Lanza, Alessandro; Manera, Matteo; Grasso, Margherita; Giovannini, Massimo

Working Paper

Long-run Models of Oil Stock Prices

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 96.2003

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Lanza, Alessandro; Manera, Matteo; Grasso, Margherita; Giovannini, Massimo (2003) : Long-run Models of Oil Stock Prices, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 96.2003, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/118125

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.EconStor.eu
Long-run Models of Oil Stock Prices
Alessandro Lanza, Matteo Manera, Margherita Grasso and Massimo Giovannini
NOTA DI LAVORO 96.2003

OCTOBER 2003
IEM – International Energy Markets

Alessandro Lanza, Eni S.p.A., Roma, Fondazione Eni Enrico Mattei, Milano and CRENoS, Cagliari, Italy
Matteo Manera, Department of Statistics, University of Milano-Bicocca and Fondazione Eni Enrico Mattei, Milano, Italy
Margherita Grasso, Fondazione Eni Enrico Mattei, Milano, Italy
Massimo Giovannini, Department of Economics, Boston College, USA and Fondazione Eni Enrico Mattei, Milano, Italy

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/web/activ/_wp.html
Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Long-run Models of Oil Stock Prices

Summary

The identification of the forces that drive oil stock prices is extremely important given the size of the Oil&Gas industry and its links with the energy sector and the environment. In the next decade oil companies will have to deal with international policies to contrast climate change. This issue is likely to affect companies’ shareholder values. In this paper we focus on the long-run financial determinants of the stock prices of six major oil companies (Bp, Chevron-Texaco, Eni, Exxon-Mobil, Royal Dutch Shell, Total-Fina-Elf) using multivariate cointegration techniques and vector error correction models. Weekly oil stock prices are analyzed together with the relevant stock market indexes, exchange rates, spot and future oil prices over the period January 1998-April 2003. The empirical results confirm the statistical significance of the major financial variables in explaining the long-run dynamics of oil companies’ stock values.

Keywords: Cointegration, Vector error correction models, Oil companies, Oil stock prices, Hydrocarbon fuels, Energy, Non-renewable resources, Environment

JEL: C32, L71, Q30, Q40

The authors would like to thank Enzo Di Giulio, Marzio Galeotti, Anil Markandya, Michael McAleer and two referees for helpful comments. This study does not necessarily reflect the views of Eni S.p.A..

Address for correspondence:

Matteo Manera
Department of Statistics
University of Milano-Bicocca
Via Bicocca degli Arcimboldi, 8
Building U7 20126
Milano
Italy
Phone: +39-02-64487319
Fax: +39-02-6473312
E-mail: Matteo.Manera@unimib.it
Introduction

The identification of the forces that drive stock prices is a major concern in theory and practice. This assessment is particularly relevant in the Oil & Gas (O&G) sector, given the importance and size of this market, as well as its relationships with the energy sector and its impact on the environment.

O&G is one of the largest industries in the world, involving different companies and business in the different chains of production, distillation and distribution. A recent analysis (Credit Suisse First Boston, 2002) estimates a US$ 770 billion-per-year global O&G commodity market, that is dominated by the Integrated Oil Companies. The physical crude oil market is alone worth US$ 570 billion each year, business not including the vast amount of financial derivatives.

The United Nations Environment Programme (2003) explicitly recognizes the intimate link between the O&G industry and the environment. The extraction, transportation and use of primary fossil fuels (oil and gas in particular) and generation and transmission of electricity affect the environment at the global, regional, and local levels. From a global perspective, the effects of the release of carbon dioxide and other greenhouse gases as emissions from energy systems are crucial for the earth’s climate system. For these reasons, O&G related companies will have to deal with at least a major issue in the next decade, namely the prospect of policies to contrast global warming. This issue is likely to affect companies’ sales, operating costs, asset values, and shareholder
values. In a case study of sixteen leading oil and gas companies, Austin and Sauer (2002a) find that the corporate impact of this issue may be substantial, but it is not yet reflected in stock prices. Moreover, few companies have disclosed the degree to which they are financially exposed to this issue, and no company has attempted to quantify the financial implications for its shareholders. Although extremely interesting, the results are scenario-specific (see Austin and Sauer, 2002b, for details on this methodology). In particular, the scenarios used to analyze the financial implications of the climate change issue range from no action to widespread adoption of the Kyoto Protocol, which implies potential impacts varying from a five percent loss in shareholder value to a slight gain. As admitted by the authors, the large degree of subjectivity implicit in the assumptions underlying those scenarios is very likely to affect the conclusions.

In this paper we follow a classical time series approach. However, given the lack of reliable time series data on climate change effects, our analysis focuses on the financial determinants of oil stock prices. From this viewpoint, our paper can be considered as the first important step towards the econometric modelling of the joint effects of economic and environmental variables on the long-run dynamics of oil stock prices.

Ideally, the universe of Integrated Oil Companies includes the Super Majors, Regional Companies (US, Europe) and National Companies. An issue which seems to be particularly relevant in examining the behaviour of the share value of a single oil company is the selection of the different variables that could affect its dynamics. In this respect, we analyze time series data on stock prices of several companies of different
business volumes and targeted markets and from several countries, together with the oil prices, relevant stock market indexes and exchange rates.

The typical approach to measuring the exposure of a company to different risk factors is to estimate a single regression using changes of market share as dependent variables and changes in the factors of interest as independent variables, eventually controlling for other effects. Conversely, in this paper we focus on the long-run determinants of the market value of each company using multivariate cointegration techniques and vector error correction models (VECM).

The paper is organized as follows. Section 2 contains a brief review of the previous works on risk factors in oil returns. The data set is described in Section 3. Section 4 is dedicated to modeling the determinants of long-run dynamics in the value of oil companies. Section 5 concludes.

2. Previous works

Very few attempts have been made to analyze the factors affecting oil company stocks and their relations. Some deal with the time series properties of the US exchange rate and oil prices, while others refer specifically to the exposure of firms to various risk factors. These studies examine several companies and periods, taking into consideration different risk factors, and focus on the short run impacts or long run exposure.
The sensitivity of London quoted oil company stocks to oil prices is investigated by Manning (1991). The estimation period ranges from January 1986 to June 1988 and the frequency of the data is weekly. A cointegration procedure is adopted to assess market efficiency. The absence of cointegrating relations between oil company stock values, market index values and oil prices is established, in accordance with the efficient market hypothesis. The estimated short-run dynamic models support the hypothesis of positive oil price effects on the returns of oil companies, and the magnitude of the estimated coefficients is larger for the firms involved in exploration than for integrated oil companies. Some evidence of lagged effects of oil price changes is found. However, significant lagged terms are viewed as reflecting transaction costs and the peculiarities of the oil market more than market inefficiency.

The existence of a possible link between oil prices and the US exchange rate is examined by Amano and van Norden (1998). Monthly data for the period 1972(2)-1993(1) and a VECM approach are considered, and the two non-stationary variables are shown to be cointegrated. Moreover, the long-run level of the exchange rate seems to adjust to the price of oil, but not vice-versa. Specifically, a one percent increase in the commodity price would lead to a 0.51 percent appreciation of the dollar in the long run.

Sadorsky (2001) examines Canadian oil and gas industry stock returns over the period 1983(4)-1999(4). Using monthly data and a multifactor market model, which includes returns on market index, oil price, interest rate and exchange rate, he finds that stock price returns are sensitive to all these factors. Stock price returns show a positive
relationship with the market and oil price factors, and a negative relationship with the interest rate and exchange rate returns.

In the context of the literature suggesting that exchange rates are non-stationary and affected by oil price changes, Click (2001) considers whether there is long run exposure of oil companies to exchange rate and oil price changes. Data are monthly and cover the period 1979(7)-1999(7). Using the nine largest oil companies (as for 1999) and the cointegration technique, a multi-factor model containing the S&P 500 index, exchange rates and oil prices is found to dominate the single-factor CAPM model in eight of nine cases. Furthermore, it is shown that models should include exchange rates and oil prices simultaneously in order to avoid omitted variable bias.

To summarize, Manning (1991) considers weekly data for the period 1986-1988, verifies the absence of cointegrating relations between oil stocks, oil prices and the market index, and finds positive short run effects of oil price changes on stocks of London-quoted oil companies. The two more recent contributions use monthly data for a period that includes the 80s and 90s. Sadorsky (2001) employs a short run dynamic model and finds significant impacts of the market index, oil prices, interest rates and exchange rates on Canadian oil companies. Click (2001) commences with the non-stationarity of exchange rates established by Amano and van Norden (1998), and uses a VECM approach. His study seems to be unique in investigating long run exposures of the world’s major (as for 1999) oil companies.
3. Data description

With the aim of understanding the determinants of oil company stock price variations, as well as their short and long-run behavior, we analyze time series data on stock prices of several oil companies together with the relevant stock market indexes, exchange rates and crude oil prices.

In order to get an overview of the oil industry we investigate companies from several countries and with different business volumes and targeted markets (global or regional), namely: Bp (BP, UK), Chevron-Texaco (CH, US), Eni (ENI, Italy), Exxon-Mobil (EXX, US), Royal Dutch Shell (ROY, The Netherlands/UK), and Total-Fina-Elf (TOT, France). These series (STOCK) are closing prices quoted in the stock market of the country of origin of each company (see Graph 1).\footnote{For ROY, we have considered the Dutch market.} For the selected Oil Companies the relevant stock indexes (MKT) are: FTSE (UK), Dow Jones (DJ, US), MIB30 (Italy), AEX (The Netherlands), and CAC40 (France) (see Graph 2).

Moreover, given the presence of companies from UK and countries belonging to the European Monetary Union, we consider the closing quotations of the exchange rates (ER)...
of the US dollar against the British pound and the Euro (USD/GBP and USD/EUR) (see Graph 2).²

The selected crude oil prices are dated Brent for the spot series (SP) and futures Brent prices (FP) with three-month (FP3) and twelve-month (FP12) maturities (see Graph 3).³

The sample period ranges from 23 January 1998 to 4 April 2003, and the frequency of observations is weekly. All prices are log-transformed and expressed in local currencies, with the only exception of crude prices, which are denominated in USD per barrel.

4. Modelling the determinants of long-run dynamics in oil company stock values

We consider each company separately and analyze, with a cointegrated VAR model (VECM), the existence of long-run relations and short-run effects among the market value of the company, the difference between FP12 and SP (SPREAD), and the relevant stock market index and exchange rate, the latter being only for non-US companies.

Augmented Dickey-Fuller (ADF) statistics are used to investigate the time series properties of the data. All variables are integrated of order one, or I(1), most of them with intercept but no trend (see Table 1). Although individually non-stationary, these series

² Reuters is the main source for Company stock values, market indexes and exchange rates

³ Spot and futures prices of Brent are from Platt’s. FP12 have been used in the long-run analysis, while FP3 have been selected in the short-run model. Considering that using different oil marker, such as WTI for the US companies does not affect the overall results a common oil price market has been adopted.
may still form one or more linear combinations which are stationary, or I(0). In this case, there are one or more long-run equilibrium relationships among the variables entering the VAR specification, which are said to be cointegrated.

Following Johansen and Juselius (1990), the starting point of our cointegration analysis is a VAR specification for the \(nx1 \) vector of I(1) variables \(X_t \):

\[
X_t = \mu_0 + \mu_t t + A_1 X_{t-1} + \ldots + A_p X_{t-p} + \epsilon_t
\]

where \(\mu_0 \) is a \(nx1 \) vector of constants, \(t \) is a deterministic trend, \(\mu_t \) is a \(nx1 \) vector of deterministic linear trend coefficients, and \(\epsilon_t \) is a \(nx1 \) i.i.d. Gaussian error vector.

If we write equation (1) as:

\[
\Delta X_t = \mu_0 + \mu_t t + \Pi X_{t-p} + \Gamma_1 \Delta X_{t-1} + \ldots + \Gamma_{p-1} \Delta X_{t-p+1} + \epsilon_t
\]

where \(\Gamma_i = -(I_n - A_i - \ldots - A_p) \), \(i = 1, \ldots, p-1 \), and \(\Pi = -(I_n - A_1 - \ldots - A_p) \), we obtain the VECM representation of the original VAR system (see, among others, Charemza and Deadman, 1992).

If cointegration among the variables \(X_t \) is present, model (2) includes both long-run and short-run stationary components. The maximum likelihood method proposed by Johansen (1990) tests the presence of cointegration at the system’s level by determining
the rank of the long-run matrix, \(\Pi \). If \(\text{rank}(\Pi) = r \), with \(0 < r < n \), the matrix \(\Pi \) can be decomposed as \(\Pi = \lambda \beta' \), where \(\lambda \) is an \(nxr \) matrix of adjustment parameters and \(\beta \) is an \(nxr \) matrix containing the \(r \) cointegrating relations among the variables in \(X_t \). The Johansen approach enables estimation of the parameters \(\beta \), and to test for the number of I(0) linear combinations among the \(X_t \) variables.

With the number \(r \) of cointegrating relationships determined, the following version of model (2) can be estimated by OLS:

\[
\Delta X_t = \mu_0 + \mu_t t + \lambda ecm_{t-p} + \Gamma_1 \Delta X_{t-1} + \ldots + \Gamma_{p-1} \Delta X_{t-p+1} + \varepsilon_t
\]

(3)

where \(ecm_{t-p} \equiv \hat{\beta}' X_{t-p} \) is the \(rx1 \) vector of long-run equilibria among the \(X_t \) variables.

Testing the significance of the estimated parameters \(\lambda \) in system (3) determines which variables can be considered as (weakly) exogenous (see Urbain, 1992). Specifically, the dependent variables of equations where the coefficients \(\lambda \) are not statistically significant can be treated as exogenous.

Using the Johansen cointegration procedure outlined in the previous section, there is one cointegrating relation in all six company-specific systems. Table 2\(^4\) reports the trace tests and the coefficients of the long-run relationships among the stock prices of the

\(^4\) All models are estimated using the econometric software EViews 4.1.
company, the spread between FP12 and SP, the market index and the exchange rate. Since all variables are log-transformed, we can interpret the coefficients β_i, $i=1,\ldots,4$, as long-run elasticities.

If the estimated value of the parameter β_2 is positive, an increase in the ratio between future and spot prices (i.e. upward expectations of crude oil price) corresponds to an increase in the company market value. Intuitively, we expect this situation to hold for a company which is focused on upstream activities. Conversely, a company whose business is mainly downstream could be penalized by a future increase in oil prices, if it is not able to transfer the rise in oil prices to the price of refined products. This result is linked to the speed of price adjustments to the oil price increase.

Since these oil companies are among the world’s largest enterprises, and their business encompasses both upstream and downstream activities in several energy sectors, the sign of the β_2 coefficient cannot be determined a priori. The estimated parameters are positive in the case of CH, EXX and ENI, and negative for BP, ROY and TOT.

Economic theory suggests that the coefficients β_3 (long-run elasticities of the oil stock value with respect to the stock market index) should be positive. The explanation of the estimated negative elasticities for ENI and ROY relies on specific market circumstances. In the case of ENI (see Graph 1), during the whole 1999 and the beginning of 2000 the oil stock value has decreased since it is still affected by the plunge in crude prices which characterizes the 1998 and the beginning of 1999, while the stock market index is
increasing, as it is drawn by speculative stocks. After the end of the high-tech stocks bubble, the market enters a downward trending phase. The ENI stock is probably seen as a “shelter”, and tends to rise, as it is positively influenced by high crude oil prices. In the case of ROY (Graph 1), the negative correlation is more evident in the first part of the sample, where the price of crude oil records its minimum average level.

All the estimated β_i parameters are negative. Since the transaction currency in oil markets is USD, the stock value of a non-US company is expected to decrease when the dollar appreciates relative to the local currency.

The estimated adjustment coefficients in VECM representations are reported in Table 3. In all the estimated models, the significance of the estimated parameters λ_i, $i=1,...,4$, indicates that one or two variables can be considered to be weakly exogenous in the VECM. In particular, the market index seems to be endogenous for those companies (ENI, ROY, TOT) whose capitalization, compared with the stock market, is larger. The spread variable is found to be endogenous for BP, EXX, CH and ROY. Loading estimates, which correspond to the exchange rate equations, are not significant, confirming its expected exogeneity. The autoregressive structure of the estimated models seems to be statistically adequate, since the null hypothesis of no residual autocorrelation is never rejected (as in the LM tests Table 3). The forecast capacity of the models is verified by the Mean Absolute Percentage Error computed on the last 8 weeks of the sample, reported at the bottom of the table.
5. Conclusion

This paper addresses how to empirically determine the sign and magnitude of different variables affecting oil stock prices. We adopt a company-specific approach, and focus on long-run determinants of the market value of each company using multivariate cointegration techniques and vector error correction models.

The long-run relationships among the stock price of the company, the spread between spot and future oil price, the relevant stock market index and the exchange rate are analyzed. This assessment is particularly important for its environmental implications, since O&G related companies will have to deal with a major issue in the next decade, namely the prospect of policies to contrast global warming. This issue is likely to affect companies’ sales, operating costs, asset values, and shareholder values.

The main results of the paper can be summarized as follows.

First, an increase in the ratio between future and spot prices corresponds to an increase in the company market value. Intuitively, we expect this situation to hold for a company which is focused on upstream activities. Conversely, a company whose business is mainly downstream could be penalized by a future increase in oil prices, if it is not able to transfer the rise in oil prices to the price of refined products. This result is linked to the speed of price adjustments to the oil price increase. Since these oil
companies are among the world’s largest enterprises, and their business encompasses both upstream and downstream activities in several energy sectors, the sign of this effect cannot be determined \textit{a priori}. It is positive in the case of CH, EXX and ENI, and negative for BP, ROY and TOT.

Second, economic theory suggests that the long-run elasticities of the oil stock value with respect to the stock market index should be positive. The explanation of the estimated negative elasticities for ENI and ROY relies on market circumstances which are specific to these companies.

Third, since the transaction currency in oil markets is USD, the stock value of a non-US company decreases when the dollar appreciates relative to the local currency.

Fourth, in all the estimated models the significance of the estimated adjustment coefficients indicates that one or two variables can be considered to be weakly exogenous in the VECM. In particular, the market index seems to be endogenous for those companies (ENI, ROY, TOT) whose capitalization, compared with the stock market, is larger. The spread variable is found to be endogenous for BP, EXX, CH and ROY, whereas the exchange rate is exogenous for all companies.
References

Credit Suisse First Boston (2002), *Oil and Gas Primer* (http://www.csfb.com/).

Table 1. ADF unit root tests

<table>
<thead>
<tr>
<th>Series</th>
<th>Lag length</th>
<th>ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (no trend)</td>
<td>0</td>
<td>-2.51</td>
</tr>
<tr>
<td>∆BP (no trend)</td>
<td>0</td>
<td>-17.71**</td>
</tr>
<tr>
<td>CH (trend)</td>
<td>0</td>
<td>-2.93</td>
</tr>
<tr>
<td>∆CH (no trend)</td>
<td>0</td>
<td>-17.92**</td>
</tr>
<tr>
<td>ENI (no trend)</td>
<td>3</td>
<td>-1.71</td>
</tr>
<tr>
<td>∆ENI (no trend)</td>
<td>2</td>
<td>-12.88**</td>
</tr>
<tr>
<td>EXX (no trend)</td>
<td>1</td>
<td>-3.34*</td>
</tr>
<tr>
<td>∆EXX (no trend)</td>
<td>0</td>
<td>-21.09**</td>
</tr>
<tr>
<td>ROY (no trend)</td>
<td>0</td>
<td>-1.61</td>
</tr>
<tr>
<td>∆ROY (no trend)</td>
<td>0</td>
<td>-17.62**</td>
</tr>
<tr>
<td>TOT (no trend)</td>
<td>0</td>
<td>-2.51</td>
</tr>
<tr>
<td>∆TOT (no trend)</td>
<td>0</td>
<td>-18.88**</td>
</tr>
<tr>
<td>USD/EUR (no trend)</td>
<td>0</td>
<td>-1.31</td>
</tr>
<tr>
<td>∆USD/EUR (no trend)</td>
<td>0</td>
<td>-16.86**</td>
</tr>
<tr>
<td>USD/GBP (no trend)</td>
<td>0</td>
<td>-1.83</td>
</tr>
<tr>
<td>∆USD/GBP (no trend)</td>
<td>0</td>
<td>-16.60**</td>
</tr>
<tr>
<td>SPREAD (trend)</td>
<td>0</td>
<td>-2.76</td>
</tr>
<tr>
<td>∆SPREAD (no trend)</td>
<td>0</td>
<td>-16.18**</td>
</tr>
<tr>
<td>AEX (trend)</td>
<td>0</td>
<td>-1.25</td>
</tr>
<tr>
<td>∆AEX (no trend)</td>
<td>0</td>
<td>-15.14**</td>
</tr>
<tr>
<td>FTSE (trend)</td>
<td>0</td>
<td>-2.11</td>
</tr>
<tr>
<td>∆FTSE (no trend)</td>
<td>0</td>
<td>-16.24**</td>
</tr>
<tr>
<td>MIB30 (trend)</td>
<td>0</td>
<td>-1.90</td>
</tr>
<tr>
<td>∆MIB30 (no trend)</td>
<td>0</td>
<td>-14.78**</td>
</tr>
<tr>
<td>DJ (trend)</td>
<td>0</td>
<td>-2.57</td>
</tr>
<tr>
<td>∆DJ (no trend)</td>
<td>0</td>
<td>-17.57**</td>
</tr>
<tr>
<td>CAC40 (trend)</td>
<td>0</td>
<td>-1.43</td>
</tr>
<tr>
<td>∆CAC40 (no trend)</td>
<td>0</td>
<td>-16.00**</td>
</tr>
</tbody>
</table>

Notes to Table 1: all price series are in logs; the data frequency is weekly; the sample period begins on 23 January, 1998 and ends on 4 April, 2003; ADF is the calculated t test for the null hypothesis of a unit root in the series from the Augmented Dickey-Fuller regression. Lag length is the order of the augmentation needed to eliminate any autocorrelation in the residuals of the ADF regression; * (**) indicates significance at 5% (1%) on the basis of the critical values given in MacKinnon (1996).
Table 2. Long-run estimated coefficients and cointegration tests

<table>
<thead>
<tr>
<th>Estimate</th>
<th>BP</th>
<th>CH</th>
<th>ENI</th>
<th>EXX</th>
<th>ROY</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>-2.46</td>
<td>-4.95</td>
<td>7.33</td>
<td>-5.08</td>
<td>7.33</td>
<td>5.27</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.001***</td>
<td>-0.004***</td>
<td>-</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>-0.39***</td>
<td>0.49***</td>
<td>0.22 (0.11)</td>
<td>0.30***</td>
<td>-0.65***</td>
<td>-0.25***</td>
</tr>
<tr>
<td>$\hat{\beta}_3$</td>
<td>0.55***</td>
<td>1.02***</td>
<td>-0.46**</td>
<td>0.94***</td>
<td>-0.47***</td>
<td>-0.05</td>
</tr>
<tr>
<td>$\hat{\beta}_4$</td>
<td>-1.39***</td>
<td>-1.42***</td>
<td>-</td>
<td>-3.07***</td>
<td>-1.74***</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trace test</td>
<td>27.96***</td>
<td>34.11***</td>
<td>49.51***</td>
<td>47.63***</td>
<td>70.82***</td>
<td>61.21***</td>
</tr>
</tbody>
</table>

Notes to Table 2. $\hat{\beta}_i$, $i=0,..,4$ are the estimated coefficients of the cointegrating equation $\text{STOCK}_t^j = \hat{\beta}_0 + \hat{\beta}_1 t + \hat{\beta}_2 \text{SPREAD}_t^j + \hat{\beta}_3 \text{MKT}_t^j + \hat{\beta}_4 \text{ER}_t^j$, associated with the VECM estimated for j-th company with $j=1,..,6$. Standard errors are reported in parentheses; * (**) [***] indicate significance at the 10% (5%) [1%] levels; n is the lag length of the VECM; the Trace test is the calculated statistic for the presence of at most r cointegrating relations provided by Johansen (1991). In the BP case, the reported value is relative to the max-eigenvalue test.
Table 3. VECM estimates (loadings) and diagnostic

<table>
<thead>
<tr>
<th>Estimate</th>
<th>BP</th>
<th>CH</th>
<th>ENI</th>
<th>EXX</th>
<th>ROY</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\lambda}_1$</td>
<td>-0.11^{**} (0.04)</td>
<td>-0.10^{**} (0.03)</td>
<td>-0.13^{**} (0.03)</td>
<td>-0.11^{**} (0.04)</td>
<td>-0.09^{**} (0.03)</td>
<td>-0.21^{**} (0.04)</td>
</tr>
<tr>
<td>$\hat{\lambda}_2$</td>
<td>-0.13^{**} (0.04)</td>
<td>0.11^{**} (0.04)</td>
<td>-0.02 (0.03)</td>
<td>0.18 (0.05)</td>
<td>-0.09 (0.03)</td>
<td>-0.08 (0.04)</td>
</tr>
<tr>
<td>$\hat{\lambda}_3$</td>
<td>-0.006 (0.02)</td>
<td>0.02 (0.03)</td>
<td>-0.12^{**} (0.03)</td>
<td>0.02 (0.03)</td>
<td>-0.06^{**} (0.02)</td>
<td>-0.10^{**} (0.03)</td>
</tr>
<tr>
<td>$\hat{\lambda}_4$</td>
<td>-0.004 (0.01)</td>
<td>$-$</td>
<td>0.005 (0.01)</td>
<td>$-$</td>
<td>-0.02 (0.01)</td>
<td>-0.01 (0.01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>BP</th>
<th>CH</th>
<th>ENI</th>
<th>EXX</th>
<th>ROY</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>10.76</td>
<td>5.56</td>
<td>20.28</td>
<td>7.24</td>
<td>12.16</td>
<td>19.48</td>
</tr>
<tr>
<td>R^2</td>
<td>0.04</td>
<td>0.05</td>
<td>0.12</td>
<td>0.09</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>$</td>
<td>\hat{\epsilon}'\hat{\epsilon}</td>
<td>$</td>
<td>1.66e-13</td>
<td>1.32e-09</td>
<td>4.21e-13</td>
<td>1.14e-09</td>
</tr>
<tr>
<td>MAPE</td>
<td>3.18</td>
<td>0.54</td>
<td>1.25</td>
<td>1.18</td>
<td>0.81</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Notes to Table 3. $\hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_3$ and $\hat{\lambda}_4$ are the estimates of the long-run adjustment coefficients (loadings) of STOCK, SPREAD, MKT and ER, respectively. LM refers to the calculated value of the multivariate Lagrange Multiplier test for serial autocorrelation of order 2 in the residuals: under the null of no serial cointegration, it is distributed as χ^2 with k degrees of freedom (where $k=$ number of endogenous variables); R^2 is the R-squared of the first regression in the VECM representations; $|\hat{\epsilon}'\hat{\epsilon}|$ is the determinant of the covariance matrix of the VECM estimated residuals; MAPE is the Mean Absolute Percentage Error computed on the last 8 weeks of the sample; standard errors are reported in parentheses; * (**) indicates significance at the 5% (1%) level.
Graph 1. Oil company stock prices (actual values, logarithmic transformation)
Graph 2. Stock market indexes and spread (actual values, logarithmic transformation)
Graph 3. Exchange rates (actual values, logarithmic scale)
NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series
Our working papers are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
http://papers.ssrn.com

SUST 1.2002 K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa
ETA 2.2002 Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?
CLIM 4.2002 Andreas LÖSCHEL: Technological Change in Economic Models of Environmental Policy: A Survey
VOL 5.2002 Carlo CARRARO and Carmen MARCHIORI: Stable Coalitions
KNOW 8.2002 Alain DESDOIGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus
NRM 9.2002 Giuseppe DI VITA: Renewable Resources and Waste Recycling
KNOW 10.2002 Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries
ETA 11.2002 Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE: Endogenous Fluctuations and the Role of Monetary Policy
KNOW 12.2002 Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?
NRM 13.2002 Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model
CLIM 14.2002 Philippe QUÉRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector
CLIM 16.2002 Francesco RICCI (l): Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity
ETA 17.2002 Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy
Coalition Theory Network 18.2002 László Á. KÓCZY (liv): The Core in the Presence of Externalities
NRM 21.2002 Fausto CAVALLARO and Luigi CIRAOLI: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems
CLIM 22.2002 Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation
CLIM 23.2002 Andreas LÖSCHEL and ZhongXIAN ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech
ETA 24.2002 Marzio GALEOTTI, Louis J. MACCINI and Fabio SCHIANTARELLI: Inventories, Employment and Hours
ETA 26.2002 Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change
SUST 27.2002 Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans
SUST 28.2002 The ANSEA Network: Towards An Analytical Strategic Environmental Assessment
KNOW 29.2002 Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence
ETA 30.2002 Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies
SUST 71.2002 Carlo GIUPPONI and Paolo ROSATO: Multi-Criteria Analysis and Decision-Support for Water Management at the Catchment Scale: An Application to Diffuse Pollution Control in the Venice Lagoon

NRM 32.2002 Robert N. STAVINS: National Environmental Policy During the Clinton Years

KNOW 33.2002 A. SOUBEYRAN and H. STAHN: Do Investments in Specialized Knowledge Lead to Composite Good Industries?

KNOW 34.2002 G. BRUNELLO, M.L. PARISI and Daniela SONEDDA: Labor Taxes, Wage Setting and the Relative Wage Effect

CLIM 36.2002 T.TIETENBERG (iv): The Tradable Permits Approach to Protecting the Commons: What Have We Learned?

NRM 40.2002 S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices

CLIM 42.2002 C. OHL (ivi): Inducing Environmental Co-operation by the Design of Emission Permits

CLIM 43.2002 J. EYCKMANS, D. VAN REEGEMORTER and V. VAN STEENBERGHE (ivi): Is Kyoto Fatally Flawed? An Analysis with MacGEM

CLIM 44.2002 A. ANTOCI and S. BORGHESI (ivi): Working Too Much in a Polluted World: A North-South Evolutionary Model

ETA 45.2002 P. G. FREDRIKSSON, Johan A. LIST and Daniel MILLIMET (ivi): Chasing the Smokestack: Strategic Policymaking with Multiple Instruments

ETA 46.2002 Z. YU (ivi): A Theory of Strategic Vertical DFI and the Missing Pollution-Haven Effect

SUST 47.2002 Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?

SUST 48.2002 Y. H. FARZIN: Sustainability and Hamiltonian Value

KNOW 49.2002 C. PIAG and M. VIVARELLI: Cooperation in R&D and Sample Selection

Coalition Theory Network 50.2002 M. SERTEL and A. SLINKO (ivi): Ranking Committees, Words or Multisets

Coalition Theory Network 51.2002 Sergio CURRARINI (ivi): Stable Organizations with Externalities

ETA 52.2002 Robert N. STAVINS: Experience with Market-Based Policy Instruments

CLIM 54.2002 Scott BARRETT (iii): Towards a Better Climate Treaty

ETA 55.2002 Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

SUST 56.2002 Paolo ROSATO and Edi DEFRANCESCO: Individual Travel Cost Method and Flow Fixed Costs

SUST 57.2002 Vladimir KOTOV and Elena NIKITINA (ivi): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

VOL 60.2002 Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers’ Endogenous Coalitions Formation in the European Economic and Monetary Union

PRIV 62.2002 Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability

PRIV 63.2002 Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

PRIV 64.2002 Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

SUST 65.2002 Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

CLIM 68.2002 Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

CLIM 69.2002 Philippe QUIRION: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

SUST 70.2002 Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

SUST 71.2002 Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
PRIV 112.2002 Isaac OTHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries
PRIV 113.2002 Yannis KATSoulakos and Elissavet LIKoyanni: Fiscal and Other Macroeconomic Effects of Privatization
PRIV 115.2002 D. Teja Flotho: A Note on Consumption Correlations and European Financial Integration
PRIV 2.2003 Ilyna SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
KNOW 5.2003 Reyer Gerlagh: Induced Technological Change under Technological Competition
ETA 6.2003 Efrem Castelnovo: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna Alberini, Alberto Longo, Stefania Tonin, Francesco Trombetta and Margherita Turvani: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Elissios Papyrakis and Reyer Gerlagh: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. Caparrós, J.-C. Peraeu and T. Tazdaït: North-South Climate Change Negotiations; a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio Brunello and Daniele Checchi: School Quality and Family Background in Italy
CLIM 11.2003 Efrem Castelnovo and Marzio Galeotti: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003 Carole MAIGNAN, Gianmarco Ottaviano and Dino Pinelli (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 15.2003 Tun Nayan LEVENT, Enno Masurel and Peter Nijkamp (ix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra Bitusikova (ix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 18.2003 Selma van Londen and Arie de Rijfter (ix): Managing Diversity in a Glocalizing World
PRIV 22.2003 Marco LiCalzi and Alessandro Pavan (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David Ettinger (lx): Bidding among Friends and Enemies
PRIV 24.2003 Hannu Vartiainen (lx): Auction Design without Commitment
PRIV 26.2003 Christine A. ParLOUR and Uday RJayran (lx): Rationing in IPOs
PRIV 27.2003 Kjell G. Nyborg and Ilya A. StreBulaev (lx): Multiple Unit Auctions and Short Squeezes
ETA 31.2003 Michael Finus and Bianca Rundshagen: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele Moretto: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe Quirion: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe Meda, Claudio Piga and Donald Siegel: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003 Alessandra Del Boca, Marzo Galeotti and Paola Rota: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

Narjes BOURAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers

Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

Carlo CARRARO and Carmen MARCHIORI: Globalisation and Migration

Ana MAULEON and Vincent VANNETELBOSCH: Multicultural Environment: Saint-Petersburg's Case

Matthew O. JACKSON: The Double Dividend Hypothesis of Environmental Taxes: A Survey

Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing

Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing

Lori SNYDER, Robert STAVINS and Alexander F. WAGNER: Private Options to Use Public Goods. Exploiting Revealed Preferences to Estimate Environmental Benefits

László A. KOczy and Luc LAUWERS: Allocation Rules for Network Games

Ana MAULEON and Vincent VANNETELBOSCH: Farsightedness and Cautiousness in Coalition Formation

Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation

Taiji FURUSAWA and Hideo KONISHI (lx): Free Trade Networks

Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization

Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements

Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change

Ronnie SCHÖB: The Beginning of Organic Fish Farming in Italy

Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game

Alberto PETRUCCI: Taxing Land Rent in an Open Economy

Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of International Environmental Agreements

Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment

Paulo A.L.D. NUNES, Luca ROSSETTO, Arianne DE BLAEIJ: Monetary Value Assessment of Clam Fishing Management Practices in the Venice Lagoon: Results from a Stated Choice Exercise

ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target

Ercole SORI (lx): Mapping Diversity in Social History

Liliajana DERU SIMIC (lx): What is Specific about Art/Cultural Projects?

Natalya V. TARANOVA (lx): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

Kristine CRANE (lx): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

Kazuma MATOBA (lx): Gloal Dialogue- Transformation through Transcultural Communication

Catarina REIS OLIVEIRA (lx): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

Sandra WALLMAN (lx): The Diversity of Diversity - towards a typology of urban systems
<table>
<thead>
<tr>
<th>Volume</th>
<th>Year</th>
<th>Authors and Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNOW</td>
<td>77</td>
<td>Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities</td>
</tr>
<tr>
<td>KNOW</td>
<td>78</td>
<td>Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas</td>
</tr>
<tr>
<td>KNOW</td>
<td>79</td>
<td>Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change</td>
</tr>
<tr>
<td>ETA</td>
<td>80</td>
<td>Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation</td>
</tr>
<tr>
<td>IEM</td>
<td>81</td>
<td>Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets</td>
</tr>
<tr>
<td>CLIM</td>
<td>82</td>
<td>Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation</td>
</tr>
<tr>
<td>CLIM</td>
<td>83</td>
<td>Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?</td>
</tr>
<tr>
<td>CLIM</td>
<td>84</td>
<td>Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes</td>
</tr>
<tr>
<td>NRM</td>
<td>85</td>
<td>Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence</td>
</tr>
<tr>
<td>KNOW</td>
<td>86</td>
<td>Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno</td>
</tr>
<tr>
<td>SIEV</td>
<td>87</td>
<td>Lucas BRETSCHGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments</td>
</tr>
<tr>
<td>CLIM</td>
<td>88</td>
<td>Johan EYCKMANS and Michael FINUS: New Roads to International Environmental Agreements: The Case of Global Warming</td>
</tr>
<tr>
<td>CLIM</td>
<td>89</td>
<td>Marzio GALEOTTI: Economic Development and Environmental Protection</td>
</tr>
<tr>
<td>CLIM</td>
<td>90</td>
<td>Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?</td>
</tr>
<tr>
<td>CLIM</td>
<td>91</td>
<td>Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries</td>
</tr>
<tr>
<td>IEM</td>
<td>92</td>
<td>A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia</td>
</tr>
<tr>
<td>ETA</td>
<td>93</td>
<td>Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium</td>
</tr>
<tr>
<td>CTN</td>
<td>94</td>
<td>Parkash CHANDER: The γ-Core and Coalition Formation</td>
</tr>
<tr>
<td>IEM</td>
<td>95</td>
<td>Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components</td>
</tr>
<tr>
<td>IEM</td>
<td>96</td>
<td>Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices</td>
</tr>
</tbody>
</table>
(i) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001

(ii) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001

(iii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001

(iv) This paper was presented at the International Conference on “Climate Policy – Do We Need a New Approach?!”, jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001

(vi) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Venice, Italy, January 11-12, 2002

(vi) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001

(vii) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy “The International Dimension of Environmental Policy”, organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafredda di Maratea, October 6-11, 2001

(viii) This paper was presented at the First Workshop of “CFEWE – Carbon Flows between Eastern and Western Europe”, organised by the Fondazione Eni Enrico Mattei and Zentrum für Europäische Integrationsforschung (ZEI), Milan, July 5-6, 2001

(ix) This paper was presented at the Workshop on “Game Practice and the Environment”, jointly organised by Università del Piemonte Orientale and Fondazione Eni Enrico Mattei, Alessandria, April 12-13, 2002

(lx) This paper was presented at the ENGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002

(lx) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002

(lxi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003

(lxii) This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>