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1. Introduction 

The game theoretical analysis of the formation and stability of international environmental 

agreements (IEAs) has become an important branch in the environmental economics literature 

over the last two decades. Roughly speaking, two approaches can be distinguished: repeated 

games and coalition games.1 Repeated games analyze whether compliance with treaty 

obligations can be enforced in the long run with credible threats of punishment, invoking 

equilibrium concepts as for instance subgame perfect and renegotiation-proof equilibrium 

(Barrett 1994a, b, 1999, 2000, Endres/Finus 1998, Finus/Rundshagen 1998a, b, Finus/Tjotta 

2002, Mäler 1994 and Stähler 1996). Coalition games analyze membership in IEAs, applying 

concepts of cooperative and non-cooperative game theory. The cooperative approach is based 

on the characteristic function that assigns a worth to coalitions. The worth is the aggregate 

payoff to a coalition that it can secure for itself irrespective of the behavior of countries 

outside the coalition. The focus of the analysis is on checking stability of the efficient grand 

coalition implementing a socially optimal emission vector, invoking the concept of the core 

(Chander/Tulkens 1995, 1997, Germain/Tulkens/de Zeeuw 1998 and Tulkens 1998). The 

efficient solution is stable (i.e., lies in the core) if no subgroup of countries has an incentive to 

form an other coalition, assuming that remaining countries break up into singletons playing 

either a minimax, maximin or Nash equilibrium strategy. In contrast, the non-cooperative 

approach is based on the valuation function that assigns an individual payoff to each country 

for each possible partition of countries, called coalition structure. For a fixed coalition 

structure payoffs follow from some assumption how countries choose their emissions. The 

standard assumption is that coalition members act as a single player maximizing the aggregate 

payoff to their coalition but behave non-cooperatively towards outsiders (see section 2). 

Equilibrium coalition structures are determined by applying the concept of internal and 

external stability (Barrett 1994b, 1997, Bauer 1992, Carraro/Siniscalco 1993, Hoel 1992, 

Hoel/Schneider 1997 Jeppesen/Andersen 1998 and Rubio/Ulph 2001). Internal stability 

means that no coalition member has an incentive to leave its coalition to become a singleton 

and external stability that no singleton has an incentive to join a coalition, assuming that the 

remaining countries do not revise their membership decision. Except Bauer (1992) all 

contributions have restricted coalition formation to a single coalition, allowing to group 

countries into signatories and non-signatories.  

                                                 
1  For an overview of different approaches see Finus (2001 and 2003). 
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Recently, there has been a development of new approaches and concepts in game theory that 

we call "new coalition theory".2 "New coalition theory" belongs to non-cooperative game 

theory and is based on the valuation function. Compared to the cooperative approach this has 

at least two advantages (see Bloch 1997). First, assuming that countries pursue their self-

interest as rational players, it seems natural to conclude that countries will base their decision 

of membership on individual payoffs and not on the aggregate payoff to their coalition even if 

transfers are possible. Second, the valuation function does better account for spillovers 

between countries and coalitions. Since spillovers are an important source for free-riding in 

international treaty formation, the non-cooperative approach is better suited to rationalize 

inefficient IEAs, which, of course, most treaties are. Compared to the concept of internal and 

external stability these new developments have the advantage that they do not restrict ex-ante 

coalition formation to a single non-trivial coalition3 but allow for the co-existence of multiple 

coalitions. Moreover, they invoke stability concepts that consider not only deviations by 

single countries but also by subgroups of countries where subgroups must not necessarily 

form one new coalition as assumed by the core but may form any partition. Finally, compared 

to the "classical" cooperative and non-cooperative approaches, new coalition theory draws a 

conceptual line between the rules of coalition formation (summarized in the definition of a 

coalition game) and stability (summarized in the definition of an equilibrium concept). Thus, 

differences in equilibrium coalitions can be unambiguously attributed to different stability 

concepts and different rules of coalition formation. Since the rules of coalition formation can 

be interpreted as the institutional setting in which treaty formation take place (Ecchia/Mariotti 

1998), policy conclusions about the optimal design of agreements are possible. Moreover, the 

reaction of countries after a deviation do not follow from ad hoc assumptions but follow from 

the rules of coalition formation and can therefore be related to the rational behavior of 

countries.  

This paper is in the tradition of new coalition theory and considers six different rules of 

coalition formation. Those rules allow for a comparison between open versus restricted open 

membership, open and restricted open versus exclusive membership and in the case of 

exclusive membership between different degrees of unanimity required to form coalitions. 

From a policy perspective counterintuitively, it turns out that stability is higher under 

                                                 
2  For an excellent overview see Bloch (1997) and Yi (1997). Applications in the context of IEAs 

may be found in Carraro (2000), Carraro/Marchiori (2002), Carraro/Marchiori/Oreffice (2001), 
Finus (2002) and Finus/Rundshagen (2001). 

3  A non-trivial coalition means a coalition of at least two countries. 
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exclusive than under open membership and stability increases with the degree of unanimity. 

Moreover, we argue that restricted open membership is better suited than open membership to 

depict treaty-formation and has also theoretical advantages. In contrast to other papers, we are 

not interested in characterizing equilibria in economic and ecological terms (see the applied 

literature cited in footnote 2) since the purpose of this paper is to compare stability under very 

general conditions for single and multiple deviations. In what follows, we present our model 

in section 2, compare stability in section 3, and conclude with some remarks in section 4. 

2. Model 
2.1 Introduction  

Coalition formation is modeled as a two-stage game. In the first stage countries decide on 

their membership in a coalition, in the second stage coalition members choose their emissions. 

The decision in the first stage depends on the rules of coalition formation that follow from the 

definition of a coalition game. The definition comprises three elements: 1) the set of players 

I={1, …, N} with a particular player denoted by index i or j, 2) the set of coalition or 

membership strategies 1 2 ... NΣ = Σ ×Σ × ×Σ  with a particular strategy of country i  denoted 

by , and 3) a coalition function 

I

i

∈

iσ ∈Σ ψ  that maps membership strategies  

into coalition structures, . A coalition structure c  is a 

partition of players where a particular coalition is denoted by , 

1 N, ..., )σ
M(c )

M)

(σ = σ
1,..., c: C,ψ Σ→ σ6 (ψ σ) =

, ...,kc k {1∈ ,  

" kπl, and 

k lc c∩ =∅
i∪c = I c C∈  where C is the set of all possible coalition structures. The decision 

in the second stage depends on the rules of emission choices that follow from the definition of 

the valuation function. The valuation function w maps coalition structures into a vector of 

individual payoffs (i.e., welfare) via an instruction how countries choose their emissions 

, , for a given coalition structure c. Hence, the valuation function is a 

composition of two functions  where 
i ie E∈ E 1 ... N

w = π εD
E= × E×

: C Eε → , c (c)ε6
π →

 is a function mapping 

coalition structures into a vector of emission levels and ,  is a function 

mapping emission levels into welfare levels. 

N: E R e π6 (e)

For the first stage we consider six different coalition games, representing six different 

institutional rules how coalitions form. For the second stage we consider only one rule that 

assigns a unique vector of individual payoffs for each possible coalition structure. This 

implies that countries choosing a membership strategy in the first stage know for each 

coalition game the implications in the second stage. Hence, games can be solved by 

backwards induction. Consequently, we start in the following by describing first stage 2 and 

subsequently we move on to explain stage 1 of the coalition formation game. 
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2.2 Second Stage of the Coalition Formation Game 

Let the payoff to country i in the global emission game be given by 

[1] 
N

i i i i
j 1

(e ) ( e )
=

π = β −φ j∑  

where we assume the following standard properties to hold (see, e.g., Folmer/van Mouche 

2000): " iŒI and e [ : , max
i i0,e∈ ) '

i 0β > i 0′′β < , i 0′φ > , i 0′′φ ≥  where primes denote first and 

second derivative of a function. That is, benefits from emissions (in the form of consumption 

and production of goods), , increase at a decreasing rate. Damages from global 

emissions, φ , increase in global emissions at a constant or increasing rate. Following 

the mainstream in the literature (e.g., Bloch 1997 and Yi 1997), we define the valuation 

function - mapping coalition structures into payoffs - as follows: 

i i(e )β

ji 1e )N
i ( =∑

Definition 1: Valuation Function  

Fix a coalition structure , let = 1 Mc ( c , ..., c ) w( c ) = { }i
iw ( c ;c ) iŒI={ i( ( c ))π ε }iŒI= 

{ }i( e )π ∗
iŒI and assume for instruction ε  that all players belonging to a coalition Œc 

jointly maximize the aggregate payoff to their coalition. Let e  denote the emission vector of 

coalition  and e  the emission vector of all other coalitions c Œc, , and assume that 

equilibrium emission vector  for coalition structure c satisfies:  

kc
k

kc k− l ≠l k
*e ( c )ε=

" ŒC, " Œkc ke kE : ≥  where  is assumed to be a unique 

interior equilibrium.   
k

*
i

i c
( e )π

∈
∑

k

k k*
i

i c
( e , e )π −

∈
∑ *e

Definition 1 implies that the valuation of country i,  is identified by the entire 

coalition structure c and not only by the coalition to which country i belongs.

i
iw (c ;c)

4 Countries 

behave cooperatively within their coalition but non-cooperatively against countries belonging 

to other coalitions when choosing their emissions. Put differently, members of a coalition act 

as one single player maximizing the aggregate welfare to their coalition and coalitions play a 

Nash equilibrium strategy in terms of emissions. Consequently, the singleton coalition 

structure (grand coalition) implies an equilibrium emission vector corresponding to the 

"classical" Nash equilibrium (social optimum). Uniqueness of the emission vector e  for each 

coalition structure cŒC is related to the properties of the benefit and damage cost functions 

and follows from standard theorems. The assumption of an interior equilibrium eases 

*

                                                 
4  Of course, it would be sufficient to write only , but it turns out that  is more 

convenient for later proofs. 
iw (c) i

iw (c ;c)
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establishing a fundamental feature of coalition formation in the context of IEAs that we call 

positive externality property and define and prove in Proposition 1.  

In the case of transfers  where  implies to receive a transfer and 

 to pay a transfer. Typically, transfers follow from some assumption how coalitions 

share the gains from cooperation. For instance, in the context of the core the 

Chander/Tulkens´ transfer scheme (Chander/Tulkens 1995 and 1997) and in the context of 

internal&external stability the Shapley value (Botteon/Carraro 1997 and Barrett 1997) has 

been applied. Both transfer schemes assume that transfers are only exchanged between 

coalition members and that transfers balance, i.e., 

i i
i iŵ (c ;c) w (c ;c) t= i+ 0

0

0

it >

i ii c t∈

it <

=∑ . For our purpose it suffices to 

show that there is a class of transfer schemes that preserves the positive externality property. 

For establishing this property, we need two lemmas. 

Lemma 1: Merging of Coalitions and Global Emissions  

Let a coalition structure with M coalitions be denoted by c , a coalition 

structure with M-1 coalitions by c  where c  is derived by merging two 

coalitions in c, and denote total emissions by , then .

= 1 M( c ,..., c )

<T* ' T*e ( c ) e ( c

−=´ 1 M 1( c ,..., c )

= ∑T*

´

=
N *

ii 1e e ) 5 

Proof: Let c  and c  be two coalitions that merge and  a coalition that is not involved in 

the merger. Assume  instead of e (  would be true after coalitions 

 and c  have merged. Then, given the assumptions of the valuation function (Definition 1) 

and the assumptions about the properties of the benefit and damage cost functions, the 

following must be true: 

i j kc
T*e (T* T* ´e (c) e (c )< T* ´c) c> )

' *

ic j

" : kk c∈ k k
' ' '* T* T* ´

k k k k k kk c k c(e (c)) (e (c)) (e (c )) (e (c ))∈ ∈φ ≤ φ = β∑ ∑ ´ * *
k ke (c) e (c )≥β = ´

T* ≤

'
i

´

                                                

 ⇒   

" iŒc c : β =  i j∪ i i j
' ' ' '* T* T*

i i i i ji c i c j c(e (c)) (e (c)) (e (c)) (e (c))∈ ∈ ∈φ < φ + φ∑ ∑ ∑

i j
' 'T* ´ T* ´ * ´

i ii c j c(e (c )) (e (c )) (e (c ))∈ ∈φ + φ = β∑ ∑ i
* *
i ie (c) e (c )> ⇒   

which obviously violates the initial assumption of e (  (Q.E.D.). T* T* ´c) e (c )<

Thus, Lemma 1 states that whenever singletons or non-trivial coalitions form a joint coalition, 

called a merger, global emissions will decrease. An immediate consequence of Lemma 1 is 

that the grand coalition implies the lowest and the singleton coalition structure the highest 

global emissions. Any coalition structure between these two benchmarks will imply lower 

 
5 For reference reason we mention that in the terminology of coalition theory coalition structure  

is called coarser than coalition structure c. 

´c
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global emissions than the singleton coalition structure but higher global emissions than the 

grand coalition. The next lemma looks at the reaction of outsiders to a merger.  

Lemma 2: Merging of Coalitions and Emissions of Outsiders 

Let  be a coalition that is not involved in a merger which implies that coalition structure c 

changes to coalition structure c  and denote emissions of a member of coalition  by  

then . 

kc

e (

´ kc ke ,

≤* *
k kc ) e ( c )´

'

Proof: From Lemma 1 we have e (  after a merger. Hence, the following must be 

true: " : ⇒  

T* T* ´c) e (c )>
' '* T

k (e (c))φ∑ ∑kk c∈ k k
'* T* ´

k k k k kk c k c(e (c)) (e (c )) (e (c ))∈ ∈β = ≤ φ = β * ´ ´
k ke (c) e (c )≤

     (Q.E.D.). 

Thus, Lemma 2 states that outsiders not involved in a merger will increase their emissions 

( ) or at best do not revise their emission choices (´´
k 0φ > ´´

i 0φ = ). Lemma 1 and Lemma 2 

allow stating the following result. 

Proposition 1a: Positive Externality Property (PEP): No Transfers 

Assume no transfers and let c  be a coalition not involved in a merger which implies that 

coalition structure c changes to coalition structure c , then in the global emission game 

" kŒ : . 

k

c )

´

kc <k k
k kw ( c ; c ) w ( c ; '

Proof: Global emissions decrease after a merger by Lemma 1 and outsiders emission increase 

or remain unchanged by Lemma 2, hence benefits of outsiders increase or remain unchanged 

and their damage costs decrease. Consequently, outsiders´ welfare must increase through a 

merger (Q.E.D.). 

The striking feature about Proposition 1a is that in the global emission game the PEP holds at 

a very general level, that is, for any type of welfare function and any type of heterogeneity 

between countries. The PEP has an immediate implication for stability of coalition structures 

in the various coalition games considered in the next subsection: if a country or group of 

countries change their membership strategy, that is, they leave their coalition, join an other 

coalition or form their own coalition, the harshest possible punishment is that all coalitions of 

the remaining countries break up into singletons. We will discuss this issue in more detail in 

section 3 and turn now to transfers.  

For our level of generality it suffices to show that there exist a transfer scheme for which the 

PEP holds. We consider a modification of the transfer scheme proposed by Chander/Tulkens 

(1995 and 1997) which comes close to that applied in Eyckmans/Tulkens (1999): 
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[2]  i i
i i

i i i i i ii c i ct w (c ; c) w ({i}; (1,...,1) w (c ; c) w ({i}; (1,...,1))∈ ∈
  = − − + λ −  ∑ ∑ 

where  are distributional weights, 0 1iλ i< λ <  and i ii c 1∈ λ =∑ , so that transfers balance 

within coalition . The first term in brackets puts each country back to its payoff in the 

singleton coalition structure c=(1,...,1), corresponding to the classical Nash equilibrium. The 

second term gives each member of coalition  a portion of the total gains (or losses) to this 

coalition from moving from the singleton coalition structure to coalition structure c. Losses 

cannot be generally ruled out since if some countries form a coalition, external countries may 

adjust their emissions upward according to Lemma 2. If this leakage effect is strong enough, 

cooperation may not be beneficial (for the entire coalition).

ic

ic

6 However, this does not affect the 

PEP as shown below. 

Proposition 1b: Positive Externality Property (PEP): Transfers 

Assume transfer scheme [2] for all iŒ I , let = +i i
i iˆ c ;c ) w ( c ;c ) t

kc <c ; c )

i

'

k+

w (  and let  be a coalition 

not involved in a merger, which implies that coalition structure c changes to coalition 

structure c , then in the global emission game " kŒ : w ( . 

kc

c )´ k k
k kˆ ŵ ( c ;

Proof: Computing  for [2] gives  

. Since  is unaffected by a 

merger and  increases through a merger by Proposition 1a,  increases 

through an external merger (Q.E.D.) 

k k
k kŵ (c ;c) w (c ;c) t=

k k kk c w ({k}; (1,...,1)))∈ ∈∑ ∑
c)

k
k kŵ (c ;c) w ({k}; (1,...,1))= +

(1,...,1))
k

kŵ (c ;c)

k
k kk c( w (c ; c)λ −

k
kw (c ;

kw ({k};

From the proof it is evident that there are many transfer schemes that preserve the PEP. For 

instance, [2] measures the gains or losses compared to the singleton coalition structure. 

However, any other benchmark is also fine as long as it is a fixed benchmark. The weights iλ  

may be derived from any allocation rule as long as weights are not dependent on the partition 

of external players .iI \ c 7 

2.3 First Stage of the Coalition Formation Games 

In this subsection we define and discuss six coalition games that imply different rules how 

coalitions can form. All games assume that countries simultaneously announce their coalition 

                                                 
6  Technically speaking, this implies that superadditivity may not hold in our context. Only for 

linear damage cost functions there are no leakages and hence superadditivity generally holds. 
7  In Chander/Tulkens (1995 and 1997) weights are related to marginal damage costs (i.e., 

; notation of Lemma 1) and hence merging of coalitions generally 
affects weights. Thus, general conclusions about PEP are only possible for the special case of 
linear damage cost functions (and of course symmetric players).  

i
´ T* ´ T*

i i ii c(e ) / (e )∈λ = φ φ∑
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strategy and allow for the co-existence of several coalitions. That is, coalition formation is not 

ex-ante restricted to a single coalition as this is assumed for the concepts of internal&external 

stability and the core that have been widely applied in the literature on IEAs.8 However, 

games differ in the strategy set and most importantly in the coalition function that maps 

coalition strategies into coalition structures. From the discussion it will be apparent that there 

are two important features in which games differ. The first feature is membership where we 

distinguish between open and exclusive membership. Open membership means that countries 

can join any coalition they want whereas exclusive membership implies that this is only 

possible with the consent of the members of a coalition. The second feature is the degree of 

unanimity required to form a coalition. We distinguish four variants: weak, middle, strong and 

super strong.  

The first game is called open membership game (OMG) and is due to Yi/Shin (1995). In this 

game countries can freely form coalitions as long as no outsider is excluded from joining a 

coalition. Countries choose their membership by announcing an address, i.e., a number 

between 1 and N. Countries that have announced the same address form a coalition. For 

instance, suppose N=4 and σ =  and 1 2 3 1σ = σ = 4 2σ = , then c={{1, 2, 3}, {4}} forms. If 

country 3 were to announce σ =  instead, then c={{1, 2}, {3, 4}} would form. More 

formally, we have:
3 2

9 

Definition 2: Open Membership Game (OMG) 

a) The set of coalition strategies of country iŒI is given by  where a particular 

strategy 

=i {1, ..., N }Σ

iσ  is an announcement of an address. 

b) Coalition function  maps strategy vector OMGψ σ  into coalition structure c as follows: 

ic { i= }  » Ô{ j =i j }σ σ . 

Thus in the OMG a country can join any coalition it wants. This strong assumption, however, 

seems not entirely in line with the notion of voluntary participation in IEAs that is one 

important feature reminiscent to the problem of cooperation in international pollution control. 

Hence, it seems natural to consider an extension of the OMG where countries have only 

unrestricted open access to non-trivial coalitions but require the consent of a single country if 

they intend to join it. This extension is called a restricted open membership game (ROMG). It 

                                                 
8  See the literature cited in the Introduction. 
9  The rule of this game is similar to internal&external stability, except that in the open membership 

game multiple coalitions may form. For details see Finus/Rundshagen (2001). 
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has been proposed by Bloch (1997) and formalized by Rundshagen (2002). Conceptually, 

only a slight modification of Definition 2 is required, adding to the strategy set an address 0 

and specifying the coalition function such that countries announcing 0 remain singletons. 

Definition 3: Restricted Open Membership Game (ROMG) 

a) The set of coalition strategies set of country iŒI is given by  where a 

particular strategy 
i {0,1, ...,N }Σ =

iσ  is an announcement of an address. 

b) Coalition function  maps strategy vector ROMGψ σ  into coalition structure c as follows: 

ic { i= }  » Ô . { j i j 0 }σ σ= ≠

For instance, recall our previous example that assumed 1 2 3 1σ = σ = σ =  and σ =  so that 

c={{1, 2, 3}, {4}} forms and where we argued that if country 3 changed its address to , 

then c={{1, 2}, {3, 4}} will come about. In the ROMG player 4 can announce σ =  instead 

of  so that no other player can force him into a coalition. However, also in the ROMG, 

any player not in coalition {1, 2, 3} can join this coalition. This is different in the next four 

exclusive membership games. 

4 2

4 0
3 2σ =

4 2σ =

In the exclusive membership D-game (EMDG), which is due to Hart/Kurz (1983), countries 

announce a list of countries with which they like to form a coalition. Those countries that 

announce the same list will form a coalition. For instance, suppose N=4 and , 

,  and , then 
1 {1, 2, 3}σ =

2 {1, 2, 3}σ = 3 {3}σ = 4 {1, 2, 3, 4}σ = c {{1, 2},{3},{4}}=  forms. Countries 1 and 

2 propose the same list and therefore form a coalition. Countries 3 and 4 remain singletons. 

Though country 4 would like to form a coalition with all other countries, country 3 can remain 

a singleton and country 1 and 2 form their own coalition since membership is exclusive. In 

other words, a coalition only forms by unanimous agreement. More formally, we have: 

Definition 4: Exclusive Membership D-Game (EMDG) 

a) The set of coalition strategies of country iŒI is given by Ã I˙ iŒ  where a 

particular strategy 

= i
i { cΣ ic }

iσ  is a list of countries with which country i would like to form a 

coalition. 

b) Coalition function  maps strategy vector EM G∆ψ σ  into coalition structure c as follows: 

=ic { i }  » {j˙ =i j }σ σ . 

As it will turn out from a comparison with other exclusive membership games below, in the 

EMDG only a weak degree of unanimity is required to form a coalition.  
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The exclusive membership Γ-game (EMGG) goes back to Von Neumann/Morgenstern (1944) 

and has been reintroduced by Hart/Kurz (1983) under this name. This game is identical to the 

last game in terms of strategies but different in terms of the coalition function. Whereas in the 

EMDG it suffices that a subgroup of countries on a list makes the same proposal (and hence 

the subgroup forms a coalition), in the EMGG a coalition forms if and only if all members on 

a list make the same proposal. That is, the degree of unanimity to form a coalition in the 

EMGG is higher than in the EMDG. For instance, suppose our previous example in the 

context of the EMDG that assumed , ,  and , 

which led to coalition structure c
1 {1, 2, 3}σ =

{{1,
2 {1, 2, 3}σ =

2},{3},{4}}
3 {3}σ = 4 {1, 2, 3, 4}σ =

= , whereas now it implies 

. If and only if country 1 and 2 were to announce σ =  would 

they form a coalition. More formally, we define: 

c {{1},{2},{3},{4}}= 1 2 {1,2}σ =

Definition 5: Exclusive Membership G-Game (EMGG) 

a) The set of coalition strategies of country iŒI is given by Ã I˙ iŒ  where a 

particular strategy 

= i
i { cΣ ic }

iσ  is a list of countries with which country i would like to form a 

coalition. 

b) Coalition function  maps strategy vector EM GΓψ σ  into coalition structure c as follows:  

=i
ic σ  if and only if =i jσ σ  " j Œ iσ , otherwise c . =i { i }

k�

In comparison to the subsequent games we call this a middle degree of unanimity to form a 

coalition. 

The exclusive membership H-game (EMHG) has been invented by Finus/Rundshagen (2003) 

and implies a modification not only in terms of the coalition function but also in terms of 

strategies compared to the EMDG and EMGG. In terms of coalition strategies, countries´ 

announcements comprise not only a list of countries with which they would like to form a 

coalition but also a list with their preferred residual coalition structure. The coalition function 

determines coalition structure c not in one but in two steps. The first step resembles that in the 

EMGG: countries which have each other on the list to form a coalition will be in one coalition 

if and only if all members on a list make the same proposal. This leads to a "preliminary" 

coalition structure . The second step requires that all members belonging to coalition c  in 

 have correctly announced the external coalitions  forming in  otherwise  splits 

up into singletons in the "final" coalition structure c. For instance, suppose N=5 and the 

following announcements: , 

c� i�

c� jc , ...., c�

4},{5}}

c�

{1,

ic�

5}}1 2 {{1, 2}, {3},{σ = σ = 3 4 { 2},{3,4},{σ = σ =  and 

. Thus, in the first step, preliminary coalition structure 

 forms since countries 1 and 2 and 3 and 4 propose exactly the same list 
5 {{1,2},σ =

{{1,2},{3=

{3,4,

, 4},{

5}}

5}}c�
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with which countries they would like to form a coalition. In the second step final coalition 

structure  follows since only countries 3 and 4 announcement 

materializes in c . More specifically:

c {{1},{2},{3,4},{5}}=

�

= =i c( i ) ( cσ

iM2( i ), ..., c ( i )

EMHGψ

10 

1 j )

c
jc�

                   

Definition 6: Exclusive Membership H-Game (EMHG) 

a) The set of coalition strategies of country iŒI is given by Œ / iŒ  where a 

particular strategy  of country i is composed of a list of 

countries with which it wants to form a coalition, , and its preferred residual coalition 

structure, c . 

=i { c( i )Σ C 1c ( i )}
iM1 2( i ); c ( i ), ..., c ( i ))

1c ( i )

b) Coalition function  determines coalition structure c from strategy vector σ  in two 

steps as follows. 

First, a preliminary coalition structure  is determined: iŒ  if only if 

 " jŒc

= 1 Mc ( c ,...,c )�� � � 1c�
=1c ( i ) c ( 1(i) , otherwise ={i}.  1c�

Second, final coalition structure  follows from: = 1 2 M( c , c ,..., c ) jc� Œc c(i) " iŒ ⇔ c= � jc� , 

otherwise  splits up into singletons in c. 

Thus, the whole coalition formation process can be interpreted as follows. In the first step it is 

checked whether "internal lists" match, that is, lists of countries with which a country wants 

to form a coalition. The preliminary formation process requires a degree of unanimity of the 

G-type. In the second step it is checked whether "external lists" match, that is, lists of 

partitions formed by external countries. Here, only lists of members in the same coalition but 

not of all countries must match to form a coalition. This implies de facto that a degree of 

unanimity of the D-type with respect to the external list is required to form a coalition. This 

suggests that a game can be constructed which also requires a degree of unanimity of the G-

type for the external list. This is done below. For reference reason we call the degree of 

unanimity required to form a coalition in terms of the entire EMHG "strong" in order to 

distinguish it from that in the next game that we call "super strong". 

The exclusive membership I-game (EMIG) is due to Finus/Rundshagen (2003) and is identical 

to the EMHG in terms of strategies but different in terms of the coalition function. In this 

game not only must all members of a coalition propose the same external list but all countries 

to form coalitions. Thus, taken together, a coalition only forms if and only if all countries 

make the same proposal for the entire coalition structure, comprising an internal and external 
                              
10  There is a close resemblance between core-stability and a strong Nash equilibrium in this game. 

For details see Finus/Rundshagen (2003).  
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list. For instance, reconsider the example in the context of the EMHG that assumed N=5 and 

announcements , 1 2 {{1, 2}, {3},{4},{5}}σ = σ = 3 4 {{1,2},{3,4},{5}}σ = σ =

},{3,4},{5}}

 and  

 and where in the H-game c
5 {{1,2},σ =

{3,4,5}} {{1},{2=  formed. In contrast, in the EMIG 

 because not all announcements with respect to the external list 

match. Formally, the coalition function determines coalition structures in one step: 

c {{1},{= 2},{3},{4},{5}}

Definition 7: Exclusive Membership I-Game (EMIG) 

a) The set of coalition strategies of country iŒI is given by ŒC / iŒ  where a 

particular strategy  of country i is composed of a list of 

countries with which it wants to form a coalition, , and its preferred residual coalition 

structure, c . 

=i { c( i )Σ 1c ( i )}

= = iM1 2
i c( i ) ( c ( i ); c ( i ), ..., c ( i ))σ

1c ( i )
iMc ( i )2( i ), ...,

b) Coalition function  determines coalition structure c from strategy vector EMIGψ σ  as 

follows: 

=c c( i )  if and only if =i jσ σ  " iŒI, otherwise =c (1,...,1 ) . 

After the discussion of how coalitions form in the various coalition games, we can now turn to 

analyze stability.  

3. Stability of Coalition Structures 

3.1 Introduction 

In this section we compare stability of coalition structures in the six coalition games. We 

consider two equilibrium concepts: Nash equilibrium and strong Nash equilibrium. A Nash 

equilibrium coalition structure, abbreviated NE, is derived from a vector of coalition 

strategies  where no single country has an incentive to change its strategy (announcement), 

given that other countries announce their equilibrium strategy. This is the familiar definition 

of Nash equilibrium, except that strategies are coalition and not economic (i.e., emission) 

strategies. Similar, a strong Nash equilibrium coalition structure, abbreviated SNE, is a vector 

of coalition strategies where no subgroup of countries I

*σ

SÃI has an incentive to change its 

coalition strategy. Formally, we have: 
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Definition 8: Nash and Strong Nash Equilibrium Coalition Structures11 

Let C (
SIˆ )σ  be the set of coalition structures that a subgroup of countries IS can induce if the 

remaining countries j∈ I\IS play 
SI\Iσ . Then *σ , inducing coalition structure , is called a 

SNE if no subgroup I

*c
S can increase its members´ payoff by inducing another coalition 

structure ∈ ĉ
SI *ˆ )C (σ . That is, *c ( * )σ  is a SNE if there is no IS⊂I and a coalition structure 

∈ ĉ
SI *Ĉ ( )σ  such that  " iŒIi ) w (≥ i *

i iˆ ˆw ( c ,c ,c )c S and $ jŒIS: j j *
j jˆ ˆw ( c ,c ) c ,c )> w ( . For 

a NE, SI { i= } . 

Given that multiple deviations are a special case of single deviations (IS={i}), it is evident that 

the set of SNE is a subset of NE, C . The reason why we consider not only SNE but 

also NE is that existence of NE is guaranteed under far more general conditions than of SNE. 

Since some of the proofs in subsection 3.2 are instructive for establishing existence of 

equilibrium coalition structures in the various coalition games, we postpone the discussion 

until subsection 3.3. 

SNE NEC⊂

3.2 Comparison of Equilibrium Coalition Structures  

For the analysis of stability it is helpful to note four things in advance. First, stability is 

defined in terms of incentives to induce other coalition structures. Possible inducements 

follow from the rules of coalition formation and may be broken down in two components. 

a) The deviations that are available to a country or group of countries if they change their 

coalition strategies. This direct effect comprises the possibility of deviators forming new 

coalitions and/or joining other coalitions. b) The reaction to a deviation of those countries not 

(actively) involved in a deviation. This indirect effect comprises reactions ranging from no 

reaction to the resolution of all partitions to which non-deviating countries belong. Second, 

trivially, when checking stability of coalition structure c, we are only interested in changes of 

strategies that will have an effect on c. Third, when comparing SNE in the various games, we 

only have to consider deviations by a true subgroup of countries IS
≠
⊂ I since deviations by all 

countries can induce any coalition structure in every game. Thus, if there are differences in 

stability in the various games, they must stem from the possibilities that are available to 

subgroups of countries. Fourth, several coalition strategy vectors may lead to the same 

                                                 
11  We define strong Nash equilibrium in terms of a weak inequality to be consistent with the 

definition of Pareto-optimal coalition structures in subsection 3.3. A modification of this 
assumption would not affect the subsequent proofs. 
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coalition structure.12 Hence, when analyzing stability of a coalition structure, it suffices that 

stability holds for one coalition strategy vector. Since the most favorable condition for 

stability in the exclusive membership D- and G-game is if each coalition member proposes 

exactly this coalition to which it belongs in c and in the exclusive membership H- and I-game 

if each country announces exactly coalition structure c, our proofs start from this assumption. 

In the following we proceed in three steps to derive our final result. First, we compare 

equilibrium coalition structures in the open membership game (OMG), restricted open 

membership game (ROMG) and in the exclusive membership D-game (EMDG) since these 

three games differ only in the direct but not in the indirect effect of deviations. Second, we 

compare equilibrium coalition structures in the exclusive membership D-, G- and H-game 

(EMDG, EMGG and EMHG) since these games do not differ in the direct but in the indirect 

effect. Third, we contrast equilibrium coalition structures in the exclusive membership H-

game with those in exclusive membership I-game (EMIG) since these games differ only in the 

direct effect. We immediately start with the first comparison. 

Proposition 2: Comparison of Equilibria in the OMG, ROMG and EMDG 

Let the set of Nash and strong Nash equilibrium coalition structures (NE and SNE) in the 

OMG, ROMG and EMDG be denoted by  and  respectively, then NEC (...) SNEC (...)

a) Ã ÃNEC ( OMG ) ) )NEC ( ROMG NEC ( EM G∆  and 

b) Ã ÃSNEC ( OMG ) ) )SNEC ( ROMG SNEC ( EM G∆ . 

Proof: First we show that if c∉C ( , then c∉ . Suppose 

, then there exists a group of countries I

SNE ROMG

i
iw (c ;c)≥

) )SNEC (OMG

Sj I : j́ ´w (c ;c )

1 Mc (c ,..., c )= ∉ SNEC (ROMG)
SI ´σ

S S´ ´ I ´ I\I *c c ( , )= σ σ

S⊂I and a set of 

announcements  such that  " iŒIi´ ´
iw (c ;c ) S and  

holds where . Since |

∃ ∈ j
j jw (c ;c)>

Σ |=N there exists 
SI ´́ SI0 iσ ≠ ∀ ∈

S {i}

 in the OMG leading 

to ) so that . Hence  can also be induced in the OMG and 

c∉  follows. For a NE, the same reasoning applies with I

S SI\I *,σ

)

´́ ´´ I ´´c c (= σ
SNEC (OM

´ ´́c c= ´c

G = . 

Second we show that if c∉C (SNE EM G)∆ , then c∉C ( . Suppose 

, then there exists a group of countries I

SNE ROMG

j
jw (c ;c)

)

)

                                                

1 Mc (c ,..., c )= ∉
i´ ´

iw (c ;c ) w (≥
´ S 1c c (c= ∪

SNEC (EM G∆
i

i c ;c)
S(I \ I

S⊂I for which 

 " iŒIS and  holds where 

)) ∪…∪ (  and  is a partition of I

Sj I∃ ∈
SI \ I )) Sc =

: j́ ´
jw (c ;c ) >
1 LS Sc ,..., c )∩ Mc (∩ ( S with c  a iS

 
12  For instance, in the open membership game announcements 1 2 1σ = σ =

1 2

 and σ =  lead to the 
same coalition structure c=({1,2}, {3}) as announcements 

2 2
2σ = σ =  and σ = . Note, 

however, that in each coalition game each strategy vector leads to a unique coalition structure. 
2 3
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particular coalition in c . Since c  can also be induced in the ROMG (by countries i∈  

changing their announcements to  and 

S ´ iSc
iS 0σ ≠ iS jσ ≠ σ

{i}

 ), c∉  follows. 

For a NE, the same reasoning applies with 

iSj c∀ ∉ SNEC (ROMG)
SI = . (Q.E.D.). 

NEC

EM

C (

(...)

G )Η

EM G )Η

SNEC (...)

c (=

C (

SNEC (

)

T

T

)

G

T(2)

Rc

NEC (

) SNE

T(1)´c
´

(1)´ T(2)´ R´, c , c )

≠
⊂

R

The intuition of Proposition 2 is the following. In all three games the indirect effect of a 

deviation is the same. If in the OMG and ROMG deviating countries change their address all 

other countries remain in their coalitions. In the EMDG the deviating countries change their 

list of countries with which they like to form a coalition. Due to weak unanimity to form 

coalitions, other countries will remain in their coalitions if some countries change their list. 

However, the three games differ in their direct effect. The direct effect comprises that 

deviators form their own partition or a partition with other countries not actively involved in a 

deviation. The latter effect implies to join other coalitions. In the OMG any possible deviation 

is available to a subgroup of countries, in the ROMG deviators cannot join singletons without 

their consent and in the EMDG deviators can neither join singletons nor non-trivial coalitions 

without their consent. Thus, it is easier to sustain a NE or SNE in the EMDG than in the 

ROMG since the amount of possible deviations is smaller in the former than in the latter 

game, anything else being equal. The same is true when comparing ROMG and OMG. We 

now turn to the second comparison. 

Proposition 3: Comparison of Equilibria in the EMDG, EMGG and EMHG 

Let the set of Nash and strong Nash equilibrium coalition structures (NE and SNE) in the 

EMDG, EMGG and EMHG be denoted by  and , respectively, then  

a) Ã Ã  and  NEC ( EM G∆ )

)

R´

NE EM GΓ

b) Ã Ã . SNEC ( EM G∆ EMΓ

Proof: Suppose in the EMDG and EMGG that each country announces exactly those countries 

with which it forms a coalition in c and in the EMHG each country announces exactly 

coalition structure c. Consider a deviation (change of strategies) by a subgroup of countries 

IS⊂
≠

R´

Rc =

I. Let  be the initial coalition structure and  the resulting 

coalition structure after deviation.  is the partition of deviators I

T Rc (c , c= ´ Tc

c

T 1 Lc (c ,..., c )=

S⊂IT I in  that 

belonged to partition c  in c, c  is the partition of remaining countries I

´c
´cT\IS in  that 

belonged to partition c  in c, and  is the partition of all remaining countries I\IT before and 

 after the deviation. In the EMDG and EMGG a deviation has no effect on  and hence 

. In the EMDG a deviation implies that those coalitions to which the deviators belong 

stick together whereas in the EMGG they break up into singletons by the stronger degree of 

unanimity required forming a coalition. Thus, if we let , then in the EMDG 

c

c



 16

T(2)´ 1 T S L T Sc c (I \ I ) ... c (I \ I )= ∩ ∪ ∪ ∩

i I j∀

R R´c c= �
T(2)´c (1,...,1)= R´c (1,....,1)=

iT(1) ´ T(1)´c c∈ iT(1) ´ T(1)´ T(2)´ R´
iw (c ; c ,c , c

i´ T(1)´ T(2)´
iw (c ; c ,c (1,...,1),= R´c (1,....,=

SNEC (EM G)∆

 whereas in the EMGG . In the EMHG 

a deviation by a subgroup of countries I

T(2)´c (1,...,1)=
T(1)´�

T(2)´ (1,...,1)=�
R R´c c= �

c (=

R´1,...,1), c )

S⊂IT leads to intended partition c  in the first step 

of the coalition function if ∀ ∈ . However, all coalitions to which 

the deviators belonged will break up into singletons in  because their announcements do not 

match anymore. Thus, in the first step of the coalition function c . In the second 

step, all countries belonging to other coalitions (partition ) will break up into 

singletons since those countries must have initially (before the deviation) announced the 

correct coalition structure that formed in c  otherwise they would not have been in coalitions 

in c. Now their announcements do not match anymore and hence those coalitions in partition 

 break apart in the second step of the coalition function. Hence,  

with  and .

S k k kc (i) : c (i) c ( j)∈ =
´c�

�

) i´ T(1)´ T(2)´
iw (c ; c ,c

1))
SNE EM G)

´ T(1)´ T(2)´ Rc ,c , c
iT(1) ´∈

´)
13 Taken together, we have for a deviator i c , 

: ≥ ≥ (=

Γ SNEC (EM G)Η

NE(

NEC ( EM G )Η NEC ( EMIG )

                                                

...) SNE(...)

SNEC ( EM G )Η SNEC ( EMIG )

 
T(1)´c

T(2)´c� ´c� T(1)´c

R´�
...,1)´ (1,=

 after the deviation due to the positive externality 

property. Hence, ÃC ( Ã . For NE, the same 

reasoning applies with IS={i} (Q.E.D.). 

In all three games the direct effect of deviations is the same: deviators cannot join other 

coalitions due to exclusivity and the partition that a group of countries can form is the same. 

However, the indirect effect is different since the various degrees of unanimity required to 

form a coalition imply different reactions of the remaining players. In the EMDG there is no 

reaction, in the EMGG coalitions to which the deviators belonged break apart, and in the 

EMHG, additionally, all other coalitions break apart. Thus, the higher the degree of unanimity 

necessary to form coalitions, the higher is the implicit punishment in positive externality 

games after a deviation and hence the higher is the "degree of stability". We turn now to the 

last comparison. 

Proposition 4: Comparison of Equilibria in the EMHG and EMIG 

Let the set of Nash and strong Nash equilibrium coalition structures (NE and SNE) in the 

EMHG and EMIG be denoted by C  and C , respectively, then  

a) =  and b) Ã . 

13  Of course, partition  will only form if all deviators IS correctly announce partition c  and 
 in . If not, then  would break up into singletons, leading to c , which can 

also be induced by a single deviation. 
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Proof: According to the proof of Proposition 3, in the EMHG multiple deviations from 

coalition structure c lead to  which in terms of a single deviation implies 

 and thus . In the EMIG any deviation by a subgroup of countries I

´ T(1)´c (c ,1,...,1)=

1)T(1)´c ={i} ´c (1, ...,= S
≠
⊂ I 

leads to the complete resolution of all coalition structures including the partition of deviating 

countries since coalition strategies do not match anymore and hence . Thus, in 

terms of single deviation there is no difference between both games but in terms of multiple 

deviations: any partition that can be induced by I

´c (1, ...,1)=

S in the EMIG can also be induced in the 

EMHG but not vice versa (Q.E.D.).  

Summarizing Proposition 2, 3 and 4 gives our central result: 

Proposition 5: Comparison of Equilibria in All Coalition Formation Games 

Let  and  denote the set of Nash equilibrium (NE) and strong Nash 

equilibrium (SNE) coalition structures in the open membership game (OMG), the restricted 

open membership game (ROMG), and the exclusive membership D-, G-, H, and I-game 

(EMDG, EMGG, EMHG and EMIG), respectively, then  

NEC (...) SNEC (...)

a) Ã ÃNEC ( OMG ) ) )NEC ( ROMG NEC ( EM G∆ Ã Ã  

 and  

NEC ( EM GΓ )

) ) )

=NEC ( EMHG )
NEC ( EMIG )

b) Ã ÃSNEC ( OMG SNEC ( ROMG SNEC ( EM G∆ Ã Ã 

Ã . 

SNEC ( EM GΓ )

)SNEC ( EMHG ) NEC ( EMIG

Proof: Follows from Proposition 2, 3 and 4 (Q.E.D.). 

Proposition 5 stresses the relation between the rules of coalition formation and stability of 

agreements with an unambiguous relation (inclusion chain) between equilibria in the various 

coalition games. 

3.3 Existence of Equilibrium Coalition Structures  

The reason for considering not only strong Nash equilibrium (SNE) but also Nash equilibrium 

(NE) coalition structures in the previous subsection is that - at our level of generality - 

existence of a NE is guaranteed in all games except in the open membership game whereas 

existence of a SNE can only be established in the exclusive membership I-game. We start 

establishing existence of a NE for which we need the following definition. 
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Definition 9: Individually Rational Coalition Structures 

A coalition structure c is called individually rational if each player receives at least his payoff 

in the singleton coalition structure, i.e., " iŒI: .  ≥i
i iw ( c , c ) w ({ i },1,...,1 )

It is evident that the set of individually rational coalition structures, henceforth abbreviated 

, is non-empty since the singleton coalition structure belongs to this set by definition. 

Moreover, intuition suggests that there is a close relation between individually rational and 

Nash equilibrium coalition structures. 

IRC

Lemma 3: Individually Rational and Nash equilibrium Coalition Structures  

In every coalition game a Nash equilibrium coalition structure must be individually rational, 

i.e., C ÃNE IRC .  

Proof: Consider a coalition structure c  and suppose that country i is a member 

of coalition c . In each coalition game country i can induce a coalition structure of type 

 by changing its strategy (where ). In the worst case  

because of the positive externality property (PEP). Hence, a coalition structure c can only be a 

NE if and only if ∀ ∈ :  where  (Q.E.D.). 

1 M(c , ..., c )=

R =

i ´
iw ({i};c )

1

R )´c ({i}, c ′= c c \{i

´c (1=

}

j

Rc (1, ...,1)=

i I iw (c ;c) ≥ ,....,1)

Using Lemma 3 and recalling the fact that the singleton coalition structure is individually 

rational by definition, it is evident that existence of a NE is guaranteed in the restricted open 

membership (ROMG) and the four exclusive membership games. If each country announces 

address  in the ROMG, then no country can unilaterally induce any other coalition 

structure. The same is true if each country announces a list with only itself in the exclusive 

membership D- and G-game and if each country announces the singleton coalition structure in 

the exclusive membership H- and I-game. Hence, we can state the following proposition 

without proof. 

i 0σ =

Proposition 6: Existence of Nash Equilibrium Coalition Structures 

In the restricted open membership game and the four exclusive membership games a Nash 

equilibrium coalition structure exists.  

However, in the open membership game a NE may not always exist. Suppose each country 

announces a different address, then an individual country i that has an incentive to join an 

other singleton j can deviate by announcing the same address, iσ = σ . The resulting coalition 

structure is also unstable if country j prefers to stay alone. In any non-trivial coalition 

structure stability may also be a problem since basically any deviation is possible in the open 
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membership game.14 This stresses that the restricted open membership does not only capture 

voluntary participation better but has also theoretical advantages compared to the open 

membership game. We now turn to SNE for which we need the following definition. 

Definition 10: Pareto-optimal Coalition Structures 

A coalition structure c is Pareto-optimal if there is no other coalition structure  where at 

least one country is better off and no country worse off, i.e., there is no  such that 

 " iŒI Ÿ $ jŒI: w ( . 

´c
´c

≥í ´ i
i iw ( c , c ) w ( c , c ) >j́ ´ j

j jc , c ) w ( c , c )

Definition 10 is the familiar definition of Pareto-optima, applied to the context of coalition 

formation. Henceforth, we abbreviate Pareto-optimal coalition structures by PO and denote its 

set by C . It is evident that the grand coalition is always a PO: it generates the highest global 

welfare and therefore in any other coalition structure at least one country must be worse off. 

Consequently,  is non-empty. Definition 10 suggests that there is a close relation between 

PO and SNE: a deviation by subgroup of countries includes the special case of a deviation of 

all countries, I

PO

SNE

POC

POC

S=I. Hence, a necessary condition that a coalition structure is a SNE is that it is 

a PO, C . Moreover, recalling that  because multiple deviations include 

the special case of single deviations, I

⊂ SNE NEC C⊂
NES={i}, and that C Ã  from Lemma 2, it is apparent 

that we can state the following lemma (without proof). 

IRC

Lemma 4: Pareto-optimal and Strong Nash Equilibrium Coalition Structures  

In every coalition game a strong Nash equilibrium coalition structure must be an individually 

rational and Pareto-optimal coalition structure, i.e., C ÃSNE IRC « POC .  

From Lemma 4 we see that existence of a SNE faces two problems. First, not any PO is 

individually rational. For instance, as it is well known, in the absence of compensation 

payments the socially optimal solution, which corresponds to the grand coalition in our 

context, may not be individually rational if countries have heterogeneous payoff functions. Of 

course, this problem can be mitigated by a transfer scheme as for instance the one we 

proposed in subsection 2.2, which ensures that at least the grand coalition is individually 

rational (apart from the singleton coalition structure).15 Second, not any PO is a SNE. Despite 
                                                 
14  An example of non-existence of a NE in the open membership game is provided in Yi/Shin 

(2000) in a theoretical context and in Eyckmans/Finus (2003) in an empirical context. In Yi/Shin 
(2000) conditions for existence are derived which are, however, very restrictive. 

15  Since the aggregate payoff in the grand coalition is higher than in any other coalition structure, 
individual rationality is ensured if each country receives a fraction of the gains from cooperation. 
However, in any other coalition structure it cannot be ruled out (except for linear damage cost 
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the fact that not all countries can benefit when moving from a PO to some other coalition 

structure, this may well be the case for a true subgroup IS
≠
⊂ I. This is the reason why in many 

economic applications as well as in almost all coalition games analyzed in this paper a SNE 

may fail to exist. The only exception is the exclusive membership I-game. In the case of 

transfer scheme [2], this is easy to see. First, the grand coalition is individually rational and a 

PO. Second, any deviation by subgroup of countries IS
≠
⊂ I leads to  and is 

therefore not beneficial. However, existence holds at a far more general level. 

´c (1, ...,1)=

Proposition 7: Existence of SNE in the Exclusive Membership I-game 

There always exists a strong Nash equilibrium in the exclusive membership I-game.  

Proof: We proceed in two steps. First, we show that the set of individually rational Pareto-

optimal coalition structures is none empty, C CIR PO∩ ≠∅

(1,...,=

. Second, we demonstrate that 

. 1) Suppose that c  and recall that 

. Then,  is obvious. Alternatively, suppose . 

Then, there exists a coalition structure  that Pareto-dominates c. If c C , we are done, if 

not, then there exists a coalition structure  that Pareto-dominates . This process continues 

until a coalition structure is an element of C  (otherwise assumption  must 

be wrong). 2) Any deviation by a subgroup of countries I

SNE IR POC (EMIG) C C= ∩
IRc (1,...,1) C= ∈

PO1) C∈

´c

c

IR POC C∩ ≠
´c

∅ POc (1,...,1) C= ∉
PO

PO(1,...,1) C= ∉

´ ∈
´´c

PO

S
≠
⊂ I leads to the singleton coalition 

structure, which is not beneficial if a coalition structure is individually rational. Any deviation 

by all countries IS=I is not profitable if a coalition structure is Pareto-optimal (Q.E.D.). 

Thus, we know that at least one element in the inclusion chain of SNE in Proposition 5 is 

none empty.16 

4. Summary and Final Remarks 

We analyzed coalition formation in the tradition of "new coalition theory" that has several 

advantages to former approaches. 1) The analysis is based on individual and not on aggregate 

payoffs of players. 2) Externalities among players and coalitions are fully captured. 3) A 

conceptual distinction between the rules of coalition formation and equilibrium is possible. 
                                                                                                                                                         

functions) that the aggregate payoff to a coalition is lower than the sum of coalition members´ 
payoffs in the singleton coalition structure and hence individual rationality may fail to hold. See 
the discussion in subsection 2.2. 

16  Existence of SNE in the exclusive membership G- and H-game can be established for the 
restrictive assumption of symmetric players as shown in Finus/Rundshagen (2001). However, 
even this restrictive assumption may not guarantee existence of SNE in the open membership 
games and in the exclusive membership D-game.  
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4) Coalition formation is not restricted ex-ante to a single (non-trivial) coalition and hence the 

co-existence of multiple coalition is possible. 5) Stability can be defined in terms of multiple 

deviations where deviators may form any partition they want. 

We considered six coalition games that can be interpreted as different institutional settings in 

which coalition formation takes place and/or different designs of treaty protocols. We 

compared stability in the six games under very general conditions, applying the concept of a 

Nash equilibrium and strong Nash equilibrium. We demonstrated that this is possible based 

on only one condition called positive externality property that holds in the global emission 

game without transfers but also for a large class of transfer schemes. 

Though our results are derived from a stylized model and despite results may seem obvious 

when considering the proofs, they are interesting from a policy perspective. They suggest that 

exclusive membership may be conducive to stability of IEAs. Given that almost all protocols 

of existing IEAs allow non-signatories to join an IEA at any time they want suggests altering 

this rule from open to exclusive membership for future IEAs. This basically would imply to 

turn a public good agreement into a club good agreement in terms of membership. Our results 

also suggest that a high degree of unanimity in terms of membership helps to stabilize an IEA 

whereas it is usually conjectured that unanimity leads to agreements of the lowest 

denominator type. The driving force in our model is that the higher the degree of unanimity 

required to form a coalition, the higher is the pressure on countries to accede to an agreement 

since a failure has severe consequences. Though in our model unanimity applies to 

membership and not to the level of emission reductions, our model indicates that the 

widespread application of unanimous decision rules in international politics may not always 

be a disadvantage and, in fact, may be a rational choice. In any case, our conclusion is in line 

with bargaining models that have analyzed the positive effect of unanimous decision rules in 

terms of the level of emission reduction and the policy instrument used to implement emission 

reduction targets (Endres 1997 and Finus/Rundshagen 1998a, b). 

Of course from an economic and ecological perspective it would be interesting to know what 

"more stability" means. This, however, requires more specific assumptions about payoff 

functions as this has be done for instance in the theoretical context by Finus/Rundshagen 

(2001) or in the empirical context by Eyckmans/Finus (2003) for some of the coalition games 

we discussed here. Of course, one could argue that more is always better than less stability if 

one assumes that additional equilibria in one game compared to an other game are only 

chosen by players if they lead to higher aggregate welfare and lower global emissions. 

However, this would probably be a too simple view of the problem. 
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