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On the Size and Structure of Group Cooperation  
 
 
Summary 
 
This paper examines characteristics of cooperative behavior in a repeated, n-person, 
continuous action generalization of a Prisoner’s Dilemma game. When time preferences 
are heterogeneous and bounded away from one, how “much” cooperation can be 
achieved by an ongoing group? How does group cooperation vary with the group’s size 
and structure? For an arbitrary distribution of discount factors, we characterize the 
maximal average co-operation (MAC) likelihood of this game. The MAC likelihood is 
the highest average level of cooperation, over all stationary subgame perfect equilibrium 
paths, that the group can achieve. The MAC likelihood is shown to be increasing in 
monotone shifts, and decreasing in mean preserving spreads, of the distribution of 
discount factors. The latter suggests that more heterogeneous groups are less 
cooperative on average. Finally, we establish weak conditions under which the MAC 
likelihood exhibits increasing returns to scale when discounting is heterogeneous. That 
is, larger groups are more cooperative, on average, than smaller ones. By contrast, when 
the group has a common discount factor, the MAC likelihood is invariant to group size. 
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1 Introduction

Successful cooperation at some level is required in any group. In most contexts, teams,
clubs, and partnerships function most effectively when their members get along with one
another. When they do not, substantial social conflicts often result.

This paper examines characteristics of group cooperation in a repeated, collective action
environment. Specifically, we study an n-person repeated game that resembles a repeated
Prisoner’s Dilemma game. At each stage, each member of the group can choose some (nor-
malized) level of effort or contribution in the unit interval which indicates how cooperative
he is toward other members of the group. An individual is better off the more cooperative
are the other members in the aggregate. However, each has a (static) incentive to behave
uncooperatively.

How can successful cooperation be determined for this group? Specifically, how “much”
cooperation can this group achieve? Moreover, how does the level of achievable cooperation
respond to changes in the size and composition of the group?

One standard view of group cooperation, dating at least back to Olson (1965), is that (a)
group decisions typically entail free rider problems that limit/prevent cooperative outcomes,
and (b) these problems are worse in larger groups than in smaller ones. In the context of a
repeated Prisoner’s Dilemma game, the view expressed in (a) is more or less correct when
discounting is large. That is, when members are uniformly impatient, the incentives of the
stage game take over and, consequently, joint cooperation cannot be sustained. On the
other hand, a polar view of group cooperation is obtained when the members are uniformly
patient. The Folk Theorem, according to which any feasible and individually rational payoff
profile is sustainable if all group members are sufficiently and uniformly patient, provides
an alternative conclusion to (a).1 Namely, the collective action problem is easily resolved
in the limit as the common discount factor approaches one. Hence, equilibria exist in which
all group members are cooperative each period. As for (b), group size plays no role either
when players are uniformly patient or uniformly impatient.2

These claims are more difficult to evaluate in the intermediate cases where discount
factors are bounded away from either zero or one. Moreoever, neither of these polar cases
can effectively evaluate these and other issues when discounting is heterogeneous. For
example, what effect does a mix of patient and impatient group members have on attaining
cooperative outcomes? Presumably, collective decision problems occur in these cases as
well.

To address these questions, we therefore depart from the traditional focus on uniformly

1Fudenberg and Maskin (1986) is a standard reference.
2To be fair, Olson (1965) outlined several reasons for ineffectiveness of larger groups which are not

considered here. See Section 5 for an extended discussion.
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patient players in repeated games.3 Instead, we examine a measure of cooperation in a
group whose members possess arbitrary discount factors.

Consider a group with n members. Let δi denote the discount factor for member, i =
1, . . . , n. Let δ = (δ1, . . . , δn) denote the profile of discount factors. Consider, in a repeated
game of perfect monitoring, the set of stationary, subgame perfect equilibria (SSPE), i.e.,
equilibria in which the same action profile is taken each period. Let pi ∈ [0, 1] indicate
the level of cooperation by group member i each period in an SSPE. For instance, pi may
indicate a (normalized) level of effort by member i. A convenient alternative interpretation
is that pi is the probability that member i assigns to a discrete, “cooperative” action in a
binary action game.4 Now consider a profile of actions, p = (p1, . . . , pn), that maximizes
the average level of cooperation given by

1

n

nX
i=1

pi (1)

over all SSPE paths. The value of this program is a level of cooperation, p∗(n, δ) ∈ [0, 1],
which we call the maximal average cooperation (MAC) likelihood. The maximal average
cooperation (MAC) likelihood describes the highest average level of cooperation attainable
by the group each period when behavior is stationary.

We are interested in the MAC likelihood, rather than in group welfare, because the
former is calculated from behavior directly. To an external observer who may not observe the
players’ payoffs, the MAC likelihood provides an objective measure of group performance.
A manager of a firm who knows nothing about the details of the payoffs of his divisional
workers, may nevertheless measure the effectiveness of the group by examining their average
cooperative effort.

Even so, using the MAC likelihood as a measure of attainable cooperation is restrictive
because stationary equilibria entail some loss of generality when discounting is heteroge-
neous. For one thing, a recent paper by Lehrer and Pauzner (1999) shows that the feasible
payoff set changes when discounting is heterogeneous. In particular, there are typically
equilibrium payoffs outside the convex hull of the stage game payoff set if individuals are
sufficiently but heterogeneously patient. The intuition is that relatively impatient players
can receive favorable payoffs early on, while relatively patient ones receive rewards later in
the game. For another, the MAC likelihood when the interpretation of p is as amixed action
profile is problematic: when discount factors are bounded away from one, the assumption
that mixed action histories are observable is no longer without loss of generality. For this
reason, the interpretation of p as a profile of continuous pure actions is the more desirable
one.5

3Other work which departs from the uniform patience assumption is discussed later in this Section.
4The latter interpretation assumes that the history of mixed action profiles are observable.
5The mixed action interpretation is only used in the analysis as a convenience.
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On the other hand, the restriction to stationary equilibria may be justified on at least
four grounds. First, so little is known about equilibria when discounting is bounded away
from either one or zero that it seems sensible to start with an approach that admits a
transparent comparison with standard models. In particular, because the stationary payoff
set does not change if discounting is heterogeneous, stationary equilibria can isolate changes
due to equilibrium behavior rather than due to changes in feasibility constraints.

Second, the stationary equilibria facilitate objective measurement of the group by an
outside observer. This is especially relevant to a neutral observer or to a personell manager
of the firm. By contrast, nonstationary equilibria present problems for measurement since it
is unclear how cooperation early in the game should be weighted against cooperation later
if there is no common discount factor.

Third, stationary equilibria – especially the variety studied here – are particularly
simple to implement. Using example of the personell manager again, the firm may require
cooperation from a team of emplyees, but be unable to monitor their performance directly.
Hence, equilibria of low complexity that require only self-monitoring may be desirable.

Finally, these stationary equilibria will, for our purposes, prove useful as they highlight
potential social conflicts generated by the interaction of patient and impatient individuals.
Even as an imperfect estimate, the MAC likelihood effectively summarizes these conflicts.

Section 2 describes the case of two players. There the MAC likelihood is explicitly calcu-
lated. In the n player case in Section 3, we prove that the MAC likelihood is characterized
by a maximal fixed point of a particular function. Properties of this function provide critical
information as to how cooperation varies with size and the composition of the group.

Our main results are in Section 4. The findings fall into two categories: (1) the effect on
cooperation when the composition of the group changes (holding size fixed); (2) the effect
on cooperation when group size changes.

One rather expected finding from the first category is that the MAC likelihood is in-
creasing in monotone shifts in the distribution of time preferences. More patient groups are
more cooperative.

A less obvious finding is that mean preserving spreads reduce the MAC likelihood.
Group heterogeneity lowers cooperation. Greater social conflict is generated by greater
conflict in time preferences of the members. Roughly, the result comes from the fact that
an individual’s level of cooperation in a “MAC" equilibrium turns out to be concave in his
own discount factor. Hence, increments to cooperation are decreasing in one’s own patience.

The main result of the second category establishes sufficient conditions under which
the MAC likelihood exhibits increasing returns to scale. Suppose an n-person group with
discounting profile δn doubles in size holding everything else, including the distribution
of discount factors, constant. Then the MAC likelihood exhibits increasing returns if
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p∗(2n, δ2n) > p∗(n, δn). More generally, for any scale factor α, the MAC likelihood exhibits
increasing (decreasing) returns to scale if

p∗(αn, δαn) > (<) p∗(n, δn) (2)

In words, increasing returns to scale exist if the average level of cooperation of the scaled
up group exceeds that of the original group. If p∗(n, δn) lies strictly between 0 and 1, we
show that increasing (decreasing) returns to scale exist if all individuals’ discount factors
lie above (below) a certain threshold.

The result demonstrates, however, a certain propensity toward increasing, rather than
decreasing, returns. Specifically, the MAC likelihood is shown to exhibit increasing returns
if two conditions hold. First, the average discount factor among interior cooperators (those
for whom pi < 1) exceeds the aforementioned threshold. The second condition is a “risk-
dominance-like” property on the stage game. The condition requires that in any bilateral
relationship, the relative loss from cooperating against an uncooperative member is smaller
than the relative gain to deviating against a cooperative one.

The intuition for the result is as follows. Because a player’s cooperation likelihood in
equilibrium depends on the distribution of discount factors of others, seemingly neutral
changes in scale are not neutral from a particular player’s point of view. Take for example
a 2-person group with a patient and an impatient player. If this group is replicated once,
doubling in size, then the patient player faces one other patient player and two impatient
players. Whereas before, he faced one impatient player. Hence the proportion of patient
to impatient players has changed favorably for the patient player. This explains why the
marginal response to a change in scale is positive above a fixed threshold discount factor and
is negative below it. What is crucial is that this marginal response is convex in the discount
factor. The convexity creates an asymmetry between patient and impatient players in their
responses to increases in group size. Impatience has a dampening effect: an impatient
player cares less about the future responses of others to his current action. Consequently,
the positive response of the patient player to an increase in scale exceeds the negative
response of the impatient one.

Significantly, returns to scale critically requires heterogeneity. The assumptions do not
hold, and the result fails when discounting is homogeneous. When players’ time preferences
are the same, the MAC likelihood is invariant to group size.

Section 6 summarizes these findings and discusses limitations and possibilities for future
work. Section 7 is an Appendix which contains all the proofs of the results. Most of these
are computation-intensive but are otherwise straightforward. The results demonstrate, in
limited form, that both group size and its composition matters. Moreover, it matters in a
way quite different than is supposed by the standard logic. In a heterogeneous group, in-
tertemporal incentives for good behavior sometimes improve with size, but generally worsen
with more group diversity.
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The literature comparing the size of a group with the degree of cooperation in static
collective action games is vast. See Sandler (1992) or Marwell and Oliver (1993) for surveys.
In particular, there are studies which find a reversal of Olson’s conjecture that cooperation
is more difficult in larger groups. These include include Esteban and Ray (2001), McGuire
(1974), and Chamberlin (1974). They show that an increase in group size may increase
the total provision of the public good, even though individual contributions may fall. Our
model, however, shows something stronger. Namely, an increase in group size may lead
to increase in the average contribution. Moreover, it is the repeated game nature of the
problem, coupled with heterogeneous discounting, which makes this so.

Surprisingly, there are few studies of repeated games with heterogeneous discounting.
One seminal exception is the aforementioned work by Lehrer and Pauzner (LP) (1999).
They examine two-player repeated games with differential discount factors. Their main
results characterize the feasible payoffs, and the equilibrium payoffs in the “heterogeneous
limit," meaning that fixed differences between the two discount factors are maintained while
discounting approaches one.6 Heterogeneous limits in discounting also appear in a number
of other repeated game studies. Fudenberg, Kreps, and Maskin (1990) prove a Folk Theorem
for a subset of the players when the other players’ discount factors are 0. Harrington (1989)
characterizes the bounds on heterogeneous discount factors required to achieve collusion in
oligopolies. Fudenberg and Levine (1989), Celantani, et al. (1995), and Aoyagi (1996) all
examine reputation-building by a sufficiently patient, long run player who faces a sequence
of short run players in a repeated game. Finally, a similar approach to the present paper
was taken in Haag and Lagunoff (2001), which examined stationary trigger strategies in a
local interaction network.

2 An Example with Two Group Members

To see how the MAC likelihood is determined, we begin with the quintessential collective
action problem of Prisoner’s Dilemma. In the game below, a player’s level of cooperation,
pi, is a probability of cooperation, and the payoffs are mixed extensions to a finite action
game. The game matrix is given in Figure 1 below.

C D

C c, c -c, d

D d,-c 0, 0

Figure 1: Prisoner’s Dilemma

6Specifically, a player’s discount factor in the LP model is δ∆t where ∆ is the time length of a period.
LP examine equilibrium payoffs when ∆ is close enough to zero while maintaining a fixed log ratio log(δ1)

log(δ2)

between the two discount factors.
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As is typical of PD games, each individual can choose a cooperative action, C, or an
uncooperative one, D, each period. For Prisoner’s Dilemma we require that d > c > 0 > −c,
and 2c > d− c. For ease of exposition, we also assume in this Section that d > c+ c.7

When the PD game is infinitely repeated, it is a standard exercise to show that the
profile (C,C) can be sustained as a subgame perfect equilibrium if both individuals are
sufficiently patient. How well can they do if one or both discount factors falls below the
“patience threshold?”

Let δi denote the discount factor of individual i = 1, 2. Each individual uses δi to
calculate his average discounted sum of payoffs. Let pi denote the probability that Player
i chooses to cooperate in a stationary subgame perfect equilibrium (SSPE) in which mixed
action histories are observable by both members.8 The pair (p1, p2) constitutes an SSPE if
for each i = 1, 2, and j 6= i,

pi(pjc− (1− pj)c) + (1− pi)pjd ≥ (1− δi)pjd (3)

The left hand side of (3) is Player i’s average payoff under the stationary action profile
(p1, p2). The right hand side is the one shot gain from a deviation to the uncooperative
action with the consequence that both members permanently revert thereafter to the one
shot Nash equilibrium, (D,D).

Inequality (3) yields this system of inequalities

δ1p2 ≥ p1(p2µ+ (1− p2)γ)

δ2p1 ≥ p2(p1µ+ (1− p1)γ)
(4)

where µ ≡ (d − c)/d and γ ≡ c/d.9 The first inequality is Player 1’s incentive constraint
against deviating to D. The second inequality is the identical incentive constraint for
Player 2. Clearly, full cooperation, i.e., (p1, p2) = (1, 1) solves this system whenever δi ≥
µ ≡ (d− c)/d for both i = 1, 2. In this case the Folk Theorem property applies.

However, when δi < µ for either or both players, one can still sensibly ask: how "well"
these two can do on average in any SSPE? The maximal average cooperation (MAC) likeli-
hood, defined by the maximal value of 1

2
(p1 + p2) over all SSPE pairs (p1, p2), provides one

answer. This value, which we denote by p∗, is the highest likelihood that a randomly chosen
individual from this pair is cooperative in equilibrium.

Any candidate pair (p1, p2) for determining a MAC likelihood must fall into one of four
categories. (i) only Player 1’s incentive constraint binds; (ii) only Player 2’s constraint

7Roughly, this condition is needed to ensure that symmetric mixed equilibria may be optimal when
players are impatient.

8As we observed earlier, the assumption of observed mixed actions is restrictive, and so this example is
intended for illustrative purposes. In the general model, we examine the case of continuous pure actions
rather than the mixed extensions.

9Note that by our earlier assumptions, µ > γ since d > c+ c.
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binds; (iii) both bind; or (iv) neither bind. Notice also that if a constraint does not bind,
then for that player i, it must be that pi = 1 since otherwise, his coooperation probability
can be increased without violating the incentive constraint of the other player. Solving the
system (4) for these four cases, the MAC likelihood is given by

p∗ =



1 if δi ≥ µ, for i = 1, 2

1
2

h
δ1
µ
+ 1
i

if δ1 < µ and δ1δ2 ≥ µγ + δ1(µ− γ)

1
2

h
1 + δ2

µ

i
if δ2 < µ and δ1δ2 ≥ µγ + δ2(µ− γ)

1
2

h
δ1δ2−γ2

(δ2+γ)(µ−γ) +
δ1δ2−γ2

(δ1+γ)(µ−γ)
i

if γ2 ≤ δ1δ2 < µγ +min{δ1, δ2}(µ− γ)

0 if δ1δ2 < γ2

(5)

In expression (5), the MAC likelihood takes on distinct values in each of five regions in
discount factor space. These regions are exhibited in Figure 2. For example, the conditions
which generate a MAC likelihood of 1

2

h
δ1
µ
+ 1
i
are those in which Player 2’s constraint does

not bind, and Player 1’s does bind. In this case, Player 2 cooperates with certainty, while
Player 1 “partially cooperates,” choosing C with probability less than one. Solving for
Player 1’s binding constraint when p2 = 1 gives p1 = δ1/µ ≡ δ1/

d−c
d
. Hence, a player who

discounts to 20% of the full cooperation threshold µ is uncooperative 20% of the time.

It is clear from (5) that p∗ is (weakly) increasing and continuous in the pair (δ1, δ2).
It is also straightforward to show that the MAC likelihood is generally decreasing in mean
preserving spreads of the original pair (δ1, δ2). This means that the larger is the difference
in the two players’ time preferences, other things equal, the less cooperative is the group on
average.

A noteworthy special case is the symmetric case where δ1 = δ2 = δ̄. In this case (5)
reduces to

p∗ =


1 if δ̄ ≥ µ

δ̄−γ
µ−γ if γ ≥ δ̄ < µ

0 if δ̄ < γ

(6)

Many interesting questions pertain to group size. To answer these, the n-group model is
developed in the subsequent section. Unfortunately, the simple solution technique – solving
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Full Cooperation 

Player 1 
Partial 
Player 2  
Full 

Player 1 Full 
Player 2 Partial 

Partial 
Cooperation 

(γ, γ) 

No Cooperation 

0            µ           1 

δ2   γ2       µγ 

δ1 

1 

µ

γ2 

µγ

Figure 2: Distribution of Cooperation Across Profiles of Discount Factors

a system of inequalities that do not bind at the boundaries of [0, 1]2 – is impractical with
n > 2 players. The good news is that one need not solve the system to obtain the MAC
likelihood. Since only knowledge of the aggregate level of cooperation is required, the MAC
likelihood can be characterized by a single, continuous, piecewise-smooth function.

3 A Model of Group Cooperation

3.1 The n-Group

A collection of n individuals play an infinitely repeated game in discrete time t = 0, 1, . . ..
We refer to this collection as the “n-group” or, more simply, “the group.” In each period,
the stage game is as follows. Each member i of the n-group chooses a number, pi, from a set
[0, 1] of feasible actions. The action pi determines member i’s chosen level of cooperation
toward the group. An action profile is given by p = (p1, . . . pn).

Each individual’s payoff is assumed to increase in the aggregate level of cooperation of
other members of the group, but assumed to decrease in his own level of cooperation in
the aggregate. If an individual is highly cooperative while other group members are highly
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uncooperative, the individual incurs a loss. In order to maintain constant returns in the
static incentives for cooperation (so as not to bias the results on size later on), we assume
that an individual’s payoffs have the following co-linear form:

πi(p) =
X
j 6=i
[pi (pjc+ (1− pj)(−c)) + (1− pi)pjd] (7)

where c is the reward to mutual cooperation, d is the reward to (unilaterally) uncooperative
behavior, and c is the loss incurred from others’ uncooperative behavior. We assume that
d > c > 0 > −c, and 2c > d− c > 0 (as with Prisoner’s Dilemma game). It is easy to check
that p = (0, . . . , 0) is the unique Nash equilibrium of the stage game.

This payoff structure deserves comment. Observe, first, that actions are undirected, i.e,
an individual cannot choose different actions toward each of the other n−1 group members.
If payoffs were separable across directed levels of cooperation for each other member of the
group, then each bilateral interaction would be a separate strategic problem, and so the
results from the previous Section would suffice.

Second, to isolate the effect of intertemporal incentives, the stage payoffs should reflect
a “size neutral" collective action problem. Otherwize, the stage payoffs may bias incentives
toward either larger or smaller groups. The “size neutrality" requirement entails that pay-
offs be linear in one’s own action. The collective action (free rider) problem entails that
payoffs are increasing in the aggregate cooperation of others, and decreasing in one’s own
cooperation. Finally, the payoffs allow for nonzero cross derivatives between own and other’s
actions (e.g., the payoff structrure admits games of strategic substitutes). One can verify
that the payoff in (7) therefore belongs to a "canonical class" defined by

πi = [A− pi]F (
X
j 6=i

pj)−Bpi + C (8)

where A,B,C > 0, and F is increasing in
P
j 6=i

pj. The payoff in (7) is a normalization of the

case in which F is linear.

Third, the particular normalization used in (7) has a convenient interpretation. Payoffs
and actions have been normalized so that the profile p can be interpreted as a profile of mixed
strategies in a "generalized version" of Prisoner’s Dilemma for n players. To see this, suppose
that there are two discrete actions, a “cooperative” action, C, and an “uncooperative” one,
D. Let ai ∈ {C,D}, and let a = (a1, . . . , an) denote the pure action profile. If n = 2, so that
there are only two members in the group, then the payoffs are described by the (standard)
Prisoner’s Dilemma game in Figure 1. If n ≥ 2, the pure strategy stage payoffs to a group

9



member i are given by

ui(a) =


(q − 1)c− (n− q)c if ai = C

qd if ai = D

where q = |{j = 1, . . . , n : aj = C}| describes the number of individuals that choose C.
Hence, i’s payoffmay be interpreted as the sum of the payoffs from each bilateral interaction
from all other members of the group. Then the payoff in (7) corresponds to each player’s
expected payoff when each member i = 1, . . . , n chooses C with probability pi.

Because this mixed action interpretion of p requires that we assume mixed action his-
tories are observable, the alternative interpretation in which pi is the continuous level of
some cooperative effort in a team problem, is probably more desirable. Nevertheless, we
will occasionally find it more convenient to use the mixed action interpretation.

Letting p(t) denote the action profile taken in period t, an individual’s dynamic payoff
then is: ∞X

t=0

(1− δi)δ
t
iπi(p(t))

where δi denote the discount factor of member i. Let δ = (δ1, . . . , δn) denote the (arbitrary)
profile of discount factors of the group.

3.2 Maximal Average Cooperation

We assume that the histories (p(1), . . . , p(t)) are publically observable and restrict attention
to stationary subgame perfect equilibria (SSPE). These are subgame perfect equilibria in
which the same vector of actions are chosen each period. For now, we leave the discussion
and implications of this restriction to Section 5. Because histories are publically obesrved,
any SSPE path in this class of games can be implemented by an SSPE which uses simple
“trigger strategies” in which any deviation is met with permanent reversion to the one shot,
“uncooperative” equilibrium. Hence, there is no confusion when we refer to the stationary
path profile, p, as a stationary subgame perfect equilibrium (SSPE).10

Let E(δ) denote the set of SSPE profiles given δ. Our particular interest is in the profile
p that solves

max
p∈E(δ)

1

n

nX
i=1

pi (9)

10The argument for why there is no loss of generality is standard: since the minmax payoff is 0, any
equilibrium path remains an equilibrium path if it is enforced by the threat of permanent reversion to the
one-shot equilibrium in which everyone in the group chooses “D” thereafter.
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The optimal value of (9) is an action p∗ ∈ [0, 1] that describes the maximal average coop-
eration (MAC) likelihood. In Section 4, the MAC likelihood will be denoted by p∗(n, δ) to
mark the explicit dependence on group’s size, n, and characteristics, δ.

3.3 Characterizing the MAC Likelihood

Fix a type profile δ and a stationary path, p(t) = p, ∀t. Using (7), profile p describes a
SSPE if and only if, for each i = 1, 2, ...n, 0 ≤ pi ≤ 1, and

pi

ÃX
j 6=i

pjc+
X
j 6=i
(1− pj)(−c)

!
+ (1− pi)

X
j 6=i

pjd ≥ (1− δi)
X
j 6=i

pjd (10)

The right hand side of (10) is the payoff from deviating and behaving uncooperatively.
Since the punishment is permanent “uncooperative” behavior by all members, the deviant
gains only in the initial period.

One can easily verify that if all other members cooperate fully, i.e., pj = 1 for all j 6= i,
then member i should cooperate fully if

δi ≥ (d− c)/d. (11)

If (11) holds for all members of the group (which is the case examined by the Folk Theorem),
then the problem of optimal cooperation is trivial (the MAC likelihood is 1). Consequently,
the problem of optimal cooperation becomes interesting precisely when sufficiently conflict-
ing time preferences exist.

Rewriting the Inequality in (10) and letting P−i =
P
j 6=i

pj yields

pi

·µ
d− c

d
− c

d

¶
P−i + (n− 1) c

d

¸
≤ δiP−i (12)

Now let µ = d−c
d
and γ = c

d
(as in the previous Section). Parameter µ is the relative

gain to choosing the uncooperative action against a cooperative opponent. γ is the relative
loss (against payoff d) if one is cooperative against an uncooperative opponent. Using these
parameters, Inequality (12) can be combined with the constraint pi ≤ 1 to produce

pi ≤ min

(
1,

δi

µ+ γ (n−1)−P−i
P−i

)
(13)

The following Lemma asserts that in any equilibrium that achieves the MAC likelihood,
the slackness in (12) must come from the boundary condition pi = 1. Another way of saying
this is that the second Inequality, (13), must hold with equality.
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Lemma 1 Let p denote a mixed action profile which describes a stationary, subgame perfect
equilibrium (SSPE) path. Suppose that p∗ = 1

n

Pn
i=1 pi, where p

∗ is the maximal average
cooperation (MAC) likelihood. Then p satisfies (13) with equality for each individual i.

The proof of this and all other results are in the Appendix. Rewriting Equation (12)
with parameters µ = d−c

d
and γ = c

d
we obtain

pi[(µ− γ)P−i + γ(n− 1)] ≤ δiP−i (14)

Let P =
Pn

i=1 pi denote the aggregate likelihood of cooperation. Then add and subtract
piδi to right hand side of (12) and add and subtract p2i [µ− γ] to the left hand side of (12),
to obtain the quadratic inequality

Qi(pi) ≡ (µ− γ) p2i − (P (µ− γ) + γ(n− 1) + δi) pi + Pδi ≥ 0 (15)

The graph of the quadratic Qi takes on one of two forms depending on whether µ < γ
or µ > γ. Figure 3 exhibits each of the two cases, respectively.

The following Lemma establishes necessary conditions for an equilibrium profile to yield
a positive MAC likelihood. It requires from each individual either full cooperation (pi = 1),
or partial cooperation as determined by one of the roots of the quadratic expression in (15).

Lemma 2 Let p denote an SSPE such that p∗ = 1
n

P
i pi is the MAC likelihood, and P ∗ =

np∗. If p∗ > 0 then for each member i,

pi =


Ri(P

∗) if δi < µ+ γ n−P ∗
P ∗−1 or if P ∗ < 1

1 if otherwise

where Ri(P
∗) is one of the two real roots of the quadratic function Qi in Expression (15)

and is given by

Ri(P
∗) =

P ∗(µ− γ) + γ(n− 1) + δi −
p
(P ∗(µ− γ) + γ(n− 1) + δi)2 − 4(µ− γ)P ∗δi
2(µ− γ)

When µ < γ, then Ri(P ) is the larger root of the quadratic in (15), and so from the
first graph in Figure 3 it is clear that the maximal possible cooperation for i occurs either
when pi = 1 or when pi = Ri(P ). When µ > γ, then Ri(P ) is the smaller root of the
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Figure 3: Quadratic Function Qi(pi) for cases µ < γ and µ > γ, respectively.
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quadratic, and so from the second graph, the maximal cooperation once again occurs when
either pi = 1 or pi = Ri(P ).

Now define ψi : [0, n]→ [0, 1] to be the function that determines pi in Lemma 2, i.e.,

ψi(P ) = pi =


Ri(P ) if δi < µ+ γ n−P

P−1 or if P < 1

1 if otherwise

(16)

For each member i, ψi is the response likelihood to aggregate cooperation P . Finally, let
Ψ : [0, n] → [0, n] be the sum, over all members, of the response likelihoods to aggregate
cooperation P . Formally,

Ψ(P ) =

nX
i=1

ψi(P ) (17)

Using the Lemmatta, our first result provides a fairly simple characterization of the
MAC likelihood in terms of aggregate or average behavior.

Theorem 1 The MAC likelihood is given by

p∗ = max

½
P

n
∈ [0, 1] : P = Ψ(P )

¾
(18)

where the solution to (18) is nonempty.

Moreover, p∗ > 0 iff
nX
i=1

δi
γ(n− 1) + δi

> 1 (19)

According the result, the MAC likelihood is the largest fixed point of Ψ divided by n.
The Proof in the Appendix shows , in fact, that Ψ has at most two fixed points, one of
which, P = 0, always exists. The other is an interior fixed point, P > 0, which exists
whenever (19) holds.

While the fixed point characterization is somewhat reminiscent of standard fixed point
logic for static games, the derivations are obviously different. Rather than coming from a
best response correspondence, Ψ is an aggregate equilibrium likelihood response along the
equilibrium path of the repeated game.
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4 Composition Effects

The Characterization Result (Theorem 1) will prove useful because it is easier to evaluate
parametric changes in the fixed point mapping Ψ, than to evaluate these changes in the
MAC likelihood directly. For example, if Ψ is increasing in δ, then it follows that the MAC
likelihood is increasing in δ. The former is much easier to establish than the latter directly.

Theorem 2 Let δ0 = (δ0i) and δ00 = (δ00i ) denote two distinct profiles of discount factors,
and let p∗(n, δ0) and p∗(n, δ00) denote their respective MAC likelihoods.

Suppose either

1. δ0 > δ00 or

2. δ00 is a mean preserving spread of δ0 in the sense that
1

n

X
i

δ00i =
1

n

X
i

δ0i

and for each member i, δ00i ≥ δ0i iff δ0i ≥ 1
n

P
i δ
0
i.

Then p∗(n, δ00) ≤ p∗(n, δ0), with strict inequality if 0 < p∗(n, δ0) < 1.

The Proof shows that for each i, ψi is increasing and concave in δi. This establishes the
first part. The second part then follows from a standard, second order stochastic dominance
argument. Note that one cannot generally infer strict inequality between the two likelihoods
since δ00 may already place all individuals in the region of full cooperation (i.e., pi = 1, ∀i),
and so further increases in δ have no effect.

The fact that average cooperation “increases" in each member’s patience is, of course,
to be expected. However, the second part is less obvious. Increased heterogeneity increases
the degree of social conflict. A group responds poorly to increased variability of time
preferences among its members. The intuition, roughly, is that more patient individuals
are less responsive to increases in patience than impatient ones. The effect of increasing a
player’s discount factor is to increase the weight on future punishment following a deviation.
For an already patient player, the effect of additional deterrence is small relative to that on
an impatient individual.

5 Size Effects

The issue of scale of cooperation is more complicated. A corporate merger, for example,
requires the merger of two groups of workers, each of a different size and each with different
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characteristics. It is certainly possible for the merger to increase both the size and the social
variability relative to each group. Hence, to isolate the effect of size alone, we consider the
effect of increasing n while fixing the distribution on δ. The simplest construction replicates
the group α times, for some positive integer α.

A useful benchmark is the special case where discounting is homogeneous. In that
case, Lemma 1 and (13) imply that SSPE profiles that determine the MAC likelihood are
symmetric. Hence, the incentive constraint in (10) reduces to

pi ((n− 1)pc+ (n− 1)(1− p)(−c)) + (1− pi)(n− 1)pd ≥ (1− δ̄)(n− 1)pd (20)

where p is the symmetric probability that each of the other members cooperates, while δ̄ is
the uniform discount factor. Obviously, the constraint is invariant to n. Hence, the MAC
likelihood is also invariant to n, and is described by (6).

It will prove more helpful if the scale factor α is treated as a continuous, rather than
a discrete, variable. First, we write an individual’s response likelihood as ψ(P, n, δi) to
explicitly express the dependence on group size and on discount factor. Then, a group
member’s marginal response to scale α is given by

∂ψ(αP ∗n , αn, δi)
∂α

.

where P ∗n ≡ np∗(n, δn) is the maximal aggregate cooperation in the n-group. If this partial
derivative is positive (negative), then member i increases (decreases) his contribution if both
group size and its aggregate contribution is scaled up by α < 1.

Theorem 3 Let p be a SSPE such that 1
n

P
i pi = p∗(n, δ). Then, for any scale factor

α > 1, and for any group member i = 1, . . . , n with 0 < pi < 1,

∂ψ(αP ∗n , αn, δi)
∂α


> 0 if δi > p∗(n, δ)µ+ [1− p∗(n, δ) ]γ

= 0 if δi = p∗(n, δ)µ+ [1− p∗(n, δ) ]γ

< 0 if δi < p∗(n, δ)µ+ [1− p∗(n, δ) ]γ

(21)

In words, the sign of a member i’s marginal response to scale α depends on whether or
not his discount factor lies above the threshold p∗(n, δ)µ + [1− p∗(n, δ) ]γ. Since the scale
factor α does not appear in (21), an individual’s marginal response to scale is positive or
negative independent of the change in scale. Of course, the magnitude of one’s marginal

16



response does depend on the magnitude of the change in scale. Hence, if every member of an
n-group is above the threshold (21), then the aggregate response to a change in group size
is positive. Similarly, if no group member is above the threshold (21), then the aggregate
response is negative.

Figure 4 below displays two individual marginal responses to scale, each graphed as a
function of δi. The first graph corresponds to a scale factor α = 2 while in the second,
α = 10. Parameter values are n = 80, P = 30, µ = (d− c)/d = .6, and γ = c/d = .5. Notice
that each of the graphs cross the δi axis at p∗(n, δ)µ+[1−p∗(n, δ) ]γ = (30/80).6+(50/80).5 =
.5375.
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Figure 4

Recall that the MAC likelihood exhibits increasing (decreasing) returns at scale factor
α if

p∗(αn, δαn) > (<) p∗(n, δn) (22)

Inequality (22) can be expressed equivalently as P ∗αn > (<) αP ∗n . Hence, increasing
(decreasing) returns to cooperation exist if maximal aggregate cooperation is superadditive
(subadditive).

An obvious corollary to the previous Theorem is:

Corollary Suppose 0 < p∗(n, δ) < 1. Then the MAC likelihood exhibits increasing (decreas-
ing) returns at every scale factor α > 1 if for every member i = 1, . . . , n,

δi > (<) p∗(n, δ)µ+ [1− p∗(n, δ) ]γ (23)
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The result would still hold if the hypothesis of the Corollary was weakened so that (23)
held only for all "interior cooperators," i.e., all those for whom 0 < pi < 1. Even so,
the requirement that individuals’ discount factors all lie above (or below) some threshold
is quite strong. It turns out that a natural asymmetry exists between the increasing an
decreasing returns cases. To show increasing returns, one need only compare the average
discount factor with the threshold.

Theorem 4 Fix an n-group with MAC likelihood 0 < p∗(n, δ) < 1. Order the discount
factors in ascending order:

δ1 < δ2 < · · · < δn

and let i∗ be the largest index i for which ψ(P ∗n , n, δi) < 1 (i.e., the response likelihood of
each member i = 1, . . . , i∗ is less than one).

Then, if n
(n−1)2 < γ < µ, and if

1

i∗

i∗X
i=1

δi > p∗(n, δ)µ+ [1− p∗(n, δ) ]γ, (24)

then the MAC likelihood exhibits increasing returns to scale at every scale factor α > 1.

According the Theorem, the MAC likelihood exhibits increasing returns to scale if both
Inequality (24) and the inequalities n

(n−1)2 < γ < µ hold. The latter inequalities hold, in
turn, if the initial group is large enough and if a "risk-dominance-like" condition holds.
This "risk-dominance-like" condition, µ > γ, is equivalent to c + c < d in the stage game.
In words, it entails that in each bilateral interaction, the relative loss from cooperating
against an uncooperative member is smaller than the relative gain to deviating against a
cooperative one. As for (24), the left hand side of (24) is the average discount factor among
those who do not cooperate fully. The right hand side is the same threshold condition as
in (21) which determines whether an individual’s marginal response to scale is positive or
negative. Hence, (24) requires that the conditional average discount factor of the group is
above this threshold.

Significantly, the Inequality (24) fails when discount factors are identical. In that case,
the MAC likelihood, recall, is given by (6) which is invariant to size. One can check in that
case that the left and right hand sides in (24) are equal, and so the marginal response to scale
of every member is zero. Figure 5 exhibits returns to scale in the 2-member group. Constant
returns occur in the "full cooperation" region and along the 45 degree line where discount
factors are identical. Increasing returns occur where (24) holds. Decreasing returns occur
where the threshold condition for both individuals fail or where it fails for one individual
and the other is no longer an "interior" cooperator.
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Figure 5: Returns to Scale in the 2-Member Group

The proof combines the previous Theorem 3 with a convexity argument. Roughly, we
prove that an individual’s marginal response to scale is convex as in Figure 4. A simple
Jensen’s Inequality argument establishes that if the conditional average discount factor
exceeds the threshold p∗(n, δ)µ + [1 − p∗(n, δ) ]γ then the group’s marginal response to a
change in scale is positive. Hence, the MAC likelihood exhibits returns to scale.

To get a better idea for why result applies only to increasing returns, consider two
individuals, with discount factors δH , δL, respectively, with δH > δL. The high or patient
type has a discount factor above the threshold: δH > p∗(n, δ)µ + [1 − p∗(n, δ) ]γ. The
impatient type lies below it. From (13) and Lemma 1, we know that an individual’s response
is

pi = min

(
1,

δi

µ+ γ (n−1)−P−i
P−i

)
(25)

if profile p yields the MAC likelihood. Clearly, pi increases in one’s own discount factor,
and decreases in one’s “cooperation ratio” (n− 1− P−i)/P−i, the ratio of uncooperative to
cooperative behavior of others. In this two person case, the patient player faces a “cooper-
ation ratio” of (1− pL)/pL while the impatient player faces (1− pH)/pH . In this example,
these ratios do not change if each player faces more players of the same opposing type.
For example, if the patient player faced two impatient players, then his cooperation ratio,
hence his equilibrium response, would not change. Generally, only relative, not absolute,
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cooperation matters to each player.

However, if the group size, say, doubles, then the patient individual faces another patient
type as well as two impatient types. The patient player therefore faces a change in the
distribution of types. If all others’ responses are scaled accordingly, then the patient player’s
cooperation ratio is (3−2pL−pH)/(2pL+pH) which is smaller than before. The patient player
therefore responds positively. On the other hand, for the impatient player, his cooperation
ratio increases, thereby decreasing his equilibrium response. Returns to scale exist if the
positive response of the patient player exceeds the negative response of the impatient one.
Indeed, it turns out that an impatient player’s marginal response to a change in scale is
flatter than that of the patient player. The reason is simple. The incentive constraints
measure current gains to deviating against future losses from punishment in the equilibrium
continuation. The cooperation ratio (n− 1− P−i)/P−i is used to determine each member’s
discounted average payoff in equilibrium. An impatient player is less responsive to changes
in this ratio because he is less responsive to the changes in the resulting equilibrium path.
Hence, although his cooperation ratio is inferior when the group size doubles, his response
(as reflected in (25) ) is ultimately dampened by his impatience.

6 Summary and Discussion

This papers studies cooperative behavior in a class of repeated, collective action games in
which the stage game incentives are "size-neutral." We define and characterize the MAC
likelihood which describes the maximal average level of cooperation of a group in a stationary
equilibrium.

The focus on stationary equilibria has costs and benefits. On the cost side, the MAC
likelihood may understate the success of the group. Lehrer and Pauzner show that non-
stationary equilibria could conceivably give the group members higher payoffs than the
stationary ones generated by maximal average cooperation. This is largely due to the fact
that the feasible payoffs sets are different than that of the stage game. Improvements in the
feasible set can result when time-heterogeneous individuals intertemporally “trade" payoffs.

The benefits to stationarity vary. One is the obvious tractability for the group members.
Stationary equilibria facilitates objective measurement of the group by an outside observer.
This is especially relevant if the group is externally compensated. Nonstationary equilibria
present problems for measurement since it is unclear how cooperation early in the game
should be weighted against cooperation later if there is no common discount factor. A
second benefit to stationarity is that it allows for comparisons across groups of differing
composition. Stationary equilibria allow the members (and the outside observer) to isolate
the effect of equilibrium (as opposed to feasible) behavior because the feasible payoff set
remains constant across all profiles δ.
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With these caveats, the MAC likelihood reveals some unexpected properties of group
cooperation in repeated games. In particular it exposes the way in which cooperation
depends on the size and structure of the group. More homogeneous groups are, ceteris
parabis, shown to be more cooperative, and under certain conditions, larger groups are
more cooperative as well.

The results do not, of course, imply that social planners should construct purely homo-
geneous groups. Nor should they attempt to build groups of arbitrarily large size. Returns
to homogeneity may be balanced by benefits to diversity along other dimensions. Returns
to size may be balanced by increasing costs of retaining individuals in larger groups. More-
over, the assumption of perfect monitoring in the model is probably harder to justify with
larger groups. Depending on the game, imperfect monitoring may bound the group away
from the Pareto frontier. Finally, it may not be possible to keep constant the distribution
of types when adding to the group. Our results say little about how mergers of distinctly
different groups perform.

Interest in group performance in collective action problems date back at least to Olson
(1965). We offer one possible antitode to a commonly expressed view that larger groups
are less effective at resolving free rider problems. If this view is correct, then at least the
results help to clarify, by process of elimination, why this should be so.

The paper is best viewed as provisional. Presumably, the MAC likelihood is well defined
in stage games for which a natural ordering exists for all players’ action sets from the less
to more “cooperative” actions. Whether the results extend more broadly in this class of
games remains an open question.

7 Appendix

Proof of Lemma 1 Define the map f : [0, 1]n → [0, 1]n by f(p) = (f1(p), . . . , fn(p)) where

fi(p−i) = min

(
1,

δi

µ+ γ (n−1)−P−i
P−i

)
(26)

for each i = 1, . . . , n. Now fix a profile p according to the hypothesis. Then

p ≤ f(p)

Suppose that (13) holds with slack for individual i = 1. Then p1 < f1(p−1). We now
construct an alternative SSPE, p0, i.e., a profile satisfying p0 ≤ f(p0), and such that p0i ≥ pi
for all i and p01 > p1. First take � > 0 sufficiently small such that p01 = p1 + � < f1(p−1).
Then let p0i = pi for each i 6= 1. Now since fi is nondecreasing in p−i for all i, it follows that

p0i < f(p0−i)
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Hence, p0 is a SSPE. However,
1

n

nX
i=1

p0i >
1

n

nX
i=1

pi.

which contradicts the assertion that p achieves the MAC likelihood. ♦

Proof of Lemma 2 Fix any P > 0. Let A = µ− γ, B = − [P (µ− γ) + γ(n− 1) + δi] and
C = Pδi > 0. The quadratic in pi has the form,

Ap2i +Bpi + C ≥ 0 (27)

We first show that the roots of (27) are real. The discriminant of the root in (27) is√
B2 − 4AC where

B2 − 4AC = (− [P (µ− γ) + γ(n− 1) + δi])
2 − 4(µ− γ)Pδi

Case 1: µ < γ

µ < γ ⇒ (µ − γ) < 0 ⇒ −4(µ − γ)Pδi > 0. Since B2 ≥ 0 for all B, we have that
B2 − 4AC > 0 and so the roots are real.

Case 2: µ > γ

B2 − 4AC = (− [P (µ− γ) + γ(n− 1) + δi])
2 − 4(µ− γ)Pδi

= P 2(µ− γ)2 + γ2(n− 1)2 + δ2i + 2P (µ− γ)γ(n − 1) + 2P (µ− γ)δi + 2γ(n −
1)δi − 4(µ− γ)Pδi

= P 2(µ− γ)2+γ2(n−1)2+ δ2i +2P (µ− γ)γ(n−1)− 2P (µ− γ)δi+2γ(n−1)δi
= (P (µ− γ)− δi)

2+γ2(n−1)2+2P (µ−γ)γ(n−1)+2γ(n−1)δi > 0. Therefore,
the roots are real.

Now define Q(pi) = Ap2i +Bpi+C as the quadratic in Equation (27). By the assumption
that p∗ > 0, it follows that P > 0, and so C > 0. Then Q(0) = C > 0. To begin, let P ≥ 1
and consider the following two cases: (a) µ > γ and (b) µ < γ.11

Case (a): in case (a), we have A > 0 and B < 0. Q0(p) = 2Api + B and therefore
Q0(0) < 0. Since A > 0 and from Proposition (1), we have two positive real roots.

11If µ = γ, Equation (27) no longer yields a quadratic equation. The solution becomes ψi(δi, P ) =
−C

B if δi < d−c
d + d

n−P
P−1

1 otherwise
. We do not focus on this case, since it occurs only when c = d− c.
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By the previous Lemma, pi must be the maximum value in [0, 1] consistent with Q(pi) ≥
0. That is,

pi = max{p0i ∈ [0, 1] : Q(p0i) ≥ 0}
Then pi < 1 is a solution iff the lower root of Q is less than 1 while the greater root of Q is
greater than 1 .

In other words:

−B −√B2 − 4AC
2A

< 1 <
−B +√B2 − 4AC

2A

Since A > 0, we can write this as:

−B −√B2 − 4AC < 2A < −B +√B2 − 4AC
⇔ −√B2 − 4AC < 2A+B <

√
B2 − 4AC

⇔ |2A+B| < √B2 − 4AC
⇔ (2A+B)2 < B2 − 4AC
⇔ 4A2 + 4AB +B2 < B2 − 4AC
⇔ 4A2 + 4AB < −4AC
⇔ A+B + C < 0

⇔ (µ− γ)− (P (µ− γ) + γ(n− 1) + δi) + Pδi < 0

⇔ δi < µ− γ + γ n−1
P−1

⇔ δi <
d−c
d
+ c

d
n−P
P̄−1 Hence, pi = Ri(P ) whenever δi < d−c

d
+ c

d
n−P
P−1 . This concludes Case

(a).

Case (b): in case (b), we have that µ < γ, so A < 0. Since Q(0) > 0 and from the first
part of the Proof, we must have one negative real root and one positive real root. In that
case, pi < 1 is a solution to

max{p0i ∈ [0, 1] : Q(p0i) ≥ 0}
iff the greater root of Q is less than 1.12. In other words,

−B −√B2 − 4AC
2A

< 1.

12Note that when A < 0, the greater root is −B−
√
B2−4AC
2A .
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Since A < 0, we can write this as:

−B −√B2 − 4AC > 2A

⇔ −√B2 − 4AC > 2A+B

⇔ √B2 − 4AC < −(2A+B)

⇔ B2 − 4AC < 4A2 + 4AB +B2

⇔ 4A2 + 4AB + 4AC < 0

⇔ A+B + C < 0 (since A < 0)

⇔ δi <
d−c
d
+ c

d
n−P
P−1 . Hence, as with Case (a), pi = Ri(P ) whenever δi < d−c

d
+ c

d
n−P
P−1 .

This concludes Case (b).

Finally, we note that when P < 1, the constraint that binds is no longer that pi ≤ 1,
but rather that pi ≤ P . ♦

Proof of Theorem 1 The proof proceeds in three steps. First, we show that Ψ is
increasing. Second, we prove Ψ is concave. Third, we prove that ∂Ψi

∂P

¯̄̄
P=0

> 1 wheneverPn
i=1

δi
γ(n−1)+δi > 1 holds.

(i) Show that Ψ is increasing. Observe, first, that µ + γ n−P
P−1 is decreasing in P . Given

(16), this means that the cutoff value above which ψi = 1 is decreasing. Given (16) and
(17), it therefore suffices to show that for each i, and each δi, Ri(P ) is increasing in P .
Recall:

Ri(P ) =
−B −√B2 − 4AC

2A

=
P (µ− γ) + γ(n− 1) + δi −

p
(P (µ− γ) + γ(n− 1) + δi)2 − 4(µ− γ)Pδi
2(µ− γ)

(28)
Therefore

∂R

∂P
=

∂(−B/2A)
∂P

− ∂(B2 − 4AC)1/2(2A)−1
∂P

(29)

Now observe that A does not vary with P , and ∂(−B/2A)
∂P

= 1/2. Hence, it suffices to show
∂(B2−4AC)1/2(2A)−1

∂P
< 1/2, or, equivalently,

1

A

∂(B2 − 4AC)1/2
∂P

< 1. (30)
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Rewriting (30) gives
1

A
(B2 − 4AC)−1/2(B∂B

∂P
− 2AC∂C

∂P
) < 1

Since ∂B
∂P
= A, we have

(B − 2∂C
∂P
)2 < (B2 − 4AC)

or

B
∂C

∂P
> AC

But substituting for A,B and C gives

(P (µ− γ) + γ(n− 1) + δi)δi > P (µ− γ)δi

which is easily confirmed to hold. Hence, (30) holds and so ∂Ψ/∂P ≥ 0.
(ii) Show that Ψ is concave. It suffices to show that ∂2R

∂P2
< 0. Given (29) and the fact

that ∂2B
∂P 2

= 0 it is necessary to show

∂

∂P
[(B2 − 4AC)−1/2(B − 2∂C

∂P
) > 0 (31)

Utilizing the fact that ∂B
∂P
= −A and ∂2C

∂P2
= 0, (31) holds iff

(B2 − 4AC) > (B + 2∂C
∂R
)(B + 2

∂C

∂R
)

Simplifying further:

−AC > B
∂C

∂P
+ (

∂C

∂P
)2

Substituting for A,B, and C, yields

−(µ− γ)Pδi > −(P (µ− γ) + γ(n− 1) + δi)δi + δ2i

which, finally, simplifies to γ(n − 1) > 0. Since γ = c/d > 0, this condition must hold.
Hence, Ψ is concave.

(iii) Verify that ∂Ψ/∂P
¯̄̄
P=0

> 1 under the stated hypothesis. Observe that a necessary

and sufficient condition for this is:
nX
i=1

∂Ri

∂P

¯̄̄
P=0

> 1
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since the derivatives are evaluated in a neighborhood of 0 where the value of each ψi coincides
with the root Ri. Observe

∂Ri

∂P

¯̄̄
P=0
= 1/2− 1/2[γ(n− 1)− δi

γ(n− 1) + δi
]

Consequently, ∂Ψ
∂P

¯̄̄
P=0

> 1 holds if and only if

nX
i=1

µ
1/2− 1/2[γ(n− 1)− δi

γ(n− 1) + δi
]

¶
> 1

or, equivalently,
nX
i=1

δi
γ(n− 1) + δi

> 1

which was assumed in the hypothesis. Since Ψ is increasing, concave, and differentiates
above 1 in a neighborhood of 0, it must have a unique, interior fixed point. ♦

Proof of Theorem 2 Write Ψ(P, n, δ) to express the explicit dependence on size n and
structure, δ. By standard results for second order stochastic dominance, it suffices to show
that for each i, ψi is increasing and concave in δi and strictly concave if δ

0
j < µ+ γ n−P

P−1 .

To show ψi is increasing, we use the previous construction in (28). Then
∂R
∂δi

> 0 iff

−C >
∂C

∂δi
B +A(

∂C

∂δi
)2

Substituting for A,B, and C gives

−Pδi > −P (P (µ− γ) + γ(n− 1) + δi) + P 2(µ− γ)

or γ(n− 1) > 0 which always holds. Hence, Ψ is increasing in δi.

To show Ψ is concave, observe that ∂2R
∂δ2i

< 0 iff

−C >
∂C

∂δi
B +A(

∂C

∂δi
)2

which is exactly the condition determining monotonicity for ψi. Just as before, Substituting
for A,B, and C gives

−Pδi > −P (P (µ− γ) + γ(n− 1) + δi) + P 2(µ− γ)

or γ(n− 1) > 0 which always holds. Therefore, ψi is strictly concave if δi < µ+ γ n−P
P−1 . But

if p∗(n, δ0) < 1, it follows from Lemma 2 that for at least one individual i, δi < µ + γ n−P
P−1

where P = np∗(n, δ0). In this instance, Ψ is strictly concave, and so p∗(n, δ00) < p∗(n, δ0).

26



We conclude that mean preserving spreads of δ decrease the MAC likelihood, and strictly
decrease in whenever p∗(n, δ0) < 1. ♦

Proof of Theorem 3 From the Proof of Lemma 2, ψ(αP ∗n , αn, δi) = 1 iff δi ≥ µ+γ α(n−P ∗n)
αP ∗n−1 .

Notice that µ + γ α(n−P∗n)
αP∗n−1 > P∗n

n
µ + (1 − P∗n

n
)γ. Hence, it is without loss of generality if

we consider δi such that

P ∗n
n
µ+ (1− P ∗n

n
)γ < δi < µ+ γ

α(n− P ∗n)
αP ∗n − 1

Then ψ(αP ∗n , αn, δi) < 1 so that

∂ψ(αP ∗n , αn, δi)
∂α

=
∂R(αP ∗n , αn, δi)

∂α

where R(·) is the quadratic root defined in (2) in Lemma 2.
Holding fixed δi, we have, for any P ,

R∗(P, n, α) ≡ R(αPn, αn, δi)

=
αP (µ− γ) + γ(αn− 1) + δi −

p
(αP (µ− γ) + γ(αn− 1) + δi)2 − 4(µ− γ)αPδi
2(µ− γ)

= −B(α)
A
−
√

B(α)2−4AC(α)
A

Then
∂R∗

∂α
=

∂(−B(α)/2A)
∂α

− ∂((B(α))2 − 4AC(α))1/2(2A)−1
∂α

(32)

and so ∂R∗
∂α

> 0 iff

1

2A

·
−∂B
∂α
− (B2 − 4AC)−1/2(B∂B

∂α
− 2A∂C

∂α
)

¸
> 0.

With some algebra and substitution, this Inequality is equivalent to

1

2A

·
B
∂B

∂α
− α(

∂B

∂α
)2 +A

∂C

∂α

¸
> 0

Substituting for A, B, and C, differentiating with respect to α where appropriate, and
re-arranging terms yields,

δi >
P

n
(µ− γ) + γ
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which is the requisite threshold condition whenever P satisfies P
n
= p∗(n, δ). ♦

Proof of Theorem 4 The proof is in several steps. First, we show that
∂ψ3(αP n, αn, δi)

∂α∂δ2i
>

0, ∀α > 1. In other words, the marginal response
∂ψ

∂α
is convex in δi. Then, using Jensen’s

inequality, we can show that if the conditional average of discount factors is above the
threshold given, there are returns to scale.

Using Young’s Theorem, we can first take the partial derivatives with respect to δi and
then with respect to α.

∂ψ

∂δi
= 1

2A

h
1− (B2 − 4AC)− 1

2

³
B ∂B

∂δi
− 2A ∂C

∂δi

´i
Since ∂B

∂δi
= −1, we can rewrite this as:

∂ψ

∂δi
= 1

2A

h
1 + (B2 − 4AC)− 1

2

³
B + 2A ∂C

∂δi

´i
Then, the second partial with respect to δi is:

∂2ψ

∂δ2i
= 1

2A

·
(B2 − 4AC)− 3

2

³
B + 2A ∂C

∂δi

´2
− (B2 − 4AC)− 1

2

¸
Factoring out (B2 − 4AC)−3

2 yields:

∂2ψ

∂δ2i
= 1

2A
(B2 − 4AC)− 3

2

·³
B + 2A ∂C

∂δi

´2
− (B2 − 4AC)

¸
Multiplying out the squared term and factoring out 4A then gives:

∂2ψ

∂δ2i
= 1

2A
(B2 − 4AC)− 3

24A

·
B ∂C

∂δi
+A

³
∂C
∂δi

´2
+ C

¸
or,

∂2ψ

∂δ2i
= 2(B2 − 4AC)−3

2

·
B ∂C

∂δi
+A

³
∂C
∂δi

´2
+ C

¸
Finally, taking the partial derivative with respect to α yields:

∂3ψ

∂δ2i ∂α
= −3(B2 − 4AC)− 5

2

¡
2B ∂B

∂α
− 4A∂C

∂α

¢ ·
B ∂C

∂δi
+A

³
∂C
∂δi

´2
+ C

¸
+2(B2 − 4AC)− 3

2

h
∂B
∂α

∂C
∂δi
+B ∂C

∂δi∂α
+ 2A ∂C

∂δi

∂
∂δi∂α

+ ∂C
∂α

i
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By Young’s Theorem, we know that
∂3ψ

∂δ2∂α
=

∂3ψ

∂α∂δ2i
. We want to know when

∂3ψ

∂α∂δ2i
>

0. From the above equation, we can add the first term to the right hand side and factor out
a 2.

+2(B2 − 4AC)− 3
2

h
∂B
∂α

∂C
∂δi
+B ∂C

∂δi∂α
+ 2A ∂C

∂δi

∂
∂δi∂α

+ ∂C
∂α

i
> 6(B2 − 4AC)− 5

2

¡
B ∂B

∂α
− 2A∂C

∂α

¢ ·
B ∂C

∂δi
+A

³
∂C
∂δi

´2
+ C

¸
Multiplying both sides by 1

2
(B2 − 4AC)− 5

2 yields:

(B2 − 4AC)
h
∂B
∂α

∂C
∂δi
+B ∂C

∂δi∂α
+ 2A ∂C

∂δi

∂
∂δi∂α

+ ∂C
∂α

i
> 3

¡
B ∂B

∂α
− 2A∂C

∂α

¢ ·
B ∂C

∂δi
+A

³
∂C
∂δi

´2
+ C

¸
Substituting in for A = µ − γ,B = − (αP (µ− γ) + αγn+ δi − γ) , B = αPδi and

∂B
∂α
= − (P (µ− γ) + γn) , ∂C

∂δi
= αP, ∂C

∂δ∂α
= P, ∂C

∂α
= Pδi and rearranging terms yields:

α2(αn− 2) (P (µ− γ) + γn)2 + α(αn+ 1) (γ(P (µ− γ) + γn) + P (µ− γ)δi)

> α(αn+ 1)γnδi + (2αn− 1)(δi − γ)2

Squaring the first term and noting that (δi − γ)2 < γ2 yields:

α2(αn−2) (P 2(µ− γ)2 + 2P (µ− γ)γn+ γ2n2)+α(αn+1) (γP (µ− γ) + γ2n+ P (µ− γ)δi)

> α(αn+ 1)γnδi + (2αn− 1)γ2

Since µ > γ, we can rearrange terms as:

α2(αn− 2) (P 2(µ− γ)2 + 2P (µ− γ)γn) + α(αn+ 1) (γP (µ− γ) + P (µ− γ)δi)

+α2(αn− 2)n2γ2 + α(αn+ 1)γ2n− (2αn− 1)γ2

> α(αn+ 1)γnδi

or

[α2(αn− 2)n2 + α(αn+ 1)n− (2αn− 1)]γ2 > α(αn+ 1)γnδi

Dividing by γ and multiplying out the bracketed term yields:

[α3n3 − 2α2n2 + α2n2 + αn− 2αn+ 1] γ > αn(αn+ 1)δi
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Factoring yields:

(αn+ 1)(αn− 1)2γ > αn(αn+ 1)δi

Dividing by (αn+ 1) and noting that δi < 1, we can write this as:

γ >
αn

(αn− 1)2

The derivative with the right-hand side with respect to α is negative for α ≥ 1, thus we
can take as a sufficient condition that α = 1 and thus

∂ψ

∂α
is convex if γ >

n

(n− 1)2 .

Using Jensen’s Inequality and the threshold conditional average condition, it follows that

∂Ψ(αP ∗n , αn, δ
n)

∂α
≡ 1

n

nX
i=1

∂ψ(αP ∗n , αn, δi)
∂α

=
1

n

"
i∗X
i=1

∂ψ(αP ∗n , αn, δi)
∂α

+
nX

i=i∗+1

∂ψ(αP ∗n , αn, δi)
∂α

#

=
1

n

i∗X
i=1

∂ψ(αP ∗n , αn, δi)
∂α

+ 0

>
∂ψ(αP ∗n , αn,

1
n

Pn
i=1 δi)

∂α

> 0

The first inequality is a straightforward application of Jensen’s Inequality. The second
follows from Theorem 3. Consequently,

∂Ψ(αP ∗n , αn, δ
n)

∂α
> 0.

Because Ψ is increasing in α, it follows that

Ψ(αP ∗n , αn, δ
n) > Ψ(αP ∗n , αn, δ

n) = P ∗n
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Now letting α be an integer,

0 < α (Ψ(αP ∗n , αn, δ
n) − P ∗n)

= αΨ(αP ∗n , αn, δ
n) − αP ∗n

= α
nX
i=1

ψ(αP ∗n , αn, δi) − αP ∗n

=
αnX
j=1

ψ(αP ∗n , αn, δj) − αP ∗n

= Ψ(αP ∗n , αn, δ
αn) − αP ∗n

Now since P ∗αn is the maximal aggregate likelihood of the αn-group, it follows that

Ψ(P ∗αn, αn, δ
αn) = P ∗αn.

SinceΨ is increasing and concave in P (see Proof of Theorem 1), the differenceΨ(P, αn, δαn)−
P must be decreasing in P . Therefore, P ∗αn > αP ∗n which means that the MAC likelihood
exhibits increasing returns. We conclude the proof. ♦ ♦
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