Lahiri, Somdeb

Working Paper

Stable Matchings for a Generalised Marriage Problem

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 117.2003

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Lahiri, Somdeb (2003) : Stable Matchings for a Generalised Marriage Problem, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 117.2003, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/118143

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Stable Matchings for a Generalised Marriage Problem

Somdeb Lahiri

NOTA DI LAVORO 117.2003

December 2003

CTN – Coalition Theory Network

Somdeb Lahiri, School of Economic and Business Sciences, University of Witwatersrand at Johannesburg

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Stable Matchings for a Generalised Marriage Problem

Summary

We show that a simple generalisation of the Deferred Acceptance Procedure with men proposing due to Gale and Shapley (1962) yields outcomes for a generalised marriage problem, which are necessarily stable. We also show that any outcome of this procedure is Weakly Pareto Optimal for Men, i.e. there is no other outcome which all men prefer to an outcome of this procedure. In a final concluding section of this paper, we consider the problem of choosing a set of multi-party contracts, where each coalition of agents has a non-empty finite set of feasible contracts to choose from. We call such problems, generalised contract choice problems. The model we propose is a generalisation of the model due to Shapley and Scarf (1974) called the housing market. We are able to show with the help of a three agent example, that there exists a generalised contract choice problem, which does not admit any stable outcome.

Keywords: Stable outcomes, Matchings, pay-offs, Generalised marriage problem, Contract choice problem

JEL: C71, C78

Address for correspondence:

Somdeb Lahiri
School of Economic and Business Sciences
University of Witwatersrand at Johannesburg
Private Bag 3, WITS 2050
South Africa
E-mail: lahiri@sebs.wits.ac.za
Or lahiri@webmail.co.za
Stable Matchings for A Generalized Marriage Problem

1. Introduction:

A salient feature of many markets is to match one agent with another. This is particularly true, in the case of assigning tasks to individuals where each task is under the supervision of an individual, and where the set of supervisors and the set of workers are disjoint. Such markets are usually studied with the help of “two sided matching models” introduced by Gale and Shapley (1962) called the marriage problem. However, not all matching problems where disjoint pairs are required to form, is dichotomous. The problem of forming disjoint pairs out of a given set of agents is what Gale and Shapley (1962) called a room-mates problem. The marriage problem is indeed a special case of their room-mates problem. The solution concept proposed by Gale and Shapley (1962), called a stable matching, requires that there should not exist two agents, who prefer each other, to the individual they have been paired with. It was shown in Gale and Shapley (1962), in a framework where every agent has preference defined by a linear order over the entire set of agents, that a room-mates problem may not admit any stable matching although a marriage problem always does. Indeed, given a marriage problem, there is always a stable matching which no man considers inferior to any other stable matching, and there is always a stable matching that no woman considers inferior to any other stable matching. The first is called an M – optimal stable matching (i.e. stable matching optimal for men) and the second one a W – optimal stable matching (i.e. stable matching optimal for women). An overview of the considerable literature on marriage problems that has evolved out of the work of Gale and Shapley (1962), is available in Roth and Sotomayor (1990). Lahiri (2002) contains alternative simpler proofs of some existing results and some new conclusions for two-sided matching problems. While the body of literature on existence of stable matchings for room-mates problems is quite enormous, there has been very little investigation of the properties of such matchings, if and when
they do exist. Lahiri (2003) attempts to fill this gap by analyzing the co-operative
theory of stable matchings for room-mates problems.
Eriksson and Karlander (1998) considers an interesting common generalization of
the marriage model due to Gale and Shapley (1962) and the assignment model of
Shapley and Shubik (1972). They propose a model of a two-sided matching
model, where a pair of agents each on a different side of the market produce a
good which is either divided among them in a fixed proportion which is
exogenously specified for the pair (; in which case the pair is said to be rigid) or is
divided arbitrarily among them (; in which case the pair is said to be flexible).
They propose the concept of a stable outcome and prove the existence of one,
when the good is to be distributed is available in indivisible units.
In this paper, we propose a generalization of the model due to Eriksson and
Karlander (1998) in the context of room-mates problems. We allow each pair of
agents a non-empty finite set of integer valued divisions of a good to choose from.
Each agent is assumed to prefer more of the good to less of it. If each pair of
agents is provided singletons to choose from, then we have the room-mates
problem of Gale and Shapley (1962). On the other hand, if the set of agents can be
divided into two disjoint sets, with one set being the set of men and the other the
set of women, with no pair of the same sex being able to obtain an allocation
which is at least as good as an allocation that could be obtained by them
remaining single or by forming a pair with a member of the opposite sex, then we
obtain a generalization of the marriage problem due to Gale and Shapley (1962).
We say that an outcome (i.e. a bijection of order two from the set of agents into
itself along with an allocation which is feasible for every matched pair) is stable,
if there is no pair of agents who can obtain an allocation that both prefer to the
ones they have been assigned. We show, that a simple generalization of the
Deferred Acceptance Procedure with men proposing due to Gale and Shapley
(1962), yields outcomes for the generalized marriage problem, which are
necessarily stable. The main difference between the procedure we define and the
Deferred Acceptance Procedure, is that a man can propose to the same woman
several times. We also show, that any outcome of this procedure is Weakly Pareto
Optimal for Men, i.e. there is no other outcome which all men prefer to an
outcome of this procedure. This result is an extension to our framework, of a
similar result due to Roth and Sotomayor (1990).
As in Sotomayor (1996), it is possible to provide a non-constructive proof of the
existence of a stable outcome, in the framework of a generalized marriage
problem. Such a proof is essentially non-algorithmic although as Sotomayor
(1996) shows, is much simpler than its procedural counterpart. A consequence of
such a proof is the absence of an explicit "design" for a stable outcome.
An immediate extension of our model is one, where each pair can choose from a
non-empty finite set of contracts, on which each has preferences represented by a
weak-order(i.e. a reflexive, complete and transitive binary relation). The entire
analysis of this paper can be replicated in this more general framework. However,
we confine our "story", to the allocation of a single individual object among pairs
of agents, in order to endow the model with a simple yet tangible structure.
2. The Model:
 Let X be a non-empty finite subset of \(\mathbb{N} \): the set of natural numbers), denoting the set of participating agents.
 Let Z denote the set of all integers and \(Z_+ = \mathbb{N} \cup \{0\} \): the set of non-negative integers).
 A generalized room-mates problem G is an ordered pair \(X, (F(a,b))_{(a,b) \in X \times X} > \) such that for all \(a,b \in X \): (i) there exists a non-empty finite set \(F(a, b) \) of \(Z \times Z \) satisfying \(F(b,a) = \{(x,y) / (y,x) \in F(a,b)\} \); (ii) \(F(a,a) = \{(0,0)\} \).
 For \(G = X, (F(a,b))_{(a,b) \in X \times X} > \) and \(a,b \in X \), \(F(a,b) \) is the set of all feasible divisions of the yield between a and b, such that the division \((x,y) \) in \(F(a,b) \) assigns an amount x to a and y to b.
 Given a room-mates problem \(G = X, (F(a,b))_{(a,b) \in X \times X} > \), a matching for G is a bijection \(\mu \) from X to itself such that for all \(a \in X \): \(\mu(\mu(a)) = a \).
 Since the identity function on X is a matching every generalized room-mates problem admits at least one matching.
 A pay-off function is a function \(v : X \rightarrow Z_+ \).
 An outcome for a generalized room-mates problem \(G = X, (F(a,b))_{(a,b) \in X \times X} > \) is a pair \((\mu, v) \), where \(\mu \) is a matching for G and \(v \) is a pay-off function such that (i) for all \(a \in X \): \(v(a) \geq 0 \); (ii) for all \(a \in X \): \((v(a),v(\mu(a))) \in F(a,\mu(a)) \).
 The pair \((\mu, v) \), where \(\mu \) is the identity function on X and \(v(a) = 0 \) for all \(a \in X \), is an outcome for every generalized room-mates problem. Hence the set of outcomes is always non-empty.
 Given an outcome \((\mu, v) \) for a generalized room-mates problem \(G = X, (F(a,b))_{(a,b) \in X \times X} > \), a pair \((a,b) \in X \times X \) is said to block \((\mu, v) \) if there exists \((x,y) \in F(a,b) \) such that \(x \geq v(a) \) and \(y \geq v(b) \).
 An outcome \((\mu, v) \) for a generalized room-mates problem \(G = X, (F(a,b))_{(a,b) \in X \times X} > \) is said to be stable if it does not admit any blocking pair.

A generalized room-mates problem \(G = X, (F(a,b))_{(a,b) \in X \times X} > \) is called a generalized marriage problem if there exists two non-empty disjoint subsets M and W of X, and a positive integer r such that (i) \(M \cup W = X \); (ii) for all \(m, m' \in M \), and \(w, w' \in W \): \(F(m,m') = F(w,w') = \{(-r,-r)\} \); (iii) for all \(m \in M \), and \(w \in W \): \((x,y) \in F(m,w) \) implies \(x > -r \) and \(y > -r \).
 We represent a generalized marriage problem as \((M,W), (F(a,b))_{a,b \in M \cup W} > \). M is called the set of men and W the set of women.

3. Existence of Stable Outcomes for the Generalized Marriage Problem:

 Theorem 1: Every generalized marriage problem admits a stable outcome.

 Proof: Let \(G = (M,W), (F(a,b))_{(a,b) \in (M \cup W) \times (M \cup W)} > \) be a given generalized marriage problem, and let \(m \in M \) and \(w \in W \). Let \(W'(m) = \bigcup_{w \in W} \{(w') \times F(m,w') \} \)
 \(\cup \{(m, (0,0))\} \) and \(M'(w) = \bigcup_{m \in M} \{(m') \times F(w,m') \} \cup \{(w, (0,0))\} \).
m has preferences defined by a binary relation \(\geq_m \) over \(W^*(m) \) satisfying the following property: for all \((a, (x,y)), (b, (x', y')) \in W'(m)\): \((a, (x,y)) \geq_m (b, (x', y'))\) if and only if \(x \geq x'\). Similarly, w has preferences defined by a binary relation \(\geq_w \) over \(M^*(w) \) satisfying the following property: for all \((a, (x,y)), (b, (x', y')) \in M'(w)\): \((a, (x,y)) \geq_w (b, (x', y'))\) if and only if \(x \geq x'\).

Let \(>_m \) denote the asymmetric part of \(\geq_m \) and \(>_w \) denote the asymmetric part of \(\geq_w \).

Let \(W''^*(m) = \{(w',(x,y)) \in W^*(m)/ (w',(x,y)) >_m (m,(0,0))\} \) and \(M''^*(w) = \{(m',(x,y)) \in M^*(w)/ (m',(x,y)) >_w (w,(0,0))\} \)

Given \(m \in M \) and an element \(A \) of \(W''^*(m) \), let \(A|W = w' \), where \((w',(x,y)) = A\).

Given \(w \in W \) and an element \(A \) of \(M''^*(w) \), let \(A|M = m' \), where \((m',(x,y)) = A\).

Given a subset \(S \) of \(\bigcup_{m \in M} W'(m) \cup \bigcup_{w \in W} M'(w) \), \(m \in M \) and \(w \in W \), let \(U(m, S) = \{(a, (x', y')) \in S \cap W(m) / there \ does \ not \ exist \ (b, (x'', y'')) \in S : (b, (x'', y'')) >_m (a, (x', y'))\} \) and \(U(w, S) = \{(a, (x', y')) \in S \cap M(w) / there \ does \ not \ exist \ (b, (x'', y'')) \in S : (b, (x'', y'')) >_w (a, (x', y'))\} \).

Let \(M^1 = \{m \in M/ W''^*(m) \neq \emptyset\} \). For \(m \in M^1 \), let \(P^1(m) \in U(m, W''^*(m)) \) where \((w,(x,y)) = P^1(m)\) implies \(m \) proposes to \(w \) the division in \(F(m,w) \) where \(m \) gets \('x' \) and \(w \) gets \(y \). Each \(m \in M^1 \) proposes to the woman \(P^1(m)_W \). For \(w \in \{P^1(m)/ m \in M^1\} \), let \(R^1(w) = \{(m, (y, x)) / (w, (x, y)) = P^1(m)\}, R^1_+(w) = R^1(w) \cap M''^*(w) \) and \(E^1_-(w) \) be any element of \(U(w, R^1_+(w)) \). Each \(w \) receiving a proposal, rejects all proposals in \(R^1_-(w) \setminus \{E^1_-(w)\} \). The proposal \(E^1_-(w) \) is kept engaged by \(w \). Only those men who are not kept engaged at this step, are allowed to propose at the subsequent stage.

Suppose that the procedure continues to a stage \('k', k \geq 1, \) with \(M^k, P^k(m) \) for \(m \in M^k, R^k(w), R^k_+(w) \) and \(E^k(w) \) for \(w \in \{P^k(m)/ m \in M^k\} \) having been defined.

The procedure stops if \(M^{k+1} = \{m \in M^1/ all \ the \ proposals \ made \ by \ 'm' \ at \ the \ previous \ step \ were \ rejected \ and W''^*(m) \setminus \bigcup_{j=1}^{k} \{P^j(m)\} \neq \emptyset\} = \emptyset \). If \(M^{k+1} \neq \emptyset \), then for \(m \in M^{k+1}, \) let \(P^{k+1}(m) \in U(m, W^*(m) \setminus \bigcup_{j=1}^{k} P^j(m)) \). Each \(m \in M^{k+1} \) proposes to the woman in \(P^{k+1}(m)_W \). If \((w,(x, y)) = P^{k+1}(m) \), then \(m \) proposes to \(w \) the division where \(m \) gets \('x' \) and \(w \) gets \(y \). For \(w \in \bigcup_{m \in M^{k+1}} \{P^{k+1}(m)_W\} \), let \(R^{k+1}(w) = \{(m, (y, x)) / (w, (x, y)) = P^{k+1}(m)\} \) and \(R^{k+1}_+(w) = R^{k+1}(w) \cap M^{k+1}(w) \). Let \(E^{k+1}_-(w) \) be any element of \(U(w, E^k(w) \cup R^{k+1}_+(w)) \). The proposal \(E^{k+1}_-(w) \) is kept engaged by \(w \) at this step. The remaining proposals in \(\{E^k(w)\} \cup R^{k+1}_+(w) \) are rejected.

Since \(M \cup W \) is finite, there exists a stage \(K \) when \(M^K = \emptyset \). At this stage every \(m \in M^1 \) is either engaged to some woman or has been rejected by every woman in \(W''^*(m) \). Further, every woman \(w \in W \) for whom \(M^{k^*}(w) \neq \emptyset \) has either not received any proposal or is engaged to a man.
Define an outcome \((\mu, v)\) as follows: for all \(a \in \{m \in M/ W^*(m) = \phi\} \cup \{w \in W/ M^*(w) = \phi\}\), let \(\mu(a) = a\) and \(v(a) = 0\). For all \(w \in W\), who never received a proposal or rejected each and every that she received, let \((\mu(w), v(w)) = (w, y)\) and \((\mu(m), v(m)) = (w, x)\).

Suppose there exists a pair \((m, w) \in M \times W\) such that \((m, w)\) blocks \((\mu, v)\). Thus, there exists \((x, y) \in F(m, w)\) such that \(x > v(m)\) and \(y > v(w)\). Thus, \((w, (x, y)) >_m (\mu(m), (v(m), v(\mu(m))))\). Thus, 'm' must have proposed \((w, (x, y))\) to 'w' and was rejected by 'w' in favor of some other proposal before he proposed \((\mu(m), (v(m), v(\mu(m))))\) to \(\mu(m)\). Since \(\geq_w\) is transitive, it must be the case that \((\mu(w), (v(w), v(\mu(w)))) \geq_w (m, (y, x))\). This contradicts \(y > v(w)\) and proves the theorem. Q.E.D.

Let \(O\) be the set of outcomes of the procedure defined in the proof of Theorem 1. Clearly \(O\) though non-empty and finite can admit more than one element.

An immediate consequence of the procedure, used in the proof of Theorem 1, is the following result.

Proposition 1: *Weak Pareto Optimality for Men:* Let \((\mu^*, v^*) \in O*. Then, there does not exist any outcome which every man prefers to \((\mu^*, v^*)\).

Proof: If \=# M > # W, then there is no way in which the proposition can be falsified, since in every matching some man must be without a woman. On the other hand, every woman who is single at \((\mu^*, v^*)\), continues to remain so at any other matching, where all men are better off. This is because, according to the procedure defined in Theorem 1, a woman who is single, either rejected all the proposals she received preferring to remain single, or every man considers his outcome at \((\mu^*, v^*)\) to be at least as good as any allocation that is feasible when he is paired with this woman. Hence, we can assume that \(\mu^*\) maps \(M\) onto \(W\), and in particular \(#M = # W\).

Towards a contradiction suppose there is an outcome \((\mu, v)\) such that \(v(m) > v^*(m)\) for all \(m \in M\). This in particular implies that \(\mu\) maps \(M\) onto \(W\). Let \(m^*\) be the man whose proposal was accepted at the last stage of the procedure defined in Theorem 1. Let \(w^*\) be the woman who accepted his offer. If \((w^*, v(m^*), v(w^*))\) was the only offer that \(w^*\) had received, then \((w^*, v(m), v(w^*))\) could not have been preferred to \((\mu^*(m), v(m), v(\mu^*(m)))\) by any \(m \neq m^*\). Thus, there could be no man to whom \((w^*, v(m), v(w^*))\) could be assigned under \((\mu, v)\) leading to an improvement for him over \((\mu^*, v^*)\). Thus, there must have been some other proposal \((w, x, y)\) made by an \(m \neq m^*\), which was rejected by \(w^*\) in favor of \((m^*, v(w^*), v(m^*))\). Hence, \(m\) is assigned no woman under the \(\mu^*\), contradicting that \(\mu^*\) maps \(M\) onto \(W\). This proves the proposition. Q.E.D.

References:

Our working papers are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://papers.ssrn.com

SUST 1.2002 K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa

ETA 2.2002 Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?

CLIM 4.2002 Andreas LÖSCHEL: Technological Change in Economic Models of Environmental Policy: A Survey

VOL 5.2002 Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions

KNOW 8.2002 Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus

NRM 9.2002 Giuseppe DI VITA: Renewable Resources and Waste Recycling

KNOW 10.2002 Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries

ETA 11.2002 Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE: Endogenous Fluctuations and the Role of Monetary Policy

KNOW 12.2002 Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?

NRM 13.2002 Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model

CLIM 14.2002 Philippe QUIRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector

CLIM 16.2002 Francesco RICCI (liv): Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity

ETA 17.2002 Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

Coalition Theory Network

18.2002 László Á. KÓCZY (liv): The Core in the Presence of Externalities

Coalition Theory Network

Coalition Theory Network

NRM 21.2002 Fausto CAVALLARO and Luigi CIRAOLO: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems

CLIM 22.2002 Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation

CLIM 23.2002 Andreas LÖSCHEL and ZhongXIANG ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech

ETA 24.2002 Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours

ETA 26.2002 Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change

SUST 27.2002 Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans

SUST 28.2002 The ANSEA Network: Towards An Analytical Strategic Environmental Assessment

KNOW 29.2002 Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence

ETA 30.2002 Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies
Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon

Robert N. STAVINS: National Environmental Policy During the Clinton Years

A. SOUBEYRAN and H. STAHP: Do Investments in Specialized Knowledge Lead to Composite Good Industries?

G. BRUNELLO, M.L. PARISSI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect

T. TIETENBERG (iv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

C. FISCHER (iv): Multinational Taxation and International Emissions Trading

S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muddled Price Signals: Household Water Demand under Increasing-Block Prices

A.J. PLANTINGA, R. N. LUBOWSKI and R. N. STAVINS: The Effects of Potential Land Development on Agricultural Land Prices

C. OHL (ivi): Inducing Environmental Co-operation by the Design of Emission Permits

J. EYCKMANS, D. VAN REGEMORTER and V. VAN STEENBERGHE (ivi): Is Kyoto Fatally Flawed? An Analysis with MacGEM

A. ANTOCI and S. BORGHESI (ivi): Working Too Much in a Polluted World: A North-South Evolutionary Model

P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (ivi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

Z. YU (ivi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect

Y. H. FARZIN (illi): Can an Exhaustible Resource Economy Be Sustainable?

Y. H. FARZIN: Sustainability and Hamiltonian Value

C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

M. SERTEL and A. SLINKO (ivi): Ranking Committees, Words or Multisets

Sergio CURRARINI (liv): Stable Organizations with Externalities

Robert N. STAVINS: Experience with Market-Based Policy Instruments

Scott BARRETT (liii): Towards a Better Climate Treaty

Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

Vladimir KOTOV and Edi DEFRAENCESCO: Individual Travel Cost Method and Flow Fixed Costs

Vladimir KOTOV and Elena NIKITINA (livii): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

Vladimir KOTOV (lii): Policy in Transition: New Framework for Russia’s Climate Policy

Fanny MISSFELDT and Arturo VILLAVICENCO (lii): How Can Economies in Transition Pursue Emissions Trading or Joint Implementation?

Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMAN and Vas Van AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability

Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

Paolo SURICO: US Monetary Policy Rules: the Case for Asymmetric Preferences

Rinaldo BRAU and Massimo FLORIO: Privatisations as Price Reforms: Evaluating Consumers’ Welfare Changes in the UK

Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of

Andreas LANGE: Privatization and Labor Force Restructuring Around the

Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Does Ownership Affect Firms’ Efficiency? Panel Data

Banu BAYRAMOGLU LISE and Wietze LISE: The Abnormal Returns of UK Privatisations: From Underpricing

Massimo FLORIO and Katiuscia MANZONI: Evidence from the Fixed-Line Telecommunications Sector in Developing Economies

Mohammed OMRAN: Selling Company Shares to

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Privatization and Investment: Crowding-Out Effect vs Financial

Guillaume GIRMENS and Michel GUILLARD: Partial Privatization and Firm Performance

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Selling Company Shares to Reluctant Employees: France Télécom’s Experience
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries</td>
<td>Isaac OTCHERE</td>
</tr>
<tr>
<td>2002</td>
<td>Fiscal and Other Macroeconomic Effects of Privatization</td>
<td>Yannis KATSOUKAKOS and Elissavet LIKOYANNI</td>
</tr>
<tr>
<td>2002</td>
<td>Privatization, International Asset Trade and Financial Markets</td>
<td>Guillaume GIRMENS</td>
</tr>
<tr>
<td>2002</td>
<td>A Note on Consumption Correlations and European Financial Integration</td>
<td>D. Teja FLOTRO</td>
</tr>
<tr>
<td>2002</td>
<td>Pricing Initial Public Offers in Premature Capital Markets: The Case of Hungary</td>
<td>Ibiola SCHINDELE and Enrico C. PEROTTI</td>
</tr>
<tr>
<td>2003</td>
<td>Theory of Privatization in Eastern Europe: Literature Review</td>
<td>Ibiola SCHINDELE</td>
</tr>
<tr>
<td>2003</td>
<td>Strategic Action in the Liberalised German Electricity Market</td>
<td>Witze LISE, Claudia KEMPFERT and Richard S.J. TOL.</td>
</tr>
<tr>
<td>2003</td>
<td>Environmental Policy and Capital Movements: The Role of Government Commitment</td>
<td>Laura MARSILIANI and Thomas I. RENSTRÖM</td>
</tr>
<tr>
<td>2003</td>
<td>Induced Technological Change under Technological Competition</td>
<td>Reyer GERLAGH</td>
</tr>
<tr>
<td>2003</td>
<td>Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model</td>
<td>Efrem CASTELNUOVO</td>
</tr>
<tr>
<td>2003</td>
<td>Economic Growth, Innovation, Cultural Diversity: What are we all talking about?</td>
<td>Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI</td>
</tr>
<tr>
<td>2003</td>
<td>North-South Climate Change Negotiations: A Sequential Game with Asymmetric Information</td>
<td>A. CAPARROS, J.-C. PEREAU and T. TAZDAÏT</td>
</tr>
<tr>
<td>2003</td>
<td>School Quality and Family Background in Italy</td>
<td>Giorgio BRUNELLO and Daniele CHECCHI</td>
</tr>
<tr>
<td>2003</td>
<td>Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis</td>
<td>Efrem CASTELNUOVO and Marizzo GALEOTTI</td>
</tr>
<tr>
<td>2003</td>
<td>Economic Growth, Innovation, Cultural Diversity vs. Socio-Economic Diversity: A Comparison of Existing Measures</td>
<td>Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI</td>
</tr>
<tr>
<td>2003</td>
<td>Theories of Diversity within Organisation Studies: Debates and Future Trajectories</td>
<td>Maddy JANSEN and Chris STeyaERT</td>
</tr>
<tr>
<td>2003</td>
<td>Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life</td>
<td>Tucin BAYCAN LEVENT, Enno MASUREL and Peter NIHAMP</td>
</tr>
<tr>
<td>2003</td>
<td>Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia</td>
<td>Alexandra BITUSIKOVA</td>
</tr>
<tr>
<td>2003</td>
<td>A Stage Model of Developing an Inclusive Community</td>
<td>Billy E. VAUGHN and Katarina MLEKOV</td>
</tr>
<tr>
<td>2003</td>
<td>Managing Diversity in a Globalizing World</td>
<td>Selma van LONDON and Arie de RUIJTER</td>
</tr>
<tr>
<td>1993</td>
<td>On the Stability of Hierarchies in Games with Externalities</td>
<td>Sergio CURRARINI</td>
</tr>
<tr>
<td>1993</td>
<td>Monopoly with Resale</td>
<td>Giacomo CALZOLARI and Alessandro PAVAN</td>
</tr>
<tr>
<td>1993</td>
<td>The Generalized Revelation Principle, Efficiency, Full Surplus Extraction and Information Acquisition</td>
<td>Claudio MEZZETTI</td>
</tr>
<tr>
<td>1993</td>
<td>Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions</td>
<td>Marco LiCalzi and Alessandro PAVAN</td>
</tr>
<tr>
<td>1993</td>
<td>Bidding among Friends and Enemies</td>
<td>David ETTINGER</td>
</tr>
<tr>
<td>1993</td>
<td>Auction Design without Commitment</td>
<td>Hannu VARTIAIN</td>
</tr>
<tr>
<td>1993</td>
<td>Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts</td>
<td>Anders LUNANDER and Jan-Eric NILSSON</td>
</tr>
<tr>
<td>1993</td>
<td>Use of Long-term Auctions for Network Investment</td>
<td>TangaMcDANIEL and Karsten NEUBOFF</td>
</tr>
<tr>
<td>1993</td>
<td>Auctions with Financial Externalities</td>
<td>Enmiel MAASLAND and Sander OUNDERSTAL</td>
</tr>
<tr>
<td>1993</td>
<td>A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games</td>
<td>Michael FINUS and Bianca RUNDHAGEN</td>
</tr>
<tr>
<td>2003</td>
<td>Competition and Irreversible Investments under Uncertainty</td>
<td>Michele MORETTO</td>
</tr>
<tr>
<td>2003</td>
<td>Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?</td>
<td>Philippe QUIRION</td>
</tr>
<tr>
<td>2003</td>
<td>The Relationship between R&D and Productivity: A Treatment Effect Analysis</td>
<td>Giuseppe MEDA, Claudio PIGA and Donald SIEGEL</td>
</tr>
<tr>
<td>1993</td>
<td>Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation</td>
<td>Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA</td>
</tr>
<tr>
<td>2003</td>
<td>Voluntary Agreements under Endogenous Legislative Threats</td>
<td>Matthieu GLACHANT</td>
</tr>
<tr>
<td>2003</td>
<td>Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection</td>
<td>Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI</td>
</tr>
<tr>
<td>2003</td>
<td>Climate Policy under Technology Spillovers</td>
<td>Rolf GOLOMBEK and Michael HOEL</td>
</tr>
</tbody>
</table>
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSR</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>