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Management Challenges for Multiple-Species Boreal Forests 
 
Summary 
 
Recent research in natural sciences shows that boreal forests' dynamics are much more 
complex than what many models traditionally used in forestry economics reflect. This 
essay analyses some challenges of accounting for such complexity. When forest owners 
continuously harvest several species, more than one harvesting strategy can be optimal. 
Which one it is depends on the forest's initial state. For some initial states, two different 
strategies may yield the same welfare. If whole stand harvesting of one tree species is 
preferred, the optimal period between each harvesting occasions depends on other 
species' dynamics. 
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Management challenges for
multiple-species boreal forests

1 Introduction

Forestry economics have traditionally represented forest dynamics by using simple

growth functions for one species only. The results were usually derived frommethods

for calculating the optimal rotation period for even-aged forests. These methods

were initiated by Faustmann [12], Pressler [36], and Ohlin [30], hereafter called FPO.

These models were relevant because during the 20th century, forestry companies in

Sweden for example, transformed many forests into highly productive monocultures.

More recently, forests’ recreational values have come into focus. Samuelson [38]

considered the potential externalities and public services that forests may provide.

This implied that the FPO results needed to be altered to account for public in-

terests. Hartman [15] derived a condition to calculate optimal rotation that would

include such amenities. Bowes and Krutilla [5] used the optimal control theory to

model the choice between timber production and recreation.

Natural scientists have highlighted forests’ environmental qualities and warned

against biodiversity loss due to clear-cutting and monoculture. Research inspired

by Holling [17] and May [26] showed that ecosystem dynamics were complex: not

accounting for them would lead to serious surprises. Nonlinearity, interactions be-

tween species, disturbances, and threshold effects were some examples of patterns

that play a crucial role in ecosystems’ dynamics.

For these reasons, economic models of forestry need to account for forests’ com-

plex dynamics and multiple uses. A step in that direction is to model forests as

sets of several interacting species. Ready et al. [37] studied optimal management

of moose and pine in Norway and calculated an optimal rotation period and opti-

mal moose harvest in a model in which there is was feedback between moose and
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70 Essay II: Management challenges for multiple-species boreal forests

pine. Modeling recreational and environmental values also requires that species are

entered as state variables directly into the objective function to be maximized.

Theories for economic management of resources produced within ecosystems have

recently experienced drastic changes due to the model for shallow lakes that Scheffer

[39] and Carpenter and Cottingham [8] produced independently of one other. This

model accounts for the possibility that such lakes may flip between a clear and

a turbid state. Brock and Starrett [7] gave a complete treatment of the problem

of optimal management of shallow lakes. They showed that the optimal types of

behavior change as functions of key parameters. In the instances when there were

multiple-candidate steady states, the existence and location of Skiba points and the

resulting sizes of basins of attraction were not obvious. Wagener [46] investigated

the presence of Skiba points in one state systems with one co-state control variable

and gave a local criterion that ensured the existence of such points in systems with

small discount rates. Mäler et al. [25] provided a dynamic economic analysis of

shallow lakes managed under common property. Xepapadeas et al. [47] developed an

algorithm to solve such a differential game and to explicitly determine the feedback-

equilibrium strategies. Perrings and Walker [34] extended this method of modeling

to rangelands. In contrast to the previous papers, their models contain several

resources that interact with each other.

Extensive literature exists on ecosystemmodeling andmanagement where several

species interact. In particular, Pastor and others described the complexity of boreal

forest ecosystems1. They pointed out the importance of the interaction of species

and non-linearities. Pastor et al. [31] grasped the most important dynamics in

boreal forests by using a system of three differential equations that represent the

three-species’ dynamics.

This paper uses a slightly modified version of that model to analyze the chal-

lenges that ecosystem complexity implies when calculating management rules for

forestry. In Sweden, there are many small operators, who extensively exploit their

forests and continuously harvest small amounts of several species. This paper derives

some optimal management rules to guide them. Large companies that exploit their

forests more intensively concentrate on large-scale harvesting of coniferous trees.

They usually also harvest entire stands at more or less regular time intervals. I

1See Pastor et al. [32] [33] and Danell et al. [10].
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developed rules to calculate the optimal rotation period and conditions under which

each harvesting regime is to be preferred. Recent changes in forestry law [43] in

Sweden imply that the forest owners must keep some elements of other tree species.

As Ready et al. [37] pointed out, moose migrate and are located in different areas

during the hunting season than during the winter foraging season, which is the time

in which they eat the most pine. This implies that forest owners suffer damage from

browsing moose, but they cannot regulate the moose population through hunting

because moose are not on their land during the hunting season. So forestry compa-

nies seem to have little power to control species other than the ones they harvest.

For that reason, the harvesting rules for entire stands of pine derived in this paper

account for the presence of other species in the forest.

Optimal management rules for continuous forest harvesting are not very common;

this paper makes that contribution to the subject’s literature. These rules imply

that several equilibria may be optimal. The paper also looks into some consequences

of introducing state variables into the objective function to account for recreational

values. For entire-stand harvesting, the main contribution is the revision of FPO’s

results on optimal rotation periods.

Section 2 presents the biological model of a boreal forest and analyzes its dynamic

properties. Section 3 models different harvesting regimes. Section 4 presents the

computer simulations. Section 5 presents the conclusion.

2 A three-species boreal-forest model

Boreal forests or taiga occupy a wide belt around the artic circle in the northern

hemisphere. Boreal tree species are coniferous trees that include spruce and pine

and some hardwood species such as aspen and birch. In some countries like Sweden,

this type of forest has been largely exploited for cultivation, pasturage, and forestry

(Bernes [2]). This paper uses two models for a boreal forest: a very general model

and a specific model, which is useful for computer simulations.

2.1 General model

Murray [27] and Gurney and Nisbet [14] presented methods to build and analyze

ecosystem models. The very general three-species model (SYS) could represent the
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dynamics of boreal forests:

·

x = Gx (x, y, z)
·

y = Gy (x, y, z) (SYS)
·

z = Gz (x, y, z)

where x, y, and z represent browsers (moose), caduceus trees (birch), and conifers’

(pine) biomasses, respectively. Gi (x, y, z) is the natural growth of species i ∈

{x, y, z} in the absence of harvesting. Such a general model can embed almost

any kind of specific dynamics among three species. The variables x, y and z can also

be vectors that represent categories within a species or species group. This is useful

to model age or space, for example.

Negative biomass values are impossible and impose the restrictions:

x ≥ 0, y ≥ 0 and z ≥ 0 (1)

This is equivalent to imposing that Gi (x, y, z) must be non-negative when species i

is extinct (i = 0). Assume x0, y0, and z0 are the initial stock of species at time t = 0.

If none of the restrictions (1) are binding, and for every i ∈ {x, y, z} , Gi (x, y, z)

and its derivatives regarding x, y, and z are continuous, then SYS has a unique

solution2:

x (t) = ϕ
x
(x0, y0, z0, t)

y (t) = ϕ
y
(x0, y0, z0, t) (2)

z (t) = ϕ
z
(x0, y0, z0, t)

In section 3, the SYS model is used to calculate general forestry management

rules. Computer simulations require a more precise specification of forests’ dynam-

ics. Ideally, one would like to represent forest ecosystems as accurately as possible,

including all relevant species, their ages, and spatial distribution. Some simplifica-

tions are necessary because such a representation would be rather difficult to work

with. This paper focuses on the effects of species’ interactions so the model used

does not account for age and space.

2See Kuznetsov [22] for more detailed proof.
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2.2 Specific model

John Pastor et al. [31] presented a simplified boreal-forest model in which conifers,

caduceus trees, and herbivores interacted. A slightly modified version is used here,

where pine, birch, and moose are the three interacting species. In Pastor’s model,

species can move in space. This is not assumed here, and the model represents one

homogenous piece of land. Removing the spatial dimension from Pastor’s model

implies that conifers grow in an uncontrolled way, which is not very realistic. Still,

conifers tend to come rather late in the succession of species and are invasive. (Bernes

[2]). A convex-concave growth function for conifers is one way to represent such a

feature.

Appendix A describes the model and derives a simplified version with calibrated

parameters and variables. For i, j ∈ {x, y, z} , let ri be species i’s growth rates with

rx normalized to one and aij be interaction coefficients of species j on i. Then SYS

can be rewritten with growth functions defined by (3). This specific model is called

SYS1.

Gx (x, y, z) = x− x2 + axyxy + axzxz

Gy (x, y, z) = ryy − y2 − ayxxy − ayzz (3)

Gz (x, y, z) = rzz
2 − z3 − azxxz − azyy

Moose feed on birch and pine, so both tree species have a positive effect on moose

biomass, which is proportional to tree stocks (axyxy and axzxz). The corresponding

effect of moose on tree biomass is negative (−ayxxy and−azxxz). The negative term

−x
2 describes the crowding effect that occurs when the moose population becomes

too large. The negative term −y2 describes that birch is shade intolerant. When the

density is too high, birch stop multiplying because new plants cannot get enough

light. In contrast, pine exhibits a convex-concave growth. When pine biomass is

small, young pines establish better with increasing biomass, so growth is convex.

When the population becomes larger, competition arises and growth becomes con-

cave. When carrying capacity3 is reached, more pine leads to negative growth. The

terms ayzz and azyy represent the effects of competition between species of trees.

3The carrying capacity for a species is defined here as the population size for which natural

growth is equal to zero; when there are no interactions from other species.
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Figure 1 shows what a species’ growth looks like when species interaction is not

growth

biomass

Figure 1: Growth patterns for moose (bold line), birch (dashed line), and pine (thin
line)

accounted for. Note that Gy (x, 0, z) and Gz (x, y, 0) are negative so the constraints

(1) may be binding for some initial points. Appendix B describes what happens

when constraints are binding.

Ecosystem Steady state Dynamic properties

extinction S0 = (0, 0, 0) one unstable or saddle

one species S1x = (1, 0, 0) one stable or saddle

S1y = (0, ry, 0) one stable or saddle

S1z = (0, 0, rz) one stable

two species S2κ =
(
0, κ2 rz−κ

azy

, κ
)

one stable, two saddle, one unstable

S2φ = (1 + axzφ, 0, φ) one stable, one saddle

S2g =
(
1+axyry

axyayx+1
,

ry−ayx

axyayx+1
, 0

)
one stable

three species S3κ = (X (κ) , Y (κ) , κ) one stable, three saddle

Table 1: Steady states properties4

4
κ solves ayza

2

zy
− ryrzazyZ + ryazyZ

2 + Z3r2
z
− 2rzZ

4 + Z5, which has at most four real

roots. φ =
1

2

(
rz − azxaxz ±

√(
(rz − azxaxz)

2
− 4azx

))
. X (κ) = azy+axzazyκ+axyrzκ

2
−axyκ

3

azxaxyκ+azy
,

Y (κ) = κ
−a

zx
+(r

z
−a

zx
a
xz

)κ−κ2

azy+axzazxκ
.
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While a detailed analysis of SYS1’s dynamics can also be found in appendix D,

the important features are summarized here. Depending on parameter values, SYS1

has up to 15 feasible steady states. Their characteristics are in table 1. Figures 2 and
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moose
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Figure 2: Phase diagram 1

3 show a three-dimensional phase diagram of SYS1, viewed from different angles.

Table 2 summarizes the directions of motions in the different regions separated by

the manifolds P
x1

(
·

x = 0, x �= 0

)
, Py

(
·

y = 0

)
, and P

z

(
·

z = 0

)
:

Region
·

x
·

y
·

z

I: below Px1,Py and Pz > 0 > 0 > 0

II: below Px1, Py above Pz > 0 > 0 < 0

III: below Px1, Pz1 above Py > 0 < 0 > 0

IV: below Pz, Py above Px1 < 0 > 0 > 0

V: below Pz above Px1 and Py < 0 < 0 > 0

VI: below Px1 above Pz and Py > 0 < 0 < 0

VII: below Py above Pz and Py < 0 > 0 < 0

VIII: above Px1, Py and Pz < 0 < 0 < 0

Table 2: Directions of motion in different regions
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Figure 3: Phase diagram 2

The phase space is also divided into regions so that trajectories that start any-

where in one region will end up in the same stable equilibrium. The manifolds called

separatrices (Kuznetsov [22]) separate these different regions. The separatrices are

difficult to locate in the three-dimensional phase space, but figures 6 and 7 in appen-

dix B show the phase diagram when moose and birch have disappeared, respectively.

The dotted curved line shows the separatrices’ approximate location in these special

cases.

Steady states’ simulations with sets of arbitrarily chosen parameters show the

fold bifurcations5 that might occur. See appendix F. For example, when the birch

growth rate varies, six fold bifurcations can be distinguished for values of ry around

0.5, 0.65, 1.2, 1.45, 1.84, and 1.86. Figures 9-11 in appendix F represent species

biomass in a steady state for different birch growth-rate values. They show clearly

the fold bifurcations that occur. For low growth rates, no feasible interior steady

is stable. Birch cannot maintain itself and becomes extinct. Similar results are

5A fold bifurcation is a bifurcation that corresponds to the presence of an eigenvalue equal to
zero. When this happens, two equilibria collide and disappear. (Kuznetsov [22])
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obtained when the other parameters vary.

Computation of the Lyapunov exponents (Lyapunov [24]) for the parameter val-

ues tested showed no occurrence of limit cycles or chaos. Nevertheless, Takeuchi

[44] studied a slightly different model with two competing preys and one predator

and found the existence of a Hopf bifurcation6 that lead to periodic orbits. He also

found that the three species could coexist in chaotic motion for some parameter

values that correspond to a large effect of predation. Takeuchi’s results prove that

cautiousness is required here. We can only rule out the existence of limit cycles and

chaos for the parameter values tested.

These results show that the ecosystem is history dependent: its long-term state

depends on the initial state. Furthermore, external shocks that affect the variable

stocks or the parameter values may influence the ecosystem’s dynamic properties.

This may lead to crossing a separatrix so that an external shock can drastically

change the ecosystem’s long-run equilibrium. Harvesting and hunting are examples

of such external shocks. The rest of the paper examines the effects of different

exploitation regimes.

3 General management rules for forestry

What happens when harvesting is introduced in ecosystem SYS? Let h = (hi)i∈{x,y,z}
be a vector of harvests at time t. To begin with, assume that this vector is arbitrary.

The SYS system is transformed into:

·
x = Gx (x, y, z) − hx

·
y = Gy (x, y, z)− hy (4)
·
z = Gz (x, y, z)− hz

x ≥ 0, y ≥ 0, z ≥ 0

It is easy to verify that harvesting affects the separatrices’ location and thereby the

stable states’ basins of attraction. Harvesting may also cause bifurcations; the num-

ber of equilibria and their dynamic properties can then differ from the unexploited

ecosystem case.

6A Hopf bifurcation corresponds to the presence of complex conjugate eigenvalues with zero

real parts.
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Assume the initial stock of species at time t = 0 is x0, y0, and z0. If none of the

species becomes extinct, then (4) has a unique solution:

x (t) = Φ
x
(x0, y0, z0, t)

y (t) = Φy (x0, y0, z0, t) (5)

z (t) = Φz (x0, y0, z0, t)

Given that owners harvest forest species to increase their welfare, the next step is to

decide what harvesting rules maximize welfare in each period. Section 3.1 derives

optimal management rules for owners that continuously harvest several species in

the forest. Section 3.2 examines the conditions under which entire-stand harvesting

is optimal. The classic FPO result of determining the optimal rotation period is

revisited in the case when forestry companies must keep other species (moose and

birch) living in the forest for some reasons such as environmental concern.

3.1 Management rules for multiple use

Assume forest owners accounted for the benefits that they can continuously extract

from all of the forest’s species. To maximize the forest’s net benefits, they wanted

to find out how much of each species to harvest every time. These benefits were

harvesting profits and the forest’s net environmental and recreational values.

Let Ωi (hi) represent profits from harvesting species i and Ωe (x, y, z) represent

net benefits from environmental and recreational services. Functions Ωi and Ωe

were assumed to be concave. Assume further that the owners gave different positive

weights Kx, Ky, Kz andKe to respective net forest benefits. At time t, the total net

benefits were B (h, x, y, z) = KxΩx (hx) + KyΩy (hy) + KzΩz (hz) + KeΩe (x, y, z) .

Owners faced the problem:

max
h

∫
+∞

0

B (h, x, y, z) e−ρtdt

s.t.
·

x = G
x
(x, y, z)− h

x
(6)

·

y = Gy (x, y, z)− hy

·

z = Gz (x, y, z)− hz

x ≥ 0, y ≥ 0 and z ≥ 0



Essay II: Management challenges for multiple-species boreal forests 79

Pontryagin et al. [35] developed methods to solve such optimal control problems.

This paper uses the method found in Arrow and Kurz [1, Chapter 2] to solve such

problems when there are non-negativity constraints on state variables.7

Let h∗ (t) = (h∗
i
(t))

i∈{x,y,z} represent harvest choices, which are admissible solu-

tions for problem (6). If the constraint qualification (Kuhn and Tucker [20]) was true

then there existed functions of time, λi (t) so that for each t, H is the current-value

Hamiltonian and L is the Lagrange function:

H (x, y, z, h, λ, t) =
∑

i

(KiΩi (hi) + λi (Gi (x, y, z)− hi)) +KeΩe (x, y, z) (7)

L (x, y, z, h, λ, µ, t) = H (x, y, z, h, λ, t) +
∑

i

µi (Gi (x, y, z)− hi) (8)

Then h∗ (t)maximizesH (x, y, z, h, λ, t) subject to the constraintsGi (x, y, z)−hi ≥ 0

for all i ∈ {x, y, z} , for which i (t) = 0. Further
·

λi = ρλi −
∂L

∂i
, evaluated at

i = i (t) , h = h∗ (t) , λ = λ (t) . The Lagrange multipliers µ
i
must be such that

for all i, ∂L

∂hi

= 0 for (x, y, z) = (x (t) , y (t) , z (t)) , h = h∗ (t) , λ = λ (t), and

µ
i
(t) i (t) = 0, µ

i
(t) (Gi (x, y, z)− hi) = 0. The necessary conditions for h∗ (t) to be

optimal amount to:

1) the equations of motion for the exploited ecosystem,

·

x = Gx (x, y, z)− hx

·

y = Gy (x, y, z)− hy (9)
·

z = Gz (x, y, z)− hz

2) the necessary conditions for optimal harvest, ∀i ∈ {x, y, z},

Ki

∂Ωi (h
∗

i )

∂hi

− λi − µi = 0 or h∗

i = 0 (10)

3) the shadow price equations for each species, ∀i, j ∈ {x, y, z},

·

λj = ρλj −Ke

∂Ωe (x, y, z)

∂j
−
∑

i∈{x,y,z}

(λi + µi)
∂Gi (x, y, z)

∂j
(11)

7Hestenes [16] and Seierstad and Sydsæter [41] have developed similar methods.
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4) the conditions for the multipliers’ non-negativity,

∀i ∈ {x, y, z} , µ
i
(t) i (t) ≥ 0, µ

i
(t) (Gi (x, y, z)− hi) = 0 (12)

Conditions (10) are sufficient for optimal harvests because the profits from har-

vests are additively separable and concave in each harvests, which implies that H is

concave in harvests. Proposition 1 follows directly from equation (10):

Proposition 1 The optimal size for each species’ harvest is such that the marginal

value from harvesting more of the species equals the marginal value of retaining more

of it in the ecosystem.

Assume that the equation system (10) has a solution: for i ∈ {x, y, z}, the

solution is unique because the profit functions are concave and it has the form

h∗ = ψ (λ). So the optimal harvests h∗
i
are:

h∗
i
= ψ

i
(λ) or h∗

i
= 0 (13)

Conditions (11) imply that in a steady state, for all j ∈ {x, y, z},

ρλj = Ke

∂Ωe (x, y, z)

∂j
+
∑

i∈{x,y,z}

(λi + µi)
∂Gi (x, y, z)

∂j

Proposition 2 In a steady state, the interest on a species’ marginal value in the

ecosystem equals the species’ marginal environmental benefit plus the species’ mar-

ginal benefit in maintaining its own and other species’ stock.

Together, proposition 1 and 2 imply that environmental benefits and other

species’ stocks must affect harvest size. Whether or not the harvest is higher or

lower depends on the species’ effects on its own and other species’ growth rate, and

on the environmental benefits.

If ̂H (x, y, z, λ, t) ≡ max
h

H (x, y, z, h,λ, t), is a concave function of (x, y, z) for

given λ and t, then any policy is optimal that satisfies the conditions (9)-(12) and

the transversality conditions (14):8

lim
t→+∞

e−ρtλi (t) ≥ 0, lim
t→+∞

e−ρtλi (t) i (t) = 0 (14)

8Arrow and Kurz [1] provide these sufficiency conditions for infinite horizon problems.
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Let ∆r (x, y, z) be the principal minor of order r in the Hessian for ̂H (x, y, z, λ, t).

The maximized Hamiltonian ̂H is concave on R3
+ if and only if for all points (x, y, z)

and for all∆
r
, (−1)r ∆

r
(x, y, z) ≥ 0 for r = {1, 2, 3}. In case this condition does not

hold, the sufficiency conditions for optimum are not satisfied, and there may be either

several, one or no optimal solutions. If there is more than one solution candidate,

the comparison of benefits between different solution paths may be necessary to

determine, which one is optimal.

When the forest is optimally exploited, two cases can be distinguished and must

be analyzed separately.

• Case 1: no species ever becomes extinct.

• Case 2: at least one of the species becomes extinct at some point t1 in time.

This case is a bit complicated because the analysis differs depending on which

species disappears first. Appendix I analyzed this case when SYS1 was opti-

mized.

If no species became extinct, the exploited system would follow the equations of

motion given by (15):

·

x = Gx (x, y, z)− ψ
x
(λx)

·

y = Gy (x, y, z)− ψ
y
(λy)

·

z = Gz (x, y, z)− ψ
z
(λz) (15)

·

λx = ρλx −Ke

∂Ωe (x, y, z)

∂x
−

∑

i∈{x,y,z}

λi

∂Gi (x, y, z)

∂x

·

λy = ρλy −Ke

∂Ωe (x, y, z)

∂y
−

∑

i∈{x,y,z}

λi

∂Gi (x, y, z)

∂y

·

λz = ρλz −Ke

∂Ωe (x, y, z)

∂z
−

∑

i∈{x,y,z}

λi

∂Gi (x, y, z)

∂z

Brock and Malliaris [6] showed methods to study such dynamic systems. Assume

the initial species stocks were x0, y0, and z0 at t = 0 and the initial shadow prices

λx0 , λy0
, and λz0

. Then if the system (15)’s right hand side satisfied the Lipschitz

condition9, it had a unique solution defined by:10

9See Brock and Malliaris [6] for more details.
10This is the case when ∀i ∈ {x, y, z} , ψ

i
(λi) and its derivatives with regard to λi are continuous.
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x∗ (t) = Φx (x0, y0, z0, λx0, λy0, λz0, t)

y∗ (t) = Φy (x0, y0, z0, λx0 , λy0 , λz0, t)

z∗ (t) = Φz (x0, y0, z0, λx0 , λy0, λz0, t)

λ∗x (t) = Φλx (x0, y0, z0, λx0, λy0
, λz0

, t)

λ∗
y
(t) = Φλy (x0, y0, z0, λx0,λy0

, λz0 , t)

λ∗z (t) = Φλz (x0, y0, z0, λx0 , λy0
, λz0

, t)

Assume there is an optimal solution and that the system (15) had at least one

steady state.11 Crépin [9] then showed that the eigenvalues of such steady state came

in pairs α, ρ − α. So the saddle-point properties proven in Kurz [21] remain, even

when several steady states existed and the Hamiltonian was not concave. Proposi-

tion 3 follows directly:

Proposition 3 Suppose ρ > 0 then, in the neighborhood of a steady state; the sys-

tem (15) is either totally unstable or has the instability characterized by the saddle-

point property.

If the system has several steady states, then for each of them, there is a limit

value for ρ, say ρ̃, under which the steady state exhibits a local saddle-path property

or has eigenvalues equal to zero and above which the steady state is locally unstable.

This produces a series (ρ̃) of threshold values for ρ. Corollary 4 follows directly.

Corollary 4 Suppose the system (15) has several steady states. Let ρ = min (ρ̃)

and ρ = max (ρ̃) . If ρ < ρ , there is a local saddle path that lead toward each steady

state. If ρ > ρ, all of the steady states are locally unstable. If ρ > ρ > ρ, some

steady states are locally unstable while others have a local saddle path.

Note that often in such problems ρ = 0 and for 0 < ρ < ρ, there is an odd number

of steady states, which come in consecutive pairs of saddle points and unstable states

(Birkhoff [4]).

11Unfortunately, the usual existence theorems cannot be applied to guarantee the existence of
an optimal solution because the concavity conditions have not necessarily been met. The existence
of a steady state of the system (15) is also not guaranteed.
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The occurrence of several steady states implies that there is no obvious opti-

mal trajectory from a given starting point. Candidate trajectories toward different

equilibria must be compared to determine, which one is optimal. Relation (16) fol-

lows from the classic Hamilton-Jacobi result and makes welfare comparisons possible

when there is more than one candidate-optimal steady state.

∫
+∞

0

B (h∗, x, y, z) e−ρtdt =
1

ρ
H (x0, y0, z0, h

∗

0
, λ0) (16)

This relation can also be used to localize Skiba points, which are initial states with

more than one optimal path (Beyn et al. [3]). Note that as Deissenberg et al.

[11] reminded us, if strict concavity is not given, Skiba points generically do not

coincide with the unstable steady states and the latter are not necessarily optimal.

Wagener [46] showed that for systems with one state and one control, if there was a

cusp bifurcation12 when the discount rate was zero, then for small positive discount

rates, the system had a Skiba point. This result has not yet been generalized to

higher dimensions.

All of these results rely on the assumption that it is optimal to continuously

harvest all species in the ecosystem. The next section explores conditions when

entire-stand harvesting of pine is optimal instead.

3.2 When is entire-stand harvesting optimal?

Assume that forestry companies cannot harvest birch and moose and are not con-

cerned about the forests’ environmental and recreational values (Ke = 0). When is

it an optimal solution to problem (6) to harvest the entire pine stand at given time

intervals, assuming h
x
= hy = 0 at all points in time? An answer to this question

requires that jumps in pine biomass must be allowed. Vind [45] discussed the so-

lution of optimal control problems with jumps in the state variables. This section

uses the results given in Seierstad and Sydsæter [41].

Assume interior solutions so µ = 0. Let τk be the time when the harvest occurs,

where k ∈ N is the number of the harvest cycle. Let z

(
τ
+

k

)
and z

(
τ
−

k

)
be the

right hand limit and the left hand limit, respectively, of z (t) at τ k. Forest managers

control the harvest’s size by choosing a control parameter h
k

z
, which represents the

12See Kuznetsov [22] for a cusp bifurcation definition.
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jump’s size. If it is optimal to harvest entire stands of pine at some time τ k, the

magnitude of the jump in pine stock must equal the entire stock before the jump,

which is also the harvest size at that time:

z

(
τ
+

k

)
− z

(
τ
−

k

)
= −z

(
τ
−

k

)
= −hz (τ k) ≡ −h

k

z

The jumps in other species’ stocks must equal zero. Between jumps, the forest

evolves according to SYS. The reward associated with each jump is the value of

the profit from the pine harvest: KzΩz

(
h
k

z

)
. Then for k ∈ N, the necessary condi-

tions for the collection
(
x∗, y∗, z∗, h∗, τ ∗

k
, h

k

z

)
, with h∗ (t) = (0, 0, 0) for t �= τ ∗

k
and

h∗ (τ ∗
k
) =

(
0, 0,h

k

z

)
to solve problem (6) are such that:

1. For all non-jump points of the state variables, the necessary conditions derived

in section 3.1 (conditions (10) and (11)) must hold with h∗ = (0, 0, 0) and

µ = 0.

2. At jump points τ ∗
k
,

λx
(
τ+∗
k

)
− λx

(
τ
−∗

k

)
= λy

(
τ
+∗

k

)
− λy

(
τ
−∗

k

)
= 0

λz

(
τ
+∗

k

)
− λz

(
τ
−∗

k

)
= −

Kz∂Ωz

(
h
k

z

)

∂z
+ λz

(
τ
+∗

k

) ∂z
∗

(
τ
−∗

k

)

∂z

3. and for all possible hk

z
and all k ∈ N:


Kz∂Ωz

(
h
k

z

)

∂hk
z

− λz

(
τ
+∗

k

) ∂z∗ (τ−∗
k

)
∂hk

z




︸ ︷︷ ︸
MV

×

(
h
k

z
− h

k

z

)
≥ 0

4. Moreover, for all hk
z
and for all t at which there is no jump:

[
Kz∂Ωz (0)

∂hk
z

− λz (t)
∂z∗ (t)

∂hk
z

]
× h

k

z
≤ 0

Condition 1 may occur when the age of the species to be harvested matters for

the value of harvest. If the harvest quality increases with age, it becomes valuable to

maintain the species in the ecosystem until the stand is old enough to yield higher
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quality. If pine is used as timber, then age greatly matters because young pines

produce lower quality timber. If pine is used as fuel, then age may not matter as

much. Condition 2 says that the jump in pine shadow price must equal the profit’s

marginal value when pine biomass changes, plus the value after the jump, of a change

in the size of pine stock before harvest due to a change in pine biomass. The jump in

other species shadow prices must equal zero. In condition 3, the termMV consists

of the marginal change in profits because of a change in harvest’s size and of the

value of a change in pine stock before harvest because of a change in harvest size.

This relation implies that the total value of choosing the optimal size of harvest,

must be larger than the total value of choosing any other harvest sizes. Condition

4 says that the total value of any harvest at harvest time that is not optimal must

be negative.

3.3 Management rules for entire-stand harvesting

This section presents a problem similar to the FPO optimal rotation problem. The

FPO theorem states:

“A forest stand shall be harvested when the rate of change of its value

with respect to time is equal to the interest on the value of the stand

plus the interest on the value of the forest land.”(Johansson and Löfgren

[18, p. 80]).

To simplify the comparison of results, the paper uses a setting similar to Johans-

son and Löfgren’s [18, Chapter 4]. Assume a forestry company exploited pine and

that it was optimal to harvest the entire forest at discrete time intervals. Between

those harvesting opportunities, nothing is harvested. The FPO result relies on fol-

lowing strong assumptions made here: 1) the capital market is perfect and there is

a known interest rate for all future periods; 2) all future timber and input prices

are constant and known; 3) the market for forest land is perfect; and 4) the yield of

future timber are known. Between harvesting opportunities, the ecosystems follow

the motion described by SYS1.

Assume that the forest had been newly harvested and planted at time T0 = 0; at

that time, the species’ stocks were x0, y0, and z0. Let pz represent the constant and

exogenous net unit price of pine and hz (Tk) represent pine harvest at time Tk. Let
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ρ be the discount rate and C the cost of forestry (planting and harvesting), which is

assumed to be independent of harvest timing and size. This rather unrealistic, last

assumption was made to simplify comparisons with Johansson and Löfgren. The

present profit value from harvesting pine for the first time at time T1 can be written:

Πz (hz (T1)) = hz (T1) pze
−ρT1

− C

Between harvests, the forest behaves according to SYS: there is neither thinning

nor clearing by assumption. At harvest time, the entire pine stand is harvested

and replanted. Let xTk, yTk, and zTk be moose and trees’ stocks respectively at

harvesting time Tk. These depend on the stocks of species after a previous harvest

in the following way:

xTk = ϕx

(
xTk−1 , yTk−1, zTk−1 , Tk

)

yTk = ϕ
y

(
xTk−1 ,yTk−1, zTk−1 , Tk

)

zTk = ϕ
z

(
xTk−1 , yTk−1, zT

k−1

, Tk

)

By assumption, it is optimal to harvest entire stands so h
z
(T1) = zT1 . The present

value of harvesting for the first time at time T1 is given by:

Πz (T1) = zT1pze
−ρT1

− C

The company can decide that zT1 = z0; but unless equation system SYS is periodic of

period T1, we will typically have xT1 �= x0 and yT1 �= y0. This is because the forestry

company does not control moose and birch. This implies that the optimization

problem at time zero differs from the optimization problem after the completion

of the first rotation. After each new rotation period, the forestry company faces a

different problem. Proposition 5 follows directly from this observation:

Proposition 5 If other species affect the harvested tree species’ natural growth, the

optimal rotation should not usually have the same length in each period.

Löfgren [23] found a similar result, which showed that genetic or biotechnological

progress affected the socially optimal rotation period. The results from Löfgren and

this paper indicate that it is restrictive to assume identical rotations, unless the
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biomasses of other species are controlled so that they are the same at the start of

each period.

The forest land’s present value for the forestry company is the sum of the infinite

series of all future revenues:

V
z
=

+∞∑

k=1

(
ϕ
z

(
xTk−1, yTk−1 , zTk−1, Tk

)
pze

−ρ(Tk−Tk−1)
− C

)
e
−ρTk−1

Replacing for ϕ
z
, the first order condition for a maximum forest present value is:

∂V
z

∂Tk
=

∂zTk
∂Tk

pze
−ρTk

− ρ (zTkpz − C) e−ρTk

+

(
∂zTk+1

∂xTk

∂xTk
∂Tk

+
∂zTk+1

∂yTk

∂yTk
∂Tk

+
∂zTk+1

∂zTk

∂zTk
∂Tk

)
pze

−ρTk+1
= 0

This relation transforms into:

∂zTk
∂Tk

pz︸ ︷︷ ︸
A

+

(
∂zTk+1

∂xTk

∂xTk
∂Tk

+
∂zTk+1

∂yTk

∂yTk
∂Tk

+
∂zTk+1

∂zTk

∂zTk
∂Tk

)
pze

−ρ(Tk+1−Tk)

︸ ︷︷ ︸

B

(17)

= ρ (zTkpz − C)

The left-hand side is the marginal net benefit from delaying the harvest at time Tk.

The term A represents the value of a marginal change in harvest timing on harvest

size at time Tk. B represents the discounted value of the effect of a change in harvest

timing on the size of the next harvest, due to changes in each species’ stock at the

beginning of the new rotation period. The right-hand side is the marginal net cost

from not harvesting at time Tk, which consists of the foregone interest on the net

benefit from harvesting at time Tk. Hence, proposition 6:

Proposition 6 (Modified FPO) A forest stand shall be harvested each time the

marginal net benefit from delaying the harvest equals the interest on net harvesting

benefits at that time.

One can verify from relation (17) that either a higher timber price or a higher

discount rate can lead to earlier harvesting. An increase in price p
z
implies that

net harvesting benefits increase relatively more than the marginal net benefits from

delaying the harvest. Similarly, an increase in discount rate ρ implies that the
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marginal net benefits from delaying the harvest decrease, while the marginal net

harvesting benefits increase.

The forestry company, which maximizes forestry revenues, must account for

other species’ effects on future harvests. Changing harvest timing also changes

each species’ stock level at the start of the next rotation period. This affects harvest

potentials at the end of the next rotation period. The interest on forest land value

do not enter here; instead, it enters a term that corresponds to the effects of changes

in species’ stocks.

It is reasonable to assume that the biomass of pine is significantly smaller after

harvest and replanting than before. If pine harvesting does not directly affect other

species’ stocks13, it corresponds in figures 2 and 3 to a shift in space parallel to the

z-axis. Such a shift may imply that the ecosystem’s state crosses a separatrix. If

that happens, pine might never recover and become depleted over time. This wille

occur unless forestry companies plant enough pine.

The pine harvest’s effects on moose and birch make the manifolds
·

x = 0 and
·

y = 0 shift. The resulting outcome is difficult to forecast: the moose and birch

population may either decrease or increase. These effects can be analyzed using the

specific SYS1 model. The entire stand is cut at harvesting time and future forest

growth is further simulated with a new pine stock, which corresponds to planting.

Harvest timing depends on timber price and discount rate.

Figures 4 and 5 show the evolution of the species’ biomasses after harvest with

the replanting of 0.87 and 0.88 units of pine, respectively. The ecosystem was in a

steady state before the harvest. Although the difference in planting is very small, it

is essential for future harvesting opportunities. For the smaller planting size, pine

cannot recover and the ecosystem ends up in a steady state with no pine. If the

harvest occurs before the steady state has been reached so that moose and birch

biomasses are higher than in the steady state, the replanting must be larger than

0.88 to maintain the ecosystem’s long-term pine biomass. For example, if starting

with moose and birch biomasses of 2.835 and 1.007, respectively instead of 2.812

and 0.977 respectively, pine replanting should be a minimum of 0.895.

The effect of not accounting for the dynamics of moose and birch was also

checked. Birch and moose were assumed to be fixed at steady-state levels, so forest

13For example, this would be the case if other tree species had to be harvested at the same time.
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Figure 4: Ecosystem after harvesting when only 0.87 units of pine were planted
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Figure 5: Ecosystem after harvesting when 0.88 units of pine were planted
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managers would consider them as constants. This simulation showed that a plant-

ing level of 0.83 was enough to maintain pine in the ecosystem. But this planting

size is not enough when accounting for other species’ dynamics. So forest owners

experience a higher risk of depleting their forests if they do not account for other

species’ dynamics.

Section 4 simulates a specific model of a boreal forest with continuous, multiple-

use harvesting.

4 Simulations with a specific model

The simulations aim to answer the following questions: How many steady states

exist and are they feasible? What is the optimal path in the exploited forest? What

are the dynamics at each steady state? What do the dynamics of the system look

like when they are not in a steady state? What is the basin of attraction of the

steady states where no species become extinct? What happens in boundary points?

Do bifurcations occur when parameters vary?

Kuznetsov [22], Judd [19], and Beyn et al. [3] showed several useful numerical

methods. MATHCAD14 simulated steady states and the dynamics in their neigh-

borhood.15 Steady state analysis is not enough to obtain a quality picture of the

dynamics of the systems of differential equations that have been studied. Each

system may have very complex dynamics outside of the steady states. Limit cy-

cles16 or chaotic attractors17 may very well be present. Systems’ simulations using

DYNAMICS18 (Nusse and Yorke [29]) help picture the systems’ dynamics outside

steady states. In particular, this program can explore the system for limit cycles and

14Mathcad is a software used to solve math problem. Both numerical and analytical methods
can be used.

15A copy of this program code can be requested from the author.
16A limit cycle is an isolated cycle of a continuous time dynamic system. A cycle is a periodic

orbit, that is a non-quilibrium orbit such that a trajectory starting at a point will return to the
same point after a time period called period. See Kuznetsov [22] for a more detailed definition.

17An attractor is roughly a subset of the phase space toward which the initial conditions may
be attracted. An attractor is said to be chaotic when and if we take two typical points on the
attractor that are separated from each other by a small distance; then, for increasing time, these
points move apart exponentially fast. Thus a small uncertainty in the initial state of the system
rapidly leads to the inability to forecast its future. See Grebogi et al [13] for further reading and
references on the topic.

18DYNAMICS is a program that explores the dynamics of differential and difference equation
systems.
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chaos. MATLAB19 solved two point boundary value problems and localized Skiba

points in the optimized system using the method developed in Beyn et al. [3].

4.1 Multiple-use specific model

Let qi and ci be positive constants that represent the unit price and some cost

parameters, respectively, for species i ∈ {x, y, z}. Let αi ≡ Kici and pi ≡
qi
ci
; then a

conveniently weighted profit function for harvesting species i is πi = αihi (pi − hi) .

This function has a convex cost part (αih
2

i
) and is concave in harvest.20

Let ζ, η, and θ be constant weights associated with species x,y, and z respectively.

ζ, η, θ ∈ (0, 1) and ζ + η + θ ≤ 1. Environmental and recreational benefits from

the forest are then Ωe (x, y, z) = xζyηzθ. Ωe is increasing and concave in all species’s

stocks and the environmental benefits from the forest are zero as soon as one species

becomes extinct. This is a strong assumption but the functional form still accounts

for important characteristics of environmental and recreational benefits: it increases

with number of species and populations sizes.21

The multiple-use problem from section 3.1 is now transformed into:

max
h

∫
+∞

0

(∑
i

αihi (pi − hi)+Kex
ζyηzθ

)
e−ρtdt

st
·

x = x− x2 + axyxy + axzxz − hx

·

y = ryy − y2 − ayxxy − ayzz − hy
·

z = rzz
2
− z3 − azxxz − azyy − hz

The Lagrange function is still given by (8), and the Hamiltonian (7) is rewritten

with appropriate functional forms:

19MATLAB is a matrix based interactive program doing numeric computation and data
visualization.

20This relies on these assumptions: recreational benefits from moose hunting are neglected and
profits are assumed to be independent from moose density; timber harvesting has no effect on the
timber’s market price; and there are no returns to scale.

21To measure diversity, alternatives to the Cobb Douglas function can be found in Stirling and
Wilsey [42] or Norberg et al. [28].
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H (x, y, z, h, λ, t) =
∑

i

αihi (pi − hi) +Kex
ζyηzθ

+λx

(
x− x2 + axyxy + axzxz − hx

)

+λy

(
ryy − y2 − ayxxy − ayzz − hy

)

+λz

(
rzz

2
− z3 − azxxz − azyy − hz

)

The concavity conditions (18) are complicated. They are computed in appendix G

for Ke = 0:

λx ≥ 0

4λxλy ≥ (λxaxy − λyayx)
2 (18)

λz (6z − 2rz)
(
4λxλy − (λxaxy − λyayx)

2
)
≥ 2λy (λxaxz − λzazx)

2

They imply that the marginal value of having moose and birch in the forest, re-

spectively, must be positive. The marginal value of having pine in the forest must

be positive if z∗ is relatively large (z∗ > rz

3
), and negative if z∗ is relatively small

(z∗ < rz

3
). In each case, z∗ must be large enough or small enough to satisfy the

third sufficiency condition. When rz

3
, the pine population has reached one-third of

its carrying capacity. For smaller pine populations, the pines’ growth rate is convex.

If the pine population is larger, it is concave (recall figure 1).

For K
e
> 0, that is when recreational and environmental benefits enter the

social welfare function, concavity conditions are very tedious to compute. Similarly

to when Ke = 0, concavity conditions are not always satisfied, which implies that

welfare comparisons between trajectories are necessary and the maximizing problem

may have one, several or no optimal solutions, depending on the initial state. As

pointed out in section 3.1, comparing the value of the Hamiltonian for different

initial states can help sort out different optimal trajectory candidates.

The optimal harvest is written, for all i:

h∗
i
=

1

2

(
pi −

λi + µ
i

αi

)
, or h∗

i
= 0

When no species are depleted by (12), the Lagrange multipliers must equal zero at
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every point in time (µ
i
= 0). If shadow prices are large enough compared to costs

(∀i, pi >
λi

αi

), all harvests are positive. Assuming that this is the case, an optimal

trajectory (x∗, y∗, z∗, λ∗) must solve SYS2.

·

x = x− x2 + axyxy + axzxz −
1

2
px +

λx

2αx

·

y = ryy − y2 − ayxxy − ayzz −
1

2
py +

λy

2αy

·

z = rzz
2
− z3 − azxxz − azyy −

1

2
pz +

λz

2αz

(SYS2)

·

λ
x
= ρλ

x
−Keζx

ζ−1
y
ηzθ − λx (1 − 2x+ axyy + axzz) + λyayxy + λzazxz

·

λy = ρλy −Keηx
ζyη−1zθ − λxaxyx− λy (ry − 2y − ayxx) + λzazy

·

λz = ρλz −Keθx
ζyηzθ−1 − λxaxzx+ λyayz − λz

(
2rzz − 3z

2
− azxx

)

4.2 Simulations

Assessing numerical values to parameters helps simulate this differential equation

system. Note that there are some reasons to treat cases Ke = 0 and Ke > 0

separately. First the system’s dynamics are much easier to simulate when Ke = 0.

Second K
e
= 0 can also be interpreted as the case of a private owner who only

maximizes profits from forestry. Then α = cx, β = cy, and γ = cz: it is reasonable

to believe that private owners do not care about where profits come from, because

they have no redistribution goals.

Even when parameters are replaced with numeric values, SYS2’s steady states

cannot be analytically computed. They must be evaluated numerically, which im-

plies that the number of steady states could be underestimated. Usually, numerically

evaluated steady states depend on quality initial guesses; different initial guesses can

lead to different steady states. For each set of tested parameter values, the steady

states were simulated with MATHCAD using a thousand different randomly chosen

initial values between zero and ten for each variable.22

For the benchmark’s parameter values, with K
e
= 0, SYS2 has four feasible

interior steady states (S3∗
a
, S3∗

b
, S3∗

c
, S3∗

d
) and one steady state with a negative pine

biomass, which is not feasible. Three of them (S3∗
a
, S3∗

c
and the infeasible state)

22Different ranges and different numbers of initial guesses were also tested for some parameter

values and did not produce additional steady states.
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are saddle points and the other two are unstable with only two eigenvalues with

negative real part. This is not surprising given the result stated in proposition 3 and

its corollary 4. The existence of a saddle steady state, with negative pine biomass,

indicates that for some initial states, depletion of all pine may be optimal. This

possibility was studied appendix I.23 The SYS2 system was simulated to check what

happened when pine disappeared. This produced two steady states with no pine.

Appendix H shows the variables’ values in all steady states. So for the benchmark’s

parameter values with Ke = 0, the optimized forest characterized by SYS2 had at

least six feasible steady states, of which at least two lead to pine depletion. It is easy

to verify that steady state S3∗
c
is the only equilibrium that satisfies the sufficiency

conditions 18.

Simulations24 using the method developed in Beyn et al. [3] showed the existence

of Skiba points. For example such points were (4.98,0.5, 1.1), (2, 1.33, 1.1), and

(2, 0.5,1.86). In those points, the welfare obtained by going to steady state S3∗
a

was about the same as the welfare obtained when going to S3∗
c
. This shows that

S3∗
a
could sometimes be optimal even though the sufficiency conditions do not hold.

Whether or not this is true depends on initial conditions.

The sets of all Skiba points form the Skiba manifolds of this system. Locating all

Skiba points would be very tedious. According to Beyn et al., the Skiba manifold’s

dimension should equal the number of state variables, which implied that a Skiba

manifold should be of dimension 3.25 To approximate the Skiba manifold, one could

use the initial state variables as continuation parameters. Depending on whether

or not pine extinction can ever be optimal there might be Skiba manifolds that

separate the regions with optimal interior states from the regions where a steady

state with no pine is optimal.

The effects of variations in the birch growth rate on respective species’ biomasses

in steady states were simulated in the case when environmental benefits were not

accounted for (Ke = 0). These simulations also showed bifurcations for low birch

growth rates. For ry below 0.45, there was only one feasible steady state; for ry

above 0.65, there were four and in between, there were three steady states.

23Note that the general saddle point property stated in proposition 3 does not remain when some

species are extinct.
24The program codes can be requested from the author.
25Except if there are more than two optimal trajectories from a Skiba point or if the stable

manifold’s dimension differs from the number of state variables.
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When a social planner accounted for environmental benefits, the results were

modified. Some simulations showed that the number of steady states was generally

higher for relatively low birch growth rates and smaller for higher birch growth

rates. Comparing the steady states in both management regimes shows that the

saddle points have higher levels of each population when environmental benefits are

accounted for. This is not true for the unstable equilibria, which are probably not

optimal but this is not proved yet. For the benchmark’s parameter values, there

are only three steady states and no infeasible saddle point. This hints that the risk

of pine becoming extinct is much lower when environmental benefits are accounted

for, which is not surprising.

5 Concluding remarks

The existence of one or more Skiba manifolds reveals the exploited ecosystem’s de-

pendency on history. What is optimal for one state of the world is not necessarily

optimal for another. This has consequences for how to regulate the system. If an

optimal trajectory passes close to a Skiba manifold, small mistakes in the regula-

tion may lead to the manifold’s crossing, in which case the opportunities of future

harvests and their consequences on the ecosystem can be completely modified. Ex-

ogenous changes in the system can also lead to a Skiba manifold crossing. Such

exogenous changes include any changes that affect the variables, such as diseases,

storms, and exogenous market shocks.

Multiple species and non-concave growth functions lead to multiple optimal

states and Skiba points, so margin analysis is usually not enough to determine

the optimal trajectory at given initial points. One must know all future harvesting

benefits to find out which trajectory is optimal.

Under conditions determined in section 3.2, it is optimal to harvest entire pine

stands at once. These conditions may occur when age influences profits derived

from the harvest. This is the case, for example, when pine is harvested to be used as

timber or when there are extra profits to be made if harvesting can be concentrated

on a specific point in time.

FPO’s classic result on an optimal rotation period in that situation must be

revisited to support the presence of other species. If forestry companies do not ac-

count for other species’ effect, then they face a higher risk of depleting pine because
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they tend to replant fewer trees than necessary. Even if they were to account for

other species’ dynamics, they need to plant more after harvesting if the harvesting

time occurs before the ecosystem is able to recover and reach its steady state. In

real life, the forestry companies do not know the dynamics of the forests. Under

these conditions, following optimal harvest rules for only one species is risky be-

cause these rules may induce a more intensive exploitation than what the forest can

sustain. Of course, accounting for other species does not solve the problem because

some species and large parts of the forests’ dynamics are still unknown. But this

could help forest managers become more conscious about the needs for alternative

harvesting rules. In particular, there is a need for future research to determine the

approximate magnitude of mistakes due to the use of wrong models to represent

ecosystem production.

A Dimensionless ecosystem model

Let S1, S2 and S3 represent the stocks of moose, birch and pine biomasses, respec-

tively, at time t. Let r1, r2 and r3 represent the corresponding growth rates; ai,j

represent the effects of species j on i for each two-way interaction. The following

differential equations system represents the evolution in time of respective biomass

density.

∂S1

∂t
= r1S1 (1− a11S1) + a12S1S2 + a13S1S3

∂S2

∂t
= r2S2 (1− a22S2)− a21S1S2 − a23S3

∂S3

∂t
= r3S

2

3
(1− a33S3)− a31S1S3 − a32S2

Following Segel [40], I rewrite the system in dimensionless form. Let suffix u denote

the unit used to measure respective variables’ size. Let x ≡ S1

S1u
, y ≡

S2

S2u
, z ≡

S3

S3u

and τ ≡
t

tu
. This yields:

·

x =

∂x

∂τ
=

∂

(
S1

S1u

)

∂t

dt

dτ
= t

u
(r1x (1 − a11S1ux)+ a12xS2uy + a13xS3uz)

·

y =
∂y

∂τ
=

∂
(

S2

S2u

)
∂t

dt

dτ
= tu

(
r2y (1 − a22S2uy)− a21S1uxy −

a23S3u

S2u

z

)
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·

z =
∂z

∂τ
=

∂

(
S3

S3u

)

∂t

dt

dτ
= tu

(
S3ur3z

2 (1− a33S3uz)− a31S1uxz −
a32S2u

S3u

y

)

Let t
u
≡

1

r1

, S1u ≡
1

a11

, S2u ≡
r1

r2a22

and S3u ≡

√
r1

r3a33

, the system becomes:

·

x = x− x
2
+

a12

r2a22

xy +
a13√
r1r3a33

xz

·

y =
r2

r1

y − y
2 −

a21

r1a11

xy −
a23a22r2

r1

√
r1r3a33

z

·

z =

√
r3

r1a33

z
2 − z

3 −
a31

r1a11

xz −
a32
√
r1r3a33

r1r2a22

y

Finally put a12

r2a22
≡ axy,

a13√
r1r3a33

≡ axz,
r2

r1
≡ ry,

a21

r1a11
≡ ayx,

a23a22r2

r1
√
r1r3a33

≡ ayz,√
r3

r1a33
≡ rz,

a31

r1a11
≡ azx,

a32

√
r1r3a33

r1r2a22
≡ azy to obtain the dimensionless SYS1 ecosys-

tem.

·

x = x− x
2
+ axyxy + axzxz

·

y = ryy − y
2
− ayxxy − ayzz (SYS1)

·

z = r
z
z
2
− z3 − a

zxxz − azyy

B Boundary analysis

If one or more variables reach the lower bound that restrictions (1) impose, then

after that point (t1) in time, (2) is not necessarily the solution of SYS1.

• Suppose x = 0;
·

x = 0, at t = t1, so moose remain extinct and the forest hosts

only trees. For t ≥ t1, equations 19 characterize the forest’s dynamics:

·

y = ryy − y
2
− ayzz (19)

·

z = rzz
2
− z3 − azyy

This forest’s steady states are the same as SYS1’s steady states when x = 0.

So even after t1, equations (2) still solve SYS1. The steady states are of the

form S0 = (0, 0,0) and S2κ =
(
0,κ

2 rz−κ

azy
,κ

)
and κ solves

ayza
2

zy
−ryrzazyκ+ryazyκ

2
+κ

3
r
2

z
−2rzκ

4
+κ

5
= 0. The coefficients in the right
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Figure 6: Phase diagram when x = 0

hand side change sign four times, so following Descartes’ rule, there are at most

four positive real solutions. Figure 6 shows the system’s phase diagram if five

steady states are feasible: S2c is the only stable interior state; S2b,d are saddle

points; and S2a is unstable. There are two other stable states, S1y = (0, ry,0)

and S1z = (0,0, rz), which are not stable states of (19). They occur if pine and

birch, respectively, disappear after moose became extinct. The separatrices

(Kuznetsov [22]) separate the stable states’ basins of attraction. They are

called SEPy and SEPz and their approximate location is given in dotted

curved lines. For initial points below SEPz, pine disappear and the forest

reaches the S1y stable state or S0. For initial points above SEPy, birch is

depleted and the forest reaches the S1z stable state or S0. An initial point

between the two curves and above S2a has an optimal trajectory toward S2c. If

the initial point is between both curves but below S2a, the optimal trajectory

goes toward S0. The separatrices intersect at S2a and S0. Comparing dz

dy
and

·

z
·

y
in the neighborhood of

·

y = 0 and
·

z = 0, respectively, helps determine the

separatrices’ approximate location compared to the
·

y = 0 and
·

z = 0 curves,

respectively.
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Figure 7: Phase diagram when y = 0

• Suppose y = 0 at t = t1. Birch is extinct so from time t1, equations 20,

combined with y = 0, characterize the forest:

·

x = x− x
2
+ axzxz (20)

·

z = rzz
2
− z3 − azxxz

There are at most five feasible steady states: S0, S1x = (1, 0, 0) , S1z, and

S2e,f = (1 + axzν, 0, ν) , in which

ν = 1

2

(
r
z
− a

zx
a
xz
±

√(
(r

z
− a

zx
a
xz
)2 − 4a

zx

))
. The steady states S2

e,f are

only feasible if rz > azxaxz+2
√
azx. In other words, a steady state with positive

moose and pine population exists if and only if pine’s natural growth rate is

large enough compared to browsing effects on moose and pine growth. Figure 7

shows this system’s phase diagram when S2e,f are feasible. When five steady

states are feasible, S1x and S2e are stable and the other states are saddle

points. Steady states S2e,f are not steady states of SYS1. S2f and S0 help

determining the location of the separatrix SEP , which separates trajectories

going toward S2e from trajectories going toward S1x. The dotted curve in
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Figure 8: Phase diagram when z = 0

figure 7 represents the approximate location of the separatrix. Comparison of

dz

dx
and

·

z
·

x

in the neighborhood of
·

z = 0 helps determining the approximate

location of the separatrix compared to the
·

z = 0 curve.

• Finally if z = 0 at t = t1, pine is extinct so for t ≥ t1, equations 21 characterize

the forest:

·

x = x− x2
+ a

xyxy (21)
·

y = ryy − y
2
− ayxxy

If z = 0, the forest has at most four feasible steady states: S0, S1x, S1y and

S2g =
(

1+axyry

axyayx+1
,

ry−ayx

axyayx+1
, 0

)
. S2g exists only if

ry

ayx
> 1; in other words, if the

growth rate of birch divided by the browsing effect is larger than the growth

rate of moose. Birch becomes extinct otherwise. This steady state is not a

steady state of SYS1. In the (x, y) plane, S0 is unstable; S1x and S1y are

saddle point, if S2g exists, otherwise S1x is stable; and S2g is a stable state if

and only if ry >
ayx−1

1+axy
. S2g cannot be the center of a limit cycle; it can only

be a stable node or a stable focus. Figure 8 shows this system’s phase diagram
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when S2g is feasible and stable. All trajectories starting in the interior of the

plane end up in this stable state.

C Steady state analysis

MAPLE solved the steady states for SYS1: S0 = (0, 0, 0), S1 = (1, 0, 0), S2χ =(
0,χ

2 rz−χ

azy
,χ
)
, and

S3χ =
(
1azy+axzazyχ+axyrzχ

2
−axyχ

3

azxaxyχ+azy
,χ

−1azx+(rz−azxaxz)χ−χ2

azy+axzazxχ
, χ

)
. The variable χ is a root

of AZ5
+BZ4

+ CZ3
+DZ2

+ EZ + F , and

A = 1 + ayxaxy

B = −2
(
r
z
+ (ayxaxy)

2
)
+ (ayxaxy + 2) axzazx

C = (ayxaxy + 1) r2
z
+ ((ayx + ry) axy + 2) azx + (azxaxz)

2

−axz (ayx (azy + axyrzazx) + 2rzazx)

D = ryazy + a2
zx
axz

(
2 + axyry +

ayza
2
xy

axz

)
+ ayxaxzazyrz

− ayxazy (1 + a
2

xz
azx)− azxrz (axy (ry + ayx) + 2)

E = −ryrzazy−2ayxazyazxaxz+2azy (azxayzaxy + ayxrz)+a
2

zx

(
1 + axyry +

ryazyaxz

azx

)

F = ayza
2

zy
+ ryazyazx − ayxazyazx

This is a fifth order polynomial and the fundamental theorem of algebra applies,

so there are at most five distinct roots real or complex. Unfortunately, Descartes

rule is difficult to apply here because the signs of B, C, D, E and F depend on

parameter values. But there is at least one real root. This means that the equation

system can have at least four and at most twelve different equilibria.

D Dynamic analysis

Appendix C proves that SYS1 has at least four different steady states and at most

twelve if there are no restrictions on variables. If non-negativity restrictions apply,

one or more of these steady states might not be feasible because of complex or

negative variable value. In this last case there are five boundary states: S1y,z and

S2e,f,g (see section B). For the parameter values in appendix E, the system has

fifteen feasible steady states, including boundary states:

S0, S1x,y,z, S2κ =
(
0, κ2 rz−κ

azy

,κ
)

, S2
e,f,g, and

S3κ =

(
azy+axzazyκ+axyrzκ

2
−axyκ

3

azxaxyκ+azy
,κ

−azx+(rz−azxaxz)κ−κ2

azy+axzazxκ
, κ

)
. The variable κ is a root
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of a fifth-degree polynomial. κ has at most five different real values of which one

is negative, and hence rules out two candidate steady states. The dynamics around

the interior states is analyzed graphically.

Construction of a three-dimensional phase diagram requires to represent the

manifolds corresponding to
·

x = 0,
·

y = 0, and
·

z = 0. They divide R3

+
into different

regions in which the system’s dynamics are calculated. For the parameter values

used in the phase diagram (See figures 2 and 3), there are four interior steady states,

S3
a
, S3b, S3c, and S3d.

• The planes Px0 (x = 0) (which gives boundary solutions) and

Px1 (x = 1 + axyy + axzz) represent equation
·

x = 0 in R3

+. For points situated

below P
x1, moose density x increases, whereas it decreases for points above

Px1. The location of Px1 depends on the growth rate of moose, and on the

interaction coefficients of pine and birch on moose. Px1 intersects with the

y-axe in y = −1

axy

and with the z-axe in z = −

1

axz

. The intersection of P
x1

with the plane (y, z) is a straight line with equation y = −axzz−1

axy

. So an

increase in the growth rate of moose causes a shift toward more moose. An

increase in the interaction coefficient of birch on moose causes an upward tilt

(the negative slope becomes larger in the y-direction). An increase in the

interaction coefficient of pine on moose causes an upward tilt in z-direction.

• The manifold Py(x =
ry−y

2
−ayzz

ayxy
) represents

·

y = 0 in R3

+
. Birch density in-

creases below Py and decreases above Py. The location of the Py-manifold de-

pends on birch growth rate and the interaction coefficients of moose and pine,

respectively, on birch. The Py-manifold intersections with the (x, y) plane cor-

respond to two straight lines: the x-axis and y = ry−xayx. The lines intersect

in point

(
ry

ayx
, 0

)
. The intersection with the (y, z) plane is a parabola with

equation z = y
ry−y

ayz
and maximum

(
y =

ry

2
, z =

(ry)
2

4ayz

)
that intersects with the

y-axes in 0 and ry. An increase in the growth rate of birch causes an upward

shift of the manifold. An increase in the interaction coefficient of moose on

birch causes a tilt upward in z-direction (the ”tail” is shorter). An increase in

the interaction coefficient of pine on birch makes the manifold flatter.

• The manifold Pz

(
x =

rzz
2
−z

3
−azyy

azxz

)
represents

·

z = 0 in R3

+
. Pine density

z increases below Pz and decreases above. The location of the Pz manifold
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depends on the growth rate of pine and on the interaction coefficients of moose

and birch on pine. The intersection of P
z
with plane (x, z) is a parabola.

The intersection with plane (y, z) is a convex-concave curve with equation

y = rzz
2
−z

3

azy

. The intersection with plane (x, y) is the point S0. An increase in

pine growth rate increases the curvature of Pz giving a steeper manifold with

a higher maximum. An increase in the interaction coefficient of birch on pine

makes P
z
steeper and more decreasing in y direction, the tail becomes shorter.

An increase in the interaction coefficient of pine on moose makes the manifold

flatter in x direction.

These four manifolds define at most eight regions in which the directions of

motion are known. These regions are summarized in table 2 in section 2.2. Similarly

to the two-dimensional systems studied in section B, there are separatrices between

the basins of attraction of the stables equilibria. Unfortunately they are not easy to

represent graphically.

Each parameter affects the location and the dynamics around at least one man-

ifold, so each such variation can produce a bifurcation. The fold bifurcation is this

model’s most common bifurcation but other types of bifurcations might also be en-

countered. Steady states S0 and S1 are present in the model, no matter parameter

values.

E Parameter values in the benchmark

parameter ry rz axy axz ayx ayz azx azy ρ α

value 1.6 2 1 0.5 0.1 0.2 0.05 0.7 0.02 1

parameter β γ Ke qx qy qz ζ η θ

value 1 1 0.1 1 2 2 1/3 1/3 1/3

F Simulations

SYS1’s steady states were simulated with enough sets of arbitrary chosen parame-

ters. These simulations showed some fold bifurcations. Figures 9-11 show steady

state species stocks when birch growth rate varies. Similar bifurcations existed when

other parameters were varied.
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Moose population for different birch growth rates
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Figure 9: Fold bifucations (moose)

Birch population for different birch growth rates

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

birch growth rate

Figure 10: Fold bifurcations (birch)
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Pine population for different birch growth rates
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Figure 11: Fold bifurcations (pine)

G Concavity condition

Let ∆
r
(x, y, z) be the principal minor of order r in the Hessian for ̂H (x, y, z, λ, t).

The maximized Hamiltonian ̂H is concave on R
3

+ if and only if for all points (x, y, z)

and for all ∆r, (−1)
r ∆r (x, y, z) ≥ 0 for r = 1, 2, 3. The Hessian for ̂H (x, y, z, λ, t)

is given by:


−2λx λxaxy − λyayx λxaxz − λzazx

λxaxy − λyayx −2λy 0

λxaxz − λzazx 0 λz (2rz − 6z)




From this, it follows that:

(−1)1∆1 (x, y, z) = 2λ
x

(−1)2∆2 (x, y, z) = 4λ
x
λy − (λxaxy − λyayx)

2

(−1)3∆3 (x, y, z) = 4λxλyλz (2rz − 6z)− (λxaxy − λyayx)
2
λz (2rz − 6z)

+2λy (λxaxz − λzazx)
2

This yields the concavity conditions:

λx ≥ 0
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4λxλy ≥ (λxaxy − λyayx)
2

λz (6z − 2rz)
(
4λxλy − (λxaxy − λyayx)

2
)
≥ 2λy (λxaxz − λzazx)

2

H Steady states when harvesting is continuous

The steady states in bold are saddle points.

Steady state x y z λ
x

λy λz

S3
∗

a
1.767 0.503 1.138 -0.078 1.53 0.672

S3∗
b

0.979 0.367 0.971 -0.71 1.555 0.668

S3
∗

c
0.234 0.624 1.207 0.067 1.294 0.591

S3∗
d

0.537 0.231 0.036 0.235 1.407 2.32

S2∗
a

2.14 2.837 0 -6.263 10.233 2

S2∗
b

2.263 1.525 0 -0.186 2.46 2

I Extinction in controlled ecosystems

Seierstad and Sydsæter [41] developed methods to analyze what happens when con-

ditions on state variables became binding. Denote by k the species that disappeared

at time T. The multipliers were equal to zero (µ
i
= 0) before time T occured. It

is reasonable to assume that h∗
k
=

1

2

(
qk −

λk
j

)
, where j ∈ {α, β, γ}. During period

[0,T ) , species k’s stock decreased from k0 to 0. In interval [T,+∞) , k = 0,
·

k = 0

and h∗
k
= 0. Continuousity of λ implied that lim inf

t→T

λx (t) = λx (T ). The necessary

conditions for optimal harvest must hold at each time t so λk (T ) = jqk. In interval

[T,+∞) ,
·

λk = 0 so an expression for µ
k
(T ) could be derived.

1. Suppose moose disappeared first. The shadow price of moose did not affect

any other species or shadow price when
·

x = 0, x = 0, hx = 0 so the ecosystem

followed the dynamics in SYS2M1 with µ
y
= µ

z
= 0 as long as no tree species

became extinct:

·

y = ryy − y
2
− ayzz −

1

2

(
qy −

λy

β

)
(22)

·

z = r
z
z + z

2
− a

zyy −
1

2

(
qz −

λz

γ

)
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·

λy = ρλy − λy (ry − 2y) + λzazy
·

λz = ρλz + λyayz − λz

(
2rzz − 3z

2
)

When only two species were left, either this remained so forever or at some

time T ′ > T a second species disappeared. Suppose birch disappeared from

system (SYS2M1) at time T ′ > T , then λy = βqy and
·

λy = 0 so we could

calculate µ
y
=

ρβqy+λzazy

(ry−2y)
− βqy, y �=

ry

2
and the system became

·

z = rzz + z2 − azyy −
1

2

(
qz −

λz

γ

)
(SYS2M2)

·

λz = ρλz +
ρβqy + λzazy

(ry − 2y)
ayz − λz

(
2rzz − 3z

2
)

If instead pine disappeared at time T ′, λz = βqz and
·

λz = 0 but µ
z
could not

be calculated from the
·

λz = 0 equation. To insure that
·

λz = 0 we needed

to have λy = −
ρβqz
ayz

implying that
·

λy = 0 and µ
z
= −

ρβqz
ayz

(ry−2y−ρ)
azy

− βqz the

system became

·

y = ryy − y
2
−

1

2

(
qy −

ρqz

ayz

)
(SYS2M3)

·

λy = 0

2. Suppose instead birch disappeared first. Then at time T, λy = βqy and µ
y
=

ρβqy−λxaxyx+λzazy
ry−ayxx

− βqy, if x �=
ry

ayx

. The system to simulate looked like this:

·

x = x− x2 + a
xz
xz −

1

2
q
x
+

λx

2α
·

z = rzz
2
− z3 − azxxz −

1

2
qz +

λz

2γ
(SYS2B1)

·

λx = ρλx − λx (1− 2x+ axzz) + λzazxz
·

λz = ρλz − λxaxzx+
ρβqy − λxaxyx+ λzazy

ry − ayxx
ayz − λz

(
2r

z
z − 3z

2
− a

zx
x

)

Either the forest remained a forest with only pine and moose or at some time
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T ′ > T, one of the remaining species disappeared. If moose disappeared at

time T ′, then λ
x
= αq

x
and

·

λ
x
= 0. The shadow price of moose did not affect

pine’s stock and shadow price so the system became

·

z = rzz
2
− z

3
−

1

2
qz +

λz

2γ
(SYS2B2)

·

λ
z
= ρλ

z
+

ρβqy + λzazy

ry
ayz − λz

(
2rzz − 3z2

)

If instead pine disappeared, λ
z
= γq

z
and

·

λ
z
= 0. The shadow price of pine

did not affect the biomass of moose so the system became

·

x = x− x
2
−

1

2
q
x
+

λx

2α
(SYS2B3)

·

λx = ρλx − λx (1 − 2x)

3. If pine disappeared first, the system could be derived in a similar way. At time

T, λz = γqz and µz = −
ρλz−λxaxzx+λyayz

azxx
− γqz provided x �= 0. The system to

simulate looked like this:

·

x = x− x
2
+ a

xyxy −
1

2
qx +

λx

2α
·

y = ryy − y2 − ayxxy −
1

2
qy +

λy

β
(SYS2P1)

·

λ
x
= ρλ

x
− λ

x
(1− 2x+ a

xyy) + λyayxy
·

λy = ρλy − λxaxyx− λy (ry − 2y − ayxx)−
ργqz − λxaxzx+ λyayz

azxx
azy

Again, either the forest remained a two species forest forever or at some time

T ′ > T one of the remaining species disappeared. Suppose moose disappeared

at time T ′, then λx = αqx. Further, lim
x→0

ρλz−λxaxzx+λyayz

azxx
= (ρλz + λyayz) ×

(+∞) implying that either λy became very negative in which case birch became

or λy increased very much and birch harvest became equal to zero giving the

system.
·

y = ryy − y2 (SYS2P2)
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·

λy = − lim
x→0

ρλz − λxaxzx+ λyayz

azxx
azy

Suppose instead birch disappeared at time T ′. The shadow price for birch did

not affect the stock and the shadow price for moose so the system became:

·

x = x− x2 −
1

2
qx +

λx

2α
(SYS2P3)

·

λ
x

= ρλ
x
− λ

x
(1 − 2x)
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