a)^2 S_1 S_2} \int_{y_j} \left[\frac{1}{(b-a)^2 S_1 S_2} dY_j \right] = \frac{1}{(b-a)^2 S_1 S_2} (y_i - a(S_1 + S_2)) \left[a(S_1 + S_2), aS_1 + bS_2 \right]$$

for $y_i \in [a(S_1 + S_2), aS_1 + bS_2]$

$$= \frac{1}{(b-a)^2 S_1 S_2} \left[\frac{1}{(b-a)^2 S_1 S_2} dY_j \right] = \frac{1}{(b-a)^2 S_1 S_2}$$

for $y_i \in [aS_1 + bS_2, bS_1 + aS_2]$.

29
\[= \int_{a + \frac{1}{S_2} \min(b_S + aS_2)}^{1} \frac{1}{(b-a)^2 S_1 S_2} dy_1 = \frac{1}{(b-a)^2 S_1 S_2} (b(S_1 + S_2) - y_1) \quad \text{for} \quad y_1 \in [bS_1 + aS_2, b(S_1 + S_2)] \]

In case \((ii)\), \(a_i S_i + b_i S_2 > b_i S_i + a_i S_2\). The interval associated with \(y_2\) on the vertical axis is

I \quad \(a \leq y_2 \leq a + \frac{1}{S_2} (y_1 - a(S_i + S_j))\) for

\[y_1 \in [a(S_i + S_j), bS_1 + aS_2] \]

II \quad \(a + \frac{1}{S_2} (y_1 - (bS_i + aS_2)) \leq y_2 \leq a + \frac{1}{S_2} (y_1 - a(S_i + S_j))\) for

\[y_1 \in [bS_1 + aS_2, aS_1 + bS_2] \]

III \quad \(a + \frac{1}{S_2} (y_1 - (bS_i + aS_2)) \leq y_2 \leq b\) for

\[y_1 \in [aS_i + bS_2, b(S_i + S_j)] \]

Integrating out \(Y_2\) as above yields

\[(A2.3) \quad g_i(y_1) = \frac{1}{(b-a)^2 S_1 S_2} (y_1 - a(S_i + S_j)) \quad \text{for} \quad y_1 \in [a(S_i + S_j), bS_1 + aS_2] \]

\[= \int_{a + \frac{1}{S_2} \min(b_S + aS_2)}^{1} \frac{1}{(b-a)^2 S_1 S_2} dy_1 = \frac{1}{(b-a)S_1 S_2} \quad \text{for} \quad y_1 \in [bS_i + aS_2, aS_1 + bS_2] \]

\[= \frac{1}{(b-a)^2 S_1 S_2} (b(S_i + S_j) - y_1) \quad \text{for} \quad y_1 \in [aS_i + bS_2, b(S_i + S_j)] \]
The cumulative distribution function for Y_i is obtained by integrating the probability density function. In case (i), $aS_i + bS_j \leq bS_i + aS_j$, the cumulative distribution function is

(A2.4) \[
G_i(y_i) = \gamma \int_{a(S_i+S_j)}^{y_i} \frac{1}{(b-a)^2 S_i S_j} (y - a(S_i + S_j)) dy_i = \frac{[a(S_i + S_j) - y_i]^2}{2(a-b)^2 S_i S_j}
\]

for $y_i \in [a(S_i + S_j), aS_i + bS_j]$

\[
= \frac{S_j}{2S_i} + \gamma \int_{a(S_i+S_j)}^{y_i} \frac{1}{(b-a)^2 S_i} dy_i = \frac{S_j}{2S_i} + \frac{1}{(b-a)^2 S_i} [y_i - (aS_i + bS_j)]
\]

for $y_i \in [aS_i + bS_j, bS_i + aS_j]$

\[
= \frac{S_j}{2S_i} + \frac{1}{(b-a)^2 S_i} [bS_i + aS_j - (aS_i + bS_j)] + \gamma \int_{aS_i+S_j}^{y_i} \frac{1}{(b-a)^2 S_i S_j} (b(S_i + S_j) - y) dy
\]

\[
= -2a(b-a)S_jS_i - b_i S_i - 2bS_i (aS_j - y_i) - (y_i - bS_j)^2
\]

\[
= \frac{2(b-a)^2 S_i S_j}{2(b-a)^2 S_i S_j}
\]

for $y_i \in [aS_i + bS_j, b(S_i + S_j)]$.

In case (ii), $aS_i + bS_j > bS_i + aS_j$, the cumulative distribution function is

(A2.5) \[
G_i(y_i) = \gamma \int_{a(S_i+S_j)}^{y_i} \frac{1}{(b-a)^2 S_i S_j} (y_i - a(S_i + S_j)) dy_i = \frac{[a(S_i + S_j) - y_i]^2}{2(a-b)^2 S_i S_j}
\]

for $y_i \in [a(S_i + S_j), bS_i + aS_j]$

\[
= \frac{(aS_i + aS_j - bS_i - aS_j)^2}{2(a-b)^2 S_i S_j} + \gamma \int_{aS_i+S_j}^{y_i} \frac{1}{(b-a)^2 S_j} dy_i
\]

\[
= \frac{S_j}{2S_i} + \frac{1}{(b-a)^2 S_j} [y_i - (bS_i + aS_j)]
\]

for $y_i \in [bS_i + aS_j, aS_i + bS_j]$
\[
= \frac{S_1}{2S_2} + \frac{1}{(b-a)S_2}[aS_1 + bS_2 - (bS_1 + aS_2)] + \int_{a_1}^{a_2} \frac{1}{(b-a)S_2} (b(S_1 + S_2) - y) dy
\]

\[
= -\frac{2a(b-a)S_1S_2 - b^2S_1^2 - 2bS_1 (aS_2 - y_1) - (y_1 - bS_2)^2}{2(b-a)^2 S_1 S_2}
\]

for \(y_i \in [aS_1 + bS_2, bS_1 + bS_2] \).

Given the distribution of \(Y_i = \theta_1S_1 + \theta_2S_2 \), the cumulative distribution function of
\[X = R(\theta_1S_1 + \theta_2S_2) = R(Y_i)\] can be written as

(A2.6) \[F_X(x) = \Pr(X \leq x) = \Pr(R(Y_i) \leq x) = \Pr(Y_i \leq R^{-1}(x)) = G_i(R^{-1}(x)) \]

provided that the inverse \(R^{-1}(x) \) exists. The density of \(X \) is recovered by differentiating \(F_X \),
which yields

(A2.7) \[f_x(x) = g_i(R^{-1}(x)) \frac{\partial R^{-1}(x)}{\partial x}. \]
Appendix 3. First order conditions for non-cooperative and cooperative target escapements under recruitment uncertainty.

Agent i’s first order condition for the optimal non-cooperative target escapement $S_{i}^{T^*}$:

\[
(A3.1) \quad p - \frac{c}{S_{i}} = \delta \gamma R \left(\sum_{j=1}^{N} S_{j} \right) \left(p - \frac{c}{\gamma R \left(\sum_{j=1}^{N} S_{j} \right)} \right) = 0
\]

The first order condition for the sole owner optimal target escapements S_{i}^{O}:

\[
(A3.2) \quad p - \frac{c}{S_{i}} = \delta \sum_{j=1}^{N} \gamma R \left(\sum_{j=1}^{N} S_{j+1} \right) \left(p - \frac{c}{\gamma R \left(\sum_{j=1}^{N} S_{j+1} \right)} \right).
\]

The payoffs and the agents’ first order conditions under the trigger stock agreement are written as in the case of implementation uncertainty, but stochastic variation is only present in stock recruitment as defined in equation (19). The cumulative distribution function of $X = \theta R(S_1 + S_2)$ is given by $F_x(x, S_1, S_2) = F_{R} \left(x / R(S_1 + S_2) \right)$, where $F_{R} \left(\cdot \right)$ is the cumulative distribution of θR.
Table 1. Example parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>6.8</td>
</tr>
<tr>
<td>k</td>
<td>4.5</td>
</tr>
<tr>
<td>l</td>
<td>-1.8×10^{-2}</td>
</tr>
<tr>
<td>δ</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 2. Agreement on joint management under implementation uncertainty. $\varepsilon = 0.1$

<table>
<thead>
<tr>
<th>γ</th>
<th>S_{1}^{C}</th>
<th>S_{2}^{C}</th>
<th>S_{1}^{*}</th>
<th>S_{2}^{*}</th>
<th>\bar{X}</th>
<th>T</th>
<th>F</th>
<th>EV_{1}^{C}</th>
<th>EV_{1}^{C}</th>
<th>EV_{1}^{*}</th>
<th>EV_{2}^{*}</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>812</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td></td>
<td>674</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>9</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td></td>
<td>548</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>11</td>
<td>19</td>
<td>11</td>
<td>18</td>
<td>76</td>
<td>3</td>
<td>0.0552</td>
<td>262</td>
<td>443</td>
<td>258</td>
<td>439</td>
<td>8.0</td>
<td>75</td>
</tr>
<tr>
<td>0.5</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>14</td>
<td>83</td>
<td>4</td>
<td>0.1302</td>
<td>364</td>
<td>364</td>
<td>346</td>
<td>346</td>
<td>2.2</td>
<td>53</td>
</tr>
<tr>
<td>0.6</td>
<td>19</td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>76</td>
<td>3</td>
<td>0.0552</td>
<td>443</td>
<td>262</td>
<td>439</td>
<td>258</td>
<td>8.0</td>
<td>75</td>
</tr>
<tr>
<td>0.7</td>
<td>22</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>548</td>
<td></td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>674</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>27</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>812</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$S_{1}^{o} = S_{2}^{o} = 18.34 \quad EV_{1}^{o} = EV_{2}^{o} = 367 \quad at \quad \gamma_{1} = \gamma_{2} = 0.5$

Table 3. Agreement on joint management under implementation uncertainty. $\varepsilon = 0.3$

<table>
<thead>
<tr>
<th>γ</th>
<th>S_{1}^{C}</th>
<th>S_{2}^{C}</th>
<th>S_{1}^{*}</th>
<th>S_{2}^{*}</th>
<th>\bar{X}</th>
<th>T</th>
<th>F</th>
<th>EV_{1}^{C}</th>
<th>EV_{1}^{C}</th>
<th>EV_{1}^{*}</th>
<th>EV_{2}^{*}</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td>665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>9</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>158</td>
<td></td>
<td>541</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>18</td>
<td>75</td>
<td>22</td>
<td>0.0194</td>
<td>253</td>
<td>434</td>
<td>252</td>
<td>433</td>
<td>2.41</td>
<td>57</td>
</tr>
<tr>
<td>0.5</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>74</td>
<td>25</td>
<td>0.0740</td>
<td>348</td>
<td>348</td>
<td>340</td>
<td>340</td>
<td>0.52</td>
<td>28</td>
</tr>
<tr>
<td>0.6</td>
<td>18</td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>75</td>
<td>22</td>
<td>0.0194</td>
<td>434</td>
<td>253</td>
<td>433</td>
<td>252</td>
<td>2.00</td>
<td>57</td>
</tr>
<tr>
<td>0.7</td>
<td>21</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>541</td>
<td></td>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>665</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>27</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$S_{1}^{o} = S_{2}^{o} = 18.23 \quad EV_{1}^{o} = EV_{2}^{o} = 361 \quad at \quad \gamma_{1} = \gamma_{2} = 0.5$

Table 4. Agreement on joint management under recruitment uncertainty. $\varepsilon = 0.1$

<table>
<thead>
<tr>
<th>γ</th>
<th>S_{1}^{C}</th>
<th>S_{2}^{C}</th>
<th>S_{1}^{*}</th>
<th>S_{2}^{*}</th>
<th>\bar{X}</th>
<th>T</th>
<th>F</th>
<th>EV_{1}^{C}</th>
<th>EV_{1}^{C}</th>
<th>EV_{1}^{*}</th>
<th>EV_{2}^{*}</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>8</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td></td>
<td>676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>9</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>164</td>
<td></td>
<td>550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>12</td>
<td>20</td>
<td>11</td>
<td>18</td>
<td>76</td>
<td>4</td>
<td>0.16</td>
<td>264</td>
<td>440</td>
<td>259</td>
<td>440</td>
<td>1.75</td>
<td>48</td>
</tr>
<tr>
<td>0.5</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>14</td>
<td>77</td>
<td>7</td>
<td>0.069</td>
<td>359</td>
<td>359</td>
<td>347</td>
<td>347</td>
<td>2.25</td>
<td>55</td>
</tr>
<tr>
<td>0.6</td>
<td>20</td>
<td>12</td>
<td>18</td>
<td>11</td>
<td>76</td>
<td>4</td>
<td>0.16</td>
<td>440</td>
<td>264</td>
<td>440</td>
<td>259</td>
<td>1.75</td>
<td>48</td>
</tr>
<tr>
<td>0.7</td>
<td>22</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>550</td>
<td></td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>25</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>676</td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>27</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>814</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$S_{1}^{o} = S_{2}^{o} = 18.36 \quad EV_{1}^{o} = EV_{2}^{o} = 368 \quad at \quad \gamma_{1} = \gamma_{2} = 0.5$
Table 5. Agreement on joint management under recruitment uncertainty. $\varepsilon = 0.3$

<table>
<thead>
<tr>
<th>γ_1</th>
<th>S_1^{TC}</th>
<th>S_2^{TC}</th>
<th>S_1^*</th>
<th>S_2^*</th>
<th>\bar{X}</th>
<th>T</th>
<th>F</th>
<th>$E_{V_1}^C$</th>
<th>$E_{V_2}^C$</th>
<th>$E_{V_1}^*$</th>
<th>$E_{V_2}^*$</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>10</td>
<td>25</td>
<td>9</td>
<td>22</td>
<td>59</td>
<td>21</td>
<td>0.00054</td>
<td>179</td>
<td>559</td>
<td>166</td>
<td>552</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>0.4</td>
<td>13</td>
<td>21</td>
<td>11</td>
<td>18</td>
<td>58</td>
<td>8</td>
<td>0.0032</td>
<td>278</td>
<td>452</td>
<td>261</td>
<td>442</td>
<td>45</td>
<td>92</td>
</tr>
<tr>
<td>0.5</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>57</td>
<td>2</td>
<td>0.0066</td>
<td>362</td>
<td>362</td>
<td>349</td>
<td>349</td>
<td>150</td>
<td>97</td>
</tr>
<tr>
<td>0.6</td>
<td>21</td>
<td>13</td>
<td>18</td>
<td>11</td>
<td>58</td>
<td>8</td>
<td>0.0032</td>
<td>452</td>
<td>278</td>
<td>442</td>
<td>261</td>
<td>45</td>
<td>92</td>
</tr>
<tr>
<td>0.7</td>
<td>25</td>
<td>10</td>
<td>22</td>
<td>9</td>
<td>59</td>
<td>21</td>
<td>0.00054</td>
<td>559</td>
<td>179</td>
<td>552</td>
<td>166</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>0.8</td>
<td>25</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>27</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

$S_1^O = S_2^O = 18.36$. $E_{V_1}^O = E_{V_2}^O = 370$ at $\gamma_1 = \gamma_2 = 0.5$

Table 6. Agreement on joint management under recruitment uncertainty. $\varepsilon = 0.5$

<table>
<thead>
<tr>
<th>γ_1</th>
<th>S_1^{TC}</th>
<th>S_2^{TC}</th>
<th>S_1^*</th>
<th>S_2^*</th>
<th>\bar{X}</th>
<th>T</th>
<th>F</th>
<th>$E_{V_1}^C$</th>
<th>$E_{V_2}^C$</th>
<th>$E_{V_1}^*$</th>
<th>$E_{V_2}^*$</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>9</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>10</td>
<td>20</td>
<td>11</td>
<td>18</td>
<td>41</td>
<td>9</td>
<td>0.0073</td>
<td>276</td>
<td>449</td>
<td>265</td>
<td>446</td>
<td>17</td>
<td>86</td>
</tr>
<tr>
<td>0.5</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>40</td>
<td>4</td>
<td>0.00035</td>
<td>364</td>
<td>364</td>
<td>353</td>
<td>353</td>
<td>952</td>
<td>99</td>
</tr>
<tr>
<td>0.6</td>
<td>20</td>
<td>10</td>
<td>18</td>
<td>11</td>
<td>41</td>
<td>9</td>
<td>0.0073</td>
<td>449</td>
<td>276</td>
<td>446</td>
<td>265</td>
<td>17</td>
<td>86</td>
</tr>
<tr>
<td>0.7</td>
<td>22</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>25</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>29</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

$S_1^O = S_2^O = 18.36$. $E_{V_1}^O = E_{V_2}^O = 374$ at $\gamma_1 = \gamma_2 = 0.5$

Table 7. Comparison of the implications of implementation and recruitment uncertainty for the prospects of cooperation in trigger strategies

<table>
<thead>
<tr>
<th>Agreement characteristics</th>
<th>Source of uncertainty</th>
<th>Implementatation shock</th>
<th>Recruitment shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of shocks $\varepsilon_1, \varepsilon_R$ for which agreement sustained</td>
<td>Small, moderate</td>
<td>Small, moderate, large</td>
<td></td>
</tr>
<tr>
<td>Range of shares γ_1 for which agreement sustained</td>
<td>0.4 to 0.6</td>
<td>0.4 to 0.6 when shocks small or large 0.3 to 0.7 when shocks moderate</td>
<td></td>
</tr>
<tr>
<td>Probability of reversion (F)</td>
<td>0.019 to 0.13</td>
<td>0.00035 to 0.0073 when shocks moderate or large 0.069 to 0.16 when shocks small</td>
<td></td>
</tr>
<tr>
<td>The smaller the shocks, the higher is F</td>
<td>F is higher when shares even</td>
<td>No monotonic relationship between shares and F</td>
<td></td>
</tr>
<tr>
<td>Length of the punishment phase ($T-1$)</td>
<td>2 to 24</td>
<td>3 to 20</td>
<td></td>
</tr>
<tr>
<td>Percentage of time in cooperation (R)</td>
<td>28 to 75 %</td>
<td>48 to 99 %</td>
<td></td>
</tr>
<tr>
<td>Maximum percentage of time in cooperation</td>
<td>75 %, small fluctuations</td>
<td>99 %, large fluctuations</td>
<td></td>
</tr>
<tr>
<td>Maximum percentage of time in non-cooperation</td>
<td>72 %, moderate fluctuations</td>
<td>52%, small fluctuations</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Agents’ expected payoffs under non-cooperation and under the trigger stock agreement. Implementation uncertainty, $\epsilon = 0.1$

Fig. 2. Agents’ expected payoffs under non-cooperation and under the trigger stock agreement. Implementation uncertainty, $\epsilon = 0.3$

Fig. 3. The optimal length of punishment phase and the optimal probability of reversion. Implementation uncertainty, $\epsilon = 0.1$
Fig. 4. The optimal length of punishment phase and the optimal probability of reversion. Implementation uncertainty, $\varepsilon = 0.3$.

Fig. 5. The expected ratio of cooperative to punishment periods and the percentage of time spent in cooperation. Implementation uncertainty, $\varepsilon = 0.1$.
Fig. 6. The expected ratio of cooperative to punishment periods and the percentage of time spent in cooperation. Implementation uncertainty, $\varepsilon = 0.3$.

![Graph showing the expected ratio of cooperative to punishment periods and the percentage of time spent in cooperation.](image)

Fig. 7. Agents’ expected payoffs under non-cooperation and under the trigger stock agreement. Recruitment uncertainty, $\varepsilon = 0.1$

![Graph showing agents' expected payoffs.](image)

Fig. 8. Agents’ expected payoffs under non-cooperation and under the trigger stock agreement. Recruitment uncertainty, $\varepsilon = 0.3$.

![Graph showing agents' expected payoffs.](image)
Fig. 9. Agents’ expected payoffs under non-cooperation and under the trigger stock agreement. Recruitment uncertainty, $\epsilon = 0.5$.

![Graph showing expected payoffs](image)

Fig. 10. The optimal length of punishment phase and the optimal probability of reversion. Recruitment uncertainty, $\epsilon = 0.1$.

![Graph showing optimal length and probability](image)

Fig. 11. The optimal length of punishment phase and the optimal probability of reversion. Recruitment uncertainty, $\epsilon = 0.3$.

![Graph showing optimal length and probability](image)
Fig. 12. The optimal length of punishment phase and the optimal probability of reversion. Recruitment uncertainty, $\varepsilon = 0.5$.

Fig. 13. The expected ratio of cooperative to punishment periods and the percentage of time spent in cooperation. Recruitment uncertainty, $\varepsilon = 0.1$.
Fig. 14. The expected ratio of cooperative to punishment periods and the percentage of time spent in cooperation. Recruitment uncertainty, $\varepsilon = 0.3$.

Fig. 15. The expected ratio of cooperative to punishment periods and the percentage of time spent in cooperation. Recruitment uncertainty, $\varepsilon = 0.5$.

\begin{itemize}
 \item Agent 1’s share γ_1
 \item Expected ratio of cooperative periods to punishment periods, Q
 \item Expected percentage of time in cooperation, R
\end{itemize}
Figure A2.1. Limits of integration for integrating out Y_2.

(i) $a_s + b_s \leq b_s + a_s$

(ii) $a_s + b_s > b_s + a_s$
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series
Our working papers are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://papers.ssrn.com

SUST 1.2002 K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa
ETA 2.2002 Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?
CLIM 4.2002 Andreas LÖSCHEL: Technological Change in Economic Models of Environmental Policy: A Survey
VOL 5.2002 Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions
KNOW 8.2002 Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus
NRM 9.2002 Giuseppe DI VITA: Renewable Resources and Waste Recycling
KNOW 10.2002 Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries
ETA 11.2002 Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE: Endogenous Fluctuations and the Role of Monetary Policy
KNOW 12.2002 Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?
NRM 13.2002 Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model
CLIM 14.2002 Philippe QUIRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector
CLIM 16.2002 Francesco RICCI (i): Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity
ETA 17.2002 Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

Coalition Theory Network

18.2002 László Á. KÓCZY (liv): The Core in the Presence of Externalities

Coalition Theory Network

Coalition Theory Network

NRM 21.2002 Fausto CAVALLARO and Luigi CIRAULO: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems
CLIM 22.002 Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation
CLIM 23.002 Andreas LÖSCHEL and ZhongXIAN ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech
ETA 24.0002 Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours
ETA 26.002 Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change
SUST 27.002 Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans
SUST 28.002 The ANSEA Network: Towards An Analytical Strategic Environmental Assessment
KNOW 29.002 Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence
ETA 30.002 Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies
SUST 71.2002 Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon

NRM 32.2002 Robert N. STAVINS: National Environmental Policy During the Clinton Years

KNOW 33.2002 A. SOUBEYRAN and H. STAHL: Do Investments in Specialized Knowledge Lead to Composite Good Industries?

KNOW 34.2002 G. BRUNELLO, M.L. PARISSI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect

CLIM 36.2002 T.TIETENBERG (iv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

NRM 40.2002 S. M. CAVALAGH, W. M. HANEMANN and R. N. STAVINS: Muddled Price Signals: Household Water Demand under Increasing-Block Prices

CLIM 42.2002 C. OHL (ivi): Inducing Environmental Co-operation by the Design of Emission Permits

CLIM 43.2002 J. EYCKMANS, D. VAN REGEMORTER and V. VAN STEENBERGHE (ivi): Is Kyoto Fataly Flawed? An Analysis with MacGEM

CLIM 44.2002 A. ANTOCI and S. BORGHESI (ivi): Working Too Much in a Polluted World: A North-South Evolutionary Model

ETA 45.2002 P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (ivi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

ETA 46.2002 Z. YU (ivi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect

SUST 47.2002 Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?

SUST 48.2002 Y. H. FARZIN: Sustainability and Hamiltonian Value

KNOW 49.2002 C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

Coalition Theory Network 50.2002 M. SERTEL and A. SLINKO (iv): Ranking Committees, Words or Multisets

Coalition Theory Network 51.2002 Sergio CURRARINI (ivi): Stable Organizations with Externalities

ETA 52.2002 Robert N. STAVINS: Experience with Market-Based Policy Instruments

CLIM 54.2002 Scott BARRETT (lili): Towards a Better Climate Treaty

ETA 55.2002 Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

SUST 56.2002 Paolo ROSATO and Edi DEFRANCESCO: Individual Travel Cost Method and Flow Fixed Costs

SUST 57.2002 Vladimir KOTOV and Elena NIKITINA (lili): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

VOL 60.2002 Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

PRIV 62.02 Carlo CAUCANO: Demand Growth, Entry and Collusion Sustainability

PRIV 63.02 Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

PRIV 64.02 Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

SUST 65.02 Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

ETA 66.02 Paolo SURICO: US Monetary Policy Rules: the Case for Asymmetric Preferences

PRIV 67.02 Rinaldo BRAU and Massimo FLORIO: Privatisations as Price Reforms: Evaluating Consumers’ Welfare Changes in the UK

CLIM 68.02 Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

CLIM 69.02 Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

SUST 70.02 Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

SUST 71.02 Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of

Andreas LANGE: Privatization and Labor Force Restructuring Around the

Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Does Ownership Affect Firms’ Efficiency? Panel Data

Banu BAYRAMOGLU LISE and Wietze LISE: Evidence from the Fixed-Line Telecommunications Sector in Developing Economies

Vito FRAGNELLI and Maria Erminia MARINA: The Abnormal Returns of UK Privatisations: From Underpricing to Outperformance

Massimo FLORIO and Katiuscia MANZONI: The Abnormal Returns of UK Privatisations: From Underpricing to Outperformance

Nelson LOURENÇO, Carlos RUSSO MACHADO, Maria do ROSÁRIO JORGE and Luis RODRIGUES: An Integrated Approach to Understand Territory Dynamics. The Coastal Alentejo (Portugal)

Peter ZAPFEL and Matti VAINIO: Environmental Enforcement with Endogenous Ambient Monitoring

Piero COURTOIS: Influence Processes in Climate Change Negotiations: Modelling the Rounds

Vito FRAGNELLI and Maria Erminia MARINA: Environmental Pollution Risk and Insurance

Laurent FRANCKX (lviii): Environmental Enforcement with Endogenous Ambient Monitoring

Timo GOESCHL and Timothy M. SWANSON: Environmental Pollution Risk and Insurance

Timo GOESCHL and Timothy M. SWANSON: Lost Horizons. The noncooperative management of an evolutionary biological system.

Hans KEIDING (lviii): Environmental Effects of Consumption: An Approach Using DEA and Cost Sharing

Wietze LISE (lviii): A Game Model of People’s Participation in Forest Management in Northern India

Jens HORBACH: Structural Change and Environmental Kuznets Curves

Martin P. GROSSKOPF: Towards a More Appropriate Method for Determining the Optimal Scale of Production Units

Scott BARRETT and Robert STAVINS: Increasing Participation and Compliance in International Climate Change Agreements

Banu BAYRAMOGLU LISE and Wietze LISE: Climate Change, Environmental NGOs and Public Awareness in the Netherlands: Perceptions and Reality

Matthieu GLACHANT: The Political Economy of Emission Tax Design in Environmental Policy

Kees ARIGA and Giorgio BRUNELLO: Are the More Educated Receiving More Training? Evidence from Thailand

Giunfranco FORTE and Matteo MANERA: Forecasting Volatility in European Stock Markets with Non-linear GARCH Models

Geoffrey HEAL: Bundling Biodiversity

Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul EHRlich, Karl-Goran MALER, Nils KAUTSKY, Jane LUCHENCHAO, Steve SCHNEIDER and David STARRETT: Genetic Diversity and Interdependent Crop Choices in Agriculture

Geoffrey HEAL: Biodiversity and Globalization

Andreas Lange: Heterogeneous International Agreements – If per capita emission levels matter

Pierre-André JOUVET and Waldid OUESLATI: Tax Reform and Public Spending Trade-offs in an Endogenous Growth Model with Environmental Externality

Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data Evidence on Italy

Bernardo BORTOLOTTI, Frank DE JONG, Giovanna NICODANO and Ibolya SCHINDELE: Privatization and Stock Market Liquidity

Haruo IMAI and Mayumi HORIE: Pre-Negotiation for an International Emission Reduction Game

Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of Privatisation in Developing Countries

Guillaume GIRMENS and Michel GUILLARD: Privatization and Investment: Crowding-Out Effect vs Financial Diversification

Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Privatization and Labor Force Restructuring Around the World

Nandini GUPTA: Partial Privatization and Firm Performance

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Selling Company Shares to Reluctant Employees: France Telecom’s Experience
Isaac OTCHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries
Yannis KATSOLAKOS and Elisavet LIKYANNN: Fiscal and Other Macroeconomic Effects of Privatization
Guillaume GIRMENS: Privatization, International Asset Trade and Financial Markets
D. Teja FLOTTO: A Note on Consumption Correlations and European Financial Integration
Ibolya SCHINDELE and Enrico C. PEROTTI: Pricing Initial Public Offerings in Premature Capital Markets: The Case of Hungary
Gabriella CHIESA and Giovanna NICODANO: Privatization and Financial Market Development: Theoretical Issues
Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
Wietze LISE, Claudia KEMPFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
Laura MARSILLANI and Thomas I. RENSTRÖM: Environmental Policy and Capital Movements: The Role of Government Commitment
Reyer GERLAGH: Induced Technological Change under Technological Competition
Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Theory
Michele MORETTO: Capital Inputs: A Firm-level Investigation
Matti KELOHARJU, Kjell G. NYBORG and Kristian RYDQVIST: Mechanisms to Procure Multiple Contracts
Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP: Auctions with Financial Externalities
Christine A. PARLOUR and Uday RAJAN: Female Roles in Urban Economic Life
Alexandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
Billy E. VAUGHN and Katarina MLEKOV: A Stage Model of Developing an Inclusive Community
Anders LUNANDER and Jan-Eric NILSSON: Multiple Unit Auctions and Short Squeezes
Sergio CURRARINI: Diversity vs. Socio-Economic Diversity. A Comparison of Existing Measures
Slovakia: Introducing Technological Change under International Competition
Michael FINUS and Bianca RUNDSHAGEN: Competition and Irreversible Investments under Uncertainty
Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
Matthieu GLACHANT: The Role of Ownership Structure and Investor Protection
Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
GG 36.2003
Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

Rinaldo BRAU, Alessandro LANA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence

Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

Lucas BRETSCHGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

Johan EYCKMANS and Michael FINUS: New Roads to International Environmental Agreements: The Case of Global Warming

Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries

A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia

Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

Parkash CHANDER: The γ-Core and Coalition Formation

Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices

John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities

Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue

Alakmanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

Anil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy

Anne Sophie CRÉPIN: Management Challenges for Multiple-Species Boreal Forests

Anne Sophie CRÉPIN: Threshold Effects in Coral Reef Fisheries

Sara ANIYAR: Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example

Kenneth ARROW, Partha DASGUPTA and Karl-Göran MÄLER: Evaluating Projects and Assessing Sustainable Development in Imperfect Economies

Anastasios XEPAPADEAS and Catarina ROSETA-PALMA: Instabilities and Robust Control in Fisheries

Charles PERRINGS and Brian WALKER: Conservation and Optimal Use of Rangelands

Jack GOODY: Globalisation, Population and Ecology

Carlo CARRARO, Carmen MARCHIORITY and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching

Hideo KONISHI and M. Utsu UNVER: Credible Group Stability in Multi-Partner Matching Problems

Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem

Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem

Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty

Carlo CARRARO, Alessandro LANA and Valeria PAPPONETTI: One Thousand Working Papers
(i) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001
(ii) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001
(iii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001
(iv) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001
(v) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Venice, Italy, January 11-12, 2002
(vi) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001
(vii) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy “The International Dimension of Environmental Policy”, organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafredda di Maratea, October 6-11, 2001
(viii) This paper was presented at the First Workshop of “CFEWE – Carbon Flows between Eastern and Western Europe”, organised by the Fondazione Eni Enrico Mattei and Zentrum fur Europaische Integrationsforschung (ZEI), Milan, July 5-6, 2001
(ix) This paper was presented at the Workshop on “Game Practice and the Environment”, jointly organised by Università del Piemonte Orientale and Fondazione Eni Enrico Mattei, Alessandria, April 12-13, 2002
(x) This paper was presented at the ENGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002
(xi) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002
(xii) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003
(xiii) This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002
(xiv) This paper was presented at the ENGIME Workshop on “Social dynamics and conflicts in multicultural cities”, Milan, March 20-21, 2003
(xv) This paper was presented at the International Conference on “Theoretical Topics in Ecological Economics”, organised by the Abdus Salam International Centre for Theoretical Physics - ICTP, the Beijer International Institute of Ecological Economics, and Fondazione Eni Enrico Mattei – FEEM Trieste, February 10-21, 2003
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSR</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>