Horbach, Jens

Working Paper

Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 47.2003

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Horbach, Jens (2003) : Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 47.2003

This Version is available at:
http://hdl.handle.net/10419/118083

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

Jens Horbach

NOTA DI LAVORO 47.2003

JUNE 2003

ETA – Economic Theory and Applications

Jens Horbach, University of Applied Sciences Anhalt, Germany

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html
Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

Summary

Besides other determinants environmental regulation, institutions like environmental agencies and social customs lead to a demand for environmental goods and services. On the basis of the public choice theory it can be shown that environmental regulation is endogenous and can be influenced by the environmental awareness of voters and interest groups. Following the so-called Porter hypothesis early developed environmental legislation induces environmental innovations and creates first mover advantages connected with a high international competitiveness of the environmental industry. An empirical analysis based on the establishment panel of the Institute for Employment Research (IAB) shows that more than 900,000 persons are employed in the environmental sector in Germany. Following the results of an econometrical analysis of employment perspectives and innovation behaviour integrated environmental technologies will become more relevant whereas employment in “traditional” end-of-pipe fields like the prevention of waste water pollution or air pollution will be reduced.

Keywords: Employment, Environmental sector, Innovation behaviour

JEL: Q21, J4, C25

Address for correspondence:

Jens Horbach
University of Applied Sciences Anhalt
Pfarrsteig 4
96215 Lichtenfels/Buch am Forst
Germany
E-mail: horbach@wi.hs-anhalt.de
1. **Introduction**

During the last twenty years the environmental sector in Germany has reached a high importance, also with respect to employment. The article deals with a theoretical and empirical analysis of employment and innovation in environmental markets. In a first step the determinants of the development of environmental markets are discussed. In most cases environmental problems represent negative external effects so that governmental measures are very important for the dynamics of environmental markets. Therefore it is useful to take a closer look at the environmental policy decision system. With respect to the international competitiveness of the German environmental sector it is important to analyse the determinants of innovation activities within this sector.

In the following an empirical analysis of the employment impacts of environmental markets based on data of the German establishment panel of the Institute for Employment Research (IAB) is presented. An econometric analysis gives some evidence for the employment perspectives and the innovation behaviour of the environmental sector.

2. **Determinants of the development of environmental markets**

The development of markets for environmental goods and services serving to prevent environmental damages is characterised by special driving forces differing from “traditional” markets. In the following the main determinants for the development of environmental markets are summarized:

- Environmental regulation and subsidies;
- Institutional structure of environmental regulation;
- Environmental pollution problems, state of the environment;
- State of economic development;
- Environmental awareness and social customs in the long run.

In most cases the public good character of the environment leads to the problem that the pricing system of a market economy which is responsible for the efficient allocation of private goods is not applicable. For example nobody is willing to pay for a clean air when he can use it without

1 See e.g. Bundesumweltministerium (1996); Horbach/Blien/von Hauff (2002).
any costs. The environment causes a so-called externality problem - a polluter uses the environ-mental medium without paying for it. The consequence is that a "neutral" institution (normally the state) is needed to correct this error of the pricing system.

For that reason state measures are very important for the development of environmental mar-kets. This has been confirmed by several empirical studies where producers of environmental goods were questioned.2

But in fact governmental measures are not completely exogenous. If we want to analyse the long-term determinants of environmental markets we have to regard the whole system of en-vironmental policy decisions. From the point of view of the public choice theory policy deci-sions are dependent from the influence of voters and interest groups - an idea that is demon-strated in figure 1.

In most cases environmental pollution is caused by the so-called economic system. But indi-viduals and enterprises are also part of the political system. Individuals can influence political decisions by their votes. The voter decisions for parties representing environmental problems do not only depend on the pollution problems of a country but also on the perception of these problems by the voters. This is a very important point because there are many severe envi-ronmental pollution problems like CO\textsubscript{2} emissions but only in the long run they lead to dam-ages and therefore have little influence on voter behaviour. From this point of view the devel-opment of an environmental awareness of the voters is very important.

Another way of influencing environmental policy are interest group activities of individuals or enterprises (e.g. lobbying or financing of political parties). The intrinsic aim of interest groups consists in getting financial advantages for their group members. On the other hand a clean environment increases the utility of many individuals so that there is no incentive to become a member of an environmental interest group. This argumentation implies an asym-metry between “economic” and “environment” related interests groups in favour of the eco-nomic interests. As a consequence institutions like a ministry of environment or even the de-vlopment of social customs like environmental awareness are very important for the articula-tion of environmental interests.

2 See e.g. Halstrick-Schwenk/Horbach/Löbbe/Walter (1994).
Environmental regulation resulting from the complex political decision system represents the main driving force for the domestic demand for environmental goods and services. In the firms where the abatement equipment is implemented costs are normally raised whereas the producer firms profit from the environmental regulation. Following Porter this way of looking is too static.\(^3\) He takes the view that the initial push of the environmental regulation creates new environmental technologies so that the concerned country will get advantages in competitiveness with respect to countries with less environmental regulations. Jaffe, Newell and Stavins state that „all of these forms of intervention have the potential for inducing or forcing some amount of technological change, because by their very nature they induce or require firms to do things they would not otherwise do“\(^4\). The environmental policy can reduce the social costs of environmental regulation by inducing new technologies, but this is only true when the elasticity of supply of R&D inputs is not low, otherwise the induced innovation

\(^4\) Jaffe, Newell and Stavins (1993).
must come at the expense of other forms of innovation. Up to now there is no convincing proof that the so-called Porter hypothesis is empirically relevant but it can be shown that the environmental legislation in Germany has encouraged a very relevant environmental sector with a high international competitiveness.

3. Employment structure of the German environmental sector

The following section gives an empirical overview of the environmental sector in Germany. The results are based on the establishment panel of the Institute for Employment Research (IAB). This panel is a representative sample of all establishments in Germany. In 1999 the facilities were questioned if they offer environmental goods or services. Producers of equipment for the protection of the environment as well as suppliers of corresponding business services represent the core of the environmental industry. In a broader concept the environmental sector also comprises related services like waste management, recycling activities, treatment of contaminated soil and hazardous waste, consulting and maintenance of environment-protection equipment.

Methodological problems result from the existence of the so called integrated environmental protection measures, insufficient separation from clean products and multi-purpose products (e.g. pumps for water cleaning which can also be used for other purposes). In comparison to end-of-pipe measures integrated technologies can not be separated from the whole production process so that the “environmental part” can not be quantified.

In table 1 the results for the environmental sector are shown. Nearly 9 % of all establishments in Germany offer environmental goods and services. This does not mean that these firms only produce such goods so that the employment share (2,7 %) is much lower.

4 Jaffe, Newell, Stavins (2002) p. 50
6 Halstrick-Schwenk/Horbach/Löbbe/Walter (1994).
7 Horbach/Blien/von Hauff (2002).
Table 1: The environmental sector in Germany (1998/1999)

<table>
<thead>
<tr>
<th></th>
<th>Absolute Number</th>
<th>In % of all establishments in the panel of IAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of establishments</td>
<td>176203</td>
<td>8,6</td>
</tr>
<tr>
<td>Employees (30.06.1999)</td>
<td>912685</td>
<td>2,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turnover with</th>
<th>In € (milliards)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental goods</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Environmental services</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Total environmental turnover</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Source: Horbach, Blien, von Hauff (2002).

Besides the prevention of water and air pollution “waste disposal and recycling” represents the most important environmental sector in Germany (table 2).

Table 2: Number of establishments and employees by environmental fields in 1998

<table>
<thead>
<tr>
<th>Environmental fields</th>
<th>Number of Establishments</th>
<th>Employees in environmental fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention of water pollution, waste water treatment</td>
<td>12,1</td>
<td>18,9</td>
</tr>
<tr>
<td>Waste disposal, recycling</td>
<td>28,4</td>
<td>27,4</td>
</tr>
<tr>
<td>Prevention of air pollution, climate protection</td>
<td>19,4</td>
<td>16,3</td>
</tr>
<tr>
<td>Noise abatement</td>
<td>1,7</td>
<td>2,3</td>
</tr>
<tr>
<td>Removal of hazardous waste, soil protection</td>
<td>5,5</td>
<td>3,7</td>
</tr>
<tr>
<td>Measurement technology</td>
<td>6,2</td>
<td>6,6</td>
</tr>
<tr>
<td>Analytics, consulting</td>
<td>5,9</td>
<td>4,7</td>
</tr>
<tr>
<td>Environmental research and development</td>
<td>0,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Other environmental fields</td>
<td>19,9</td>
<td>18,6</td>
</tr>
<tr>
<td>Total</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Source: Horbach, Blien, von Hauff (2002).
The high employment share of “other environmental fields” suggests a growing importance of integrated environmental technologies because this sector contains products like environmental friendly energy technologies, environmental friendly cleaning, use of rain water or solar energy.

Table 3: Employees in the environmental sector in Germany (1999) by branches

<table>
<thead>
<tr>
<th>Branches</th>
<th>Employees</th>
<th>in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture and forestry, gardening, fishery</td>
<td>34644</td>
<td>3,80</td>
</tr>
<tr>
<td>Mining, electricity, gas, water supply</td>
<td>28802</td>
<td>3,16</td>
</tr>
<tr>
<td>Chemical Industry, manufacturing of mineral oil</td>
<td>24316</td>
<td>2,66</td>
</tr>
<tr>
<td>Manufacturing of plastic and rubber products</td>
<td>30417</td>
<td>3,33</td>
</tr>
<tr>
<td>Non-metallic minerals, construction materials, glass</td>
<td>16408</td>
<td>1,80</td>
</tr>
<tr>
<td>Iron, sheet metal and metal products</td>
<td>15936</td>
<td>1,75</td>
</tr>
<tr>
<td>Steel and light metal products, railway carriage</td>
<td>4799</td>
<td>0,52</td>
</tr>
<tr>
<td>Mechanical engineering products</td>
<td>97051</td>
<td>10,63</td>
</tr>
<tr>
<td>Road vehicles, ship and airplane building</td>
<td>37521</td>
<td>4,11</td>
</tr>
<tr>
<td>Electronic engineering products</td>
<td>24496</td>
<td>2,68</td>
</tr>
<tr>
<td>Fine mechanical and optical products</td>
<td>8653</td>
<td>0,95</td>
</tr>
<tr>
<td>Wood</td>
<td>2742</td>
<td>0,30</td>
</tr>
<tr>
<td>Paper</td>
<td>286</td>
<td>0,03</td>
</tr>
<tr>
<td>Textiles</td>
<td>4195</td>
<td>0,46</td>
</tr>
<tr>
<td>Manufacturing of food</td>
<td>1603</td>
<td>0,18</td>
</tr>
<tr>
<td>Construction sector</td>
<td>92879</td>
<td>10,18</td>
</tr>
<tr>
<td>Trade</td>
<td>139136</td>
<td>15,24</td>
</tr>
<tr>
<td>Traffic and communication sector</td>
<td>23394</td>
<td>2,56</td>
</tr>
<tr>
<td>Economical and juridical consulting</td>
<td>1485</td>
<td>0,16</td>
</tr>
<tr>
<td>Architecture and laboratories</td>
<td>124084</td>
<td>13,60</td>
</tr>
<tr>
<td>Street cleaning, waste and waste water disposal</td>
<td>104010</td>
<td>11,40</td>
</tr>
<tr>
<td>Other services</td>
<td>18934</td>
<td>2,07</td>
</tr>
<tr>
<td>Associations</td>
<td>11340</td>
<td>1,24</td>
</tr>
<tr>
<td>Public administration</td>
<td>2092</td>
<td>0,23</td>
</tr>
<tr>
<td>Other sectors</td>
<td>63460</td>
<td>6,94</td>
</tr>
<tr>
<td>All sectors</td>
<td>912685</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Horbach, Blien, von Hauff (2002).

A breakdown of environmental goods and services by branches shows the cross-section character of the environmental sector. Nearly all branches are producing environmental goods or services (table 3). Quantitative important branches are mechanical engineering products, the construction sector, trade, architecture and laboratories and street cleaning, waste and waste water disposal.
4. Perspectives of environmental employment in Germany

In the following the perspectives of environmental employment in Germany will be analysed by using econometric methods.

Table 4: Determinants of employment development in German establishments

a) Results of a logit analysis for 1992 to 2000

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable: “Development of employment from 1992 to 2000”</td>
<td></td>
</tr>
<tr>
<td>Stagnating or falling employment from 1992 to 2000 (0)</td>
<td></td>
</tr>
<tr>
<td>Rising employment from 1992 to 2000 (1)</td>
<td></td>
</tr>
<tr>
<td>Number of employees</td>
<td>-8,610^{-5} (-1,80)</td>
</tr>
<tr>
<td>Production of environmental goods (yes 1, no 0)</td>
<td>0,3259 (1,78)*</td>
</tr>
<tr>
<td>Environmental intensity (yes 1, no 0)</td>
<td>-0,3702 (-2,01)**</td>
</tr>
<tr>
<td>Constant</td>
<td>-0,5271 (-7,14)**</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1120</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>1449,2</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0,014</td>
</tr>
</tbody>
</table>

Significance levels: * < 0,10; ** < 0,05 *** < 0,01

The results of a logit analysis (table 4) based on data of the establishment panel of the Institute for Employment Research (IAB) confirm that firms producing environmental protection goods and services had a better performance with respect to other firms despite the fact that employment in environmental intensive firms - the potential demanders of these goods - has declined from 1992 to 2000.

The positive trend concerning the production of environmental goods stopped at the end of the nineties. The coefficient of the respective variable is no longer significant. Concerning environmental intensive branches an opposite trend from 1998 to 2000 is observable. The employment in these branches performed better with respect to non-environmental intensive branches (see table 4b)). Besides other reasons this was mainly due to positive developments in the chemical and the iron and steel industry.

9 In the context of this analysis branches are declared as environmental intensive if the percentage of the pollution abatement investment with respect to all investment of the considered branch was - on average - higher than 5% from 1993 to 1997.
b) Results of a logit analysis for 1998 - 2000

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees</td>
<td>-2.87*10^{-5} (-1.01)</td>
</tr>
<tr>
<td>Production of environmental goods</td>
<td>-0.009 (-0.11)</td>
</tr>
<tr>
<td>Environmental intensity</td>
<td>0.4337 (5.44)**</td>
</tr>
<tr>
<td>East or West-Germany (West 0, East 1)</td>
<td>-0.1767 (-3.26)**</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.3391 (-3.8)**</td>
</tr>
</tbody>
</table>

Number of observations 6056
Log likelihood 7908.4
Pseudo R^2 0.01

Significance levels: * < 0.10; ** < 0.05; *** < 0.01
Source: Establishment panel of IAB, own calculations.

One explanation for the decline of the environmental sector during the last years can be found when we regard the demand for environmental goods. The share of environmental investment with respect to total investment in Germany has declined since 1994 (see figure 2).

Figure 2: Shares of environmental investment with respect to total investment in Germany - in % -

Source: Statistical office in Germany, own calculations.
It is difficult to explain this development because it is not clear if the decline of environmental investment represents a lower importance of environmental problems and concerns or a rising relevance of the so called integrated environmental measures. Environmental investment statistics can only record end-of-pipe technologies whereas integrated environmental measures are characterised by reorganizations of the production process, improved measurement and/or control methods or completely different designed production processes leading to less environmental damages. For that reason it is useful to differentiate between sectors of environmental goods: It is possible that a decline of “traditional” end-of-pipe sectors like the reduction of air emissions by filters and waste water treatment will be accompanied by an increase of scientific research in environmental fields, precision engineering or measurement technologies.

Table 5: Employment structure for selected branches in the German Environmental sector from 1992 to 2001 - Employment shares in %

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture and forestry, gardening, fishery</td>
<td>4,0</td>
<td>3,1</td>
<td>3,5</td>
<td>2,4</td>
</tr>
<tr>
<td>Mining, electricity, gas, water supply</td>
<td>6,2</td>
<td>9,0</td>
<td>4,7</td>
<td>8,4</td>
</tr>
<tr>
<td>Chemical Industry, manufacturing of mineral oil</td>
<td>2,0</td>
<td>1,4</td>
<td>2,2</td>
<td>7,1</td>
</tr>
<tr>
<td>Non-metallic minerals, construction materials, glass</td>
<td>2,6</td>
<td>2,2</td>
<td>2,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Iron, sheet material and metal products</td>
<td>5,3</td>
<td>3,4</td>
<td>2,4</td>
<td>1,7</td>
</tr>
<tr>
<td>Steel and light metal products, railway carriage</td>
<td>2,1</td>
<td>2,1</td>
<td>5,3</td>
<td>1,5</td>
</tr>
<tr>
<td>Mechanical engineering products</td>
<td>11,2</td>
<td>7,0</td>
<td>8,2</td>
<td>2,2</td>
</tr>
<tr>
<td>Road vehicles, ship and airplane building</td>
<td>4,5</td>
<td>3,7</td>
<td>3,3</td>
<td>11,8</td>
</tr>
<tr>
<td>Electronic engineering products</td>
<td>3,2</td>
<td>3,0</td>
<td>3,4</td>
<td>3,9</td>
</tr>
<tr>
<td>Construction sector</td>
<td>13,1</td>
<td>12,7</td>
<td>10,1</td>
<td>11,4</td>
</tr>
<tr>
<td>Trade</td>
<td>7,9</td>
<td>15,2</td>
<td>12,0</td>
<td>11,2</td>
</tr>
<tr>
<td>Traffic and communication sector</td>
<td>6,1</td>
<td>5,6</td>
<td>4,7</td>
<td>3,1</td>
</tr>
<tr>
<td>Architecture and laboratories</td>
<td>8,5</td>
<td>9,5</td>
<td>10,6</td>
<td>9,8</td>
</tr>
<tr>
<td>Street cleaning, waste and waste water disposal</td>
<td>17,8</td>
<td>15,8</td>
<td>14,8</td>
<td>10,2</td>
</tr>
<tr>
<td>Other services</td>
<td>5,3</td>
<td>6,1</td>
<td>12,4</td>
<td>14,4</td>
</tr>
<tr>
<td>Total</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Source: Establishment panel of IAB, own calculations.

This hypothesis can be confirmed by regarding the sectoral structure of the environmental firms from 1992 to 2001 (table 5). These calculations show the increasing relative importance of integrated measures because of the growing employment share of „other services“ from

10 Halstrick-Schwenk/Horbach/Löbbe/Walter (1994).
1992 to 2001 with respect to declining shares of branches like “mechanical engineering products”.

In a further step the employment expectations of the firms questioned in 2001 have been analysed by dividing into different environmental sectors (table 6).

Table 6: Employment expectations from 2001 to 2005

a) All environmental sectors

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees in 2001</td>
<td>-7,8*10^-5 (-1,31)</td>
</tr>
<tr>
<td>Production of environmental goods</td>
<td>0,0335 (0,29)</td>
</tr>
<tr>
<td>East or West-Germany</td>
<td>-0,1587(-1,84)</td>
</tr>
<tr>
<td>Environmental intensity</td>
<td>0,2502 (2,17)**</td>
</tr>
<tr>
<td>Lack of qualified employees (yes 1, no 0)</td>
<td>0,7348 (8,59)**</td>
</tr>
<tr>
<td>Constant</td>
<td>-1,5089 (10,06)**</td>
</tr>
<tr>
<td>Number of observations</td>
<td>3661</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>3558,38</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0,039</td>
</tr>
</tbody>
</table>

Significance levels: * < 0,10; ** < 0,05 *** < 0,01

The econometrical results of a logit analysis show that the size of the facilities is negatively correlated with an increasing employment. Furthermore the negative sign of the variable „East or West-Germany“ signifies that the new “Länder” will face a worse employment with respect to the “old Länder”.

b) Environmental research

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees in 2001</td>
<td>-0,0002 (-2,81)**</td>
</tr>
<tr>
<td>Environmental research (yes 1, no 0)</td>
<td>0,5771 (1,75)**</td>
</tr>
<tr>
<td>East or West-Germany</td>
<td>-0,2214 (-2,91)**</td>
</tr>
<tr>
<td>Environmental intensity</td>
<td>0,3486 (3,10)**</td>
</tr>
<tr>
<td>Lack of qualified employees</td>
<td>0,7960 (10,50)**</td>
</tr>
<tr>
<td>Constant</td>
<td>-1,5307 (11,62)**</td>
</tr>
<tr>
<td>Number of observations</td>
<td>5111</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>4637,86</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0,048</td>
</tr>
</tbody>
</table>

Significance levels: * < 0,10; ** < 0,05 *** < 0,01
Concerning the environmental sector there are no significant results for all environmental goods and services but we can observe positive signs for the respective variables in special environmental fields like environmental research (10%-significance level), measurement and control techniques (5%) and other environmental fields (10%). This result can be interpreted as an additional argument for the growing importance for integrated environmental techniques.

c) Measurement and control techniques

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees in 2001</td>
<td>-0,0002 (-2,80) **</td>
</tr>
<tr>
<td>Measurement and control techniques</td>
<td>0,4845 (2,07) **</td>
</tr>
<tr>
<td>East or West-Germany</td>
<td>-0,2150 (-2,83) **</td>
</tr>
<tr>
<td>Environmental intensity</td>
<td>0,3487 (3,10) **</td>
</tr>
<tr>
<td>Lack of qualified employees</td>
<td>0,7981 (10,53) ***</td>
</tr>
<tr>
<td>Constant</td>
<td>-1,5361 (11,72) ***</td>
</tr>
</tbody>
</table>

Number of observations 5111
Log likelihood 4636,68
Pseudo R² 0,048

Significance levels: * < 0,10; ** < 0,05 *** < 0,01

d) Other environmental sectors

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees in 2001</td>
<td>-0,0002 (-2,82) **</td>
</tr>
<tr>
<td>Other environmental sectors</td>
<td>0,4103 (1,79) *</td>
</tr>
<tr>
<td>East or West-Germany</td>
<td>-0,2197 (-2,89) **</td>
</tr>
<tr>
<td>Environmental intensity</td>
<td>0,3435 (3,04) **</td>
</tr>
<tr>
<td>Lack of qualified employees</td>
<td>0,7978 (10,53) ***</td>
</tr>
<tr>
<td>Constant</td>
<td>-1,5368 (11,67) ***</td>
</tr>
</tbody>
</table>

Number of observations 5111
Log likelihood 4636,63
Pseudo R² 0,048

Significance levels: * < 0,10; ** < 0,05 *** < 0,01

Source: Establishment panel of IAB (2002), own calculations.
Table 7: Development of employment by environmental sectors - in % -

<table>
<thead>
<tr>
<th>Environmental fields</th>
<th>The number of employees will probably ... up to 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>remain constant</td>
</tr>
<tr>
<td>Prevention of water pollution, waste water treatment</td>
<td>34,4</td>
</tr>
<tr>
<td>Waste disposal, recycling</td>
<td>66,1</td>
</tr>
<tr>
<td>Prevention of air pollution, climate protection</td>
<td>66,7</td>
</tr>
<tr>
<td>Noise abatement</td>
<td>43,6</td>
</tr>
<tr>
<td>Removal of hazardous waste, soil protection</td>
<td>52,2</td>
</tr>
<tr>
<td>Measurement technology</td>
<td>40,5</td>
</tr>
<tr>
<td>Analytics, consulting</td>
<td>37,6</td>
</tr>
<tr>
<td>Environmental research and development</td>
<td>5,4</td>
</tr>
<tr>
<td>Other environmental fields</td>
<td>55,8</td>
</tr>
<tr>
<td>Total</td>
<td>55,1</td>
</tr>
</tbody>
</table>

Source: Horbach, Blien, von Hauff (2002).

The results presented in table 7 confirm this argumentation: Altogether 55,1 % of the firms expected that the production of environmental goods will remain constant. At the expense of end-of-pipe measures integrated environmental technologies will become more important. Following the results of the establishment panel employment will mainly fall in the prevention of water pollution, waste water treatment and noise abatement. The majority of firms expected a stagnation concerning the fields waste disposal, recycling, prevention of air pollution, climate protection, noise abatement and removal of hazardous waste and soil protection whereas the employment in environmental fields which can be more or less attributed to integrated technologies is mainly expected to increase.

As a consequence the measurement of environmental employment will be more and more difficult because a great part of integrated measures concern the whole production process and can not be quantified separately.
5. **Innovations in the German environmental sector**

In 2001 the facilities were questioned if product innovations or improvements of products had been realized. In an econometric analysis these innovation questions were used as endogenous variables to find out if the firms belonging to the environmental sector are more innovative than the other firms. The results of a logit analysis (table 8) show that this was the case from 1999 to 2001. Environmental intensive firms also realized innovations above average. These firms are on the one hand the main demanders of environmental goods and services. On the other hand especially integrated environmental techniques are often developed by the environmental firms itself together with suppliers of machinery equipment. Unfortunately the data basis contains no information about the nature of the innovation activities so that the high level of innovation activities can also attributed to innovations in environmental intensive fields leading to more emissions.

The econometric results also show a significant correlation between the size of the facilities and the level of innovation activities. From a theoretical perspective this result can be explained by scale effects of innovation expenditures.\(^{11}\) Furthermore the econometric estimations show that there is no significant difference concerning the innovation activities between West- and East-Germany and that innovative firms have problems in getting qualified employees.

Table 8 a): Determinants of product innovations

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental intensity</td>
<td>0.3182 (2.27)**</td>
</tr>
<tr>
<td>Lack of qualified employees</td>
<td>0.5327 (5.01)**</td>
</tr>
<tr>
<td>East or West-German</td>
<td>0.1188 (1.10)</td>
</tr>
<tr>
<td>Production of environmental goods</td>
<td>0.4536 (3.49)**</td>
</tr>
<tr>
<td>Number of employees</td>
<td>0.0002 (3.84)**</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.0534 (-5.68)**</td>
</tr>
<tr>
<td>Number of observations</td>
<td>5242</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>2796.09</td>
</tr>
<tr>
<td>Pseudo R(^2)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Significance levels: * < 0.10; ** < 0.05; *** < 0.01

\(^{11}\) See e.g. Frisch (1993).
Table 8 b): Improvement and further development of products

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficients, z-statistics in brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental intensity</td>
<td>0.4397 (4.91)</td>
</tr>
<tr>
<td>Lack of qualified employees</td>
<td>0.6676 (10.65)**</td>
</tr>
<tr>
<td>East or West-Germany</td>
<td>-0.0057 (-.09)</td>
</tr>
<tr>
<td>Production of environmental goods</td>
<td>0.2720 (3.21)**</td>
</tr>
<tr>
<td>Number of employees</td>
<td>0.0014 (12.15)**</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.1251 (-0.12)**</td>
</tr>
<tr>
<td>Number of observations</td>
<td>5236</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>6341.87</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.131</td>
</tr>
</tbody>
</table>

Significance levels: * < 0.10; ** < 0.05; *** < 0.01
Source: Establishment panel of IAB (2002), own calculations.

Table 9 a): Product innovations - in % -

<table>
<thead>
<tr>
<th>Environmental fields</th>
<th>„New product or service during the last two years“</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Prevention of water pollution, waste water treatment</td>
<td>8,1</td>
</tr>
<tr>
<td>Waste disposal, recycling</td>
<td>10,1</td>
</tr>
<tr>
<td>Prevention of air pollution, climate protection</td>
<td>6,7</td>
</tr>
<tr>
<td>Noise abatement</td>
<td>8,7</td>
</tr>
<tr>
<td>Removal of hazardous waste, soil protection</td>
<td>7,3</td>
</tr>
<tr>
<td>Measurement technology</td>
<td>22,0</td>
</tr>
<tr>
<td>Analytics, consulting</td>
<td>23,3</td>
</tr>
<tr>
<td>Environmental research and development</td>
<td>40,0</td>
</tr>
<tr>
<td>Other environmental fields</td>
<td>14,2</td>
</tr>
<tr>
<td>Total</td>
<td>11,4</td>
</tr>
</tbody>
</table>

Chi-Quadrat 23,87 (1%-significance level)
Source: Establishment panel of IAB (2002), own calculations.

A breakdown of the innovation activities by environmental sectors (table 9) shows that the more integrated sectors like measurement technology or analytics and consulting realize innovations above average. Contrary to that the shares of new products of the typical end-of-pipe
sectors like prevention of water pollution, waste water treatment and prevention of air pollution, climate protection are low.

Table 9b: Improvement and further development of products - in % -

<table>
<thead>
<tr>
<th>Environmental fields</th>
<th>Improvement and further development of products during the last two years (2000 to 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Prevention of water pollution, waste water treatment</td>
<td>45,2</td>
</tr>
<tr>
<td>Waste disposal, recycling</td>
<td>38,9</td>
</tr>
<tr>
<td>Prevention of air pollution, climate protection</td>
<td>47,1</td>
</tr>
<tr>
<td>Noise abatement</td>
<td>34,8</td>
</tr>
<tr>
<td>Removal of hazardous waste, soil protection</td>
<td>32,7</td>
</tr>
<tr>
<td>Measurement technology</td>
<td>54,0</td>
</tr>
<tr>
<td>Analytics, consulting</td>
<td>63,3</td>
</tr>
<tr>
<td>Environmental research and development</td>
<td>50,0</td>
</tr>
<tr>
<td>Other environmental fields</td>
<td>39,0</td>
</tr>
<tr>
<td>Total</td>
<td>43,0</td>
</tr>
</tbody>
</table>

Chi-square: 13,75 (significance level: 10%)

Source: Establishment panel of IAB (2002), own calculations.

Literature

Bundesumweltministerium (1996): Aktualisierte Berechnung der umweltschutzinduzierten Beschäftigung in Deutschland, Bonn

Frisch, Armin J. (1993): Unternehmensgröße und Innovation - Die schumpeterianische Diskussion und ihre Alternativen, Campus Verlag, Frankfurt am Main

Halstrick-Schwenk, Marianne; Horbach, Jens; Löhbe, Klaus; Walter, Johann (1994): Die umwelttechnische Industrie in der Bundesrepublik Deutschland, Halle 1994

Horbach, Jens; Blien, Uwe; von Hauff, Michael (2002): Beschäftigung im Umweltschutzsektor - theoretische Überlegungen und empirische Ergebnisse auf der Basis des IAB-Betriebspanels, in: Horbach, Jens (Hrsg.): Der Umweltschutzsektor und seine Bedeutung für den Arbeitsmarkt, Schriften des Instituts für Wirtschaftsforschung Halle (IWH), Band 10, Nomos Verlag, Baden-Baden, p. 32-56

K. TANO, M.D. FAMINOW, M. KAMUANGA and B. SWALLOW: Using Conjoint Analysis to Estimate Farmers’ Preferences for Cattle Traits in West Africa

Efrem CASTELNUOVO and Paolo SURICO: What Does Monetary Policy Reveal about Central Bank’s Preferences?

Duncan KNOWLER and Edward BARBIER: The Economics of a “Mixed Blessing” Effect: A Case Study of the Black Sea

Marzio GALEOTTI, Alessandro LANZA and Matteo MANERA: Rockets and Feathers Revisited: An International Comparison on European Gasoline Markets

Effrosyni DIAMANTOUDI and Eftichios S. SARTZETAKIS: Stable International Environmental Agreements: An Analytical Approach

Alain DEMOOGTS: Neoclassical Convergence Versus Technological Catch-up: A Contribution for Reaching a Consensus

Giuseppe DI VITA: Renewable Resources and Waste Recycling

Giorgio BRUNELLO: Is Training More Frequent when Wage Compression is Higher? Evidence from 11 European Countries

Mordecai KURZ, Hehui JIN and Maurizio MOTOLESE: Endogenous Fluctuations and the Role of Monetary Policy

Reyer GERLAGH and Marjan W. HOFKES: Escaping Lock-in: The Scope for a Transition towards Sustainable Growth?

Michele MORETTO and Paolo ROSATO: The Use of Common Property Resources: A Dynamic Model

Philippe QUIRION: Macroeconomic Effects of an Energy Saving Policy in the Public Sector

Roberto ROSON: Dynamic and Distributional Effects of Environmental Revenue Recycling Schemes: Simulations with a General Equilibrium Model of the Italian Economy

Francesco RICCI (l): Environmental Policy Growth when Inputs are Differentiated in Pollution Intensity

Alberto PETRUCCI: Devaluation (Levels versus Rates) and Balance of Payments in a Cash-in-Advance Economy

László Á. KÓCZY (liv): The Core in the Presence of Externalities

Steven J. BRAMS, Michael A. JONES and D. Marc KILGOUR (liv): Single-Peakedness and Disconnected Coalitions

Guillaume HAERINGER (liv): On the Stability of Cooperation Structures

Fausto CAVALLARO and Luigi CIAOLO: Economic and Environmental Sustainability: A Dynamic Approach in Insular Systems

Barbara BUCHNER, Carlo CARRARO, Igor CERSOSIMO and Carmen MARCHIORI: Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation

Andreas LÖSCHEL and ZhongXIANG ZHANG: The Economic and Environmental Implications of the US Repudiation of the Kyoto Protocol and the Subsequent Deals in Bonn and Marrakech

Hannes EGLI: Are Cross-Country Studies of the Environmental Kuznets Curve Misleading? New Evidence from Time Series Data for Germany

Adam B. JAFFE, Richard G. NEWELL and Robert N. STAVINS: Environmental Policy and Technological Change

Joseph C. COOPER and Giovanni SIGNORELLO: Farmer Premiums for the Voluntary Adoption of Conservation Plans

The ANSEA Network: Towards An Analytical Strategic Environmental Assessment

Paolo SURICO: Geographic Concentration and Increasing Returns: a Survey of Evidence

Robert N. STAVINS: Lessons from the American Experiment with Market-Based Environmental Policies
Network Theory Coalition

Marco PERCOCO: Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO

Carlo CAPUANO

R. KLEIN
C.C. JAEGER, M. LEIMBACH, C. CARRARO, K. HASSELMANN, J.C. HOURCADE, A. KEELER and Robert N. STAVINS

C. PIGA and M. VIVARELLI

S. M. CAVANAGH, W. M. HANEMANN and R. N. STAVINS: Muffled Price Signals: Household Water Demand under Increasing-Block Prices

CLIM 51.2002 C. OHL (lii): Inducing Environmental Co-operation by the Design of Emission Permits

CLIM 43.2002 J. EYCKMANS, D. VAN REGE MORTER and V. VAN STEENBERGHE (lii): Is Kyoto Fatally Flawed? An Analysis with MacGEM

ETA 47.2002 Y. H. FARZIN: Can an Exhaustible Resource Economy Be Sustainable?

ETA 48.2002 Y. H. FARZIN: Sustainability and Hamiltonian Value

KNOW 49.2002 C. PIGA and M. VIVARELLI: Cooperation in R&D and Sample Selection

Coalition Theory Network

Sergio CURRARINI (lii): Stable Organizations with Externalities

ETA 55.2002 Richard G. NEWELL and Robert N. STAVINS: Cost Heterogeneity and the Potential Savings from Market-Based Policies

SUST 57.2002 Vladimir KOTOV and Elena NIKITINA (lii): Reorganisation of Environmental Policy in Russia: The Decade of Success and Failures in Implementation of Perspective Quests

VOL 60.2002 Giovanni DI BARTOLOMEO, Jacob ENGWERDA, Joseph PLASMANS and Bas VAN AARLE: Staying Together or Breaking Apart: Policy-Makers' Endogenous Coalitions Formation in the European Economic and Monetary Union

PRIV 62.2002 Carlo CAPUANO: Demand Growth, Entry and Collusion Sustainability

PRIV 63.2002 Federico MUNARI and Raffaele ORIANI: Privatization and R&D Performance: An Empirical Analysis Based on Tobin’s Q

PRIV 64.2002 Federico MUNARI and Maurizio SOBRERO: The Effects of Privatization on R&D Investments and Patent Productivity

SUST 65.2002 Orley ASHENFELTER and Michael GREENSTONE: Using Mandated Speed Limits to Measure the Value of a Statistical Life

CLIM 68.2002 Barbara K. BUCHNER and Roberto ROSON: Conflicting Perspectives in Trade and Environmental Negotiations

CLIM 69.2002 Philippe QUERIN: Complying with the Kyoto Protocol under Uncertainty: Taxes or Tradable Permits?

SUST 70.2002 Anna ALBERINI, Patrizia RIGANTI and Alberto LONGO: Can People Value the Aesthetic and Use Services of Urban Sites? Evidence from a Survey of Belfast Residents

SUST 71.2002 Marco PERCOCO: Discounting Environmental Effects in Project Appraisal
Isaac OTCHERE: Intra-Industry Effects of Privatization Announcements: Evidence from Developed and Developing Countries

Yannis KATSOLAKOS and Elissavet LIKOYANNI: Fiscal and Other Macroeconomic Effects of Privatization

Guillaume GIRMENS: Privatization, International Asset Trade and Financial Markets

D. Teja FLOTTO: A Note on Consumption Correlations and European Financial Integration

Ibolya SCHINDELE and Enrico C. PEROTTI: Pricing Initial Public Offerings in Premature Capital Markets: The Case of Hungary

Gabriella CHIESA and Giovanna NICODANO: Privatization and Financial Market Development: Theoretical Issues

Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review

Wietze LISE, Claudia KEMPFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market

Laura MARSILIANI and Thomas I. RENSTRÖM: Environmental Policy and Capital Movements: The Role of Government Commitment

Reyer GERLAGH: Induced Technological Change under Technological Competition

Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?

A. CAPRAROS, J.-C. PEREAU and T. TAIZDAIFT: North-South Climate Change Negotiations: A Sequential Game with Asymmetric Information

Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy

Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis

Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art

Carole MAIGNAN, Gianmarco OTTAVIANO, Dino PINELLI and Francesco RULLANI (lvx): Theories of Diversity within Organisation Studies: Debates and Future Trajectories

Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lvx): Capital Inputs: A Firm-level Investigation

Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis

Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions

David ETTINGER (lvx): Bidding among Friends and Enemies

Hanna VARTIAINEN (lvx): Auction Design without Commitment

Matti KELOHARJU and Kjell G. NYBORG and Kristian RYDQVIST (lvx): Multiple Unit Auctions and Short Squeezes

Anders LUNANDER and Jan-Eric NILSSON (lvx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts

Christine A. PARLOUR and Uday RAJAN (lvx): Rationing in IPOs

Kjell G. NYBORG and Ilya A. STREBULAEV (lvx): Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games

Michele MORETTO: Competition and Irreversible Investments under Uncertainty

Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?

Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis

Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

PRIV 37.2003 Narjess BOURBARI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers

KNOW 39.2003 Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations

KNOW 42.2003 Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies

CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness

PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization

ETA 47.2003 Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

(i) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001
(ii) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001
(iii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001
(iv) This paper was circulated at the International Conference on “Climate Policy – Do We Need a New Approach?”, jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001
(v) This paper was presented at the Seventh Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Università Catholique de Louvain, Venice, Italy, January 11-12, 2002
(vi) This paper was presented at the First Workshop of the Concerted Action on Tradable Emission Permits (CATEP) organised by the Fondazione Eni Enrico Mattei, Venice, Italy, December 3-4, 2001
(vii) This paper was presented at the ESF EURESCO Conference on Environmental Policy in a Global Economy “The International Dimension of Environmental Policy”, organised with the collaboration of the Fondazione Eni Enrico Mattei, Acquafredda di Maratea, October 6-11, 2001
(viii) This paper was presented at the First Workshop of “CFEWE – Carbon Flows between Eastern and Western Europe”, organised by the Fondazione Eni Enrico Mattei and Zentrum fur Europaische Integrationsforschung (ZEI), Milan, July 5-6, 2001
(ix) This paper was presented at the Workshop on “Game Practice and the Environment”, jointly organised by Università del Piemonte Orientale and Fondazione Eni Enrico Mattei, Alessandria, April 12-13, 2002
(x) This paper was presented at the ENGINE Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002
(xi) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002
2002 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital (Editor: Dino Pinelli)</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management (Editor: Andrea Marsanich)</td>
<td></td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
</tbody>
</table>

2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets (Editor: Anil Markandya)</td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management (Editor: Sabina Ratti)</td>
<td></td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>