Mezzetti, Claudio; Pekec, Aleksandar; Tsetlin, Ilia

Working Paper
Sequential vs. Single-Round Uniform-Price Auctions

Nota di Lavoro, No. 147.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Mezzetti, Claudio; Pekec, Aleksandar; Tsetlin, Ilia (2004) : Sequential vs. Single-Round Uniform-Price Auctions, Nota di Lavoro, No. 147.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/118023

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Sequential vs. Single-Round Uniform-Price Auctions
Claudio Mezzetti, Aleksandar Pekeč and Ilia Tsetlin

NOTA DI LAVORO 147.2004

DECEMBER 2004
PRA – Privatisation, Regulation, Antitrust

Claudio Mezzetti, Department of Economics, University of North Carolina
Aleksandar Pekeč, The Fuqua School of Business, Duke University
Ilia Tsetlin, INSEAD

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=624465

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Sequential vs. Single-Round Uniform-Price Auctions

Summary
We study sequential and single-round uniform-price auctions with affiliated values. We derive symmetric equilibrium for the auction in which k1 objects are sold in the first round and k2 in the second round, with and without revelation of the first-round winning bids. We demonstrate that auctioning objects in sequence generates a lowballing effect that reduces first-round revenue. Thus, revenue is greater in a single-round, uniform auction for k = k1 + k2 objects than in a sequential uniform auction with no bid announcement. When the first-round winning bids are announced, we also identify two informational effects: a positive effect on second-round price and an ambiguous effect on first-round price. The expected first-round price can be greater or smaller than with no bid announcement, and greater or smaller than the expected price in a single-round uniform auction. As a result, total expected revenue in a sequential uniform auction with winning-bids announcement can be greater or smaller than in a single-round uniform auction.

Keywords: Multi-unit auctions, Sequential auctions, Uniform-price auction, Affiliated values, Information revelation

JEL Classification: D44, D42

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by Fondazione Eni Enrico Mattei and Consip and sponsored by the EU, Rome, September 23-25, 2004.

Tsetlin is grateful to the Centre for Decision Making and Risk Analysis at INSEAD for supporting this project.

Address for correspondence:

Claudio Mezzetti
Department of Economics
University of North Carolina
Chapel Hill
NC 27599-3305
USA
E-mail: mezzetti@email.unc.edu
1 Introduction

Uniform-price auctions are widely used to sell identical or quite similar objects. Sometimes sellers auction all objects together in a single round, while other times they auction them separately in a sequence of rounds. For example, cattle, fish, vegetables, timber, tobacco, wine, and frequency transmission rights typically are sold in sequence, while government
securities and mineral rights are sold in a single round. When using sequential auctions, the seller must decide what information to release after each round of bidding.

Two important questions arise. Do sequential sales raise the seller’s revenue, or is revenue maximized in a single-round auction? How do equilibrium prices in each round of a sequential auction depend on the information that the seller reveals about bidding in earlier rounds?

To address these questions, we suppose that the seller owns \(k \) identical objects. Each buyer demands only one object.\(^1\) Buyers’ value estimates, or signals, are affiliated random variables, as in Milgrom and Weber (1982, 2000). We compare the single-round uniform-price auction and the two-round (or sequential) uniform-price auction, in which \(k_1 \) objects are sold in the first round and \(k_2 = k - k_1 \) are sold in the second round. In both auctions, the price in a given round is equal to the highest losing bid in that round. (The extension of our results to more than two rounds is discussed in Section 4.) For sequential auctions, we focus on two information policies. Under the first policy, the seller does not reveal any information after the first round. Under the second policy, the seller announces all the first-round winning bids before the second round. As we shall see in Section 5.2, intermediate information policies like the policy of revealing only the lowest first-round winning bid - an approximation of the policy of revealing the winning price - yield the seller a lower revenue than the policy of revealing all winning bids.

First, we derive symmetric equilibrium bidding strategies. While equilibrium bidding strategies and seller’s revenue in the single-round uniform auction are well known (e.g., see Milgrom and Weber, 2000), we are the first to study and provide an equilibrium for the sequential, uniform-price auction with winning-bids announcement.

The equilibrium of the sequential auction with no bid announcement (when only one object is sold in each round) was conjectured by Milgrom and Weber (2000), first circulated as a working paper in 1982. In a forward and bracketed comments, Milgrom and Weber (2000) explain that the delay in publishing their work was due to the proofs of this and other related results having “refused to come together” (p. 179). They also explain the nature of

\(^1\)Government-run auctions often limit each bidder to bid for at most one asset. This has been the case, for example, in the auctions of national frequency licenses in many European countries in the last few years.
the difficulty, to which we return in Section 4, and add that the conjectured equilibrium “should be regarded as being in doubt” (p. 188). We have been able to prove (for the case of two rounds) that the equilibrium conjectured by Milgrom and Weber (extended to more than just one object per round) is indeed an equilibrium.

According to the linkage principle, public revelation of information raises revenue in the single-item, single-round, symmetric, affiliated-values model (see Milgrom and Weber, 1982). Even if the winning bids are not announced, bidders have additional knowledge after the first round of a sequential auction. They know that at least \(k_1 \) bidders bid higher than them. Intuition derived from the linkage principle has lead Milgrom and Weber’s (2000) to conjecture that both versions of the sequential auction raise greater revenue than a single-round auction for \(k \) objects (see also fn. 5). We show that this conjecture is incorrect.

In the symmetric equilibrium of a sequential uniform auction with no bid announcement, the new information available to bidders after the first round turns out to be useless. In the second round, the bidding function is as in a single-round uniform auction for \(k \) objects, because in the symmetric equilibrium of a single-round uniform auction bidders bid as if they are tied with the \(k \)-th highest bid; that is, they already assume that there are \(k - 1 \geq k_1 \) bidders with signals higher than theirs. Auctioning objects in sequence, however, has a cost to the seller. It induces bidders to lowball in the first round by making bids that are conditional on being tied with the price setter. This lowballing effect reduces first-round revenue. Thus, revenue is greater in a single-round auction than in a sequential auction with no bid announcement.

While we are not the first to show that the linkage principle may not hold in multi-unit auctions, we must stress a very important difference with other examples in the literature that contradict the linkage principle. In all the other examples we are aware of (e.g., see Perry and Reny, 1999, and example 8.2 in Krishna, 2002) either bidders have multi-unit demands, or they are asymmetric; the linkage principle fails because public revelation of information changes the final allocation of the goods. In our model bidders are symmetric, they have unit demands, and both the single-round and the sequential auction are efficient - the winners are the bidders with the \(k \) highest signals. The linkage principle fails because in the sequential
uniform auction with no bid announcement all bidders lowball in the first round.

In our model, when the first-round winning bids are announced, there is a positive informational effect on second-round bids. This effect is closely related to the linkage principle. However, the fact that the first-round winning bids will be revealed also has an effect on first-round bids, which may raise or decrease first-round revenue, depending on the model parameters. The first-round price when the winning bids are announced could be greater or smaller than with no bid announcement, and greater or smaller than the price in a single-round auction. As a result, total revenue in a sequential auction with winning-bids announcement could be greater or smaller than in a single-round auction.

Milgrom and Weber (1982, 2000) have shown that the ascending (English) auction raises the highest revenue among standard single-round auctions, and that the symmetric equilibrium of the sequential ascending auction coincides with the symmetric equilibrium of the single-round ascending auction. As an ascending auction moves forward and bidders drop out, the losers’ (i.e., the lowest) signals become known. In a sequential auction with winning-bids announcement, it is the winners’ (i.e., the highest) signals that are revealed after each round. When there are three bidders and two objects, the single-round uniform-price auction is equivalent to an ascending auction. Thus, our revenue ranking results imply that, for some model parameters, a sequential auction with winning-bids announcement yields higher revenue than any standard single-round auction.

While there are many papers on sequential auctions with bidders having independent private values (see Klemperer, 1999, and Krishna, 2002, for surveys), sequential auctions with affiliated values have been little studied. Two papers somewhat connected to our work are Ortega Reichert (1968) and Hausch (1986). In both papers, bidders demand more than one object. Ortega Reichert (1968) studies a two-bidder, two-period, sequential first-price auction with positive correlation of bidders’ valuations across periods and across bidders. He shows that there is a deception effect. Compared to a one-shot auction, bidders reduce their first-round bids to induce rivals to hold more pessimistic beliefs about their valuations for the second object. Hausch (1986) studies a special discrete case of a two-bidder, two-unit demand, two-signal, two-period, common-value, sequential first-price auction in which both the losing
and the winning bids are announced after the first round. Besides the deception effect, he shows that there is an opposite informational effect that raises the seller’s revenue. In our model bidders have unit-demand, so there is no deception effect; with no bid announcement first-round bids are lower because bidders condition on being tied with the price setter, not because they want to deceive their opponents. Furthermore, when the seller reveals the first-round winning bids, there are informational effects on both first and second-round bidding.

We introduce the model in the next section. Section 3 studies the symmetric equilibria of the sequential auction with and without winning-bids announcement. Section 4 contains the proofs of the theorems reported in Section 3 and discusses extensions to more than two rounds. Section 5 compares the price sequences and revenues in the sequential and single-round auctions. Section 6 concludes.

2 The Model

We consider the standard affiliated-value model of Milgrom and Weber (1982, 2000). A seller owns \(k \) identical objects. There are \(n \) bidders participating in the auction, every bidder desiring only one object. Before the auction, bidder \(i, i = 1, 2, \ldots, n \), observes the realization \(x_i \) of a signal \(X_i \). Let \(s_1, \ldots, s_m \) be the realizations of additional signals \(S_1, \ldots, S_m \) unobservable by the bidders, and denote with \(w \) the vector of signal realizations \((s_1, \ldots, s_m, x_1, \ldots, x_n)\). Let \(w \vee w' \) be the component-wise maximum and \(w \wedge w' \) the component-wise minimum of \(w \) and \(w' \). Signals are drawn from a distribution with a joint pdf \(f(w) \), which is symmetric in its last \(n \) arguments (the signals \(x_i \)) and satisfies the affiliation property:

\[
f(w \vee w')f(w \wedge w') \geq f(w)f(w') \quad \text{for all } w, w'.
\]

The support of \(f \) is \([s, \overline{s}]^m \times [\underline{x}, \overline{x}]^n\), with \(-\infty \leq s < \overline{s} \leq +\infty\), and \(-\infty \leq \underline{x} < \overline{x} \leq +\infty\).

The value of one object for bidder \(i \) is given by \(V_i = u(S_1, \ldots, S_m, X_i, \{X_j\}_{j \neq i}) \), where the function \(u(\cdot) \) satisfies the following assumption.

Assumption 1. \(V_i = u(S_1, \ldots, S_m, X_i, \{X_j\}_{j \neq i}) \) is non-negative, bounded, continuous, in-
creasing in each variable, and symmetric in the other bidders’ signals X_j, $j \neq i$.

We compare two standard auction formats. In a single-round uniform auction (an extension of the second-price auction introduced by Vickrey, 1961) the seller auctions all objects simultaneously in a single round. The bidders with the k highest bids win one object each at a price equal to the $(k+1)$-st highest bid. In a sequential uniform auction, the seller auctions the objects in two rounds, k_1 objects in the first round and $k_2 = k - k_1$ in the second round. In round t, $t = 1, 2$, the bidders with the k_t highest bids win one object each at a price equal to the (k_t+1)-st highest bid. Since bidders have unit demand, only the $n - k_1$ first-round losers participate in the second round. For the sequential auction, we consider two information policies. According to the first policy, the seller does not reveal any information after the first round. This is referred to as the no-bid-announcement policy. The second policy prescribes that the seller announces the first-round winning bids (i.e., the k_1 highest bids), before the second round bids are submitted. This is referred to as the winning-bids-announcement policy.

3 Symmetric Equilibria

To derive the symmetric equilibrium bidding functions in each of the auction formats, it is useful to take the point of view of one of the bidders, say bidder 1 with signal $X_1 = x$, and to consider the order statistics associated with the signals of all other bidders. We denote with Y^m the m-th highest signal of bidders 2, 3, ..., n (i.e., all bidders except bidder 1).

A very important implication of affiliation is that if H is an increasing function, then $E \left[H \left(X_1, Y^1, ..., Y^k \right) \mid c_1 \leq Y^1 \leq d_1, ..., c_k \leq Y^k \leq d_k \right]$ is increasing in all its arguments (see Milgrom and Weber, 1982, Theorem 5). We use this property repeatedly in our proofs; when we refer to affiliation, we refer to this property.

We denote with $b^s(\cdot)$ the symmetric equilibrium bidding function of the single-round uniform auction; $b^a_t(\cdot)$ and $b^w_t(\cdot)$ are the symmetric equilibrium bidding functions in round t, $t = 1, 2$, of the sequential uniform auction with no bid announcement and with winning-bids announcement, respectively.
We begin by recalling (see Milgrom and Weber, 1982, 2000) that a symmetric equilibrium bidding function in the single-round uniform auction is:

\[b^s(x) = E \left[V_1 | X_1 = x, Y^k = x \right]. \] (2)

Due to affiliation and Assumption 1, \(b^s(x) \) is an increasing function of \(x \). Bidder 1 bids the expected value of an object conditional on his own signal, \(X_1 = x \), and on his signal being just high enough to guarantee winning (i.e., being equal to the \(k \)-th highest signal among all other bidders’ signals). This last conditioning can be understood as a winner’s curse correction due to interdependent values. If values are private, bidders need not condition their bids on being tied with the price setter.

Theorem 1. A symmetric equilibrium strategy in the sequential uniform auction with no bid announcement is given by

\[b^s_2(x) = E \left[V_1 | X_1 = x, Y^k = x \right], \] (3)
\[b^s_1(x) = E \left[b^s_2(Y^k) | X_1 = x, Y^{k_1} = x \right]. \] (4)

In an auction with no bid announcement, bids in both rounds depend only on a bidder’s own signal. In a sequential auction with winning-bids announcement, the second-round bid must also depend on the first-round winning bids. If the first-round symmetric-equilibrium bidding function is increasing (as shown below), announcing the winning bids is equivalent to announcing the \(k_1 \) highest signals. Taking the point of view of a bidder who is bidding in the second round, without loss of generality bidder 1, the announced bids reveal the realizations \(y_1, ..., y_{k_1} \) of \(Y^1, ..., Y^{k_1} \), the \(k_1 \) highest signals among bidders 2, ..., \(n \).

Theorem 2. Let \(y_1, ..., y_{k_1} \) be the realizations of the signals that correspond to the winning bids in the first round. A symmetric equilibrium strategy in the sequential uniform auction...
with winning-bids announcement is given by

\[b_2^a(x; y_1, ..., y_{k_1}) = E \left[V_1 | X_1 = x, Y^1 = y_1, ..., Y^{k_1} = y_{k_1}, Y^k = x \right], \tag{5} \]

\[b_1^a(x) = E \left[b_2^a \left(Y^k, Y^1, ..., Y^{k_1-1}, x \right) | X_1 = x, Y^{k_1} = x \right]. \tag{6} \]

The proofs are left to Section 4; here we discuss the underlying intuition.

First, note that affiliation and Assumption 1 imply that the bidding functions (3), (4), and (6) are increasing in \(x \), while the bidding function (5) is increasing in \(x \) and \(y_1, ..., y_{k_1} \).

Second, observe that the bidding function in the second round of the auction with no bid announcement (3) coincides with the bidding function in the single-round uniform auction (2). Intuitively, this makes sense. With no announcement, the only additional information that bidders have in the second round is that in the first round \(k_1 \) bidders bid higher than they did. Since the first-round bid function is increasing, this implies that the remaining bidders know that \(k_1 \) of the signals of the other bidders are higher than their own. Thus, a bidder bids the expected value of an object conditional on (a) his own signal, (b) the fact that the \(k_1 \) first-round winners have higher signals, and (c) his own signal being just high enough to win (i.e., being equal to the \((k - k_1) \)-th highest signal of the \(n - 1 - k_1 \) remaining opponents). This is equivalent to saying that a bidder conditions on his own signal and on his signal being equal to the \(k \)-th highest signal of the other \(n - 1 \) bidders, which yields the same equilibrium bidding function as in a single-round uniform auction.

Third, the second-round bidding function for the case in which the first-round winning bids are announced must also condition on the signals revealed by this announcement. In this case, each remaining bidder bids the expected value of an object conditional on (a) his own signal, (b) his own signal being just high enough to win (i.e., being equal to the \(k \)-th highest signal of his opponents), and (c) the revealed signal values of the first-round winning bidders.

Finally, in the first round of a sequential auction with or without winning-bids announce-ment, a bidder knows that, if he loses, he will get another chance to win the object; hence, he does not want to pay more than what he expects to pay in the second round. He bids
the expected second-round price conditional on his own signal and his own signal being just high enough to win in the first round (i.e., being equal to the k_1-th highest signal of the opponents). The second-round price is the second-round bid of the opponent with the k-th highest signal: $b^n_2(Y^k)$ in an auction with no bid announcement and $b^a_2(Y^k; Y^1, ..., Y^{k_1})$ in an auction with winning-bids announcement.

4 Proofs of Theorems 1 and 2

Although the proofs are an important contribution of this paper, this section can be skipped by the reader who is only interested in the properties and comparisons of the different auction formats. We first prove Theorem 2. This proof is simpler and allows us to highlight the difficulties in the proof of Theorem 1. We will conclude this section with a remark about extending Theorems 1 and 2 to more than two rounds of bidding.

Proof of Theorem 2. Assume that all bidders other than bidder 1 use the bidding functions $b^a_1(\cdot)$ and $b^a_2(\cdot)$. We need to show that bidder 1 also wants to use them. Suppose, to the contrary, that bidder 1 observes signal x and bids β_1 in the first round. Moreover, if he does not win in the first round, the signals $y_1, ..., y_{k_1}$ corresponding to the k_1 highest bids in the first round are revealed, and bidder 1 bids $\beta_2(y_1, ..., y_{k_1})$ in the second round. Bidder 1 would not profit from bidding outside the range of the bidding functions $b^a_1(\cdot)$ and $b^a_2(\cdot)$; bidding below $\min(b^a_1(\cdot))$ is equivalent to bidding $\min(b^a_1(\cdot))$ - in this case bidder 1 never wins - while bidding above $\max(b^a_1(\cdot))$ is equivalent to bidding $\max(b^a_1(\cdot))$ - in this case bidder 1 always wins. Since the bidding functions are continuous, we can define σ_1 and $\sigma_2(y_1, ..., y_{k_1})$ such that $b^a_1(\sigma_1) = \beta_1$ and $b^a_2(\sigma_2(y_1, ..., y_{k_1}), y_1, ..., y_{k_1}) = \beta_2(y_1, ..., y_{k_1})$; that is, we can think that bidder 1 uses the same bidding functions as all other bidders, but in the first round he bids as if he had observed signal σ_1, and in the second round as if he had observed signal $\sigma_2(\cdot)$.

Define

$$v_2(x; y_1, ..., y_{k_1}; y_k) = E \left[V_1 | X_1 = x, Y^1 = y_1, Y^2 = y_2, ..., Y^{k_1} = y_{k_1}, Y^k = y_k \right], \quad (7)$$
and note from (5) that
\[b^*_2(x; y_1, \ldots, y_{k_1}) = v_2(x; y_1, \ldots, y_{k_1}; x). \]

(8)

Suppose that bidder 1 does not win an object in the first-round. Then, using (8), if he bids as if his signal were \(\sigma_2 \) in the second round, his expected profit conditional on \(X_1 = x \) and \(Y^1 = y_1, \ldots, Y^{k_1} = y_{k_1} \) is
\[
\pi^*_2(x; y_1, \ldots, y_{k_1}; \sigma_2) = \int_x^{\sigma_2} \left(v_2(x; y_1, \ldots, y_{k_1}; y_k) - b^*_2(y_k; y_1, \ldots, y_{k_1}) \right) h(y_k|x; y_1, \ldots, y_{k_1}) dy_k \tag{9}
\]
\[
= \int_x^{\sigma_2} \left(v_2(x; y_1, \ldots, y_{k_1}; y_k) - v_2(y_k; y_1, \ldots, y_{k_1}; y_k) \right) h(y_k|x; y_1, \ldots, y_{k_1}) dy_k,
\]
where \(h(y_k|x; y_1, \ldots, y_{k_1}) \) is the density of \(Y^k \) conditional on \(X_1 = x \), \(Y^1 = y_1, \ldots, Y^{k_1} = y_{k_1} \).

Affiliation and Assumption 1 imply that \(v_2(x; y_1, \ldots, y_{k_1}; y_k) \) is increasing in \(x \), so the difference \(v_2(x; y_1, \ldots, y_{k_1}; y_k) - v_2(y_k; y_1, \ldots, y_{k_1}; y_k) \) has the same sign as \(x - y_k \). Hence bidder 1’s expected second-round profit is maximized by setting \(\sigma_2 = x \), and bidder 1’s optimal bid in the second round is \(b^*_2(x; y_1, \ldots, y_{k_1}) \). This establishes that, no matter what he bid in the first round, it is optimal for bidder 1 to bid according to the equilibrium bidding function \(b^*_2(\cdot) \) in the second round.

Next, we show that it is also optimal to bid according to \(b^*_1(\cdot) \) in the first round. We need some additional notation; let
\[
v_1(x; y_{k_1}; y_k) = E \left[v_1 | X_1 = x, Y^{k_1} = y_{k_1}, Y^k = y_k \right] \tag{10}
\]
\[
= E \left[v_2(x; Y^1, \ldots, Y^{k_1-1}, y_{k_1}; y_k) | X_1 = x, Y^{k_1} = y_{k_1}, Y^k = y_k \right],
\]
\[
b^*_1(y_k; y_{k_1} | x) = E \left[b^*_2(y_k; Y^1, \ldots, Y^{k_1-1}, y_{k_1}) | X_1 = x, Y^{k_1} = y_{k_1}, Y^k = y_k \right], \tag{11}
\]
where the second equality in (10) follows because, by (7), it is
\[
E \left[v_2(x; Y^1, \ldots, Y^{k_1-1}, y_{k_1}; y_k) | X_1 = x, Y^{k_1} = y_{k_1}, Y^k = y_k \right] =
E \left[E \left[v_1 | X_1 = x, Y^1, \ldots, Y^{k_1-1}, Y^{k_1} = y_{k_1}, Y^k = y_k \right] | X_1 = x, Y^{k_1} = y_{k_1}, Y^k = y_k \right].
\]
Bidder 1’s total expected profit at the beginning of the first round can be decomposed into two parts: the expected profit from the first round and the expected profit from the second round. Using (9), (10), (11), and recalling that in the first round bidder 1 bids as if his signal were \(\sigma_1 \) and in the second round he bids according to his true signal \(x \), the expected profit from the second round can be written as

\[
\int_{\sigma_1} \cdots \int_{\sigma_1} \frac{\pi_2}{\sigma} (x; y_1, \ldots, y_{k_1}; x) h(y_1, \ldots, y_{k_1} | x) dy_{k_1} \cdots dy_1
\]

\[
= \int_{\sigma_1} \cdots \int_{\sigma_1} \int_x \left(v_2(x; y_1, \ldots, y_{k_1}; y_k) - b_2^2(y_k; y_1, \ldots, y_{k_1}) \right) h(y_k | x; y_1, \ldots, y_{k_1}) h(y_1, \ldots, y_{k_1} | x) dy_k dy_{k_1} \cdots dy_1
\]

\[
= \int_x \int_{\sigma_1} \cdots \int_{\sigma_1} \left(v_2(x; y_1, \ldots, y_{k_1}; y_k) - b_2^2(y_k; y_1, \ldots, y_{k_1}) \right) h(y_1, \ldots, y_{k_1-1} | x; y_k, y_{k_1}) h(y_k, y_{k_1} | x) dy_k dy_{k_1} \cdots dy_1
\]

\[
= \int_{\sigma_1} \int_x \left(v_1(x; y_{k_1}; y_k) - b_2^2(y_k; y_{k_1} | x) \right) h(y_{k_1}, y_k | x) dy_k dy_{k_1},
\]

where \(h(y_1, \ldots, y_{k_1} | x) \) is the joint density of \(Y^1, \ldots, Y^{k_1} \) conditional on \(X_1 = x \); \(h(y_1, \ldots, y_{k_1}, y_k | x) \) is the joint density of \(Y^1, \ldots, Y^{k_1}, Y^k \) conditional on \(X_1 = x \); \(h(y_1, \ldots, y_{k_1-1} | x; y_k, y_{k_1}) \) is the joint density of \(Y^1, \ldots, Y^{k_1-1} \) conditional on \(X_1 = x \), \(Y^{k_1} = y_{k_1} \), and \(Y^k = y_k \); \(h(y_{k_1}, y_k | x) \) is the joint density of \(Y^{k_1} \) and \(Y^k \) conditional on \(X_1 = x \). Hence, bidder 1’s total expected profit at the beginning of the first round is

\[
\Pi^a(x; \sigma_1) = \int_{\sigma_1} \int_x \left(v_1(x; y_{k_1}; y_k) - b_1^a(y_{k_1}) \right) h(y_{k_1}, y_k | x) dy_k dy_{k_1}
\]

\[
+ \int_{\sigma_1} \int_x \left(v_1(x; y_{k_1}; y_k) - b_2^a(y_k; y_{k_1} | x) \right) h(y_{k_1}, y_k | x) dy_k dy_{k_1},
\]

where the first term is the profit from the first round. Differentiating \(\Pi^a(x; \sigma_1) \) with respect
To prove that \(\Pi^a(x; \sigma_1) \) is maximized at \(\sigma_1 = x \), we will show that \(\frac{\partial \Pi^a(x; \sigma_1)}{\partial \sigma_1} \) has the same sign as \((x - \sigma_1) \). The second term in (12) is zero for \(\sigma_1 < x \) (by definition, \(Y^{k_1} \geq Y^k \) and hence \(h(\sigma_1, y_k|x) = 0 \) for \(\sigma_1 < x \)), while for \(\sigma_1 > x \) it is negative because

\[
\int_x^{\sigma_1} \left(v_1(x; \sigma_1; y_k) - b_2^*(y_k; \sigma_1|x) \right) h(\sigma_1, y_k|x) dy_k
\]

\[
= \int_x^{\sigma_1} E \left[v_2 \left(x; Y^1, ..., Y^{k_1-1}, \sigma_1; y_k \right) \mid X_1 = x, Y^{k_1} = \sigma_1, Y^k = y_k \right] h(\sigma_1, y_k|x) dy_k
\]

\[
- \int_x^{\sigma_1} E \left[b_2^*(y_k; Y^1, ..., Y^{k_1-1}, \sigma_1) \right] \mid X_1 = x, Y^{k_1} = \sigma_1, Y^k = y_k \right] h(\sigma_1, y_k|x) dy_k
\]

\[
= \int_x^{\sigma_1} E \left[v_2 \left(x; Y^1, ..., Y^{k_1-1}, \sigma_1; y_k \right) \mid X_1 = x, Y^{k_1} = \sigma_1, Y^k = y_k \right] h(\sigma_1, y_k|x) dy_k
\]

\[
- \int_x^{\sigma_1} E \left[v_2 \left(y_k; Y^1, ..., Y^{k_1-1}, \sigma_1; y_k \right) \mid X_1 = x, Y^{k_1} = \sigma_1, Y^k = y_k \right] h(\sigma_1, y_k|x) dy_k \leq 0,
\]

where the first equality follows from (10) and (11), the second equality follows from (8), and the inequality follows from affiliation and \(y_k \geq x \).

By (11) and (6), the first term in (12) is equal to

\[
\int_x^{\sigma_1} E \left[b_2^*(y_k; Y^1, ..., Y^{k_1-1}, \sigma_1) \mid X_1 = x, Y^{k_1} = \sigma_1, Y^k = y_k \right] h(\sigma_1, y_k|x) dy_k
\]

\[
- b_1^*(\sigma_1) \int_x^{\sigma_1} h(\sigma_1, y_k|x) dy_k
\]

\[
= E \left[b_2^*(Y^k; Y^1, ..., Y^{k_1-1}, \sigma_1) \mid X_1 = x, Y^{k_1} = \sigma_1 \right] \int_x^{\sigma_1} h(\sigma_1, y_k|x) dy_k
\]

\[
- E \left[b_2^*(Y^k; Y^1, ..., Y^{k_1-1}, \sigma_1) \mid X_1 = \sigma_1, Y^{k_1} = \sigma_1 \right] \int_x^{\sigma_1} h(\sigma_1, y_k|x) dy_k.
\]
Because of affiliation, this difference has the same sign as \((x - \sigma_1)\). Hence \(\frac{\partial \Pi^a(x, \sigma_1)}{\partial \sigma_1}\) is positive for \(\sigma_1 < x\) and negative for \(\sigma_1 > x\). Therefore, the expected profit of bidder 1 is maximized at \(\sigma_1 = x\). This implies that bidder 1’s optimal bid in the first round is \(b_1^x(x)\) and concludes the proof.

There are two steps in the proof of Theorem 2. Assuming that all other bidders follow the bidding functions \(b_1^a(\cdot)\) and \(b_2^a(\cdot)\), first we show that, no matter what bidder 1 did in the first round, in the second round it is optimal for him to bid according to \(b_2^a(\cdot)\). Then we show that in the first round it is optimal to follow \(b_1^a(\cdot)\). This method of proof does not fully generalize to the case of no bid announcement. In this case, it is optimal for bidder 1 with signal \(x\) to bid according to \(b_2^a(x)\) in the second round if and only if he has bid according to \(b_1^a(x)\), or lower, in the first round. On the contrary, if bidder 1 has bid higher than \(b_1^a(x)\) in the first round and lost, he will want to bid higher than \(b_2^a(x)\) in the second round. This, in turn, makes it difficult to show that it is optimal to bid according to \(b_1^a(x)\) in the first round. As Milgrom and Weber (2000, p. 182) point out, the difficulty in proving equilibrium existence in this case is in ruling out that “a bidder might choose to bid a bit higher in the first round in order to have a better estimate of the winning bid, should he lose.” Our proof of Theorem 1 overcomes this difficulty by using the following lemma, proven in Appendix A.

Lemma 1. Let \(D(s)\) be a continuous function defined on \([0, S]\). Let \(a(s)\) be a non-decreasing positive function, defined on \([0, S]\). If \(\int_0^x D(s)a(s)ds \leq 0\) for all \(x \in [0, S]\), then \(\int_0^z D(s)ds \leq 0\) for all \(z \in [0, S]\).

Proof of Theorem 1. We begin as in the proof of Theorem 2, by assuming that all bidders other than bidder 1 use the bidding functions \(b_1^a(\cdot)\) and \(b_2^a(\cdot)\) given by (4) and (3). We want to show that it is also optimal for bidder 1 to use them. Suppose, to the contrary, that bidder 1 observes signal \(x\) and bids \(\beta_1\) in the first round and \(\beta_2\) in the second round. As in the proof of Theorem 2, we can define \(\sigma_1\) and \(\sigma_2\) such that \(b_1^a(\sigma_1) = \beta_1\) and \(b_2^a(\sigma_2) = \beta_2\).

We begin by showing that if bidder 1 bids less than or equal to \(b_1^x(x)\) in the first round (i.e., \(\sigma_1 \leq x\)), then his optimal bid in the second round is \(b_2^a(x)\) (i.e., \(\sigma_2 = x\) maximizes his expected second round profit).
If bidder 1 does not win an object in the first round, he knows that \(y_{k1} > \sigma_1 \). Then his expected second-round profit conditional on \(\sigma_1, \sigma_2 \), and \(X_1 = x \) can be written as

\[
\pi^n_2(x; \sigma_1, \sigma_2) = \int_{\sigma_1}^{x} \int_{\sigma_2}^{\infty} \left(v_1(x; y_{k1}; y_k) - b^*_2(y_k) \right) \frac{h(y_{k1}, y_k | x)}{\int_{\sigma_1}^{x} \int_{\sigma_2}^{\infty} h(\tilde{y}_{k1}, \tilde{y}_k | x) d\tilde{y}_k d\tilde{y}_{k1}}, \tag{13}
\]

where \(v_1(\cdot) \) is given by (10) and \(h(y_{k1}, y_k | x) \) is the joint density of \(Y^{k_1} \) and \(Y^k \) conditional on \(X_1 = x \).\(^2\) Differentiating \(\pi^n_2(x; \sigma_1, \sigma_2) \) with respect to \(\sigma_2 \), we obtain

\[
\frac{\partial \pi^n_2(x; \sigma_1, \sigma_2)}{\partial \sigma_2} = \int_{\sigma_1}^{x} \left(v_1(x; y_{k1}; \sigma_2) - b^*_2(\sigma_2) \right) \frac{h(y_{k1}, \sigma_2 | x)}{\int_{\sigma_1}^{x} \int_{\sigma_2}^{\infty} h(\tilde{y}_{k1}, \tilde{y}_k | x) d\tilde{y}_k d\tilde{y}_{k1}} d\sigma_2,
\]

which is equal to

\[
\left(E[V_1 | X_1 = x, Y^{k_1} \geq \sigma_1, Y^k = \sigma_2] - E[V_1 | X_1 = x, Y^k = \sigma_2] \right) \frac{\int_{\sigma_1}^{x} \int_{\sigma_2}^{\infty} h(\tilde{y}_{k1}, \sigma_2 | x) d\tilde{y}_k d\tilde{y}_{k1}}{\int_{\sigma_1}^{x} \int_{\sigma_2}^{\infty} h(\tilde{y}_{k1}, \tilde{y}_k | x) d\tilde{y}_k d\tilde{y}_{k1}}.
\]

We now show that, when \(\sigma_1 \leq x \), \(\frac{\partial \pi^n_2(x; \sigma_1, \sigma_2)}{\partial \sigma_2} \) has the same sign as \((x - \sigma_2) \).

First, consider \(\sigma_2 > x \). Then

\[
E[V_1 | X_1 = x, Y^{k_1} \geq \sigma_1, Y^k = \sigma_2] = E[V_1 | X_1 = x, Y^k = \sigma_2] \leq E[V_1 | X_1 = \sigma_2, Y^k = \sigma_2],
\]

where the equality follows from \(\sigma_2 > x \geq \sigma_1 \) and \(Y^{k_1} \geq Y^k \), and the inequality follows from affiliation and Assumption 1. We conclude that \(\frac{\partial \pi^n_2(x; \sigma_1, \sigma_2)}{\partial \sigma_2} \) is negative for \(\sigma_2 > x \).

Second, consider \(\sigma_2 < x \). Then, by affiliation and Assumption 1,

\[
E[V_1 | X_1 = x, Y^{k_1} \geq \sigma_1, Y^k = \sigma_2] \geq E[V_1 | X_1 = x, Y^k = \sigma_2] \geq E[V_1 | X_1 = \sigma_2, Y^k = \sigma_2],
\]

so \(\frac{\partial \pi^n_2(x; \sigma_1, \sigma_2)}{\partial \sigma_2} \) is positive in this case. Thus, if bidder 1 bids less than or equal to \(b^*_1(x) \) in the first round \((\sigma_1 \leq x) \), his optimal bid in the second round is \(b^*_2(x) \).

We complete the proof by showing that it is optimal for bidder 1 to bid \(b^*_1(x) \) in the first

\(^2\)Note that the second-round profit depends on \(\sigma_1 \), contrary to the case in which the winning bids are announced, see equation (9).
round (i.e., to bid as if $\sigma_1 = x$). Let $\sigma^*_2(\sigma_1)$ be the value of σ_2 that maximizes $\pi^*_2(x; \sigma_1, \sigma_2)$; we have already shown that $\sigma_2^*(\sigma_1) = x$ for $\sigma_1 \leq x$. Using (10), bidder 1’s total expected profit at the beginning of the first round is

$$\Pi^n(x; \sigma_1) = \int_{x}^{\sigma_1} \int_{x}^{y_k} \left(v_1(x; y_{k_1}; y_k) - b_1^n(y_{k_1}) \right) h(y_{k_1}, y_k|x) dy_{k_1} dy_k + \int_{\sigma_1}^{\sigma^*_2(\sigma_1)} \int_{x}^{y_k} \left(v_1(x; y_{k_1}; y_k) - b_2^n(y_k) \right) h(y_{k_1}, y_k|x) dy_{k_1} dy_k,$$

where the second term follows from (13). Differentiating with respect to σ_1 and applying the envelope theorem, we obtain

$$\frac{\partial \Pi^n(x; \sigma_1)}{\partial \sigma_1} = \int_{x}^{\sigma_1} \left(v_1(x; \sigma_1; y_k) - b_1^n(\sigma_1) \right) h(\sigma_1, y_k|x) dy_k$$

$$- \int_{x}^{\sigma_2^*(\sigma_1)} \left(v_1(x; \sigma_1; y_k) - b_2^n(y_k) \right) h(\sigma_1, y_k|x) dy_k$$

$$+ \int_{\sigma_1}^{\sigma_2^*(\sigma_1)} \left(b_2^n(y_k) - b_1^n(\sigma_1) \right) h(\sigma_1, y_k|x) dy_k$$

$$+ \int_{\sigma_2^*(\sigma_1)}^{\sigma_1} \left(v_1(x; \sigma_1; y_k) - b_2^n(y_k) \right) h(\sigma_1, y_k|x) dy_k. \tag{14}$$

The first term in equation (14), using (4), is

$$\left(\int_{x}^{\sigma_1} \left(b_2^n(y_k) - b_1^n(\sigma_1) \right) \frac{h(\sigma_1, y_k|x)}{h(\sigma_1, y_k|x) + y_k} dy_k \right) \int_{x}^{\sigma_1} h(\sigma_1, y_k|x) dy_k \right) \int_{x}^{\sigma_1} h(\sigma_1, y_k|x) dy_k$$

$$= \left(E[b_2^n(Y^k)|X_1 = x, Y^{k_1} = \sigma_1] - E[b_2^n(Y^k)|X_1 = \sigma_1, Y^{k_1} = \sigma_1] \right) \int_{x}^{\sigma_1} h(\sigma_1, y_k|x) dy_k.$$

By affiliation, this term has the same sign as $(x - \sigma_1)$.

We now show that the second term in (14) is non-negative for $\sigma_1 < x$ and non-positive for $\sigma_1 > x$. As a result, $\frac{\partial \Pi^n(x; \sigma_1)}{\sigma_1}$ has the same sign as $(x - \sigma_1)$, which implies that $\sigma_1 = x$ maximizes $\Pi^n(x; \sigma_1)$; that is, the optimal bid of bidder 1 in the first round is $b_1^n(x)$. This will conclude the proof. First, observe that if $\sigma_2^*(\sigma_1) \geq \sigma_1$ then the second term in (14) is zero, since, by definition, $h(\sigma_1, y_k|x) = 0$ for $y_k > \sigma_1$. Therefore, since $\sigma_2^*(\sigma_1) = x$ for $\sigma_1 \leq x$, the second term in (14) is zero for $\sigma_1 \leq x$.

15
It remains to show that in the case $\sigma_1 > x$ and $\sigma_2^*(\sigma_1) < \sigma_1$ the second term in (14) is non-positive.\(^3\) We will use Lemma 1. Define

$$D(y_k) = \left(\frac{\int_{\sigma_1}^x v_1(x; y_{k_1}; y_k) h(y_{k_1}, y_k|x) dy_{k_1}}{\int_{\sigma_1}^x h(y_{k_1}, y_k|x) dy_{k_1}} - b_2^n(y_k) \right) h(\sigma_1, y_k|x),$$

(15)

and note that, by affiliation, the second term in (14) is smaller than $\int_{\sigma_2^*(\sigma_1)}^{\sigma_1} D(y_k) dy_k$. Then a sufficient condition for the second term in (14) to be negative is

$$\int_{\sigma_2^*(\sigma_1)}^{\sigma_1} D(y_k) dy_k \leq 0.$$

(16)

Define

$$a(y_k) = \frac{\int_{\sigma_1}^x h(y_{k_1}, y_k|x) dy_{k_1}}{h(\sigma_1, y_k|x)}.$$

(17)

Since $\sigma_2^*(\sigma_1)$ maximizes $\pi_2^n(x; \sigma_1, \sigma_2)$, by (13) we have, for all σ_2,

$$\int_{\sigma_1}^x \int_{\sigma_2^*(\sigma_1)}^{\sigma_2} \left(v_1(x; y_{k_1}; y_k) - b_2^n(y_k) \right) h(y_{k_1}, y_k|x) dy_{k_1} dy_k \geq$$

$$\int_{\sigma_1}^x \int_{\sigma_2^*(\sigma_1)}^{\sigma_2} \left(v_1(x; y_{k_1}; y_k) - b_2^n(y_k) \right) h(y_{k_1}, y_k|x) dy_{k_1} dy_k.$$

Rearranging terms yields, for all σ_2,

$$\int_{\sigma_2^*(\sigma_1)}^{\sigma_2} \int_{\sigma_1}^x \left(v_1(x; y_{k_1}; y_k) - b_2^n(y_k) \right) h(y_{k_1}, y_k|x) dy_{k_1} dy_k \leq 0.$$

(18)

Using the definitions (15) and (17) of $D(y_k)$ and $a(y_k)$, expression (18) can be rewritten as

$$\int_{\sigma_2^*(\sigma_1)}^{\sigma_2} \left(\frac{\int_{\sigma_1}^x v_1(x; y_{k_1}; y_k) h(y_{k_1}, y_k|x) dy_{k_1}}{\int_{\sigma_1}^x h(y_{k_1}, y_k|x) dy_{k_1}} - b_2^n(y_k) \right) \left(\int_{\sigma_1}^x h(y_{k_1}, y_k|x) dy_{k_1} \right) dy_k$$

$$= \int_{\sigma_2^*(\sigma_1)}^{\sigma_2} D(y_k) a(y_k) dy_k \leq 0 \quad \text{for all } \sigma_2.$$

(19)

\(^3\)This is precisely where lies the difficulty mentioned by Milgrom and Weber (2000). We need to show that in the first round bidder 1 does not want to bid as if his signal were higher than x.

16
Note that \(a(y_k) \), given by (17), is positive and increasing (by affiliation). Then, by Lemma 1, equation (19) implies that \(\int_{\sigma_2^*(\sigma_1)}^z D(y_k)dy_k \leq 0 \) for all \(z \geq \sigma_2^*(\sigma_1) \); in particular, \(\int_{\sigma_2^*(\sigma_1)}^{\sigma_1} D(y_k)dy_k \leq 0 \), so (16) holds. Thus, the second term in (14) is negative, which concludes the proof.

REMARK. Theorem 2 and its proof readily generalize to the case of any finite number of rounds. Suppose that there are \(T \) rounds of bidding and \(k_t \) objects are sold in round \(t \). Let \(m_t = \sum_{t=1}^{T} k_t \). Then, in the last round the symmetric equilibrium bidding function of the sequential auction with winning-bids announcement is
\[
b^*_T(x; y_1, ..., y_{m_T}) = E \left[V_1 \mid X_1 = x, Y^1 = y_1, ..., Y^{m_T-1} = y_{m_T-1}, Y^{m_T} = x \right],
\]
while for \(t < T \) the bidding functions are
\[
b^*_t(x; y_1, ..., y_{m_{t-1}}) = E \left[b^*_{t+1} \left(Y^{m_t+1}; y_1, ..., y_{m_{t-1}}, Y^{m_t+1}, ..., Y^{m_t-1}, x \right) \mid X_1 = Y^{m_t} = x, Y^1 = y_1, ..., Y^{m_t-1} = y_{m_{t-1}} \right].
\]
In the case of no bid announcement, this extension presents a technical difficulty, as it is not clear how to generalize the proof of Theorem 1.

5 Properties of Sequential Auctions

This section establishes the properties and compares the equilibrium bidding strategies of the single-round and the sequential uniform auctions with and without winning-bids announcement. It is now convenient to take the point of view of the seller, or of an outside observer, and consider the order statistics of the signals of all \(n \) bidders. Denote with \(Z^m \) the \(m \)-th highest signal among all \(n \) bidders. It is important to observe that, because of the symmetry of signals, conditioning on the event \(\{ Z^{m+1} = x \} \) is equivalent to conditioning on the event \(\{ X_1 \geq x, Y^m = x \} \), or on the event \(\{ Y^m \geq X_1 = x \geq Y^{m+1} \} \). The event that the \((m+1)\)-st highest signal is \(x \) is equivalent to the event that one bidder, without loss of generality bidder 1, has a signal higher than or equal to \(x \), and the \(m \)-th highest signal among all other bidders’
signals is \(x \). It is also equivalent to the event that bidder 1 has signal \(x \) and the \(m \)-th highest signal among all other bidders is greater than \(x \), while the \((m+1)\)-st highest signal is smaller than \(x \).

We first look at the price sequences. Let \(P^a_t \) and \(P^n_t \) be the price in round \(t \) of a sequential auction with and without winning-bids announcement. The price in each round is a random variable: \(P^a_1 = b^a_1(Z^{k_1+1}) \), \(P^a_2 = b^a_2(Z^{k+1}; Z^1, \ldots, Z^{k_1}) \), \(P^n_1 = b^n_1(Z^{k_1+1}) \), and \(P^n_2 = b^n_2(Z^{k+1}) \).

With winning-bids announcement, conditional on knowing the realization \(p^a_1 \) of \(P^a_1 \), the expected price in the second round is higher than \(p^a_1 \); similarly, with no bid announcement, conditional on knowing the realization \(p^n_1 \) of \(P^n_1 \), the expected second-round price is higher than \(p^n_1 \). Prices drift upward. Milgrom and Weber (2000) were the first to report this result for their conjectured equilibrium with no bid announcement and one object sold in each round. Here we extend the result to the case of winning-bids announcement.

Theorem 3. In a sequential uniform auction with or without winning-bids announcement, the expected second-round price conditional on the realized first-round price is higher than the realized first-round price: \(E[P^a_2|p^a_1] \geq p^a_1 \) and \(E[P^n_2|p^n_1] \geq p^n_1 \).

Proof. Consider the case of winning-bids announcement. By Theorem 2, the realized price in the first round is given by \(p^a_1 = b^a_1(z_{k_1+1}) \), where \(z_{k_1+1} \) is the realized value of \(Z^{k_1+1} \), the \((k_1+1)\)-st highest out of \(n \) signals. Thus, conditioning on \(p^a_1 \) is the same as conditioning on \(Z^{k_1+1} = z_{k_1+1} \). The price in the second round is \(P^a_2 = b^a_2(Z^{k+1}; Z^1, \ldots, Z^{k_1}) \). Since conditioning on the event \(\{Z^{k_1+1} = z_{k_1+1}\} \) is equivalent to conditioning on the event \(\{Y^{k_1} \geq X_1 = z_{k_1+1} \geq Y^{k_1+1}\} \), the expected price in the second round conditional on \(p^a_1 \) is

\[
E[P^a_2|p^a_1] = E[b^a_2(Z^{k+1}; Z^1, \ldots, Z^{k_1})|Z^{k_1+1} = z_{k_1+1}]
= E[b^a_2(Y^k; Y^1, \ldots, Y^{k_1})|Y^{k_1} \geq X_1 = z_{k_1+1} \geq Y^{k_1+1}]
\geq E[b^a_2(Y^k; Y^1, \ldots, Y^{k_1-1}, z_{k_1+1})|Y^{k_1} = X_1 = z_{k_1+1}] = b^a_1(z_{k_1+1}) = p^a_1,
\]

where the inequality follows from affiliation.

\(^4\)The result easily extends to the case of multiple rounds.
The proof of the no bid announcement case is analogous. Letting \(p_1^n = b_1^n(z_{k_1+1}) \), we have

\[
E[P_2^n | p_1^n] = E[b_2^n(Z^{k_1+1}) | Z^{k_1+1} = z_{k_1+1}] = E[b_2^n(Y^k) | Y^k \geq X_1 = z_{k_1+1} \geq Y^{k_1+1}]
\geq E[b_2^n(Y^k) | Y^k_1 = X_1 = z_{k_1+1}] = b_1^n(z_{k_1+1}) = p_1^n.
\]

Theorem 3 has an important implication. The expected, unconditional, price (i.e., the price expected by the seller) in the second round is higher than the expected, unconditional, price in the first round. Therefore, in the single-round uniform auction the seller’s expected revenue is always higher than in the sequential uniform auction with no bid announcement.

Theorem 4. The seller’s expected revenue in a sequential uniform auction with no bid announcement is lower than in a single-round uniform auction for \(k \) objects.\(^5\)

Proof. The second round bidding function \(b_2^n(x) \), given by (3), is the same as the bidding function in a single-round auction \(b^n(x) \), given by (2). Therefore, the expected second-round price in the sequential auction is the same as the expected price in the single-round auction. By Theorem 3, the expected price in the first round of a sequential auction is lower than the expected price in the second round. Thus expected revenue in the sequential auction is lower. \(\square \)

The second-round bid function in a sequential auction with no bid announcement and the bid function in the single-round auction coincide. Thus, auctioning objects in sequence yields no gain in second-round revenue when the winning bids are not announced. Auctioning objects in sequence, however, has a cost to the seller, because it induces bidders to lowball in the first round. Let \(P^s = b^s(Z^{k+1}) \) be the price in a single-round auction for \(k \) objects, and define the *lowballing effect* on revenue, \(L \), as the difference between the expected price in the first round of a sequential auction with no bid announcement and the expected price in a single-round auction:

\[
L = E[P_1^n] - E[P^s].
\]

\(^5\)Surprisingly, even though they noticed that the price sequence is upward drifting, Milgrom and Weber (2000, p. 193) conjectured that the sequential auction with no bid announcement yields greater revenue than the single-round uniform auction.
By Theorem 3, L is negative. To better understand the lowballing effect, suppose z_{k_1+1} is the signal realization of the price setter in the first round of a sequential auction with no bid announcement. Equilibrium requires that, conditional on being tied with (i.e., having the same signal as) the first-round price setter, a bidder (say bidder 1) is indifferent between winning in the first or in the second round. Formally,

$$E \left[P_1^n | X_1 = Y^{k_1} = z_{k_1+1} \right] = b_1^n(z_{k_1+1})$$

$$= E \left[b_2^n(Y^{k_1}) | X_1 = Y^{k_1} = z_{k_1+1} \right]$$

$$= E \left[P_2^n | X_1 = Y^{k_1} = z_{k_1+1} \right].$$

However, since ties have zero probability, the first-round price setter pays a lower price than the average price he would pay if he won in the second round. Formally, since $P_1^n = b_1^n(Z_{k_1+1}),$

$$E \left[P_1^n | X_1 \geq Y^{k_1} = z_{k_1+1} \right] = E \left[P_1^n | X_1 = Y^{k_1} = z_{k_1+1} \right]$$

$$= E \left[P_2^n | X_1 = Y^{k_1} = z_{k_1+1} \right]$$

$$\leq E \left[P_2^n | X_1 \geq Y^{k_1} = z_{k_1+1} \right].$$

Affiliation is crucial for this result. With private values (e.g., a bidder’s value for one object coincides with his signal) and independent signals, the price sequence is a martingale and revenue in the single-round and the sequential uniform auctions coincide (see Milgrom and Weber, 2000, Weber, 1983). On the other hand, if values are private but affiliated, then the price sequence is increasing.

In the second round of a sequential auction with affiliated private values, a bidder bids his own value; that is, the second-round bid coincides with the bid in a single-round uniform auction, irrespective of whether the first-round winning bids are revealed. The first-round bidding functions also do not depend on the information policy. This has the important implication that with affiliated private values auctioning the objects in a single round yields the seller higher revenue independently of the information policy that he follows.
Theorem 5. With affiliated private values, the seller’s expected revenue in a sequential uniform auction with winning-bids announcement is the same as in a sequential uniform auction with no bid announcement and is lower than in a single-round uniform auction for \(k \) objects.

The next result shows that, in the general affiliated model, when the first-round winning bids are announced, there is a positive informational effect on second-round bids.

Theorem 6. In the sequential auction with winning-bids announcement the expected second-round price is higher than the expected price in a single-round auction for \(k \) objects.

Proof. Let \(z_{k+1} \) be the realization of the \((k+1)\)-st highest signal among all \(n \) bidders. Conditional on \(Z^{k+1} = z_{k+1} \), the expected price in a single-round uniform auction for \(k \) objects is

\[
E[P^s|Z^{k+1} = z_{k+1}] = b^s(z_{k+1}) = E[V_1|X_1 = Y^k = z_{k+1}].
\]

Conditioning on \(\{Z^{k+1} = z_{k+1}\} \) is equivalent to conditioning on \(\{X_1 \geq Y^k = z_{k+1}\} \). Thus, the expected price in the second round of the sequential auction with winning-bids announcement, conditional on \(Z^{k+1} = z_{k+1} \), is

\[
E[P^a_2|Z^{k+1} = z_{k+1}] = E[b^a_2(z_{k+1}; Y^1, ..., Y^k)|X_1 \geq Y^k = z_{k+1}]
\geq E[b^a_2(z_{k+1}; Y^1, ..., Y^k)|X_1 = Y^k = z_{k+1}]
= E[E[V_1|X_1 = Y^k = z_{k+1}, Y^1, ..., Y^k]|X_1 = Y^k = z_{k+1}]
= E[V_1|X_1 = Y^k = z_{k+1}] = E[P^s|Z^{k+1} = z_{k+1}],
\]

where the inequality follows from affiliation. Taking expectations over \(Z^{k+1} \) concludes the proof. □

Define the second-round informational effect on revenue, \(I_2^a \), as the difference between the expected prices in the second round of the sequential auctions with and without winning-bids announcement:

\[
I_2^a = E[P^a_2] - E[P^a_2] = E[P^a_2] - E[P^s].
\]
By Theorem 6, this informational effect is positive (it is zero in the affiliated private values model) and can be understood in light of the linkage principle first analyzed by Milgrom and Weber (1982): public revelation of a random variable affiliated with bidders’s signals raises expected bids and the seller’s expected revenue in a single-round auction. Here the revealed random variables are the winning bids in the first round (i.e., the k_1 highest signals among all bidders). Such a revelation raises the expected second-round price. A caveat is in order, however. The fact that the first-round winning bids will be revealed also has an effect on first-round bids. Define the first-round informational effect on revenue, I_1^a, as the difference between the expected prices in the first round of the sequential auction with and without winning-bids announcement

$$I_1^a = E[P_1^a] - E[P_1^n].$$

Then, the difference between the expected price in the first round of a sequential auction with winning-bids announcement and the expected price in a single-round auction can be viewed as the sum of the lowballing effect and the first-round informational effect

$$E[P_1^a] - E[P^s] = L + I_1^a.$$

The policy of revealing the winning bids has a complicated effect on first-round bidding. As demonstrated by the numerical example below, the first-round informational effect can be either positive or negative (by Theorem 5, $I_1^a = 0$ in the affiliated private values model). When it is positive, I_1^a could be greater or smaller than $-L$. As a result, all rankings of the expected first-round prices in the auctions with and without winning-bids announcement are possible.

First, the first-round expected price in a sequential auction with winning-bids announcement can be lower than the expected first-round price in a sequential auction with no bid announcement. Second, the first-round expected price can be higher than the expected price in a sequential auction with no bid announcement, but lower than the expected price in a single-round auction. In these cases, the revenue comparison between a single-round auc-
tion and a sequential auction with winning-bids announcement is ambiguous. Which of the two auction formats yields greater revenue depends on the model parameters. Finally, the expected first-round price in a sequential auction with winning-bids announcement can be higher than the expected price in a single-round auction. In this case, revenue is higher in the sequential auction.

These findings allow us to gain some insights on the comparison between other auction formats and the sequential uniform auction with winning-bids announcement. We know from Milgrom and Weber (1982, 2000) that the ascending (English) auction raises the highest revenue among standard single-round auctions. Note that the single-round ascending auction is equivalent to the single-round uniform auction when there are only three bidders for two objects. Thus, we can conclude that for some model parameters the sequential uniform-price auction with winning-bids announcement raises greater revenue than any standard single-round auction, while for other parameters the ascending auction yields higher revenue.6

An additional question, that we do not address in this paper, concerns the optimal seller’s choice of how many objects to auction in each round of a sequential auction with winning-bids announcement. A preliminary investigation indicates that there is no general answer: the optimal mix of \(k_1 \) and \(k_2 \) depends on the model parameters.

5.1 A Numerical Example

We now present the numerical example that shows that revenue and first-round price comparisons are ambiguous. The example is constructed to make the numerical calculations as simple as possible, not to be realistic. We assume that there are three bidders, two objects, each bidder has the same value for one object, and that each bidder’s signal is a conditionally independent estimate of this common value. This is a special case of our model in which \(n = 3, k_1 = k_2 = 1 \), \(u(V, X_1, X_2, X_3) = V \), and each \(X_i, i = 1, 2, 3 \), is independently drawn from a conditional density \(f(x|v) \). The common value has a discrete distribution: its value

6When it raises greater revenue than a single-round ascending auction, the sequential uniform auction with winning-bids announcement also raises greater revenue than a sequential ascending auction because, as shown by Milgrom and Weber (2000), the sequential and the single-round ascending auctions have the same symmetric equilibrium.
is either \(v_1 = 0 \) or \(v_2 = 0.5 \), with equal probability. The pdf \(f(x|v) \) is given by

\[
f(x|v) = \begin{cases}
1 + \alpha (x - v) & \text{if } x \in \left[v - \frac{1}{2}, v + \frac{1}{2}\right], \\
0 & \text{if } x \notin \left[v - \frac{1}{2}, v + \frac{1}{2}\right],
\end{cases}
\]

(20)

where \(\alpha \in [-2, 2] \).\(^7\)

Figure 1 plots the expected prices \(E[P_{1}^n] \), \(E[P_{2}^n] \), \(E[P_{1}^a] \), and \(E[P_{2}^a] \) as functions of \(\alpha \). (Appendix B contains the relevant formulas.) Recall that, by (2) and (3), \(E[P_{2}^n] \) is equal to \(E[P^s] \). The following conclusions can be drawn from the figure.

First, by Theorem 3, \(E[P_{1}^n] \) is always less than \(E[P_{2}^n] \), and \(E[P_{1}^a] \) is always less than \(E[P_{2}^a] \). Second, by Theorem 6, \(E[P_{2}^a] \) is always higher than \(E[P_{1}^n] \). Third, \(E[P_{1}^a] \) may

\(^7\)In such a case, the affiliation property can be written as \(f(x|v)f(x'|v') \geq f(x|v')f(x'|v) \) for all \(x, x', v, v' \) such that \(x \geq x' \) and \(v \geq v' \). The signal distribution (20) satisfies the affiliation property (1). Note that, although we have assumed that all random variables are continuous, all our results extend to the common-value model in which the common value \(V \) has a discrete distribution.
Figure 2: Revenues as functions of the parameter α.

Figure 2 plots expected auction revenues for the sequential auction with no bid announcement, $E[R^n]$, the sequential auction with winning-bids announcement, $E[R^a]$, and the single-round auction for two objects, $E[R^s]$. As we know from Theorem 4, the expected revenue of a sequential auction with no bid announcement is always lower than the expected revenue of a single-round auction. Figure 2 shows that the expected revenue of a sequential auction with winning-bids announcement may be smaller or greater than the expected revenue of a single-round auction, depending on whether α is smaller or greater than zero.\footnote{In our example, for all values of α, expected revenue in a sequential auction is higher with winning-bids announcement than with no bid announcement. In other words, even though I^a_1 may be negative, $I^a_1 + I^a_2$ turns out to be positive. We have obtained the same result in all other numerical examples we have tried, but we have not been able to provide a formal proof.}

be smaller or greater than $E[P^n_1]$, depending on whether α is smaller or greater than 0.25. Fourth, $E[P^n_1]$ may be smaller or greater than $E[P^n_2]$, depending on whether α is smaller or greater than 0.85.
5.2 Intermediate Information Policies

We now study the policy of revealing only the lowest first-round winning bid. Such a policy can be viewed as an approximation of the policy of announcing the winning price (the larger the number of bidders, the better the approximation). At the end of this subsection we will also discuss other intermediate information policies.

Let \(b^t_2(\cdot) \) be the bidding function in round \(t = 1, 2 \) of a sequential auction with lowest-winning-bid announcement. The proof of the following theorem is analogous to the proof of Theorem 2.

Theorem 7. Let \(y_{k_1} \) be the realization of the signal that correspond to the lowest first-round winning bid. A symmetric equilibrium strategy in the sequential uniform auction with lowest-winning-bid announcement is given by

\[
\begin{align*}
 b^t_2(x; y_{k_1}) &= E[V_1 | X_1 = x, Y^{k_1} = y_{k_1}, Y^k = x], \\
 b^t_1(x) &= E[b^t_2(Y^k; x) | X_1 = x, Y^{k_1} = x].
\end{align*}
\]

From the seller’s point of view, the policy of only announcing the lowest first-round winning bid is dominated by the policy of revealing all winning bids.

Theorem 8. In a sequential uniform auction with lowest-winning-bid announcement the expected prices in both rounds are lower than in a sequential uniform auction with winning-bids announcement.

Proof. Define the random variable \(P^t_i \) as the price in round \(t \) of a sequential auction with
lowest-winning-bid announcement. First, note that

\[
E[b_2^a(z_{k+1}; Y^1, \ldots, Y^{k_1-1}, z_{k_1})|Y^{k_1} = z_{k_1}, X_1 = Y^k = z_{k+1}] \\
= E[E[V_1|X_1 = Y^k = z_{k+1}, Y^1, \ldots, Y^{k_1-1}, Y^{k_1} = z_{k_1}]|Y^{k_1} = z_{k_1}, X_1 = Y^k = z_{k+1}] \\
= E[V_1|Y^{k_1} = z_{k_1}, X_1 = Y^k = z_{k+1}] = b_2^\ell(z_{k+1}; z_{k_1}).
\]

(21)

The expected second-round price of the sequential auction with winning-bids announcement, conditional on \(Z^{k_1} = z_{k_1}\) and \(Z^{k+1} = z_{k+1}\), with \(z_{k_1} \geq z_{k+1}\), is

\[
E[P_2^a|Z^{k_1} = z_{k_1}, Z^{k+1} = z_{k+1}] = E[P_2^a|Y^{k_1} = z_{k_1} \geq X_1 \geq Y^k = z_{k+1}] \\
= E[b_2^a(z_{k+1}; Y^1, \ldots, Y^{k_1-1}, z_{k_1})|Y^{k_1} = z_{k_1} \geq X_1 \geq Y^k = z_{k+1}] \\
\geq E[b_2^a(z_{k+1}; Y^1, \ldots, Y^{k_1-1}, z_{k_1})|Y^{k_1} = z_{k_1} \geq X_1 = Y^k = z_{k+1}] \\
= b_2^\ell(z_{k+1}; z_{k_1}) = E[P_2^\ell|Z^{k_1} = z_{k_1}, Z^{k+1} = z_{k+1}],
\]

where the inequality follows from affiliation and the first equality in the last line follows from (21). Taking expectations over \(Z^{k_1}\) and \(Z^{k+1}\) shows that the expected second-round price is higher when all first-round winning bids are announced than when only the lowest winning bid is announced.

The expected first-round price of the sequential auction with winning-bids announcement, conditional on \(Z^{k_1+1} = z_{k_1+1}\), is

\[
E[P_1^a|Z^{k_1+1} = z_{k_1+1}] = b_1^a(z_{k_1+1}) = E[b_2^a(Y^k; Y^1, \ldots, Y^{k_1-1}, z_{k_1+1})|X_1 = Y^{k_1} = z_{k_1+1}] \\
= E[E[b_2^a(Y^k; Y^1, \ldots, Y^{k_1-1}, z_{k_1+1})|X_1 = Y^{k_1} = z_{k_1+1}]|X_1 = Y^{k_1} = z_{k_1+1}] \\
\geq E[E[b_2^a(Y^k; Y^1, \ldots, Y^{k_1-1}, z_{k_1+1})|Y^{k_1} = z_{k_1+1}, X_1 = Y^k]|X_1 = Y^{k_1} = z_{k_1+1}] \\
= E[b_2^\ell(Y^k; z_{k_1+1})|X_1 = Y^{k_1} = z_{k_1+1}] \\
= b_1^\ell(z_{k_1+1}) = E[P_1^\ell|Z^{k_1+1} = z_{k_1+1}],
\]

where the inequality follows from affiliation and the equality in the second to last line follows.
from (21). Taking expectations over Z^{k_1+1} concludes the proof.

Theorems 7 and 8 can be generalized to other intermediate revelation policies that include revealing the lowest first-round winning bid. The proof of existence of a symmetric equilibrium is analogous to the proof of Theorem 2 and easily extends to multiple rounds.10 The proof that each of these policies yields a lower expected price in both rounds than the policy of revealing all winning bids is similar to the proof of Theorem 8.

6 Conclusions

We have derived the symmetric equilibrium bidding functions for the sequential uniform auction with and without winning-bids announcement, and we have isolated three effects on revenue of auctioning objects sequentially, rather than simultaneously: a lowballing effect and two informational effects. The lowballing effect reduces bids in the first round. When there are no bid announcements (or values are private), only the lowballing effect is at work and the first-round expected price and the seller’s revenue are lower than in a single-round auction. When the first-round winning bids are announced, the second-round informational effect raises the expected second-round price above the price in a single-round auction. On the other hand, the first-round informational effect has an ambiguous impact on first-round expected price. The first-round expected price with winning-bids announcement can range from being lower than with no bid announcement to being higher than the expected price in a single-round auction. As a result, the revenue comparison of a single-round uniform auction and a sequential auction with winning-bids announcement is also ambiguous; either could be higher.

10 Revealing the lowest winning bid in each round alleviates the difficulty mentioned by Milgrom and Weber (2000, p. 182) of proving that bidding higher, to have better information in subsequent rounds, is not profitable.
Appendix A

Proof of Lemma 1. First, we consider the case where $D(s)$ is a polynomial so that it has a finite number of zeros. After proving the lemma for that case, we generalize the result to any continuous function $D(s)$.

Fix $z, 0 < z \leq S$, set $s_0 = 0$, and let $s_1 < s_2 < \cdots < s_{M-1}$ be the zeros of $D(s)$ which are not local extrema and which are smaller than $s_M = z$. Note that $D(s_0) \leq 0$, since otherwise $\int_0^x D(s)a(s)ds > 0$ for small enough x. If M is even, let $2N = M$. By construction, $D(s) \leq 0$ for $s_{2i} \leq s \leq s_{2i+1}$ and $D(s) \geq 0$ for $s_{2i+1} \leq s \leq s_{2i+2}$, with $i = 0, 1, \ldots, N-1$. If M is odd, let $2N = M-1$ and observe that $D(s) \leq 0$ for $s_{M-1} < s \leq s_M$, so that $\int_0^x D(s)ds \leq \int_0^{s_{2N}} D(s)ds$.

We will prove that $\int_0^x D(s)ds \leq 0$ for all x implies that $\int_0^{s_{2N}} D(s)ds \leq 0$.

Since $a(s)$ is positive and non-decreasing, $\int_{s_{2i}}^{s_{2i+1}} D(s)a(s)ds \geq a(s_{2i+1}) \int_{s_{2i}}^{s_{2i+1}} D(s)ds$, and $\int_{s_{2i+1}}^{s_{2i+2}} D(s)a(s)ds \geq a(s_{2i+1}) \int_{s_{2i+1}}^{s_{2i+2}} D(s)ds$. Therefore, for $i = 0, 1, \ldots, N-1$,$$
a(s_{2i+1}) \int_{s_{2i}}^{s_{2i+2}} D(s)ds \leq \int_{s_{2i}}^{s_{2i+2}} D(s)a(s)ds,$$
and so

$$\int_0^{s_{2N}} D(s)ds = \sum_{i=0}^{N-1} \int_{s_{2i}}^{s_{2i+2}} D(s)ds \leq \sum_{i=0}^{N-1} \frac{1}{a(s_{2i+1})} \int_{s_{2i}}^{s_{2i+2}} D(s)a(s)ds.$$ We claim that:

$$\sum_{i=0}^{N-1} \frac{1}{a(s_{2i+1})} \int_{s_{2i}}^{s_{2i+2}} D(s)a(s)ds \leq \frac{1}{a(s_{2N-1})} \int_0^{s_{2N}} D(s)a(s)ds. \quad (22)$$

Note that (22) implies $\int_0^{s_{2N}} D(s)ds \leq \frac{1}{a(s_{2N-1})} \int_0^{s_{2N}} D(s)a(s)ds \leq 0$; that is, if (22) holds then the lemma, under the assumption that $D(s)$ is a polynomial, is proven. The proof of (22) proceeds by induction. Suppose that, for $0 < K < N - 1$,$$
\sum_{i=0}^{K-1} \frac{1}{a(s_{2i+1})} \int_{s_{2i}}^{s_{2i+2}} D(s)a(s)ds \leq \frac{1}{a(s_{2K-1})} \int_0^{s_{2K}} D(s)a(s)ds.$$
(Note that the inequality holds for $K = 1$.) Then

$$\sum_{i=0}^{K-1} \frac{1}{a(s_{2i+1})} \int_{s_{2i}}^{s_{2i+2}} D(s) a(s) ds + \frac{1}{a(s_{2K+1})} \int_{s_{2K}}^{s_{2K+2}} D(s) a(s) ds$$

$$\leq \frac{1}{a(s_{2K-1})} \int_{0}^{s_{2K}} D(s) a(s) ds + \frac{1}{a(s_{2K+1})} \int_{s_{2K}}^{s_{2K+2}} D(s) a(s) ds$$

$$\leq \frac{1}{a(s_{2K+1})} \int_{0}^{s_{2K}} D(s) a(s) ds + \frac{1}{a(s_{2K+1})} \int_{s_{2K}}^{s_{2K+2}} D(s) a(s) ds.$$

The first inequality follows from the induction assumption. The last inequality follows from $\int_{0}^{s_{2K}} D(s) a(s) ds \leq 0$ and $a(s)$ being positive and increasing, which hold by the lemma’s assumptions. This shows that (22) holds and completes the proof of the lemma when $D(s)$ is a polynomial.

Now suppose that $D(s)$ is any continuous function on $[0, S]$. By Weierstrass Approximation Theorem, for any $\varepsilon > 0$ there exists a polynomial P_m of degree m such that $|D(s) - P_m(s)| < \varepsilon$ for all s in $[0, S]$. Define the polynomial $D_m(s) = P_m(s) - \varepsilon$, so that $D_m(s) \leq D(s)$ for all s in $[0, S]$. Thus, if $a(s)$ is a positive function, then $\int_{0}^{x} D_m(s) a(s) ds \leq \int_{0}^{x} D(s) a(s) ds \leq 0$. Furthermore, there exists a sequence of polynomials D_m such that $\lim_{m \to \infty} \max_{s \in [0, S]} |D_m(s) - D(s)| = 0$, and hence, for any x, $\lim_{m \to \infty} \int_{0}^{x} D_m(s) ds = \int_{0}^{x} D(s) ds$.

We have already shown that the lemma holds for all polynomial functions D_m: for any x, $\int_{0}^{x} D_m(s) ds \leq 0$ for all m. As a result, $\int_{0}^{x} D(s) ds = \lim_{m \to \infty} \int_{0}^{x} D_m(s) ds \leq 0$, and the lemma holds for any continuous function $D(s)$. \[\square \]
Appendix B

This appendix presents the detailed derivation of the formulas used for drawing Figure 1 and Figure 2.

It is convenient to work with a slightly more general example than the one in Section 5.1. There are \(n \) bidders and two objects. The common value is either \(v_1 \) or \(v_2 \), with probabilities \(q_1 \) and \(q_2 = 1 - q_1 \), respectively. The signal distribution is

\[
f(x|v) = \begin{cases} \frac{2 + \alpha(2x - 2v - s_2 + s_1)}{2(s_1 + s_2)} & \text{if } x \in [v - s_1, v + s_2], \\ 0 & \text{if } x \notin [v - s_1, v + s_2], \end{cases}
\]

where \(\alpha \in \left[-\frac{2}{s_1+s_2}, \frac{2}{s_1+s_2}\right] \), and \(v_2 - s_1 \leq v_1 < v_2 \leq v_1 + s_2 \) (Figures 1 and 2 assume \(n = 3 \), \(q_1 = q_2 = s_1 = s_2 = 0.5 \)). Let \(\phi(s) = \frac{2 + \alpha(2s - s_2 + s_1)}{2(s_1 + s_2)} \), and \(\Phi(s) = \int_{-\infty}^s \phi(z)dz \).

The joint pdf of bidder 1’s signal \(x \), the highest \(y_1 \), and second-highest \(y_2 \) signals of bidders 2, 3, \ldots, \(n \), conditional on the common value \(v \), is given by

\[
h(x, y_1, y_2|v) = \begin{cases} (n-1)(n-2)f(x|v)f(y_1|v)f(y_2|v)\Phi^{n-3}(y_2|v) & \text{if } y_2 \leq y_1, \\ 0 & \text{if } y_2 > y_1. \end{cases} \tag{23}
\]

First, consider the no-bid-announcement case.

From (3), the second-round bidding function is

\[
b_{2}^{n}(x) = \frac{q_1 \int_{x}^{\infty} v_1 h(x, y_1, x|v_1)dy_1 + q_2 \int_{x}^{\infty} v_2 h(x, y_1, x|v_2)dy_1}{q_1 \int_{x}^{\infty} h(x, y_1, x|v_1)dy_1 + q_2 \int_{x}^{\infty} h(x, y_1, x|v_2)dy_1}
\]

\[
= \begin{cases} v_1 & \text{if } x < v_2 - s_1 \\ b_{21}^{n}(x) & \text{if } v_2 - s_1 \leq x \leq v_1 + s_2 \\ v_2 & \text{if } v_1 + s_2 < x, \end{cases}
\]

where

\[
b_{21}^{n}(x) = \frac{q_1 v_1 \phi^2(x - v_1)\Phi^{n-3}(x - v_1) (1 - \Phi(x - v_1)) + q_2 v_2 \phi^2(x - v_2)\Phi^{n-3}(x - v_2) (1 - \Phi(x - v_2))}{q_1 \phi^2(x - v_1)\Phi^{n-3}(x - v_1) (1 - \Phi(x - v_1)) + q_2 \phi^2(x - v_2)\Phi^{n-3}(x - v_2) (1 - \Phi(x - v_2))}.
\]

31
Let

\[f_3(x|v) = \frac{n(n-1)(n-2)}{2} \phi(x-v) \Phi^{n-3}(x-v)(1 - \Phi(x-v))^2. \]

Then the expected second-round price is

\[E[P_2^n] = E\left[b_2^n(Z^2)\right] = q_1 v_1 \int_{v_1-s_1}^{v_2-s_1} f_3(x|v_1)dx + q_1 \int_{v_1-s_1}^{v_1+s_2} b_{21}^n(x) f_3(x|v_1)dx \\
+ q_2 \int_{v_2-s_1}^{v_1+s_2} b_{21}^n(x) f_3(x|v_2)dx + q_2 v_2 \int_{v_1+s_2}^{v_2+s_2} f_3(x|v_2)dx. \]

Let

\[\phi_2(x, y_2|v) = (n - 2) \phi^2(x-v) \phi(y_2-v) \Phi^{n-3}(y_2-v). \]

By (4) using (23), the first-round bidding function is

\[b_1^n(x) = \frac{q_1 \int_x^{x_2} b_2^n(y_2) \phi(x, y_2|v_1)dy_2 + q_2 \int_x^{x_2} b_2^n(y_2) \phi(x, y_2|v_2)dy_2}{q_1 \int_x^{x_2} \phi(x, y_2|v_1)dy_2 + q_2 \int_x^{x_2} \phi(x, y_2|v_2)dy_2} \]

\[= \begin{cases}
 v_1 & \text{if } x < v_2 - s_1 \\
 b_1^n(x) & \text{if } v_2 - s_1 \leq x \leq v_1 + s_2 \\
 b_2^n(x) & \text{if } v_1 + s_2 < x,
\end{cases} \]

where

\[b_1^{n_1}(x) = \frac{q_1 v_1 \int_{v_1-s_1}^{v_2-s_1} \phi_2(x, y_2|v_1)dy_2 + q_1 \int_{v_1-s_1}^{x_2} b_2^{n_2}(y_2) \phi_2(x, y_2|v_1)dy_2 + q_2 \int_{v_1-s_1}^{x_2} b_2^{n_2}(y_2) \phi_2(x, y_2|v_2)dy_2}{q_1 \phi^2(x-v_1) \Phi^{n-2}(x-v_1) + q_2 \phi^2(x-v_2) \Phi^{n-2}(x-v_2)}, \]

\[b_1^{n_2}(x) = (n-2) \frac{q_1 \int_{v_1-s_1}^{v_1+s_2} b_2^{n_2}(y_2) \phi(y_2-v_2) \Phi^{n-3}(y_2-v_2)dy_2 + q_2 \int_{v_1+s_2}^{x_2} \phi(y_2-v_2) \Phi^{n-3}(y_2-v_2)dy_2}{\Phi^{n-2}(x-v_2)}, \]

Let

\[\phi_1(x|v) = n(n-1) \phi(x-v) \Phi^{n-2}(x-v)(1 - \Phi(x-v)). \]
Then the expected first-round price is

\[E[P^1] = E[b^n_1(Z^2)] = q_1 v_1 \int_{v_1-s_1}^{v_2-s_1} \phi_1(x|v_1) dx + q_1 \int_{v_2-s_1}^{v_1+s_2} b^n_{11}(x) \phi_1(x|v_1) dx + q_2 \int_{v_2-s_1}^{v_1+s_2} b^n_{12}(x) \phi_1(x|v_2) dx. \]

Now, consider the winning-bids-announcement case.

The second-round bidding function is

\[b^n_2(x; y_1) = \begin{cases}
q_1 v_1 h(x, y_1, x|v_1) + q_2 v_2 h(x, y_1, x|v_2) \\
q_1 h(x, y_1, x|v_1) + q_2 h(x, y_1, x|v_2)
\end{cases} \]

where

\[b^n_{21}(x, y_1) = \frac{q_1 v_1 \phi^2(x - v_1) \Phi^{n-3}(x - v_1) \phi(y_1 - v_1) + q_2 v_2 \phi^2(x - v_2) \Phi^{n-3}(x - v_2) \phi(y_1 - v_2)}{q_1 \phi^2(x - v_1) \Phi^{n-3}(x - v_1) \phi(y_1 - v_1) + q_2 \phi^2(x - v_2) \Phi^{n-3}(x - v_2) \phi(y_1 - v_2)}. \]

Let

\[\phi_3(x, y_1|v) = n(n - 1)(n - 2) \phi(x - v) \phi(y_1 - v) \Phi^{n-3}(x - v) [\Phi(y_1 - v) - \Phi(x - v)]. \]

Then the expected second-round price is

\[E[P^2] = E[b^n_2(Z^3, Z^1)] \]

\[= q_1 v_1 \int_{v_1-s_1}^{v_2-s_1} \int_x^{y_1} \phi_3(x, y_1|v_1) dy_1 dx + q_2 v_2 \int_{v_1+s_2}^{v_2+s_2} \int_{v_2-s_1}^{y_1} \phi_3(x, y_1|v_2) dx_1 dy_1 \]

\[+ q_1 \int_{v_2-s_1}^{v_1+s_2} \int_{v_1-s_1}^{y_1} b^n_{21}(x, y_1) \phi_3(x, y_1|v_1) dy_1 dx + q_2 \int_{v_2-s_1}^{v_1+s_2} \int_{v_2-s_1}^{y_1} b^n_{21}(x, y_1) \phi_3(x, y_1|v_2) dx_1 dy_1. \]
By (6), the first-round bidding function is
\[b_1^a(x) = \frac{q_1 \int_x^x b_2^a(y, x) h(x, x, y_2 | v_1) dy_2 + q_2 \int_x^x b_2^a(y, x) h(x, x, y_2 | v_2) dy_2}{q_1 \int_x^x h(x, x, y_2 | v_1) dy_2 + q_2 \int_x^x h(x, x, y_2 | v_2) dy_2} \]

\[= \begin{cases}
 v_1 & \text{if } x < v_2 - s_1 \\
 b_1^a(x) & \text{if } v_2 - s_1 \leq x \leq v_1 + s_2 \\
 v_2 & \text{if } v_1 + s_2 < x,
\end{cases} \]

where, using definition (24),
\[b_1^a(x) = \frac{q_1 v_1 \int_{v_1-s_1}^{v_2-s_1} \phi_2(x, y_2 | v_1) dy_2 + q_1 \int_{v_2-s_1}^x b_1^a(y, x) \phi_2(x, y_2 | v_1) dy_2 + q_2 \int_{v_2-s_1}^{v_2-s_1} b_1^a(y, x) \phi_2(x, y_2 | v_2) dy_2}{q_1 \phi^2(x - v_1) \Phi^{n-2}(x - v_1) + q_2 \phi^2(x - v_2) \Phi^{n-2}(x - v_2)}. \]

Using definition (25), the expected first-round price is
\[E[P_1^a] = E[b_1^a(Z^2)] = q_1 v_1 \int_{v_1-s_1}^{v_2-s_1} \phi_1(x | v_1) dx + q_1 \int_{v_2-s_1}^{v_1+s_2} b_1^a(x) \phi_1(x | v_1) dx \\
+ q_2 \int_{v_1+s_2}^{v_2+s_2} b_1^a(x) \phi_1(x | v_2) dx + q_2 v_2 \int_{v_1+s_2}^{v_2+s_2} \phi_1(x | v_2) dx. \]
References

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html

NOTE DI LAVORO PUBLISHED IN 2003

PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Elisiaso PAPYRakis and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. CAPARRÓS, J.-C. PEREAU and T. TAZDÁIT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003 Efrem CASTELNUOVO and Marzo GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 14.2003 Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories
KNOW 15.2003 Tuzin BAYCAN LEVENT, Ennio MASUREL and Peter NIKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community
KNOW 18.2003 Selma van LONDON and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World
PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies
PRIV 24.2003 Hannu VARTIAINEN (lx): Auction Design without Commitment
PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs
PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003 Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
Profit Sharing Regulation
to Change

Dilemmas

Portugal

Kyoto Target

Policy Architectures

International Environmental Agreements

Formation Game

Summary of Theoretical and Empirical Research

Environmental Agreements

Revealed Preferences to Estimate Environmental Benefits

Diffusion: The Case of Chlorine Manufacturing

Results for Germany

Disposal Methods

Effectiveness

Basin Region, Japan and US

Biotechnologies

the Role of Ownership Structure and Investor Protection

GG 36.2003
Matthieu GLANCHANT: Voluntary Agreements under Endogenous Legislative Threats

PRIV 37.2003
Narjess BOUBAKRI, Jean-Claude COSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

CLIM 38.2003
Rolf GOLOMBEK and Michael HOEI: Climate Policy under Technology Spillovers

KNOW 39.2003
Slin BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

CTN 40.2003
Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations

KNOW 41.2003

KNOW 42.2003
Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies

ETA 43.2003

CLIM 44.2003
Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness

PRIV 45.2003
Bernardo BORTOLOTTI and Paolo PUNOTTI: The Political Economy of Privatization

SIEV 46.2003
Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH: Burn or Buy? A Social Cost Comparison of Final Waste Disposal Methods

ETA 47.2003
Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

CLIM 48.2003
Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing

CLIM 49.2003
Lori SNYDER, Robert STAVINS and Alexander F. WAGNER: Private Options to Use Public Goods. Exploiting Revealed Preferences to Estimate Environmental Benefits

CTN 50.2003
László A. KÓCZY and Luc LAUWERS (lx): The Minimal Dominant Set is a Non-Empty Core-Extension

CTN 51.2003
Matthew O. JACKSON (lx): Allocation Rules for Network Games

CTN 52.2003
Ana MAULEN and Vincent VANNETELOBCH (lx): Farsightedness and Cautiousness in Coalition Formation

CTN 53.2003

CTN 54.2003
Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation

CTN 55.2003
Taigi FURUSAWA and Hideo KONISHI (lx): Free Trade Networks

CTN 56.2003
Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization

CTN 57.2003
Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements

KNOW 58.2003
Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

KNOW 59.2003
Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change

ETA 60.2003
Ronnie SCHOB: The Double Dividend Hypothesis of Environmental Taxes: A Survey

CLIM 61.2003
Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game

GG 62.2003
Michael FINUS and Bianca RUNDHAGEN: How the Rules of Coalition Formation Affect Stability of International Environmental Agreements

SIEV 63.2003
Alberto PETRUCCI: Taxing Land Rent in an Open Economy

CLIM 64.2003
Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures

SIEV 65.2003
Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

SIEV 66.2003
Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment

SIEV 67.2003

Klaus CONRAD

Edi DEFRANCESCO

SIEV 65.2003

CLIM 68.2003
ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target

KNOW 69.2003
David FRANTZ (lx): Lorenzo Market between Diversity and Mutation

KNOW 70.2003
Ercole SORI (lx): Mapping Diversity in Social History

KNOW 71.2003
Lilijana DERU SIMIC: What is Specific about Art/Cultural Projects?

KNOW 72.2003
Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

KNOW 73.2003
Kristine CRANE (lxii): The City as a Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

KNOW 74.2003
Kazuma MATOBA (lxii): Glocal Dialogue- Transformation through Transcultural Communication

KNOW 75.2003
Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

KNOW 76.2003
Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems

KNOW 77.2003
Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities

KNOW 78.2003
Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas

KNOW 79.2003
Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change

ETA 80.2003
Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.2003</td>
<td>Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets</td>
</tr>
<tr>
<td>82.2003</td>
<td>Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation</td>
</tr>
<tr>
<td>83.2003</td>
<td>Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?</td>
</tr>
<tr>
<td>84.2003</td>
<td>Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes</td>
</tr>
<tr>
<td>85.2003</td>
<td>Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence</td>
</tr>
<tr>
<td>86.2003</td>
<td>Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno</td>
</tr>
<tr>
<td>87.2003</td>
<td>Lucas BRETSCHGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments</td>
</tr>
<tr>
<td>89.2003</td>
<td>Marzio GALEOTTI: Economic Development and Environmental Protection</td>
</tr>
<tr>
<td>90.2003</td>
<td>Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?</td>
</tr>
<tr>
<td>91.2003</td>
<td>Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries</td>
</tr>
<tr>
<td>93.2003</td>
<td>Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium</td>
</tr>
<tr>
<td>94.2003</td>
<td>Parkash CHANDER: The n-Core and Coalition Formation</td>
</tr>
<tr>
<td>95.2003</td>
<td>Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components</td>
</tr>
<tr>
<td>96.2003</td>
<td>Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices</td>
</tr>
<tr>
<td>98.2003</td>
<td>John CROWLEY, Marie-Cecile NAVES: Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities</td>
</tr>
<tr>
<td>99.2003</td>
<td>Richard THOMPSON FORD: Cultural Rights and Civic Virtue</td>
</tr>
<tr>
<td>100.2003</td>
<td>Alaknanda PATEL: Cultural Diversity and Conflict in Multicultural Cities</td>
</tr>
<tr>
<td>101.2003</td>
<td>David MAY: The Struggle of Becoming Established in a Deprieved Inner-City Neighbourhood</td>
</tr>
<tr>
<td>102.2003</td>
<td>Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE: Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City</td>
</tr>
<tr>
<td>103.2003</td>
<td>Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime</td>
</tr>
<tr>
<td>104.2003</td>
<td>Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements</td>
</tr>
<tr>
<td>105.2003</td>
<td>Anil MARKANDYA and Dirk T.G. RÜBRELKE: Ancillary Benefits of Climate Policy</td>
</tr>
<tr>
<td>106.2003</td>
<td>Anne Sophie CRÉPIN: Management Challenges for Multiple-Species Boreal Forests</td>
</tr>
<tr>
<td>107.2003</td>
<td>Anne Sophie CRÉPIN: Threshold Effects in Coral Reef Fisheries</td>
</tr>
<tr>
<td>108.2003</td>
<td>Sara ANIYAR: Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example</td>
</tr>
<tr>
<td>110.2003</td>
<td>Anastasios XEPAPADEAS and Catarina ROSETA-PALMA: Instabilities and Robust Control in Fisheries</td>
</tr>
<tr>
<td>111.2003</td>
<td>Charles PERRINGS and Brian WALKER: Conservation and Optimal Use of Rangelands</td>
</tr>
<tr>
<td>113.2003</td>
<td>Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties</td>
</tr>
<tr>
<td>114.2003</td>
<td>Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching</td>
</tr>
<tr>
<td>115.2003</td>
<td>Hideo KONISHI and M. UiHk UNVER: Credible Group Stability in Multi-Partner Matching Problems</td>
</tr>
<tr>
<td>116.2003</td>
<td>Somdeh LAHRIF: Stable Matchings for the Room-Mates Problem</td>
</tr>
<tr>
<td>117.2003</td>
<td>Somdeh LAHRIF: Stable Matchings for a Generalized Marriage Problem</td>
</tr>
<tr>
<td>118.2003</td>
<td>Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty</td>
</tr>
<tr>
<td>119.2003</td>
<td>Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results</td>
</tr>
<tr>
<td>120.2003</td>
<td>Gianluigi VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation</td>
</tr>
<tr>
<td>121.2003</td>
<td>Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players</td>
</tr>
<tr>
<td>122.2003</td>
<td>Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players</td>
</tr>
<tr>
<td>123.2003</td>
<td>Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players</td>
</tr>
<tr>
<td>1000</td>
<td>Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers</td>
</tr>
</tbody>
</table>
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries
ETA 2.2004 Masahisa Fujita and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA 3.2004 Adolfo Di CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (Ixxv): Merger Mechanisms
PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market
PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets
PRA 11.2004 Bjarni BRENDSTRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA 12.2004 Ohad KADAN (Ixxv): Equilibrium in the Two Player, k-Doubling Auction with Affiliated Private Values
PRA 13.2004 Maarten C.W. JANSEN (Ixxv): Auctions as Coordination Devices
PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers
PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divide Good Auctions: An Experimental Examination
PRA 16.2004 Marta STRYSZOWSKA (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions
CCMP 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade
NRM 18.2004 Angelo ANTICI, Simone BORGHESI and Paolo RUSSU (Ixxv): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamos
SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice
NRM 21.2004 Jacqueline M. HAMILTON (Ixxv): Climate and the Destination Choice of German Tourists
NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxv): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya
NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (Ixxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach
NRM 27.2004 Raúl Hernández MARTÍN (Ixxvii): Impact of Tourism Consumption on GDP. The Role of Imports
NRM 29.2004 Marian WEBER (Ixxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest
NRM 30.2004 Trond BJORDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting
ETA 39.2004 Alberto CAVALLERI: Price Competition with Information Disparities in a Vertically Differentiated Duopoly
PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?
CCMP 41.2004 Micheal FINUS (Ixxix): International Cooperation to Resolve International Pollution Problems
KTHC 42.2004 Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
CTN 43.2004 Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
CTN 44.2004 Marc ESCRUÍEULA-FILLAR: Cartel Sustainability and Cartel Stability
NRM 45.2004 Sebastian BERVOETS and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
NRM 46.2004 Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
NRM 48.2004 Ekin BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
CCMP 49.2004 Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme, Allowance Prices, Trade Flows, Competitiveness Effects
GG 50.2004 Scott BARRETT and Michael HOEL: Optimal Disease Eradication
CTN 51.2004 Dinko DIMITROV, Peter BORM, Raud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
SIEV 52.2004 Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
NRM 54.2004 Ingo BRAUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renatured Streams
NRM 55.2004 Tino GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices
NRM 56.2004 Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
CCMP 57.2004 Katrin REHDAZTZ and David MADDISON: The Amenity Value of Climate to German Households
NRM 59.2004 Valentina BOSETTI, Mariaesther CASSINELLI and Alessandro LANZA (lxvi): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
NRM 60.2004 Tino GOESCHL and Danilo CAMARGO IGLIORI (lxvi)-Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
CCMP 61.2004 Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
NRM 63.2004 Györgyi BELA, György PATAKI, Melinda SMALE and Marians HAJDU (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
NRM 64.2004 E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
ETA 66.2004 Giannis YARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
GG 67.2004 Anastasios XEPAPADEAS and Constantin PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
GG 68.2004 Michael FINUS: Modesty Pays: Sometimes!
NRM 69.2004 Trond BJØRNDAL and Ana BRASÌO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
CTN 70.2004 Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAIT: On Coalition Formation with Heterogeneous Agents
IEM 71.2004 Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
IEM 72.2004 Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
CCMP 74.2004 Rob DELINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
ETA 75.2004 Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
CTN 77.2004 Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERA and Fernando VEGA-REONDONO (lx): Optimal Information Transmission in Organizations: Search and Congestion
CTN 78.2004 Francis BLOCH and Armando GOMES (lx): Contracting with Externalities and Outside Options
CTN 79.2004 Rabah AMIR, Effrosyni DIAMANTOUDI and Licun XUE (lx): Merger Performance under Uncertain Efficiency Gains
CTN 80.2004 Francis BLOCH and Matthew O. JACKSON (lx): The Formation of Networks with Transfers among Players
CTN 81.2004 Daniel DIEMERIE, Halya ERASLAN and Antonio MERLO (lx): Bicamerality and Government Formation
<table>
<thead>
<tr>
<th>Journal</th>
<th>Volume</th>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETA</td>
<td>124</td>
<td>2004</td>
<td>Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>125</td>
<td>2004</td>
<td>Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>126</td>
<td>2004</td>
<td>Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>127</td>
<td>2004</td>
<td>Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>128</td>
<td>2004</td>
<td>Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>129</td>
<td>2004</td>
<td>Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>130</td>
<td>2004</td>
<td>Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth</td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>133</td>
<td>2004</td>
<td>Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>134</td>
<td>2004</td>
<td>Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma</td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>135</td>
<td>2004</td>
<td>Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>136</td>
<td>2004</td>
<td>Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices</td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>137</td>
<td>2004</td>
<td>Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČÍK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>138</td>
<td>2004</td>
<td>ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China</td>
<td></td>
</tr>
<tr>
<td>CCMP</td>
<td>139</td>
<td>2004</td>
<td>Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy</td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>140</td>
<td>2004</td>
<td>Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>141</td>
<td>2004</td>
<td>Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incomplete Contracts</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>144</td>
<td>2004</td>
<td>Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics</td>
<td></td>
</tr>
<tr>
<td>PRA</td>
<td>146</td>
<td>2004</td>
<td>Claudio MEZZETTI, Aleksandar PEKEČ and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price Auctions</td>
<td></td>
</tr>
<tr>
<td>2003 SERIES</td>
<td>2004 SERIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIM</td>
<td>CCMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>GG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIEV</td>
<td>SIEV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRM</td>
<td>NRM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNOW</td>
<td>KNOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEM</td>
<td>IEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSRM</td>
<td>CSRM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate Social Responsibility and Management (Editor: Sabina Ratti)</td>
<td>Corporate Social Responsibility and Management (Editor: Sabina Ratti)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRIV</td>
<td>PRIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETA</td>
<td>ETA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTN</td>
<td>CTN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coalition Theory Network</td>
<td>Coalition Theory Network</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>