Lanza, Alessandro; Manera, Matteo; Grasso, Margherita; Giovannini, Massimo

Working Paper
Long-run Models of Oil Stock Prices

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 96.2003

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Lanza, Alessandro; Manera, Matteo; Grasso, Margherita; Giovannini, Massimo (2003) : Long-run Models of Oil Stock Prices, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 96.2003

This Version is available at:
http://hdl.handle.net/10419/118125

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Long-run Models of Oil Stock Prices
Alessandro Lanza, Matteo Manera,
Margherita Grasso and Massimo Giovannini
NOTA DI LAVORO 96.2003

OCTOBER 2003
IEM – International Energy Markets

Alessandro Lanza, *Eni S.p.A., Roma, Fondazione Eni Enrico Mattei, Milano and CRENoS, Cagliari, Italy*
Matteo Manera, *Department of Statistics, University of Milano-Bicocca and Fondazione Eni Enrico Mattei, Milano, Italy*
Margherita Grasso, *Fondazione Eni Enrico Mattei, Milano, Italy*
Massimo Giovannini, *Department of Economics, Boston College, USA and Fondazione Eni Enrico Mattei, Milano, Italy*

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/web/activ/_wp.html
Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Summary

The identification of the forces that drive oil stock prices is extremely important given the size of the Oil&Gas industry and its links with the energy sector and the environment. In the next decade oil companies will have to deal with international policies to contrast climate change. This issue is likely to affect companies’ shareholder values. In this paper we focus on the long-run financial determinants of the stock prices of six major oil companies (Bp, Chevron-Texaco, Eni, Exxon-Mobil, Royal Dutch Shell, Total-Fina-Elf) using multivariate cointegration techniques and vector error correction models. Weekly oil stock prices are analyzed together with the relevant stock market indexes, exchange rates, spot and future oil prices over the period January 1998-April 2003. The empirical results confirm the statistical significance of the major financial variables in explaining the long-run dynamics of oil companies’ stock values.

Keywords: Cointegration, Vector error correction models, Oil companies, Oil stock prices, Hydrocarbon fuels, Energy, Non-renewable resources, Environment

JEL: C32, L71, Q30, Q40

The authors would like to thank Enzo Di Giulio, Marzio Galeotti, Anil Markandya, Michael McAleer and two referees for helpful comments. This study does not necessarily reflect the views of Eni S.p.A..

Address for correspondence:

Matteo Manera
Department of Statistics
University of Milano-Bicocca
Via Bicocca degli Arcimboldi, 8
Building U7 20126
Milano
Italy
Phone: +39-02-64487319
Fax: +39-02-6473312
E-mail: Matteo.Manera@unimib.it
Introduction

The identification of the forces that drive stock prices is a major concern in theory and practice. This assessment is particularly relevant in the Oil & Gas (O&G) sector, given the importance and size of this market, as well as its relationships with the energy sector and its impact on the environment.

O&G is one of the largest industries in the world, involving different companies and business in the different chains of production, distillation and distribution. A recent analysis (Credit Suisse First Boston, 2002) estimates a US$ 770 billion-per-year global O&G commodity market, that is dominated by the Integrated Oil Companies. The physical crude oil market is alone worth US$ 570 billion each year, business not including the vast amount of financial derivatives.

The United Nations Environment Programme (2003) explicitly recognizes the intimate link between the O&G industry and the environment. The extraction, transportation and use of primary fossil fuels (oil and gas in particular) and generation and transmission of electricity affect the environment at the global, regional, and local levels. From a global perspective, the effects of the release of carbon dioxide and other greenhouse gases as emissions from energy systems are crucial for the earth’s climate system. For these reasons, O&G related companies will have to deal with at least a major issue in the next decade, namely the prospect of policies to contrast global warming. This issue is likely to affect companies’ sales, operating costs, asset values, and shareholder
values. In a case study of sixteen leading oil and gas companies, Austin and Sauer (2002a) find that the corporate impact of this issue may be substantial, but it is not yet reflected in stock prices. Moreover, few companies have disclosed the degree to which they are financially exposed to this issue, and no company has attempted to quantify the financial implications for its shareholders. Although extremely interesting, the results are scenario-specific (see Austin and Sauer, 2002b, for details on this methodology). In particular, the scenarios used to analyze the financial implications of the climate change issue range from no action to widespread adoption of the Kyoto Protocol, which implies potential impacts varying from a five percent loss in shareholder value to a slight gain. As admitted by the authors, the large degree of subjectivity implicit in the assumptions underlying those scenarios is very likely to affect the conclusions.

In this paper we follow a classical time series approach. However, given the lack of reliable time series data on climate change effects, our analysis focuses on the financial determinants of oil stock prices. From this viewpoint, our paper can be considered as the first important step towards the econometric modelling of the joint effects of economic and environmental variables on the long-run dynamics of oil stock prices.

Ideally, the universe of Integrated Oil Companies includes the Super Majors, Regional Companies (US, Europe) and National Companies. An issue which seems to be particularly relevant in examining the behaviour of the share value of a single oil company is the selection of the different variables that could affect its dynamics. In this respect, we analyze time series data on stock prices of several companies of different
business volumes and targeted markets and from several countries, together with the oil prices, relevant stock market indexes and exchange rates.

The typical approach to measuring the exposure of a company to different risk factors is to estimate a single regression using changes of market share as dependent variables and changes in the factors of interest as independent variables, eventually controlling for other effects. Conversely, in this paper we focus on the long-run determinants of the market value of each company using multivariate cointegration techniques and vector error correction models (VECM).

The paper is organized as follows. Section 2 contains a brief review of the previous works on risk factors in oil returns. The data set is described in Section 3. Section 4 is dedicated to modeling the determinants of long-run dynamics in the value of oil companies. Section 5 concludes.

2. Previous works

Very few attempts have been made to analyze the factors affecting oil company stocks and their relations. Some deal with the time series properties of the US exchange rate and oil prices, while others refer specifically to the exposure of firms to various risk factors. These studies examine several companies and periods, taking into consideration different risk factors, and focus on the short run impacts or long run exposure.
The sensitivity of London quoted oil company stocks to oil prices is investigated by Manning (1991). The estimation period ranges from January 1986 to June 1988 and the frequency of the data is weekly. A cointegration procedure is adopted to assess market efficiency. The absence of cointegrating relations between oil company stock values, market index values and oil prices is established, in accordance with the efficient market hypothesis. The estimated short-run dynamic models support the hypothesis of positive oil price effects on the returns of oil companies, and the magnitude of the estimated coefficients is larger for the firms involved in exploration than for integrated oil companies. Some evidence of lagged effects of oil price changes is found. However, significant lagged terms are viewed as reflecting transaction costs and the peculiarities of the oil market more than market inefficiency.

The existence of a possible link between oil prices and the US exchange rate is examined by Amano and van Norden (1998). Monthly data for the period 1972(2)-1993(1) and a VECM approach are considered, and the two non-stationary variables are shown to be cointegrated. Moreover, the long-run level of the exchange rate seems to adjust to the price of oil, but not vice-versa. Specifically, a one percent increase in the commodity price would lead to a 0.51 percent appreciation of the dollar in the long run.

Sadorsky (2001) examines Canadian oil and gas industry stock returns over the period 1983(4)-1999(4). Using monthly data and a multifactor market model, which includes returns on market index, oil price, interest rate and exchange rate, he finds that stock price returns are sensitive to all these factors. Stock price returns show a positive
relationship with the market and oil price factors, and a negative relationship with the interest rate and exchange rate returns.

In the context of the literature suggesting that exchange rates are non-stationary and affected by oil price changes, Click (2001) considers whether there is long run exposure of oil companies to exchange rate and oil price changes. Data are monthly and cover the period 1979(7)-1999(7). Using the nine largest oil companies (as for 1999) and the cointegration technique, a multi-factor model containing the S&P 500 index, exchange rates and oil prices is found to dominate the single-factor CAPM model in eight of nine cases. Furthermore, it is shown that models should include exchange rates and oil prices simultaneously in order to avoid omitted variable bias.

To summarize, Manning (1991) considers weekly data for the period 1986-1988, verifies the absence of cointegrating relations between oil stocks, oil prices and the market index, and finds positive short run effects of oil price changes on stocks of London-quoted oil companies. The two more recent contributions use monthly data for a period that includes the 80s and 90s. Sadorsky (2001) employs a short run dynamic model and finds significant impacts of the market index, oil prices, interest rates and exchange rates on Canadian oil companies. Click (2001) commences with the non-stationarity of exchange rates established by Amano and van Norden (1998), and uses a VECM approach. His study seems to be unique in investigating long run exposures of the world’s major (as for 1999) oil companies.
3. Data description

With the aim of understanding the determinants of oil company stock price variations, as well as their short and long-run behavior, we analyze time series data on stock prices of several oil companies together with the relevant stock market indexes, exchange rates and crude oil prices.

In order to get an overview of the oil industry we investigate companies from several countries and with different business volumes and targeted markets (global or regional), namely: Bp (BP, UK), Chevron-Texaco (CH, US), Eni (ENI, Italy), Exxon-Mobil (EXX, US), Royal Dutch Shell (ROY, The Netherlands/UK), and Total-Fina-Elf (TOT, France). These series (STOCK) are closing prices quoted in the stock market of the country of origin of each company (see Graph 1).\(^1\) For the selected Oil Companies the relevant stock indexes (MKT) are: FTSE (UK), Dow Jones (DJ, US), MIB30 (Italy), AEX (The Netherlands), and CAC40 (France) (see Graph 2).

Moreover, given the presence of companies from UK and countries belonging to the European Monetary Union, we consider the closing quotations of the exchange rates (ER)

\(^1\) For ROY, we have considered the Dutch market.
of the US dollar against the British pound and the Euro (USD/GBP and USD/EUR) (see Graph 2).²

The selected crude oil prices are dated Brent for the spot series (SP) and futures Brent prices (FP) with three-month (FP3) and twelve-month (FP12) maturities (see Graph 3).³

The sample period ranges from 23 January 1998 to 4 April 2003, and the frequency of observations is weekly. All prices are log-transformed and expressed in local currencies, with the only exception of crude prices, which are denominated in USD per barrel.

4. Modelling the determinants of long-run dynamics in oil company stock values

We consider each company separately and analyze, with a cointegrated VAR model (VECM), the existence of long-run relations and short-run effects among the market value of the company, the difference between FP12 and SP (SPREAD), and the relevant stock market index and exchange rate, the latter being only for non-US companies.

Augmented Dickey-Fuller (ADF) statistics are used to investigate the time series properties of the data. All variables are integrated of order one, or I(1), most of them with intercept but no trend (see Table 1). Although individually non-stationary, these series

² Reuters is the main source for Company stock values, market indexes and exchange rates
³ Spot and futures prices of Brent are from Platt’s. FP12 have been used in the long-run analysis, while FP3 have been selected in the short-run model. Considering that using different oil marker, such as WTI for the US companies does not affect the overall results a common oil price market has been adopted.
may still form one or more linear combinations which are stationary, or I(0). In this case, there are one or more long-run equilibrium relationships among the variables entering the VAR specification, which are said to be cointegrated.

Following Johansen and Juselius (1990), the starting point of our cointegration analysis is a VAR specification for the $\mathbf{n} \times 1$ vector of I(1) variables \mathbf{X}_t:

$$
\mathbf{X}_t = \mu_0 + \mu_1 t + A_1 \mathbf{X}_{t-1} + \ldots + A_p \mathbf{X}_{t-p} + \mathbf{u}_t
$$

where μ_0 is a $\mathbf{n} \times 1$ vector of constants, t is a deterministic trend, μ_1 is a $\mathbf{n} \times 1$ vector of deterministic linear trend coefficients, and \mathbf{u}_t is a $\mathbf{n} \times 1$ i.i.d. Gaussian error vector.

If we write equation (1) as:

$$
\Delta \mathbf{X}_t = \mu_0 + \mu_1 t + \Pi \Delta \mathbf{X}_{t-p} + \Gamma_1 \Delta \mathbf{X}_{t-1} + \ldots + \Gamma_{p-1} \Delta \mathbf{X}_{t-p+1} + \mathbf{\varepsilon}_t
$$

where $\Gamma_i = -(I_n - A_i - \ldots - A_p)$, $i=1,\ldots,p-1$, and $\Pi = -(I_n - A_i - \ldots - A_p)$, we obtain the VECM representation of the original VAR system (see, among others, Charemza and Deadman, 1992).

If cointegration among the variables \mathbf{X}_t is present, model (2) includes both long-run and short-run stationary components. The maximum likelihood method proposed by Johansen (1990) tests the presence of cointegration at the system’s level by determining
the rank of the long-run matrix, Π. If $\text{rank}(\Pi) = r$, with $0 < r < n$, the matrix Π can be decomposed as $\Pi = \lambda \beta'$, where λ is a nxr matrix of adjustment parameters and β is a nxr matrix containing the r cointegrating relations among the variables in X. The Johansen approach enables estimation of the parameters β, and to test for the number of $I(0)$ linear combinations among the X_t variables.

With the number r of cointegrating relationships determined, the following version of model (2) can be estimated by OLS:

$$\Delta X_t = \mu_0 + \mu_t + \lambda \text{ecm}_{t-p} + \Gamma_1 \Delta X_{t-1} + \ldots + \Gamma_{r-1} \Delta X_{t-p+1} + \epsilon_t,$$ \quad (3)

where $\text{ecm}_{t-p} \equiv \hat{\beta}'X_{t-p}$ is the rxI vector of long-run equilibria among the X_t variables.

Testing the significance of the estimated parameters λ in system (3) determines which variables can be considered as (weakly) exogenous (see Urbain, 1992). Specifically, the dependent variables of equations where the coefficients λ are not statistically significant can be treated as exogenous.

Using the Johansen cointegration procedure outlined in the previous section, there is one cointegrating relation in all six company-specific systems. Table 2\(^4\) reports the trace tests and the coefficients of the long-run relationships among the stock prices of the

\(^4\) All models are estimated using the econometric software EViews 4.1.
company, the spread between FP12 and SP, the market index and the exchange rate. Since all variables are log-transformed, we can interpret the coefficients β_i, $i=1,\ldots,4$, as long-run elasticities.

If the estimated value of the parameter β_2 is positive, an increase in the ratio between future and spot prices (i.e. upward expectations of crude oil price) corresponds to an increase in the company market value. Intuitively, we expect this situation to hold for a company which is focused on upstream activities. Conversely, a company whose business is mainly downstream could be penalized by a future increase in oil prices, if it is not able to transfer the rise in oil prices to the price of refined products. This result is linked to the speed of price adjustments to the oil price increase.

Since these oil companies are among the world’s largest enterprises, and their business encompasses both upstream and downstream activities in several energy sectors, the sign of the β_2 coefficient cannot be determined \emph{a priori}. The estimated parameters are positive in the case of CH, EXX and ENI, and negative for BP, ROY and TOT.

Economic theory suggests that the coefficients β_3 (long-run elasticities of the oil stock value with respect to the stock market index) should be positive. The explanation of the estimated negative elasticities for ENI and ROY relies on specific market circumstances. In the case of ENI (see Graph 1), during the whole 1999 and the beginning of 2000 the oil stock value has decreased since it is still affected by the plunge in crude prices which characterizes the 1998 and the beginning of 1999, while the stock market index is
increasing, as it is drawn by speculative stocks. After the end of the high-tech stocks bubble, the market enters a downward trending phase. The ENI stock is probably seen as a “shelter”, and tends to rise, as it is positively influenced by high crude oil prices. In the case of ROY (Graph 1), the negative correlation is more evident in the first part of the sample, where the price of crude oil records its minimum average level.

All the estimated β parameters are negative. Since the transaction currency in oil markets is USD, the stock value of a non-US company is expected to decrease when the dollar appreciates relative to the local currency.

The estimated adjustment coefficients in VECM representations are reported in Table 3. In all the estimated models, the significance of the estimated parameters λ_i, $i=1,...,4$, indicates that one or two variables can be considered to be weakly exogenous in the VECM. In particular, the market index seems to be endogenous for those companies (ENI, ROY, TOT) whose capitalization, compared with the stock market, is larger. The spread variable is found to be endogenous for BP, EXX, CH and ROY. Loading estimates, which correspond to the exchange rate equations, are not significant, confirming its expected exogeneity. The autoregressive structure of the estimated models seems to be statistically adequate, since the null hypothesis of no residual autocorrelation is never rejected (as in the LM tests Table 3). The forecast capacity of the models is verified by the Mean Absolute Percentage Error computed on the last 8 weeks of the sample, reported at the bottom of the table.
5. Conclusion

This paper addresses how to empirically determine the sign and magnitude of different variables affecting oil stock prices. We adopt a company-specific approach, and focus on long-run determinants of the market value of each company using multivariate cointegration techniques and vector error correction models.

The long-run relationships among the stock price of the company, the spread between spot and future oil price, the relevant stock market index and the exchange rate are analyzed. This assessment is particularly important for its environmental implications, since O&G related companies will have to deal with a major issue in the next decade, namely the prospect of policies to contrast global warming. This issue is likely to affect companies’ sales, operating costs, asset values, and shareholder values.

The main results of the paper can be summarized as follows.

First, an increase in the ratio between future and spot prices corresponds to an increase in the company market value. Intuitively, we expect this situation to hold for a company which is focused on upstream activities. Conversely, a company whose business is mainly downstream could be penalized by a future increase in oil prices, if it is not able to transfer the rise in oil prices to the price of refined products. This result is linked to the speed of price adjustments to the oil price increase. Since these oil
companies are among the world’s largest enterprises, and their business encompasses both upstream and downstream activities in several energy sectors, the sign of this effect cannot be determined *a priori*. It is positive in the case of CH, EXX and ENI, and negative for BP, ROY and TOT.

Second, economic theory suggests that the long-run elasticities of the oil stock value with respect to the stock market index should be positive. The explanation of the estimated negative elasticities for ENI and ROY relies on market circumstances which are specific to these companies.

Third, since the transaction currency in oil markets is USD, the stock value of a non-US company decreases when the dollar appreciates relative to the local currency.

Fourth, in all the estimated models the significance of the estimated adjustment coefficients indicates that one or two variables can be considered to be weakly exogenous in the VECM. In particular, the market index seems to be endogenous for those companies (ENI, ROY, TOT) whose capitalization, compared with the stock market, is larger. The spread variable is found to be endogenous for BP, EXX, CH and ROY, whereas the exchange rate is exogenous for all companies.
References

Credit Suisse First Boston (2002), Oil and Gas Primer (http://www.csfb.com/).

<table>
<thead>
<tr>
<th>Series</th>
<th>Lag length</th>
<th>ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (no trend)</td>
<td>0</td>
<td>-2.51</td>
</tr>
<tr>
<td>∆BP (no trend)</td>
<td>0</td>
<td>-17.71**</td>
</tr>
<tr>
<td>CH (trend)</td>
<td>0</td>
<td>-2.93</td>
</tr>
<tr>
<td>∆CH (no trend)</td>
<td>0</td>
<td>-17.92**</td>
</tr>
<tr>
<td>ENI (no trend)</td>
<td>3</td>
<td>-1.71</td>
</tr>
<tr>
<td>∆ENI (no trend)</td>
<td>2</td>
<td>-12.88**</td>
</tr>
<tr>
<td>EXX (no trend)</td>
<td>1</td>
<td>-3.34*</td>
</tr>
<tr>
<td>∆EXX (no trend)</td>
<td>0</td>
<td>-21.09**</td>
</tr>
<tr>
<td>ROY (no trend)</td>
<td>0</td>
<td>-1.61</td>
</tr>
<tr>
<td>∆ROY (no trend)</td>
<td>0</td>
<td>-17.62**</td>
</tr>
<tr>
<td>TOT (no trend)</td>
<td>0</td>
<td>-2.51</td>
</tr>
<tr>
<td>∆TOT (no trend)</td>
<td>0</td>
<td>-18.88**</td>
</tr>
<tr>
<td>USD/EUR (no trend)</td>
<td>0</td>
<td>-1.31</td>
</tr>
<tr>
<td>∆USD/EUR (no trend)</td>
<td>0</td>
<td>-16.86**</td>
</tr>
<tr>
<td>USD/GBP (no trend)</td>
<td>0</td>
<td>-1.83</td>
</tr>
<tr>
<td>∆USD/GBP (no trend)</td>
<td>0</td>
<td>-16.60**</td>
</tr>
<tr>
<td>SPREAD (trend)</td>
<td>0</td>
<td>-2.76</td>
</tr>
<tr>
<td>∆SPREAD (no trend)</td>
<td>0</td>
<td>-16.18**</td>
</tr>
<tr>
<td>AEX (trend)</td>
<td>0</td>
<td>-1.25</td>
</tr>
<tr>
<td>∆AEX (no trend)</td>
<td>0</td>
<td>-15.14**</td>
</tr>
<tr>
<td>FTSE (trend)</td>
<td>0</td>
<td>-2.11</td>
</tr>
<tr>
<td>∆FTSE (no trend)</td>
<td>0</td>
<td>-16.24**</td>
</tr>
<tr>
<td>MIB30 (trend)</td>
<td>0</td>
<td>-1.90</td>
</tr>
<tr>
<td>∆MIB30 (no trend)</td>
<td>0</td>
<td>-14.78**</td>
</tr>
<tr>
<td>DJ (trend)</td>
<td>0</td>
<td>-2.57</td>
</tr>
<tr>
<td>∆DJ (no trend)</td>
<td>0</td>
<td>-17.57**</td>
</tr>
<tr>
<td>CAC40 (trend)</td>
<td>0</td>
<td>-1.43</td>
</tr>
<tr>
<td>∆CAC40 (no trend)</td>
<td>0</td>
<td>-16.00**</td>
</tr>
</tbody>
</table>

Notes to Table 1: all price series are in logs; the data frequency is weekly; the sample period begins on 23 January, 1998 and ends on 4 April, 2003; ADF is the calculated t test for the null hypothesis of a unit root in the series from the Augmented Dickey-Fuller regression. Lag length is the order of the augmentation needed to eliminate any autocorrelation in the residuals of the ADF regression; * (**) indicates significance at 5% (1%) on the basis of the critical values given in MacKinnon (1996).
Table 2. Long-run estimated coefficients and cointegration tests

<table>
<thead>
<tr>
<th>Estimate</th>
<th>BP</th>
<th>CH</th>
<th>ENI</th>
<th>EXX</th>
<th>ROY</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>-2.46</td>
<td>-4.95</td>
<td>7.33</td>
<td>-5.08</td>
<td>7.33</td>
<td>5.27</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.001***</td>
<td>-0.004***</td>
<td>-</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>-0.39*** (0.09)</td>
<td>0.49*** (0.09)</td>
<td>0.22*** (0.11)</td>
<td>0.30*** (0.10)</td>
<td>-0.65*** (0.14)</td>
<td>-0.25*** (0.07)</td>
</tr>
<tr>
<td>(\hat{\beta}_3)</td>
<td>0.55*** (0.08)</td>
<td>1.02*** (0.13)</td>
<td>-0.46** (0.07)</td>
<td>0.94*** (0.08)</td>
<td>-0.47*** (0.17)</td>
<td>-0.05 (0.05)</td>
</tr>
<tr>
<td>(\hat{\beta}_4)</td>
<td>-1.39*** (0.23)</td>
<td>-1.42*** (0.19)</td>
<td>-3.07*** (0.40)</td>
<td>-3.07*** (0.40)</td>
<td>-1.74*** (0.13)</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trace test</td>
<td>27.96***</td>
<td>34.11***</td>
<td>49.51***</td>
<td>47.63***</td>
<td>70.82***</td>
<td>61.21***</td>
</tr>
</tbody>
</table>

Notes to Table 2. \(\hat{\beta}_j \), \(i=0,...,4 \) are the estimated coefficients of the cointegrating equation
\[
STOCK_j = \beta_0 + \beta_1 S + \beta_2 SPREAD_t + \beta_3 MKT_j + \beta_4 ER_j,
\]
associated with the VECM estimated for \(j \)-th company with \(j=1,...,6 \). Standard errors are reported in parentheses; * (**) [***] indicate significance at the 10% (5%) [1%] levels; \(n \) is the lag length of the VECM; the Trace test is the calculated statistic for the presence of at most \(r \) cointegrating relations provided by Johansen (1991). In the BP case, the reported value is relative to the max-eigenvalue test.
Table 3. VECM estimates (loadings) and diagnostic

<table>
<thead>
<tr>
<th>Estimate</th>
<th>BP</th>
<th>CH</th>
<th>ENI</th>
<th>EXX</th>
<th>ROY</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\lambda}_1$</td>
<td>-0.11** (0.04)</td>
<td>-0.10** (0.03)</td>
<td>-0.13** (0.03)</td>
<td>-0.11** (0.04)</td>
<td>-0.09** (0.03)</td>
<td>-0.21** (0.04)</td>
</tr>
<tr>
<td>$\hat{\lambda}_2$</td>
<td>-0.13** (0.04)</td>
<td>0.11** (0.04)</td>
<td>-0.02 (0.03)</td>
<td>0.18 (0.05)</td>
<td>-0.09 (0.03)</td>
<td>-0.08 (0.04)</td>
</tr>
<tr>
<td>$\hat{\lambda}_3$</td>
<td>-0.006 (0.02)</td>
<td>0.02 (0.03)</td>
<td>-0.12** (0.03)</td>
<td>0.02 (0.03)</td>
<td>-0.06** (0.02)</td>
<td>-0.10** (0.03)</td>
</tr>
<tr>
<td>$\hat{\lambda}_4$</td>
<td>-0.004 (0.01)</td>
<td>-</td>
<td>0.005 (0.01)</td>
<td>-</td>
<td>-0.02 (0.01)</td>
<td>-0.01 (0.01)</td>
</tr>
</tbody>
</table>

Diagnostic

<table>
<thead>
<tr>
<th></th>
<th>BP</th>
<th>CH</th>
<th>ENI</th>
<th>EXX</th>
<th>ROY</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>10.76</td>
<td>5.56</td>
<td>20.28</td>
<td>7.24</td>
<td>12.16</td>
<td>19.48</td>
</tr>
<tr>
<td>R^2</td>
<td>0.04</td>
<td>0.05</td>
<td>0.12</td>
<td>0.09</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>$</td>
<td>\hat{\varepsilon}'\hat{\varepsilon}</td>
<td>$</td>
<td>1.66e-13</td>
<td>1.32e-09</td>
<td>4.21e-13</td>
<td>1.14e-09</td>
</tr>
<tr>
<td>MAPE</td>
<td>3.18</td>
<td>0.54</td>
<td>1.25</td>
<td>1.18</td>
<td>0.81</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Notes to Table 3. $\hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_3$ and $\hat{\lambda}_4$ are the estimates of the long-run adjustment coefficients (loadings) of STOCK, SPREAD, MKT and ER, respectively. LM refers to the calculated value of the multivariate Lagrange Multiplier test for serial autocorrelation of order 2 in the residuals: under the null of no serial cointegration, it is distributed as χ^2 with k^2 degrees of freedom (where k = number of endogenous variables); R^2 is the R-squared of the first regression in the VECM representations; $|\hat{\varepsilon}'\hat{\varepsilon}|$ is the determinant of the covariance matrix of the VECM estimated residuals; MAPE is the Mean Absolute Percentage Error computed on the last 8 weeks of the sample; standard errors are reported in parentheses; * (**) indicates significance at the 5% (1%) level.
Graph 1. Oil company stock prices (actual values, logarithmic transformation)
Graph 2. Stock market indexes and spread (actual values, logarithmic transformation)
Graph 3. Exchange rates (actual values, logarithmic scale)
SUST 71.2002 Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon

NRM 32.2002 Robert N. STAVINS: National Environmental Policy During the Clinton Years

KNOW 33.2002 A. SOUBEYRAN and H. STAHN: Do Investments in Specialized Knowledge Lead to Composite Good Industries?

KNOW 34.2002 G. BRUNELLO, M.L. PARISI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect

CLIM 36.2002 T. TIELENBERG (ivi): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

NRM 40.2002 S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices

CLIM 42.2002 C. OHL (i): Inducing Environmental Co-operation by the Design of Emission Permits

CLIM 43.2002 J. EYCKMANS, D. VAN REGERMEER AND V. VAN STEENBERGE (iv): Is Kyoto Fatally Flawed? An Analysis with MacGEM

CLIM 44.2002 A. ANTOCI and S. BORGHESI (ivi): Working Too Much in a Polluted World: A North-South Evolutionary Model

ETA 45.2002 P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (ivi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

ETA 46.2002 Z. YU (ivi): A Theory of Strategic Vertical DF1 and the Missing Pollution-Haven Effect

SUST 47.2002 Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?

SUST 48.2002 Y. H. FARZIN: Sustainability and Hamiltonian Value

KNOW 49.2002 C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

Coalition Theory Network 50.2002 M. SERTEL and A. SLINKO (ivv): Ranking Committees, Words or Multisets

Coalition Theory Network 51.2002 Sergio CURRARINI (liv): Stable Organizations with Externalities

ETA 52.2002 Robert N. STAVINS: Experience with Market-Based Policy Instruments

CLIM 54.2002 Scott BARRETT (lvi): Towards a Better Climate Treaty

ETA 55.2002 Richard G. NEWELL AND Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

SUST 57.2002 Vladimir KOTOV AND Elena NIKITINA (liii): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

VOL 60.2002 Giovanni Di BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS AND Bas Van AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

PRIV 62.2002 Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability

PRIV 63.2002 Federico MUNARI AND Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

PRIV 64.2002 Federico MUNARI AND Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

SUST 65.2002 Orley ASHENFELTER AND Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

CLIM 68.2002 Barbara K. BUCHNER AND Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

CLIM 69.2002 Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

SUST 70.2002 Anna ALBERINI, Patrizia RIGANTI AND Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

SUST 71.2002 Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
Move to Markets? An Empirical Analysis of
Sudeshna GHOSH BANERJEE and Michael C. MUNGER

Andreas LANGE
Jens HORBACH

Alberto CHONG and Florencio LÓPEZ-DE-SILANES

Privatization and Labor Force Restructuring Around the
Haruo IMAI and Mayumi HORIE

Anna BOTTASSO and Alessandro SEMBENELLI

Does Ownership Affect Firms’ Efficiency? Panel Data
Banu BAYRAMOGLU LISE and Wietze LISE:

Vito FRAGNELLI and Maria Erminia MARINA

The Abnormal Returns of UK Privatisations: From Underpricing
Massimo FLORIO and Katiuscia MANZONI

Evidence from the Fixed-Line Telecommunications Sector in Developing Economies
Mohammed OMRAN:

Laurent FRANCKX

Government Debt, Agent Heterogeneity and Wealth Displacement in a Small Open
Alberto R. PETRUCCI

François DEGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO

Selling Company Shares to
Nandini GUPTA

Guillaume GIRMENS and Michel GUILLARD

STARRETT

EHRLICH, Karl-Goran MALER, Nils KAUTSKY, Jane LUBCHENCO, Steve SCHNEIDER and David
Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul
Gianfranco FORTE and Matteo MANERA

Forecasting Volatility in European Stock Markets with Non-linear
Hans KEIDING (lvii): Environmental Effects of Consumption: An Approach Using DEA and Cost Sharing
Scott BARRETT and Robert STAVINS: Increasing Participation and Compliance in International Climate Change
Barbara BHATTACHARYA, Animesh CHATTERJEE and Sonjoy GHOSH: The Political Economy of Emission Tax Design in Environmental Policy

Martin P. GROSSKOPF: Towards a More Appropriate Method for Determining the Optimal Scale of Production

Guillaume FORSTNER and Matteo MANERA: Forecasting Volatility in European Stock Markets with Non-linear

GARCH Models

Geoffrey HEAL: Bundling Biodiversity

Geoffrey HEAL, Brian WALKER, Simon LEVIN, Kenneth ARROW, Partha DASGUPTA, Gretchen DAILY, Paul
EHRlich, Karl-Goran MALER, Nils KAUTSKY, Jane LUBCHENCO, Steve SCHNEIDER and David
STARRT: Genetic Diversity and Interdependent Crop Choices in Agriculture

Geoffrey HEAL: Biodiversity and Globalization

Andreas LANGE: Heterogeneous International Agreements – If per capita emission levels matter
Pierre-André JOUVET and Walid OUESLATI: Tax Reform and Public Spending Trade-offs in an Endogenous

Growth Model with Environmental Externalities

Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data

Bernardo BORTOLOTTI and Alessandro BORTOLOTTI: Tax Reform and Public Spending Trade-offs in an Endogenous

Growth Model with Environmental Externalities

Anna BOTTASSO and Alessandro SEMBENELLI: Does Ownership Affect Firms’ Efficiency? Panel Data

Evidence on Italy

Bernardo BORTOLOTTI, Frank DE JONG, Giovanna NICODANO and Ibolya SCHINDELE: Privatization and
Stock Market Liquidity

Hariuo IMAI and Mayumi HORIE (lvii): Pre-Negotiation for an International Emission Reduction Game

Sudeshna GHOSH BANERJEE and Michael C. MUNGER: Move to Markets? An Empirical Analysis of
Privatisation in Developing Countries

Guillaume GIRMENS and Michel GUILLARD: Privatization and Investment: Crowding-Out Effect vs Financial
Diversification

Alberto CHONG and Florencio LÓPEZ-DE-SILANES: Privatization and Labor Force Restructuring Around the
World

Nandini GUPTA: Partial Privatization and Firm Performance

François DÉGEORGE, Dirk JENTER, Alberto MOEL and Peter TUFANO: Selling Company Shares to
Reluctant Employees: France Telecom’s Experience
PRIV 112.2002 Isaac OTCHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries

PRIV 113.2002 Yannis KATSOUKAKOS and Elissavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization

PRIV 115.2002 D. Teja FLOTTO: A Note on Consumption Correlations and European Financial Integration

PRIV 2.2003 Ilbolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review

PRIV 3.2003 Wietze LISE, Claudia KEMPFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market

CLIM 4.2003 Laura MARSLIANI and Thomas I. RENSTRÔM: Environmental Policy and Capital Movements: The Role of Government Commitment

KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition

ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model

SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

NRM 8.2003 Elisiosos PAPYRakis and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?

CLIM 9.2003 A. CAPARROS, J-C. PEREAU and T. TAIZDAÏF: North-South Climate Change Negotiations: A Sequential Game with Asymmetric Information

KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy

CLIM 11.2003 Efrem CASTELNUOVO and Marzio Galeotti: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis

KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art

KNOW 15.2003 Tucin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (ix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life

KNOW 16.2003 Alexandra BITIESKOVA (lx): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia

KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lx): A Stage Model of Developing an Inclusive Community

KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lx): Managing Diversity in a Glocalizing World

Theory Network 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale

PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions

PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies

PRIV 24.2003 Hannu VARTIAINEN (lx): Auction Design without Commitment

PRIV 26.2003 Christine A. PARLOUR and Uday RAIKAN (lx): Rationing in IPOs

PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBUŁAEV (lx): Multiple Unit Auctions and Short Squeezes

PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts

PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities

ETA 31.2003 Michael FINUS and Bianca RUNDSHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games

KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty

PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?

KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis

ETA 35.2003 Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

GG 36.2003

PRIV 37.2003

CLIM 38.2003

KNOW 39.2003

CTN 40.2003

KNOW 41.2003

KNOW 42.2003

ETA 43.2003

CLIM 44.2003

PRIV 45.2003

SIEV 46.2003

ETA 47.2003

CLIM 48.2003

CLIM 49.2003

CTN 50.2003

CTN 51.2003

CTN 52.2003

CTN 53.2003

CTN 54.2003

CTN 55.2003

CTN 56.2003

CTN 57.2003

KNOW 58.2003

KNOW 59.2003

CTN 60.2003

CLIM 61.2003

GG 62.2003

SIEV 63.2003

CLIM 64.2003

SIEV 65.2003

SIEV 66.2003

SIEV 67.2003

SIEV 68.2003

SIEV 69.2003

CLIM 70.2003

CLIM 71.2003

CLIM 72.2003

CLIM 73.2003

KNOW 74.2003

KNOW 75.2003

KNOW 76.2003
KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities
KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change
ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
IEM 81.2003 Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets
CLIM 82.2003 Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation
CLIM 83.2003 Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?
CLIM 84.2003 Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes
NRM 85.2003 Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIA: How Fast are the Tourism Countries Growing? The cross-country evidence
KNOW 86.2003 Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno
SIEV 87.2003 Lucas BRETSCHGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments
CLIM 89.2003 Marzio GALEOTTI: Economic Development and Environmental Protection
CLIM 90.2003 Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?
CLIM 91.2003 Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries
ETA 93.2003 Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium
CTN 94.2003 Parkash CHANDER: The γ-Core and Coalition Formation
IEM 95.2003 Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components
IEM 96.2003 Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices
(i) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001
(ii) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001
(iii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001
(iv) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Venice, Italy, January 11-12, 2002
(v) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001
(vi) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy “The International Dimension of Environmental Policy”, organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafredda di Maratea, October 6-11, 2001
(vii) This paper was presented at the First Workshop of “CFEWE – Carbon Flows between Eastern and Western Europe”, organised by the Fondazione Eni Enrico Mattei and Zentrum fur Europaische Integrationsforschung (ZEI), Milan, July 5-6, 2001
(viii) This paper was presented at the Workshop on “Game Practice and the Environment”, jointly organised by Università del Piemonte Orientale and Fondazione Eni Enrico Mattei, Alessandria, April 12-13, 2002
(ix) This paper was presented at the ENGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002
(x) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002
(xi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003
(xii) This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>