Asker, John; Cantillon, Estelle

Working Paper
Equilibrium in Scoring Auctions

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 148.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

This Version is available at:
http://hdl.handle.net/10419/118024

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Equilibrium in Scoring Auctions
John Asker and Estelle Cantillon

NOTA DI LAVORO 148.2004

DECEMBER 2004
PRA – Privatisation, Regulation, Antitrust

John Asker, Economics Department, Harvard University
Estelle Cantillon, Harvard Business School

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=624466

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Equilibrium in Scoring Auctions

Summary

This paper studies multi-attribute auctions in which a buyer seeks to procure a complex good and evaluate offers using a quasi-linear scoring rule. Suppliers have private information about their costs, which is summarized by a multi-dimensional type. The scoring rule reduces the multidimensional bids submitted by each supplier to a single dimension, the score, which is used for deciding on the allocation and the resulting contractual obligation. We exploit this idea and obtain two kinds of results. First, we characterize the set of equilibria in quasi-linear scoring auctions with multi-dimensional types. In particular, we show that there exists a mapping between the class of equilibria in these scoring auctions and those in standard single object IPV auctions. Second, we prove a new expected utility equivalence theorem for quasi-linear scoring auctions.

Keywords: Auctions, Procurement

JEL Classification: H57, D44

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by Fondazione Eni Enrico Mattei and Consip and sponsored by the EU, Rome, September 23-25, 2004.

We thank Howard Georgi, Luca Rigotti, Al Roth, as well as seminar audiences at LBS, Ecares, Inform2003, Ohio State University, WZB Berlin for useful conversation and suggestions. Ioannis Ioannou provided excellent research assistance. The financial support of the Division of Research at Harvard Business School is gratefully acknowledged.

Address for correspondence:

John Asker
Economics Department
Harvard University
1875 Cambridge Street
Cambridge MA 02138
USA
E-mail: asker@fas.harvard.edu
1 Introduction

In many procurement situations the buyer cares about attributes other than just price when evaluating the desirability of contracts offered by sellers. Standard non-monetary attributes include lead time, time to completion, and various other measures of quality. Buyers have adopted several practices for dealing with these situations. Some have recourse to fairly detailed request-for-quotes (RFQ) that specify minimum standards that the offers need to satisfy, and then evaluate the submitted bids based on price only.\footnote{For example, this is a format proposed by FreeMarkets (see www.freemarkets.com).} Others decide to select a small set of potential bidders and negotiate on all the dimensions of the contract with each of them.

A third option is to combine the competition induced by the first option with the flexibility of the second by holding a scoring auction. In a scoring auction, bidders submit offers on all dimensions of the good and the buyer uses a scoring rule to evaluate the offers and select the winner. Scoring auctions can be shown to dominate RFQs with minimum standards and the restricted negotiation, at least from an efficiency standpoint.\footnote{An argument for why scoring auctions dominate RFQs with minimum standards is provided in Che (1993).}

In this paper, we study scoring auctions that use quasi-linear scoring rules (i.e. the price enters linearly in the final score). The buyer cares about several (price and non-price) attributes of the good and several bidders compete for the contract. Examples of such scoring auctions include “A+B bidding” for highway construction work in the US, where the highway procurement authorities evaluate offers on the basis of their costs as well as time to completion, weighted by a road user cost,\footnote{The road user cost is the (per day) value of time lost due to construction. By 2003, 38 states in the US were using “A+B bidding.” “A+B bidding” is used mainly for large projects for which time is a critical factor. Typically, these} and auctions for electricity reserve supply (Bushnell and Oren, 1994; Wilson, 2002). The use
of scoring auctions is also gaining favor in private sector procurement, with several procurement software developers incorporating scoring capability in their auction designs.4

A key feature of our environment is that suppliers’ private information about their costs of providing the good can be multi-dimensional. In particular, this means that the low cost supplier for the base option is not necessarily the low cost supplier when it comes to increasing quality on some other dimension, such as timeliness. As another example, it allows us to consider the likely situation where firms differ in their fixed and variable costs of production.

Our main results are as follows. First, we prove that the multi-dimensionality of suppliers’ private information can be reduced to a single dimension (his “pseudotype”) that is sufficient to characterize the equilibrium in these auctions when the scoring rule is quasi-linear and private information is independent across bidders (Theorem 1). This allows us to establish a correspondence between the set of scoring auctions and the set of standard single object one dimensional IPV auction environments (Corollary 1). The equilibrium in the scoring auction inherits the properties of the corresponding standard IPV auction (existence and uniqueness of equilibrium, efficiency, ...).

Second, we prove a new expected utility theorem for the buyer when private information is multi-dimensional and independently distributed and the scoring rule is quasi-linear (Theorem 2). Theorem 2 generalizes the classic revenue equivalence theorems of Myerson (1981) and Riley and Samuelson (1981). In particular, it implies that the buyer is indifferent among a first score, a second score, an ascending (the equivalent of the Dutch format in this procurement setting) or a represent 5-10\% of the total highway construction projects in these states. See, for instance, Arizona Department of Transport (2002) and Herbsman et al. (1995).

4In the US market, the Oracle Sourcing software (via www.oracle.com) is a good example of this. Verticalnet (via www.verticalnet.com) also provides a scoring capability.
descending scoring auction when bidders are symmetric in their pseudotypes.

There are several papers studying scoring auctions. Che (1993) derives a series of important results for multi-attribute auctions when private information is one-dimensional.\footnote{Branco (1997) extends Che's paper to affiliated costs for the suppliers.} Our paper extends Che's results on equilibrium in scoring auctions, in several ways. First, we allow for multi-dimensional private information. Second, while Che already exploited the idea of pseudotypes to derive an equilibrium in the first and second score auction, our characterization result establishes that no other equilibria exists. Third, our characterization result allows us to prove an expected utility equivalence theorem for all quasi-linear scoring rules, and not only the truthful one. Bushnell and Oren (1994 and 1995) derive the scoring rule necessary for productive efficiency in a two dimensional private information setting. They then implicitly exploit the sufficient statistics property of these auctions to derive a symmetric equilibrium in the second score auction. Our Theorem 1 and Corollary 1 establish that the symmetric equilibrium they derive is indeed the only one.

On a more general level, this paper provides a precise exposition of the applicability of the sufficient statistics approach leveraged by these papers. We show why the use of a sufficient statistic is appropriate in these environments. We are also able to outline the limitations of the approach. In particular we show that, when the scoring rule is not quasi-linear, a sufficient statistic approach will not work. Similarly, our characterization result makes clear why independence of signals is critical. Most importantly, we show that the sufficient statistic approach is a powerful and simple tool for the analysis of equilibrium in a far richer class of scoring auction environments than previously investigated, including when private information is multi-dimensional.

Some recent papers study other auction environments with multi-dimensional private information.
Multi-dimensional private information creates much more complex incentive situations, including the non-existence of equilibria (Jackson, 1999) or the loss of monotonicity of these equilibria (Reny and Zamir, 2002). In our case, we are able to reduce the relevant dimensionality of private information to one, by exploiting the one-dimensionality of the allocation rule and the independence of types across bidders. We can then appeal to the analogy between our environment and the standard IPV environment. A similar property (though through a much more subtle analogy to the standard IPV model) is exploited by Che and Gale (2002) to rank revenue in auctions with multi-dimensional types and non linear payoffs. In both our and Che and Gale’s approach, the one-dimensionality of the allocation decision and the independence of private information across bidders are necessary for reducing the dimensionality of the relevant private information. No such reduction is possible for multi-unit auctions, or for one object auctions where private information is not independent (see Fang and Morris, 2003, for an example).

A variant of scoring auctions are auction environments that involve the sale or purchase of multiple items but where the auctioneer or the procurement authority cannot commit, at the time of the auction, to the quantity sold or purchased. Examples include the sale of timber rights or the purchase of electricity reserve supply. In these auctions, bidders also submit multi-dimensional bids (often a fixed and a variable price) which are evaluated using a scoring rule. The weight given to the variable price is based on the auctioneer / procurement agency’s estimate. The scoring rule is used for allocating the contract, though the final contract often depends on the realized quantities. This creates interesting incentive problems (see Athey and Levin, 2001 and Chao and Wilson, 2002). We ignore these aspects in the current paper.

The rest of the paper is organized as follows. Section 2 describes the model and introduces the
notion of pseudotypes. Section 3 proves that the pseudotypes are sufficient statistics in our environment, and establishes the correspondence between scoring auctions and regular IPV auctions. Our expected utility equivalence theorem is proved in section 4. Section 5 concludes.

2 Model

2.1 Environment

We consider a buyer seeking to procure an indivisible good for which there are \(N \) potential suppliers. The good is characterized by its price, \(p \), and \(M \geq 1 \) non-monetary attributes, \(Q \in \mathbb{R}^M \).

Preferences. The buyer values the good \((p, Q)\) at \(v(Q) - p \), where \(v_Q > 0 \) and \(v_{QQ} \) is a negative definite matrix. Supplier \(i \)’s profit from selling good \((p, Q)\) is given by \(p - c(Q, \theta_i) \), where \(\theta_i \in \mathbb{R}^K, K \geq 1 \), is supplier \(i \)’s type. We allow suppliers to be flexible with respect to the level of non-monetary attributes they can supply.\(^6\) We assume that the marginal cost of producing each attribute is positive, \(c_Q > 0 \), and that \(c_{QQ} \) is positive semi-definite. In particular, this allows for costs that are independent across attributes and convex in individual attributes. We normalize the type space by assuming that \(c_{\theta_i} > 0 \). Note that the buyer and the suppliers are risk neutral.

These assumptions imply that social welfare \(v(Q) - c(Q, \theta_i) \) is strictly concave in \(Q \). The first best level of non-monetary attributes for each supplier, \(Q^{FB}(\theta_i) = \arg \max\{v(Q) - c(Q, \theta_i)\} \) is well-defined and unique.

Information. Preferences are common knowledge among bidders and the buyer, with the exception of suppliers’ types, \(\theta_i, i = 1, ..., N \), which are privately observed by each bidder. Types are

\(^6\) Rezende (2003) studies an example of a procurement model with fixed levels of non-monetary attributes. In our model, the level of non-monetary attributes is determined during the auction process.
independently distributed according to the well-behaved joint density function \(f_i(\theta_i) \) with support on a bounded and convex subset of \(\mathbb{R}^K \), \(\Theta_i \subset \mathbb{R}^K \). These density functions are common knowledge.

2.2 Allocation mechanism

We now introduce the scoring auction. We start with two definitions:

A **scoring rule** is a function \(S : \mathbb{R}^{M+1} \to \mathbb{R} \) : \((p, Q) \to S(p, Q) \), that associates a score to any potential contract between the buyer and a supplier, and represents a continuous preference relation over the contract characteristics \((p, Q) \). A scoring rule is quasi-linear if it can be expressed as \(\phi(Q) - p \) or any monotonic increasing function thereof. We assume that the scoring rule is strictly increasing and concave in non-monetary attributes and strictly decreasing in price.\(^7\)

A **scoring auction** is an allocation mechanism where suppliers compete by submitting bids of the type \((p, Q) \in \mathbb{R}^{M+1} \). Bids are evaluated according to a scoring rule. The winner is the bidder with the highest score. Bidders are given scores \((s_1, \ldots, s_N) \) to deliver, where these scores are functions of bidders’ strategies.\(^8\) A scoring auction is quasi-linear when it uses a quasi-linear scoring rule.

For example, in a first score scoring rule, the winner must deliver a contract that generates the...
value of his winning score. In a second score scoring auction, the winner must deliver a contract that generates the value of the second highest score submitted.

Consider supplier i with type θ_i who has won the contract to supply the good with score to fulfill s_i. Supplier i will choose the good characteristics (p, Q) that maximize his profit, i.e.

$$
\max_{(p, Q)} \{p - c(Q, \theta_i)\} \quad \text{subject to } \phi(Q) - p = s_i
$$

(1)

Substituting for p into the objective function yields

$$
\max_Q \{\phi(Q) - c(Q, \theta_i) - s_i\}
$$

(2)

Define

$$
k(\theta_i) = \max_Q \{\phi(Q) - c(Q, \theta_i)\}
$$

We shall call $k(\theta_i)$ supplier i’s pseudotype. It is the maximum level of apparent social surplus that supplier i can generate. Bidders’ pseudotypes are well-defined as soon as the scoring rule is given. They are decreasing in types since costs are increasing in types. The set of supplier i’s possible pseudotypes is an interval in \mathbb{R}. The density of pseudotypes inherits the smooth properties of f_i.

With this definition, supplier i’s profit when he wins with probability x_i and needs to deliver score s_i is given by

$$
x_i (k(\theta_i) - s_i) - (1 - x_i) s_i = x_i k(\theta_i) - s_i
$$

(3)

9Note that if supplier i must deliver score s_i without winning the contract, the only way he can fullfill the score is with money.

10The notation we adopt assumes that s_i is to be fullfilled whether or not the contract is won. This does not assume that we are restricting ourselves to auction formats where bidders have obligations whether they win or not. Instead, s_i can be interpreted as an expected level of obligation. The fact that in (2), the optimal choice of Q does not depend on s_i makes it irrelevant when the obligation must be fullfilled.

7
An important feature of (3) is that bidder i’s preference over contracts of the type (x_i, s_i) is entirely captured by his pseudotype. Only quasi-linear scoring rules have this property. Indeed, consider a more general scoring rule $S(p, Q)$ and revisit bidder i’s optimization problem in this more general case:

$$\max_{(p,Q)} \{ p - c(Q, \theta_i) \} \quad \text{subject to } S(p, Q) = s_i$$

Let $\Psi(Q, s_i)$ the price required to generate a score of s_i with non-monetary attributes Q (Ψ is well-defined since S is strictly decreasing in p and strictly increasing in Q; it is strictly decreasing in Q and strictly increasing in s_i). The objective function of bidder i becomes

$$\max_Q \{ \Psi(Q, s_i) - c(Q, \theta_i) \},$$

and his expected payoff from contract (x_i, s_i) is given by:

$$u(x_i, s_i; \theta_i) = x_i \max_Q \{ \Psi(Q, s_i) - c(Q, \theta_i) \} - (1 - x_i)s_i$$

Suppose we could organize types in equivalence classes such that all types in a given class share the same preferences over contracts. Concretely, suppose that types θ_i and $\hat{\theta}_i \neq \theta_i$ belong to such a class. It must be that\footnote{In principle, the requirement of equal preferences only entails that $u(x_i, s_i; \theta_i) \geq u(\hat{x}_i, \hat{s}_i; \theta_i)$ if and only if $u(x_i, s_i; \hat{\theta}_i) \geq u(\hat{x}_i, \hat{s}_i; \hat{\theta}_i)$ for all pairs of contracts $(x_i, s_i), (\hat{x}_i, \hat{s}_i)$. The stronger requirement in (4) follows from the normalization of utilities embodied in the assumption of risk neutrality.} (4)

$$u(x_i, s_i; \theta_i) = u(x_i, s_i; \hat{\theta}_i) \text{ if and only if } u(\hat{x}_i, \hat{s}_i; \theta_i) = u(\hat{x}_i, \hat{s}_i; \hat{\theta}_i)$$

for all pairs of contracts $(x_i, s_i), (\hat{x}_i, \hat{s}_i)$. Let $Q(\theta_i, s_i) = \arg \max_Q \{ \Psi(Q, s_i) - c(Q, \theta_i) \}$. Condition (4) requires in particular that $\frac{\partial}{\partial s_i} \Psi(Q(\theta_i, s_i), s_i) = \frac{\partial}{\partial s_i} \Psi(Q(\hat{\theta}_i, s_i), s_i)$. This equality will in general not be satisfied for $\hat{\theta}_i \neq \theta_i$ unless Ψ is separable in s_i. 8
In turn, this requires that the scoring rule be quasi-linear \(\Psi(Q, s_i) = \phi(Q) - s_i \) for a quasi-linear scoring rule.

Notation: For the remainder of this paper, we adopt the following notation and conventions. The outcome function of a scoring auction is a vector of probabilities of winning \((x_1, ..., x_N) \) and scores to fulfill by each supplier, \((s_1, ..., s_N) \). (If the outcome in a given scoring auction is stochastic, these are distributions over vectors of probabilities of winning and scores.) The arguments in these functions are the bids submitted by all suppliers, \(\{(p_i, Q_i)\}_{i=1}^{N} \). Later in the paper, we will switch to a direct revelation mechanism approach where the outcome will be a function of suppliers’ pseudotypes, \((k_1, ..., k_N) \in \mathbb{R}^N \). To avoid introducing too much new notation, we shall make these the arguments of the \(x \) and \(s \) functions. Similarly, we shall also write \(x_i(k_i) \) to denote the expectation of \(x_i \) over the types of the other suppliers, \(E_{k_{-i}}x_i(k_i, k_{-i}) \). The arguments will be spelled out whenever confusion is possible.

3 A sufficient statistics result

Suppliers’ pseudotypes are sufficient statistics in this environment if knowing the distribution of suppliers’ pseudotypes is all one needs in order to describe the set of possible equilibria of the auction and evaluate the buyer’s expected payoff in each case. Suppliers’ original multi-dimensional types become redundant.

In this section, we prove that pseudotypes are sufficient statistics. Specifically, we show that the sets of equilibria in the scoring auction and in a auction where bidders are constrained to submit a bid only as a function of their pseudotypes coincide. Proving this result requires two preliminary

\[Q(\theta_i, s_i) \neq Q(\tilde{\theta}_i, s_i) \text{ usually for } \tilde{\theta}_i \neq \theta_i. \]

\[\text{Or, more generally, in the case of dynamic formats, the strategies of the bidders.} \]
steps. First, we show that all equilibria of the scoring auction are outcome equivalent to an
equilibrium where suppliers are forced to submit bids only as a function of their pseudotypes. We
define two equilibria as outcome equivalent if they both lead to the same distribution of outcomes
\((x_1, ..., x_N)\) and \((s_1, ..., s_N)\). Second, we prove that equilibria in scoring auctions are essentially pure
as a function of pseudotypes.

Lemma 1: All equilibria of a quasi-linear scoring auction are outcome equivalent to an equilibrium
where bidders with the same pseudotypes adopt the same strategies.

Proof: The proof proceeds in two steps.

Step 1: If there exists an equilibrium in this game, one of them is such that bidders with
the same pseudotypes adopt the same strategy.

Consider any equilibrium \((\mathcal{E}_1, ..., \mathcal{E}_N)\) where \(\mathcal{E}_i\) is a mapping from \(\Theta_i\) to a distribution over
\((p, Q) \in \mathbb{R}^{M+1}\). Then for all \(i\), for all \(\theta_i\) and all \((p_i^*, Q_i^*)\) in the support of supplier \(i\)'s
equilibrium strategy,

\[
(p_i^*, Q_i^*) \in \arg \max_{p, Q} E_{\theta_{-i}} \left[x_i \left(\left(p, Q \right), \left(p_{-i}^*, Q_{-i}^* \right) \right) k_i \left(\theta_i \right) - s_i \left(\left(p, Q \right), \left(p_{-i}^*, Q_{-i}^* \right) \right) \right] \tag{5}
\]

where the expression for bidder \(i\)'s expected profit derives from (3). In (5), bidders’ private
information enters their objective function only through their pseudotypes. Hence, bidder
\(i\) of type \(\theta_i\) is actually indifferent among the strategies played by the other bidders with the
same pseudotype. Therefore, we can construct a new equilibrium \((\mathcal{E}_1, ..., \mathcal{E}_N)\), such that:
1. \(\tilde{\mathcal{E}}_i(\theta_i) = \tilde{\mathcal{E}}_i(\hat{\theta}_i) \) whenever \(k(\theta_i) = k(\hat{\theta}_i) \).

2. Define \(\Theta_i(k) = \{ \theta_i \in \Theta_i | k(\theta_i) = k \} \), the set of supplier \(i \)'s types with pseudotype equal to \(k \). For each \(k \) in the support of bidder \(i \)'s pseudotypes, the distribution of \(\tilde{\mathcal{E}}_i \) for a given \(\theta_i \in \Theta_i(k) \) replicates the aggregate distribution of \(\mathcal{E}_i \) over all \(\theta_i \in \Theta_i(k) \).

By construction, the distribution of bidder \(i \)'s opponents' strategies under this new equilibrium is the same as before from bidder \(i \)'s perspective. Moreover, \(\tilde{\mathcal{E}}_i \) is a best response for bidder \(i \). Hence it is an equilibrium. Moreover, in this equilibrium, bidders’ strategies are only a function of their pseudotypes.

Step 2: All other equilibria are outcome equivalent to an equilibrium in which bidders bid only according to their pseudotypes.

This follows directly from step 1 since, by construction, \((\tilde{\mathcal{E}}_1, ..., \tilde{\mathcal{E}}_N)\) and \((\mathcal{E}_1, ..., \mathcal{E}_N)\) lead to the same distribution of \((p, Q)\) and therefore scores and outcomes. QED.

An aspect of Lemma 1 worth stressing is the role played by the assumption that types are independent across bidders. Without it, bidders’ private information would enter their expected payoff in (5), both through their pseudotypes and through their expectations over their opponents’ types. In that case, the argument for the outcome equivalence between all equilibria in the scoring auction and those where suppliers are constrained to bid only according to their pseudotypes breaks down.

Lemma 1 implies that the set of possible outcomes \((x_1, ..., x_N)\) and \((s_1, ..., s_N)\) can be generated by equilibria where suppliers bid exclusively on the basis of their pseudotypes. However, it does not imply that nothing is lost by restricting attention to these equilibria. Outcome equivalence does not imply utility equivalence for the buyer. To see this consider the following example.
Consider two equally likely\(^{14}\) types, \(\theta_i\) and \(\hat{\theta}_i\), such that \(k(\theta_i) = k(\hat{\theta}_i)\) and suppose that in equilibrium, they get a different outcome: \((x_i, s_i)\) and \((\tilde{x}_i, \tilde{s}_i)\). By definition, these two types generate expected utility \(f_i(\theta_i)s_i + f_i(\hat{\theta}_i)\tilde{s}_i\) for the buyer, according to the scoring rule. However, this differs from true expected utility. To know how much expected utility the bidders generate for the buyer, we need to know how they will satisfy their obligations. Each bidder finds the pair \((p, Q)\) that generates the required score in the most advantageous way for him. Let \(Q\) and \(\hat{Q}\) be the resulting levels of non monetary attributes (they are independent of \(s\) and \(\tilde{s}\)). Since the scoring rule is quasi-linear, the total monetary transfer from the buyer to the bidders is then given by \(x_i\phi(Q) - s\) and \(\tilde{x}_i\phi(\hat{Q}) - \tilde{s}\), and the buyer’s true expected utility is given by:

\[
 f_i(\theta_i) \left[x_i (v(Q) - \phi(Q)) + s + \tilde{x}_i \left(v(\hat{Q}) - \phi(\hat{Q}) \right) + \tilde{s} \right]
\]

This equilibrium is outcome-equivalent to an equilibrium where type \(\theta_i\) pretends he is \(\hat{\theta}_i\) and vice versa. On the face of it, the buyer gets again utility \(f_i(\theta_i)(s_i + \tilde{s}_i)\) from this equilibrium. However, proceeding as above, we find that his true expected utility is given by

\[
 f_i(\theta_i) \left[\tilde{x}_i (v(Q) - \phi(Q)) + \tilde{s} + x_i \left(v(\hat{Q}) - \phi(\hat{Q}) \right) + s \right]
\]

Clearly, the buyer is not indifferent between these two equilibria as soon as \(x_i \neq \tilde{x}_i\).

The next result ensures that suppliers with the same pseudotypes receive the same equilibrium outcome function \((x, s)\) in any equilibrium, except possibly on a set of measure zero. This rules out the situation described in the previous example. Lemma 2 then implies that outcome equivalent equilibria are also utility equivalent for the buyer, up to a zero measure.

Lemma 2: All equilibrium strategies in quasi-linear scoring auctions are essentially pure, both when expressed as a function of pseudotypes and (a fortiori) when expressed as a function of types.\(^{12}\)

\(^{14}\)This simplifying assumption is inessential for the argument.
Note that since the only relevant bid information for the purpose of the outcome of the auction is the score generated by suppliers’ bids, the statement of Lemma 2 should be understood as all the types of supplier \(i \) with the same pseudotypes submit bids generating the same outcome \((x_i, s_i)\) at equilibrium, for all \(i \).

Proof: We first note that if there exists a non trivial mixed strategy equilibrium (where non trivial refers to mixing on a non zero measure of types), then, by Lemma 1, there exists a non trivial mixed strategy equilibrium in the pseudotypes space. Therefore, we shall focus on equilibrium strategies as a function of pseudotypes to rule out non trivial mixed strategy equilibria.

For each pseudotype \(k \), define \(\underline{x}_i(k) \) and \(\overline{x}_i(k) \) as the lowest and highest expected probabilities of getting the contract among all the bids in the support of bidder \(i \)’s strategy when he has pseudotype \(k \). (let \(\underline{s}_i(k) \) and \(\overline{s}_i(k) \) be the resulting score to satisfy). By construction, \(\underline{x}_i(k) = \overline{x}_i(k) \) when bidder \(i \) of pseudotype \(k \) uses a pure strategy.

Define \(U_i(k) \) as supplier \(i \)’s equilibrium expected payoff when he has pseudotype \(k \). Incentive compatibility implies that

\[
U_i(k) = \underline{x}_i(k)k - \underline{s}_i(k) \geq \underline{x}_i(\hat{k})k - \underline{s}_i(\hat{k}) = U_i(\hat{k}) + \underline{x}_i(\hat{k})(k - \hat{k})
\]

\[
U_i(\hat{k}) = \overline{x}_i(\hat{k})\hat{k} - \overline{s}_i(\hat{k}) \geq \overline{x}_i(k)\hat{k} - \overline{s}_i(k) = U_i(k) - \overline{x}_i(k)(k - \hat{k})
\]

Hence \(\underline{x}_i(k)(k - \hat{k}) \geq \underline{x}_i(\hat{k})(k - \hat{k}) \) and \(\underline{x}_i(k) \) is monotonically increasing in \(k \). The same argument applies to \(\overline{x}_i(k) \). Hence \(\underline{x}_i(k) \) and \(\overline{x}_i(k) \) are almost everywhere continuous.

A similar argument based on the IC constraint establishes that \(\underline{x}_i(k) \geq \overline{x}_i(\hat{k}) \) for all \(\hat{k} < k \).

Together with the continuity of these functions, this implies that \(\underline{x}_i(k) = \overline{x}_i(k) \) (and \(\underline{s}_i(k) = \overline{s}_i(k) \)) almost everywhere. This rules out mixed strategy equilibria. QED
We are now able to prove the main result of this section:

Theorem 1: The set of equilibria (mappings from $\Theta_1 \times \ldots \times \Theta_N$ to $(p_i, Q_i)_{i=1}^N$) in the unconstrained scoring auction is the same as the set of equilibria in the scoring auction where suppliers are constrained to bid only on the basis of their pseudotypes, except possibly on a measure zero.

Proof: Lemma 2 implies that all equilibria in the unconstrained scoring auction are equilibria in the constrained auction (they differ at most by a measure zero). To prove that all equilibria in the constrained auction are also equilibria in the unconstrained auction, note that bidders’ preferences over strategies (and therefore outcomes x and s) are entirely determined by their pseudotypes (refer to (3) if needed). Therefore, if a strategy is a best response when a bidder is constrained to adopt a strategy based on his pseudotype, this strategy is again a best response for all types θ consistent with that pseudotype. QED

Most theoretical analyses of scoring auctions have implicitly or explicitly taken advantage of the sufficient statistics property of scoring auction to derive an equilibrium in these auctions (Che, 1993, Bushnell and Oren, 1994 and 1995). Theorem 1 suggests that doing so does not discard any other equilibria of interest. While this may not be totally surprising when types are one-dimensional\(^{15}\), this result is not trivial for environments where types are multi-dimensional. Indeed, it means that the richness introduced by the higher dimensionality of types has no strategic consequences for the set of equilibria. This property is a consequence of the combination of the quasi-linear scoring rule, the single dimensionality of the allocation decision, and the independence of types across bidders. We cannot reduce the strategic environment to one dimensional private information if

\(^{15}\)In the one dimensional case as in Che (1993), this is not so much a question of sufficient statistics (there is no reduction of the dimensionality of private information per se) as a simple change of variables.
any of these conditions does not hold. As argued in section 1, the quasi-linearity of the scoring
rule is necessary to be able to summarize suppliers’ preferences over contracts by a single number.
As noted after Lemma 1, independence was needed to make supplier’s beliefs independent of their
types. (Multi-unit auctions offer an example of multi-dimensional allocation mechanisms where
there is no reduction of dimensionality possible.)

The next result makes the relationship between scoring auctions and standard one object auctions
even more explicit:

Corollary 1: The equilibrium in scoring auctions inherits the properties of the equilibrium in the
related single object auction where (1) bidders are risk neutral, (2) their (private) valuations for the
object correspond to the pseudotype k in the original scoring auction and are distributed accordingly,
(3) the highest bidder wins, and (4) the payment rule is determined as in the scoring auction, with
bidders’ scores being replaced by bidders’ bids.

Corollary 1 relies on the expression for suppliers’ expected payoff in the direct revelation mechanism
equivalent of the scoring auction: $x_i(k)k - s_i(k)$. This is identical to the direct revelation mechanism
expression for bidders’ expected payoff in the standard independent private values single object
auction with risk neutral bidders. For example, Corollary 1 implies that an equilibrium exists in
a wide variety of formats (e.g. first price, second price, third price, ascending, all-pay, ...). It is
unique in the first price scoring auction. See Krishna (2002) for a survey.

Corollary 1 has practical implications for the derivation of the equilibrium in scoring auctions.
Indeed, it forms the basis for the following simple algorithm for deriving equilibria in scoring
auctions:

1. Given the scoring rule, derive the distribution of pseudotypes, $G_i(k)$;
(2) Solve for the equilibrium in the related IPV auction where valuations are distributed according to $G_i(k)$, $b_i(k)$;

(3) The equilibrium bid in the scoring auction is any (p, Q) such that $S(p, Q) = b_i(k)$. (The actual (p, Q) delivered are easy to derive given $b_i(k)$ and the solution to equation (2).)

4 Expected Utility Equivalence across auction formats

In this section, we extend the Revenue Equivalence Theorem (Myerson, 1981, Riley and Samuelson, 1981) to multi-attribute environments. Theorem 2 extends a result obtained by Che (1993) on the utility equivalence between the first and second scoring auction when types are one-dimensional and the scoring rule corresponds to the buyer’s true preferences, i.e. $\phi(Q) = v(Q)$.

Theorem 2 (Expected Utility Equivalence). Any two scoring auctions that:

(a) use the same quasi-linear scoring rule,

(b) use the same allocation rule $x_i(k_i, k_{-i})$, $i = 1, ..., N$, and

(c) yield the same expected payoff for the lowest pseudotype k_i, $i = 1, ..., N$.

generate the same expected utility for the buyer.

Proof: Since the buyer’s utility is quasi-linear, his expected utility from a given auction is

$$
\sum_{i=1}^{N} E_{k_i, k_{-i}} [x_i(k_i, k_{-i}) ESS(k_i) - U_i(k_i)] = \sum_{i=1}^{N} E_{k_i} [x_i(k_i) ESS(k_i) - U_i(k_i)]
$$

where $ESS(k_i)$ is the expected social surplus generated by awarding the contract to bidder i with pseudotype k_i.

16
By Theorem 1, we can focus on equilibria which are only functions of pseudotypes. Incentive compatibility implies that $U_i(k_i)$ is almost everywhere differentiable and that $\frac{d}{dk_i}U_i(k_i) = x_i(k_i)$, where $x_i(k_i)$ is a well-defined function almost everywhere by Lemma 2. Hence, (b) and (c) implies that $U_i(k)$ is the same across both auctions.

Next, fix k_i and let $(p(\theta_i, s_i), Q(\theta_i, s_i))$ be the realized contract of supplier i with type $\theta_i \in \Theta_i(k_i)$, when the score to satisfy is s_i. Because the scoring rule is quasi-linear, $Q(\theta_i, s_i)$ is only a function of the scoring rule and θ_i, and not of s_i (cf. (2)). Hence,

$$ESS(k_i) = E_{\theta_i \in \Theta_i(k_i)}[v(Q) - c(Q, \theta_i)]$$

is independent of s_i and therefore equal across the two auctions given (a). The claim follows.

QED.

Four points are worth noting concerning this result. First, the assumption that the scoring rule is quasi-linear is key. Without it, suppliers’ choice of product characteristics (p, Q) would depend on the form of the resulting obligation, that is, the auction format.

Second, the proof of Theorem 2 relies on the fact that any equilibrium is essentially pure as a function of pseudotypes (i.e. x_i are functions). Without this property, expected utility equivalence between two auctions that yield the same distribution of allocations as a function of pseudotypes would only hold when the scoring rule corresponds to the true valuation. Indeed, in that case, the social surplus associated with a bidder of type θ_i is his pseudotype k_i, so $EES(k_i) = k_i$.

Third, Theorem 2 implies the standard equivalence between the first score auction, the second score auction and the Dutch and English auctions when bidders are symmetric. But note that the symmetry requirement is with respect to the distribution of pseudotypes and not the distribution of types. In particular, some bidders can (stochastically) be stronger for one attribute and others
for another attribute, yet, when it comes to pseudotypes, they can be symmetric.

Finally, one could prove an alternative version of Theorem 2 where (b) is replaced by the requirement that the allocation as a function of the original types, \(x_i(\theta_i, \theta_{-i})\), is the same, and (c) is replaced by the requirement that the expected payoff of bidders at a point on the boundary of the types set is the same across auctions. The proof for this alternative version adapts an argument made by Krishna and Perry (2000) in proving a payoff equivalence result for allocation mechanisms with multiple goods and multi-dimensional types. Note however that the conditions for the alternative version are more restrictive than (b) and (c). The result is therefore weaker. In particular, if we used that approach, we could only establish the equivalence between the first score and the second score auction when bidders are symmetric in the original type space.

5 Concluding remarks

Auctions with multi-dimensional private information are notoriously tricky to analyze. In this paper, we exploit the simple property that multi-attribute auctions with scoring rules reduce the multi-dimensional decision problem into a one-dimensional variable, the score. This score is used both for deciding whom to award the contract and the resulting contractual obligations of the bidders.

We have exploited this idea in two ways. First, we have characterized the set of equilibria in scoring auctions and have argued that a single number, the supplier’s pseudotype, is sufficient to describe the equilibrium outcome in these auctions, when the scoring rule is quasi-linear and types are independently distributed. Doing so, we have drawn on the equivalence between the reduced form of a scoring auction and that of a standard single object IPV auction. Second, we have derived a
new expected utility equivalence theorem for scoring auctions. Any two scoring auctions that use
the same quasi-linear scoring rule and have the same allocation rule generate the same expected
utility for the buyer, modulo one additive constant. Both results extend existing theories of scoring
auctions.

The “sufficient statistics approach” presented here greatly facilitates the practical analysis of ex-
stisting scoring auctions since standard techniques and results of auction theory can be applied to
scoring auctions (Theorem 1 and Corollary 1). Nevertheless, it is likely to be less helpful to answer
questions about the optimal choice of a scoring rule. The reason is that the distribution of pseudo-
types is endogenous to the choice of a scoring rule. Therefore choosing the best scoring rule comes
down to maximizing the expression for the buyer’s expected utility (6), over the set of distributions
of pseudotypes compatible with a scoring rule. We are skeptical that any useful progress on this
question can be achieved using this approach. In work in progress, we adapt and extend techniques
used in the multi-dimensional screening literature to study the question of buyer optimal scheme
in multi-attributes auctions, including the question of the optimal scoring rule.
References

<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIV 2.2003</td>
<td>Ilona SCHINDELE</td>
<td>Theory of Privatization in Eastern Europe: Literature Review</td>
</tr>
<tr>
<td>PRIV 3.2003</td>
<td>Wietze LISE, Claudia KEMFERT and Richard S.J. TOL</td>
<td>Strategic Action in the Liberalised German Electricity Market</td>
</tr>
<tr>
<td>CLIM 4.2003</td>
<td>Laura MARSILIANI and Thomas I. RENSTRÖM</td>
<td>Environmental Policy and Capital Movements: The Role of Government Commitment</td>
</tr>
<tr>
<td>KNOW 5.2003</td>
<td>Reyer GERLAGH</td>
<td>Induced Technological Change under Technological Competition</td>
</tr>
<tr>
<td>ETA 6.2003</td>
<td>Efrem CASTELNUOVO</td>
<td>Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model</td>
</tr>
<tr>
<td>SIEV 7.2003</td>
<td>Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI</td>
<td>The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers</td>
</tr>
<tr>
<td>NRM 8.2003</td>
<td>Elissaios PAPYRakis and Reyer GERLAGH</td>
<td>Natural Resources: A Blessing or a Curse?</td>
</tr>
<tr>
<td>CLIM 9.2003</td>
<td>A. CAPARROS, J.-C. PEREAU and T. TAZDAIT</td>
<td>North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information</td>
</tr>
<tr>
<td>KNOW 10.2003</td>
<td>Giorgio BRUNELLO and Daniele CHECCHI</td>
<td>School Quality and Family Background in Italy</td>
</tr>
<tr>
<td>CLIM 11.2003</td>
<td>Efrem CASTELNUOVO and Marzo GALEOTTI</td>
<td>Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis</td>
</tr>
<tr>
<td>KNOW 12.2003</td>
<td>Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI</td>
<td>Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art</td>
</tr>
<tr>
<td>KNOW 14.2003</td>
<td>Maddy JANSENS and Chris STEYAERT</td>
<td>Theories of Diversity within Organisation Studies: Debates and Future Trajectories</td>
</tr>
<tr>
<td>KNOW 15.2003</td>
<td>Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIKAMP (lix):</td>
<td>Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life</td>
</tr>
<tr>
<td>KNOW 16.2003</td>
<td>Alexandra BITUSIKOVA (lix):</td>
<td>Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia</td>
</tr>
<tr>
<td>KNOW 17.2003</td>
<td>Billy E. VAUGHN and Katarina MLEKOV (lix):</td>
<td>A Stage Model of Developing an Inclusive Community</td>
</tr>
<tr>
<td>KNOW 18.2003</td>
<td>Selma van LONDON and Arie de RUJTER (lix):</td>
<td>Managing Diversity in a Glocalizing World</td>
</tr>
<tr>
<td>PRIV 20.2003</td>
<td>Giacomo CALZOLARI and Alessandro PAVAN (lx):</td>
<td>Monopoly with Resale</td>
</tr>
<tr>
<td>PRIV 22.2003</td>
<td>Marco LiCalzi and Alessandro PAVAN (lx):</td>
<td>Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions</td>
</tr>
<tr>
<td>PRIV 23.2003</td>
<td>David ETTINGER (lx):</td>
<td>Bidding among Friends and Enemies</td>
</tr>
<tr>
<td>PRIV 24.2003</td>
<td>Hannu VARTIAIENEN (lix):</td>
<td>Auction Design without Commitment</td>
</tr>
<tr>
<td>PRIV 26.2003</td>
<td>Christine A. FARLOUR and Uday RAJAN (lx):</td>
<td>Rationing in IPOs</td>
</tr>
<tr>
<td>PRIV 27.2003</td>
<td>Kjell G. NYBORG and Ilya A. STREBULAEV (lx):</td>
<td>Multiple Unit Auctions and Short Squeezes</td>
</tr>
<tr>
<td>PRIV 28.2003</td>
<td>Anders LUNANDER and Jan-Eric NILSSON (lx):</td>
<td>Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts</td>
</tr>
<tr>
<td>PRIV 30.2003</td>
<td>Emiel MAASLAND and Sander ONDERSTAL (lx):</td>
<td>Auctions with Financial Externalities</td>
</tr>
<tr>
<td>ETA 31.2003</td>
<td>Michael FINUS and Bianca RUNDHAGEN</td>
<td>A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games</td>
</tr>
<tr>
<td>KNOW 32.2003</td>
<td>Michele MORETTO</td>
<td>Competition and Irreversible Investments under Uncertainty</td>
</tr>
<tr>
<td>PRIV 33.2003</td>
<td>Philippe QUIRION</td>
<td>Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?</td>
</tr>
<tr>
<td>KNOW 34.2003</td>
<td>Giuseppe MEDA, Claudio PIGA and Donald SIEGEL</td>
<td>On the Relationship between R&D and Productivity: A Treatment Effect Analysis</td>
</tr>
<tr>
<td>ETA 35.2003</td>
<td>Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA</td>
<td>Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation</td>
</tr>
<tr>
<td>Journal</td>
<td>Year</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>IEM</td>
<td>99.2003</td>
<td>John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities</td>
</tr>
<tr>
<td>IEM</td>
<td>99.2003</td>
<td>Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue</td>
</tr>
<tr>
<td>IEM</td>
<td>99.2003</td>
<td>Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities</td>
</tr>
<tr>
<td>IEM</td>
<td>99.2003</td>
<td>David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood</td>
</tr>
<tr>
<td>CLIM</td>
<td>99.2003</td>
<td>Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime</td>
</tr>
<tr>
<td>CLIM</td>
<td>99.2003</td>
<td>Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements</td>
</tr>
<tr>
<td>IEM</td>
<td>99.2003</td>
<td>Anil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy</td>
</tr>
<tr>
<td>NRM</td>
<td>99.2003</td>
<td>Anastasios XEPAPADEAS and Catarina ROSETA-PALMA: Stabilizing the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example</td>
</tr>
<tr>
<td>ETA</td>
<td>99.2003</td>
<td>Charles PERRINGS and Brian WALKER (lxiv): Conservation and Optimal Use of Rangelands</td>
</tr>
<tr>
<td>ETN</td>
<td>99.2003</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players</td>
</tr>
<tr>
<td>CTN</td>
<td>99.2003</td>
<td>Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players</td>
</tr>
<tr>
<td>NRM</td>
<td>100.2003</td>
<td>Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers</td>
</tr>
</tbody>
</table>
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (Ixxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarni BRENDBRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixxv): Equilibrium in the Two Player, k-Double auction With Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (Ixxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Maria STRYZOWSKA (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angela ANTICI, Simone BORGHESI and Paolo RUSSU (Ixxv): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (Ixxv): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxv): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (Ixxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (Ixxvii): Impact of Tourism Consumption on GDP, The Role of Imports

NRM 29.2004 Marian WEBER (Ixxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

NRM 30.2004 Trond BJORDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Micheal FINUS (Ixxv): International Cooperation to Resolve International Pollution Problems

CTN 43.2004 Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
CTN 44.2004 Marc ESCRIVUELA-FILLAR: Cartel Sustainability and Cartel Stability
NRM 45.2004 Sebastian BEROVELT and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
NRM 46.2004 Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
NRM 48.2004 Ekin BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
CCMP 49.2004 Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme, Allowance Prices, Trade Flows, Competitiveness Effects
GG 50.2004 Scott BARRETT and Michael HOEL: Optimal Disease Eradication
CTN 51.2004 Dinko DIMITROV, Peter BORM, Roed HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
SIEV 52.2004 Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
NRM 54.2004 Ingo BRAUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturated Streams
NRM 55.2004 Tino GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices
NRM 56.2004 Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
CCMP 57.2004 Katrin REHDANZ and David MADISON: The Amenity Value of Climate to German Households
NRM 59.2004 Valentina BOSETTI, Mariaeaster CASSINELLI and Alessandro LANZA (lxvi): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
NRM 60.2004 Tino GOESCHL and Danilo CAMARGO IGLOI: Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
CCMP 61.2004 Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
NRM 63.2004 Györgyi BELA, György PATAKI, Melinda SMALLE and Marians HAIDU (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
NRM 64.2004 E.C.M. RULIGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
EJA 66.2004 Giannis YARDAS and Anastasios XEPAPEADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
GG 67.2004 Anastasios XEPAPEADEAS and Constandia PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
GG 68.2004 Michael FINUS: Modesty Pays: Sometimes!
NRM 69.2004 Trond BJØRNDAL and Ana BRASIO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
CTN 70.2004 Alejandro CAPARRÓS, Abdelhakin HAMMOUDI and Tarik TAZDAIT: On Coalition Formation with Heterogeneous Agents
IEM 71.2004 Massimo GIOVANNINI, Margaretta GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
IEM 72.2004 Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
CCMP 74.2004 Rob DELINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
ETA 75.2004 Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
CTN 77.2004 Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERA and Fernando VEGA-REDONDO (lx): Optimal Information Transmission in Organizations: Search and Congestion
CTN 78.2004 Francis BLOCH and Armando GOMES (lx): Contracting with Externalities and Outside Options
CTN 79.2004 Rabah AMIR, Effrosyni DIAMANTOUDI and Licun XUE (lx): Merger Performance under Uncertain Efficiency Gains
CTN 80.2004 Francis BLOCH and Matthew O. JACKSON (lx): The Formation of Networks with Transfers among Players
CTN 81.2004 Daniel DIERMEIER, Hulya ERASLAN and Antonio MERLO (lx): Bicameralism and Government Formation
Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

Kirit ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

Sanjeev GOYAL, Marco van der LEIJ and José Luis MORAGA-GONZALEZ (lxx): Economics: An Emerging Small World?

Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

Marzio GALEOTTI and Claudia KEMFERT: Interactions between Climate and Trade Policies: A Survey

A. MARKANDYA, S. PEDROSO and D. STREIMIKIENĖ: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

Sergei IZMALIKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

Gianmarco I.P. OTTAVIANO and Giovanni PERI: The Implications of Climate Change: Sea Level Rise

Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSATO and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WIEKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to Pay for Reductions in Pesticide Risk Exposure

Valentina BOSSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

Massimo DEL GATTO: Aggregation, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution

Pierre-André JOUVENT, Philippe MICHEL and Gilles ROTILLION: Equilibrium with a Market of Permits

Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

Francesco BOSELLO, Marco LAZZARIN, Roberto ROSATO and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

Gustavo BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

Hans-Peter WIEKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Chiara M. TRAVISI, Raymond J. G. FLORAX and Peter NIJKAMP: A Meta-Analysis of the Willingness to Pay for Reductions in Pesticide Risk Exposure

Valentina BOSSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy

Massimo FLORIO and Mara GRASSENI: The Missing Shock: The Macroeconomic Impact of British Privatisation

John BENNETT, Saul ESTRIN, James MAW and Giovanni URGA: Privatisation Methods and Economic Growth in Transition Economies

Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

Pehr-Johan NORBÄCK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo MAINARIA: Competition between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

Somdeb LAHIRI: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

Giuseppe DI VITA: Natural Resources Dynamics: Another Look

Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

Paulo A.L.D. NUNES and Laura ONOFRI: The Economics of Warm Glow: A Note on Consumer’s Behavior and Public Policy Implications

Patrick CAYRADE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

Valeria COSTANTINI and Francesco GRACCEVA: Oil Security. Short- and Long-Term Policies

Valeria COSTANTINI and Francesco GRACCEVA: Social Costs of Energy Disruptions

Christian EGENHOFER, Kyriakos GIALOGLOU, Giacomo LUCIANI, Maroessa BOOTS, Martin SCHEEPERS, Valeria COSTANTINI, Francesco GRACCEVA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options for Security of Energy Supply

David FISK: Transport Energy Security. The Unseen Risk?

Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?

L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets

Alberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open Economy

Carlo GIUPPONI, Jaroslav MISLAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application

Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited

Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach

Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic

Maria BERRITELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism

Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy Savings

Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth

Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization

Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A Latent-Class Approach Based on Intensity of Participation

Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited

Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma

Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys

Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices

Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game

ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China

Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy

Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis

Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS: Bidding for Incomplete Contracts

Susan ATHEY, Jonathan LEVIN and Enrique SEIRA: Comparing Open and Sealed Bid Auctions: Theory and Evidence from Timber Auctions

David GOLDREICH: Behavioral Biases of Dealers in U.S. Treasury Auctions

Roberto BURGUE (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics

Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUQGO: How to Win Twice at an Auction. On the Incidence of Commissions in Auction Markets

Claudio MEZZETTI, Aleksandar PEKE and Ilia TSETLIN: Sequential vs. Single-Round Uniform-Price Auctions

John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
<table>
<thead>
<tr>
<th>Series</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>CLIM Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td></td>
<td>GG Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td></td>
<td>SIEV Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td></td>
<td>NRM Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td></td>
<td>KNOW Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td></td>
<td>IEM International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td></td>
<td>CSRM Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td></td>
<td>PRIV Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td></td>
<td>ETA Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td></td>
<td>CTN Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>2004</td>
<td>CCMP Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td></td>
<td>GG Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td></td>
<td>SIEV Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td></td>
<td>NRM Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td></td>
<td>KTHC Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td></td>
<td>IEM International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td></td>
<td>CSRM Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td></td>
<td>PRIV Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td></td>
<td>ETA Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td></td>
<td>CTN Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>