Ginsburgh, Victor; Legros, Patrick; Sahuguet, Nicolas

Working Paper
How to Win Twice at an Auction. On the Incidence of Commissions in Auction Markets

Nota di Lavoro, No. 146.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Ginsburgh, Victor; Legros, Patrick; Sahuguet, Nicolas (2004) : How to Win Twice at an Auction. On the Incidence of Commissions in Auction Markets, Nota di Lavoro, No. 146.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/118022
How to Win Twice at an Auction.
On the Incidence of Commissions in
Auction Markets
Victor Ginsburgh, Patrick Legros
and Nicolas Sahuguet
NOTA DI LAVORO 146.2004

DECEMBER 2004

PRA – Privatisation, Regulation, Antitrust

Victor Ginsburgh, ECARES, Université Libre de Bruxelles and CORE, Université catholique de Louvain
Patrick Legros, ECARES, Université Libre de Bruxelles and CEPR
Nicolas Sahuguet, ECARES, Université Libre de Bruxelles

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=624464

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
How to Win Twice at an Auction.
On the Incidence of Commissions in Auction Markets

Summary

We analyze the welfare consequences of an increase in the commissions charged by the organizer of an auction. Commissions are similar to taxes imposed on buyers and sellers and the economic problem that results looks similar to the question of tax incidence in consumer economics. We argue, however, that auction markets deserve a separate treatment. Indeed we show that an increase in commissions makes sellers worse off, but some (or all) buyers may gain. The results are therefore strikingly different from the standard result that all consumers lose after a tax or a commission increase. We apply our results to comment on the class action against Christie’s and Sotheby’s and argue that the method used to distribute compensations was misguided.

Keywords: Auction, Intermediation, Commissions, Welfare

JEL Classification: D44, D80

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by Fondazione Eni Enrico Mattei and Consip and sponsored by the EU, Rome, September 23-25, 2004.

Legros and Sahuguet benefited from the financial support of the European Commission for financial support (RTN “Competition Policy in International Markets” HPRNCT-2002-00224) and of the Communauté Française de Belgique ARC 00/05-252).

Address for correspondence:

Victor Ginsburgh
Université Libre de Bruxelles
Campus du Solbosch
Avenue Franklin D. Roosevelt 50 B-1050
Bruxelles
Belgium
Phone: 02 650 38 46
Fax: 02 650 40 12
E-mail: vginsbur@ulb.ac.be
1 Introduction

The development of new technologies led to the emergence of digital market places and auction portals targeted to consumers (such as e-Bay) or to industries and part-suppliers (most industry-exchange portals). In the non-digital world, auction houses such as Christie’s and Sotheby’s also serve as go-betweens. Since intermediaries make profits by charging commissions to buyers and sellers, it is important to analyze the welfare consequences of an increase in their commissions. The question is important for competition policy authorities evaluating the welfare losses resulting from an abuse of dominant position or a collusive agreement in the market for intermediation. The question is also important from a policy point of view since taxation of profits of intermediaries is likely to result in higher commissions charged to participants.

Since commissions are taxes imposed on sellers and buyers, the economic problem that results is similar to the question of tax incidence in consumer economics for which we know the answer: Taxes make consumers and sellers worse off since the tax decreases effective demand or effective supply; demand and supply elasticities affect the relative losses of buyers and sellers. There would be no need for a separate treatment of auction markets if the effects of larger commissions or taxes paralleled those in markets without intermediation. This may explain why tax incidence in markets with intermediaries has not received much attention in the literature.

We argue that auction markets deserve a separate treatment, and show that an increase in commissions makes sellers worse off, but some (or all) buyers may gain. Moreover, the

1 As was the case for Christie’s and Sotheby’s from 1993 to 2000.

2 In a different model, Baye and Morgan (2001) consider the access prices charged by a monopolist intermediary in a “standard” market with Bertrand competition. Each seller is a monopolist on his local market but may have to compete with the other seller on the intermediary market. Since sellers will be willing to pay positive access fees only if they expect not to face head-to-head competition with probability one, access fees make sellers indifferent between participating or not in the intermediary market. The welfare comparisons in their model are ambiguous. This is partly due to the existence of multiple equilibria. A key assumption in their model is the monopoly power of the sellers in their local market: Sellers would prefer that the intermediary market not to exist. We consider instead situations in which intermediation has value for the sellers.
expected welfare of participants in the market may be larger after the increase. The results are therefore strikingly different from the standard result that all consumers lose after a tax or a commission increase.

The difference in results from two specificities of auction markets. First, there is a basic externality in auctions that is absent in other markets. In an auction, buyers and sellers worry about the degree of competition; the willingness to pay of a buyer and the willingness to sell of a seller depend on the degree of competition. Second, the “good” that bidders want to purchase is risky since they face a lottery consisting of a probability of getting the object and the expected price of the object conditional on winning. When the degree of competition (that is the number of bidders) changes, this affects both the probability of winning and the expected price, often in opposite directions; this makes welfare comparisons based on price changes only rather suspect.

To assess the welfare effects on participants, it is necessary to take into account the joint variation of both variables. This also suggests that the welfare consequence of a change in commissions may be different when assessed ex-ante (before the winner is known) or ex-post (after he is known).

The model of intermediation in auctions that we use is standard. There is a large set of potential bidders and sellers. Sellers offer the same type of object and have the same valuation. Bidders are ex-ante symmetric but learn their valuation after having decided to participate, which they do when their expected utility is larger than a positive cost of participation.

There is a go-between who sets and announces commissions paid by buyers and sellers. We show first that the equilibrium payoffs depend on an “aggregate commission” that is a non linear function of the buyer and seller commissions. An increase in commissions refers to an increase in this aggregate.

Sellers adjust their reserve price as a function of the commission. A higher commission leads to an increase in reserve prices and therefore to a decrease in the expected utility of bidders. It follows that a higher commission induces a lower number of bidders par-
ticipating in the auction, as well as the possibility of a higher price paid by the winner. There is therefore the possibility that bidders will be worse off.

Our main results are the following.

- From an ex-ante perspective, as long as the cost of participation is the same for all agents, the ex-ante average welfare of bidders is the same in the high- and the low-commission auctions.

- Participants who are likely to win (effective bidders) must have a valuation larger than the reserve price of the seller. The average welfare of these effective bidders in the high-commission auction is strictly larger than the average welfare that they would have had in the low-commission auction.

- Among the winners of the high-commission auction, those paying a price strictly larger than the reserve price are strictly better off than if they had been winners in the low-commission auction. Winners paying the reserve price are weakly worse off.

- In the ex-post stage, the question of compensating winners in the high-commission auction is complicated by the fact that while we observe the price they pay, we do not observe the probability they had of winning the object. Following established practice in consumer economics for compensating consumers for price variations, we make the thought experiment of finding the monetary transfer that would make the winner indifferent between paying the current price or facing more competition but a lower commission (compensating variation). More competition would imply that he wins the object less often, but potentially at a lower price. For valuations that are uniformly distributed, we show that the winner would, on average, not be willing to pay to face more competition and a low commission, that is to be faced with a situation similar to the low-commission auction. Compensating winners in a high-commission auction would therefore make them win twice.

These results suggest that in auction markets, sellers are the main losers and that there can be reasons not to compensate buyers. While there may be a welfare loss, it
may essentially be due to bidders who are excluded, either at the ex-ante stage or at the interim stage, because their valuation was lower than the reserve price of the seller in the high-commission auction. These phantom participants may deserve compensation but they are obviously impossible to identify.

In the next section, we show that in an auction, potential buyers take into account an increase in their commission rate by shading their bid and are therefore not directly affected. This shading decreases the price, thus affecting the seller who can react by strategically increasing his reserve price. To the extent that the reserve price affects the outcome of the auction (by increasing the price or by a failure to sell), buyers can be indirectly hurt. Section 3 introduces a model of an auction house as an intermediary who charges commissions on both sellers and buyers. It takes into account all the decisions on buyers and sellers (participation decision, setting of the reserve price, bidding) as a function of the commissions rates. In Sections 4 and 5, we show that while the ex ante total welfare decreases that effective bidders and buyers may be better off with higher commissions.

2 A first look at the impact of commissions in auctions

As noted by Ashenfelter and Graddy (2003), the theory of private value auctions implies that buyers are indifferent to the level of the commission. Since ascending price auctions often used by salesrooms are strategically equivalent to second-price auctions, a bidder has a dominant strategy to bid his valuation. The price paid by the winner corresponds thus to the valuation of the second highest bidder. When the buyer’s commission is raised, buyers reduce their bids by the same amount, and this results in a reduction of the hammer price. For concreteness, suppose that the buyer’s commission c_B is raised from 0 to 20%. A buyer with a valuation of v would bid up to v in the first case and up to $(1 - c_B) v$ in the second one. Thus, the entire burden of the commission ends up being borne by the seller since buyers fully endogenize the commission in their bidding.
However, the seller is not totally passive. Economic theory has investigated how a seller can increase his expected revenue by setting strategically a reserve price under which he refuses to sell the object. Let us analyze how this changes our previous conclusion.

Suppose there is one seller with valuation v_s and n buyers with valuations v_i distributed on $[0, 1]$ according to a cumulative density function $F(\cdot)$. The commission rates are c_S and c_B for sellers and buyers, respectively. Hence if p is the hammer price, the buyer pays $p(1 + c_B)$, the seller receives $p(1 - c_S)$, and the intermediary (the auction house) collects $p(c_S + c_B)$. The following ratio, denoted by α, will play an important role:

$$\alpha = \frac{c_S + c_B}{1 + c_B}.$$

Note that α is increasing in c_S and c_B. It takes its smallest value when $c_S = c_B = 0$.

In the appendix 7, we show that the optimal reserve price for the seller is

$$r - \frac{1 - F(r)}{f(r)} = \frac{v_s}{1 - \alpha},$$

while the ex-ante surplus of a buyer in this auction is

$$B(n, c_S, c_B) = \int_r^1 \left(\int_r^v F(x)^{n-1} dx f(v) \right) dv.$$

The optimal reserve price of the seller increases with the commission rates (see (\^)), while the surplus of the buyers decreases with r (see (2)). If, after the increase in commissions, the winning bidder pays the reserve price, he may lose. However, if he pays more than the reserve price, he does not lose. It is therefore easy to tell whether buyers should or should not be compensated, but it is clear that not all of them should be.

So far we have only analyzed how commissions influence the bidding decision of buyers and sellers (a reserve price can be interpreted as a bid). But since the welfare of buyers and sellers may decrease with an increase in commissions, their decisions to participate in the auction market may also change, and this will change the simple welfare considerations made above. This is analyzed in the following three sections.
3 The auction house as an intermediary

3.1 The model

Consider the following two-sided market. On one side, there is a mass N of potential buyers, each with a participation cost t, with distribution $G(\cdot)$. Assume that each buyer wants to purchase one unit of the good, and can participate in one auction only. Participating buyers have valuations v, that are identically and independently distributed according to $F(\cdot)$. On the other side of the market, there is a mass M of potential sellers with valuation v_s and an ex-ante participation cost t, with distribution $H(\cdot)$.

There is a unique auction house which acts as an intermediary between buyers and sellers. It organizes auctions for the objects that sellers are willing to sell and sets commission rates (c_S, c_B), each a fixed proportion of the hammer price.

Buyers are distributed uniformly among auctions. Let n denote the ratio of participating buyers over participating sellers. This ratio represents the degree of competition among buyers in the market. If every buyer and seller participates in an auction, then $n = N/M$.

The auction format used is the second price (Vickrey) auction that is strategically equivalent to the English auction used by most salesrooms. Sellers decide on a reserve price r, and buyers make their bids.

3.2 Participation decisions

Since commissions decrease the revenue of sellers, these are likely to change their behavior and may decide not to participate or to participate but modify their optimal reserve price. This has a feedback effect on the surplus of buyers and hence on their own participation. Therefore, a change in commissions modifies the number of participants and therefore the ratio of buyers over sellers.

3We focus on second price auctions. Our results would not change if we used any other usual auction format, since the revenue equivalence principle can be applied in our framework.

4The fact that the reserve price is often secret, coincides with reality, but does not matter here.
Sellers’ participation

A potential seller takes $c = (c_S, c_B)$ as given, anticipates n and sets his reserve price r (which, given "$c" depends only on c) to maximize $\Pi(c, r, n) = (1 - c_s)p(c, r, n) + F^n(r)v_s$, where $p(c, r, n)$ is the expected hammer price in the auction, $F^n(r)$ represents the probability that the object goes unsold and, is kept by the seller who values it at v_s. He participates if $\Pi(c, r, n) - t \geq v_s$. The mass of participating sellers is $H(\Pi(c, r, n) - v_s) \cdot M$.

Buyers’ participation

A potential buyer takes $c = (c_S, c_B)$ as given, anticipates n and r. He participates if his cost of participating, t is smaller than his expected surplus $B(c, r, n)$. The mass of participating buyers is $G(B(c, r, n)) \cdot N$.

Equilibrium

Rational expectations require that n, the ratio of active buyers on active sellers solves:

$$n = \frac{G(B(c, r, n)) \cdot N}{H(\Pi(c, r, n) - v_s) \cdot M}.$$

4 Equilibrium

4.1 Solving the model

To solve for equilibrium, we need the expressions of the optimal reserve price r, the hammer price p, the surplus of sellers, $\Pi(\cdot)$ and of buyers, $B(\cdot)$.

Let $b_{(1)}$ and $b_{(2)}$ be the highest and second highest bids among the n bidders. With a reserve price r, the object is sold to the highest bidder only if $b_{(1)} \geq r$ at a hammer price equal to $\max \{r, b_{(2)}\}$. Let $F_{(1,n)}$ be the distribution of the first order statistic when there are n bidders and let $F_{(2,n)}(x|y)$ be the distribution of the second order statistic when the first order statistic is equal to y.
In this case, it is immediate to see that the dominant strategy of a bidder with valuation v is to bid $b = v/(1 + c_B)$. Hence, if there are n bidders, the i-th order bid is $b_{(i)} = v_{(i)}/(1 + c_B)$, where $v_{(i)}$ is the i-th order valuation among the n bidders.

The expected hammer price is then

$$p = \int_{r(1+c_B)}^{1} \int_{0}^{x} \max\{r, \frac{v}{1 + c_B}\} dF_{(2,n)}(v|x) dF_{(1,n)}(x)$$

$$= \int_{r(1+c_B)}^{1} \left(\int_{0}^{r(1+c_B)} rdF_{(2,n)}(v|x) + \int_{r(1+c_B)}^{x} \frac{v}{1 + c_B} dF_{(2,n)}(v|x) \right) dF_{(1,n)}(x)$$

Making the change of variable,

$$\rho \equiv r(1 + c_B),$$

we can write the hammer price as,

$$p = \frac{1}{1 + c_B} I(\rho, n),$$

where

$$I(\rho, n) \equiv \int_{\rho}^{1} \left(\int_{0}^{\rho} \rho dF_{(2,n)}(v|x) + \int_{\rho}^{x} \frac{v}{1 + c_B} dF_{(2,n)}(v|x) \right) dF_{(1,n)}(x).$$

The seller’s profit

The expected profit of the seller is now

$$\Pi = \frac{1 - c_S}{1 + c_B} I(\rho, n) + F^n(\rho) v_s$$

$$= (1 - \alpha) I(\rho, n) + F^n(\rho) v_s$$

and a strategic seller chooses ρ to maximize Π.\(^5\)

\(^5\)We assume that the seller chooses an optimal reserve price, but our qualitative results would still obtain if we simply assumed that ρ is increasing in α. That would be so if the seller sets $\rho = v_S/(1 - c_S)$ in order to guarantee a price net of commission larger than his valuation v_S.

9
The buyer’s surplus

Standard arguments imply that the marginal surplus of a buyer is the expected probability of winning. If the reserve price is \(r \) (a function of \(\alpha \)), all buyers with valuation \(v < \rho = r(1 + c_B) \) have a zero probability of winning. Hence, the expected surplus of a buyer with valuation \(v \) is

\[
B_v(v, c, r, n) = \int_{r(1+c_b)}^{v} F^{n-1}(x) \, dx = \int_{\rho}^{v} F^{n-1}(x) \, dx.
\]

Ex-ante, the surplus of a buyer is

\[
B(c, r, n) = \int_{r(1+c_b)}^{1} B_v(v, c, r, n)f(v) \, dv
= \int_{\rho}^{1} B_v(v, c, \rho/(1+c_B), n)f(v) \, dv. \tag{4}
\]

This surplus is clearly decreasing in \(n \) (for fixed \(\rho \)) and decreasing in \(\rho \) (for fixed \(n \)).

The auctioneer’s profit

The auction house sets the commission rates in order to maximize its profits. Its revenue in each auction is \((c_S + c_B)p(c, r, n) = (c_S + c_B)I(\rho, n)/(1+c_B) = \alpha I(\rho, n)\). Thus, its total profit equals \(R = \alpha I(\rho, n) H(\Pi(c, r, n) - v_s) \cdot M \). The trade-off is between the number of transactions and the revenue that commissions generate on each transaction.

4.2 A neutrality result

We now show that the outcome of the auction depends on the commissions only to the extent that these modify \(\alpha = (c_B + c_S)/(1+c_B) \). Any change in the commission structure that leaves \(\alpha \) unchanged, leaves unaffected the payoffs of sellers, buyers and salesroom. Indeed, by inspection of (3), we see that the seller’s profit and thus his choice of \(\rho \) depends only on \(\alpha \). His optimal reserve price is equal to \(r = \rho/(1 + c_B) \). The reserve price thus depends on the commission structure, but since buyers shade their bids by the same factor \((b = v/(1 + c_B))\), the marginal type of buyer who is excluded from the auction has a valuation \(v = \rho \), which depends on \(\alpha \) only.

"0
For buyers, (4) shows that the surplus is equal to
\[
\int_{\rho}^{1} \int_{\rho}^{v} F^{-1}(x)dx f(v)dv,
\]
and depends on \(\rho \), and thus on \(\alpha \) only. Since participation decisions depend directly on the surplus, the equilibrium ratio of buyers to sellers \(n \) also depends only on \(\alpha \).

It is then clear that the auctioneer’s profit depends on \(\alpha \) only, and that he faces a one variable optimization problem which we can write with some abuse of notation:\(^6\)
\[
\max_{\alpha \in [0,1]} R(\alpha) = \alpha p(n(\alpha)) H(\alpha p(n(\alpha))) \cdot M.
\]

Proposition 1 (Neutrality of the structure of commission rates).

All commission rates \((c_S, c_B)\) keeping \(\alpha = (c_S + c_B)/(1 + c_B) \) constant generate identical surpluses and profits for all agents in the model (buyers, sellers and auction house).

5 Welfare

The result of Proposition 4 allows us to restrict attention to an increase in the commissions from \(\alpha \) to \(\hat{\alpha} \). In traditional markets, the increase of a tax shifts the supply and demand curves, which results in a higher net price for buyers and a lower net price for sellers. The welfare consequences are simple: All buyers and sellers are worse off.

In our model, the welfare consequences are more difficult to evaluate. The increase in commission leads to higher reserve prices and a lower participation of buyers. The original auction market is characterized by a low commission \(\alpha \), low reserve prices \(\rho \) and a ratio of buyers to sellers equal to \(n \). In the new market, the commission to \(\hat{\alpha} > \alpha \), leads to higher reserve prices \(\hat{\rho} \) and to a new ratio \(\hat{n} \). The welfare considerations depend mainly on the ratio of buyers to sellers, which represents the competitiveness of the auction markets and has a direct influence on the welfare of buyers since it determines their probability of winning and the expected price if they win.

\(^6\)The bounds on \(\alpha \) follow the bounds on \(c_S \) and \(c_B \). Note that as \(c_B \geq 0, \alpha \leq 1 - c_S \); since \(c_S \geq 0, \alpha \leq 1 \).
5.1 Ex ante welfare

At the ex-ante stage, buyers and sellers are necessarily worse off.

Proposition 2

Suppose that $v_s > 0$ and that sellers set their reserve price strategically. If $\hat{\alpha} > \alpha$, then the ratio of buyers to sellers decreases ($n > \hat{n}$). Thus the ex-ante welfare of buyers and sellers decreases.

Proof Suppose by way of contradiction that $B(\hat{\alpha}, \hat{r}, \hat{n}) > B(\alpha, r, n)$. Since ρ increases when α increases, and since $B(\alpha, r, n)$ is decreasing in r and n, it must be that $\hat{n} < n$. But if the ex-ante surplus of buyers increases, the number of buyers who participate is also larger. To have $\hat{n} < n$, it is then necessary that more sellers participate as well, but this is not possible since the ex-ante profit of sellers decreases with α and n. So $B(\hat{\alpha}, \hat{r}, \hat{n}) \leq B(\alpha, r, n)$. □

Part of the ex-ante welfare loss is due to the lower participation of potential bidders. The elasticity of participation of buyers and sellers (due to the distribution of participation costs) is one of the important factors that explains the impact of an increase in commissions. If buyers’ participation is very elastic (for instance if all buyers have the same positive cost of participation), the buyer’s ex-ante surplus is left unchanged by the increase in commissions. The participation decision decreases competition in the market to the point that it compensates exactly the direct decrease in welfare due to higher commissions and reserve prices.

However, the welfare comparisons made in the practice are for the effective buyers and sellers; ex-ante welfare is not the right measure on which the compensation of effective buyers should be based since it includes the welfare of buyers who will never win in the new auction. In auction markets, the definition of an effective buyer is not as clear as in traditional markets. We can distinguish between effective bidders and effective buyers: the former are those whose bid is greater than the reserve price and who therefore have a chance – at the interim stage – to win the object; the later are the effective bidders...
who actually won the object, that is the observed winners. We consider first of effective bidders.\footnote{Our definition of effective bidders broadly corresponds to the observed bidders in an English (ascending) auction, used in most salesrooms.}

Proposition 3

When the participation decision of buyers is elastic, then effective bidders are ex-ante better off in the market with high commissions.

Proof When the participation decision is very elastic (identical cost of participation for every buyer), the ex-ante welfare does not change with commissions: We have $B(a, r, n) = t = B(\hat{\alpha}, \hat{r}, \hat{n})$. The effective bidders are those with a valuation larger than the reserve price $\hat{\rho}$. Their ex-ante welfare in the new auction is $\int_{\hat{\rho}}^{1} B_v(v, \hat{\alpha}, \hat{r}, \hat{n}) f(v) dv = \int_{\rho}^{1} B_v(v, \hat{\alpha}, \hat{r}, \hat{n}) f(v) dv$ since buyers with type in $[\rho, \hat{\rho}]$ have no chance to win the auction. But now we have that

$$\int_{\hat{\rho}}^{1} B_v(v, \hat{\alpha}, \hat{r}, \hat{n}) f(v) dv = \int_{\rho}^{1} B_v(v, \hat{\alpha}, \hat{r}, \hat{n}) f(v) dv$$

$$= \int_{\rho}^{1} B_v(v, \alpha, r, n) f(v) dv$$

$$> \int_{\rho}^{1} B_v(v, \alpha, r, n) f(v) dv.$$

The last inequality comes from the fact that in the original market, buyers with type in $[\rho, \hat{\rho}]$ have a positive expected surplus. As long as the participation is elastic, and thus that $B(\hat{\alpha}, \hat{r}, \hat{n})$ is not much smaller than $B(a, r, n)$, the previous argument would still hold.\(\Box\)

The change of average ex-post welfare of effective buyers and sellers is usually what economists have in mind when they analyze the effect of an increase in commissions in order to compensate losers from such an increase. If, ex ante, buyers are worse-off, it is not clear whether this will also be so ex post. Since sellers change their reserve prices and since higher reserve prices decrease ex-ante welfare of buyers and thus their participation,
ex-post, buyers face less competition. Buyers who actually win can end up paying less than they would have otherwise. Thus compensating the winning buyers might not be the best idea. We elaborate on this point in the next section.

We summarize this discussion in Figure 1, which shows the timing of the model and the various welfare definitions.

Table 1 summarizes the effects of increased commissions on the various welfare measures that we analyze.

<table>
<thead>
<tr>
<th>Sellers (ex ante)</th>
<th>Buyers (interim $v > \hat{\rho}$)</th>
<th>Effective bidders (interim $v > \hat{\rho}$)</th>
<th>Winners (ex post)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worse o!</td>
<td>Weakly worse o!</td>
<td>Better o! if participation not too elastic</td>
<td>Uniform: Better o! on average</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High types: Better o!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low types: Worse o!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Better o! if reserve price not binding</td>
</tr>
</tbody>
</table>

Figure 1: Welfare Considerations

"4
5.2 Ex-post welfare: Winning twice

The welfare of a participant in an auction is a function of the probability of winning and the expected price conditional on winning. To assess the welfare changes of participants, it is therefore necessary to take into account the joint variation of these two variables. This suggests that the welfare consequences of a change in commissions is different when assessed ex-ante (before the winner is known) and ex-post (after he is known).

The winner of an auction who has a valuation $v \geq \rho$ has on average a surplus of

$$W(v, c, r, n) = \int_{\rho}^{v} (v - \max(\rho, v(2))) \, dF_{(2, n)}(v(2) | v; n).$$

He pays the second highest bid if the second highest bid is larger than the reserve price, or pays the reserve price if there is no other larger bid. Indeed, if $v(2) \geq \rho$ the hammer price is $v(2)/(1 + c_{B})$; otherwise, the hammer price is r.

When $v \geq \rho$, we can rewrite $W(v, c, r, n)$ as

$$= \int_{0}^{\rho} (v - \rho) (n - 1) f(z) \frac{F(z)^{n-2}}{F(v)^{n-1}} dz + \int_{\rho}^{v} (v - z) (n - 1) f(z) \frac{F(z)^{n-2}}{F(v)^{n-1}} dz,$$

$$= (v - \rho) \left(\frac{F(\rho (1 + c_{B}))}{F(v)} \right)^{n-1} + \int_{\rho}^{v} (v - z) (n - 1) f(z) \frac{F(z)^{n-2}}{F(v)^{n-1}} dz,$$

$$= v - \rho \left(\frac{F(\rho)}{F(v)} \right)^{n-1} - \int_{\rho}^{v} (n - 1) z f(z) \frac{F(z)^{n-2}}{F(v)^{n-1}} dz.$$

Suppose that α increases to $\hat{\alpha}$, that is suppose that the reserve price increases from ρ to $\hat{\rho}$ and let n and \hat{n} be the corresponding equilibrium values of number of bidders per auction. We want to compare the expected surplus of winners when the commissions are $\hat{\alpha}$ to what they would have been with α. More competition implies that the winner wins the object less often, but potentially at a lower price.

The first dimension to look at is the price. Had he won in the other auction, a successful buyer would have paid a price determined in an environment with a lower reserve price but more competition. The second dimension is the probability of winning. By definition, an observed winner has a probability of winning equal to one in the auction under consideration. In the market with lower commissions, he would have faced more
competition. To make a meaningful comparison, we consider the following thought experiment. We fix the valuations of all the bidders present in the new auction, and add new bidders \((n - \hat{n}, \text{to be precise})\) drawing valuations for them. This decreases the probability of winning from 1 to \(F^{(n-\hat{n})}(v)\) for an observed winner with a valuation of \(v\).

For valuations that are uniformly distributed, we show that in fact the winner would, on average, not be willing to pay to face more competition and a low commission, that is to be faced with a situation similar to the low-commission auction. Compensating winners in a high-commission auction would therefore make them win twice.

5.3 The uniform distribution case

We first show that if type \(v\) wins in the \((\hat{\rho}, \hat{n})\) auction, then the expected surpluses \(W(v, \hat{\rho}, \hat{n})\) and \(W(v, \rho, n)\) satisfy a single crossing property. (All results not appearing in the text are in the Appendix)

\[W(v, \hat{\rho}, \hat{n}) - W(v, \rho, n) < 0\]

Proposition 4

Consider \(\hat{\rho} > \rho\) and \(\hat{n} < n\).

(i) For \(v \in (\rho, \hat{\rho}]\), \(W(v, \hat{\rho}, \hat{n}) - W(v, \rho, n) < 0\),

(ii) If \(n/\hat{n} \leq (1 - \rho^n)/(1 - \hat{\rho}^\hat{n})\), then \(W(v, \hat{\rho}, \hat{n}) - W(v, \rho, n) < 0\) for all \(v\),

(iii) If \(n/\hat{n} > (1 - \rho^n)/(1 - \hat{\rho}^\hat{n})\), then there is single crossing: There exists a unique \(v_0\) such that \(W(v_0, \hat{\rho}, \hat{n}) - W(v_0, n, \rho, n) = 0\) and \((v - v_0)(W(v, \hat{\rho}, \hat{n}) - W(v, \rho, n)) > 0\) for all \(v \neq v_0\).

Ex-post, we can divide buyers into two groups, the winners and the losers. Highest types are better off with higher commissions since they benefit from the reduced competition and rarely suffer from the increased reserve price while lowest types are worse off since there is a high probability that the reserve price is binding when they win.

We now consider an example which shows that, on average, winners are better off in
the auction with high commissions.

Example 1: An example in which buyers are better off

Assume that (a) all sellers have a valuation $v_s = \frac{1}{4}$, (b) sellers have no cost of participating, (c) buyers have valuations uniformly distributed on $[0, 1]$, (d) all buyers have the same participation cost $t = 0.025$, and (e) the commission ratio α goes from 0 to 50%.

The optimal reserve price is

$$r(\alpha) = \frac{1}{2} + \frac{1}{8(1 - \alpha)}$$

$$B_v(v, \alpha, r, n) = \int_r^v (x)^{n-1} dx = \frac{(v)^n - (r)^n}{n}.$$

Thus the ex-ante surplus B of a buyer who expects n buyers in each auction:

$$B(\alpha, r, n) = \int_r^1 B_v(\alpha, r, n, v) dv$$

$$= \int_r^1 \frac{(v)^n - (r)^n}{n} dv$$

$$= \frac{1}{n(n + 1)} - \frac{r^n}{n} + \frac{r^{n+1}}{n + 1}.$$

For $\alpha = 0$, $r(0) = 5/8$, and $B(0, 5/8, n) = \frac{(1 - (5/8)^n(1 + 3n/8))}{n(n + 1)}$, and for $\hat{\alpha} = 0.5$, $r(0.5) = 3/4$, and $B(0.5, 3/4, n) = \frac{(1 - (3/4)^n(1 + n/4))}{n(n + 1)}$.

In Figure 2, we represent the welfare locus for both levels of the commission rate (reserve prices). The upper (lower) curve is the one for the low (high) commission rate. The equilibrium ratio is determined when the ex-ante welfare curve crosses the (thick) straight line that represents the (constant) participation cost. The graph illustrates the fact that a constant participation cost leads to the highest possible decrease in the degree of competition.

8Since we want to make the case that successful buyers can be better off on average, we make the assumption that all buyers have the same participation cost. This makes buyers’ participation very elastic, and leads to the largest possible decrease in participation and the lowest possible degree of competition.

9We suppose for clarity if exposition that the commission is on sellers only. (this is without loss of generality, as a result of proposition n).

The increase from no commission to commissions of 50% is very large indeed. This extreme increase illustrates that even with such steep increase, successful buyers are better off! Of course, since the degree of competition decreases continuously with α, our results would obtain with a smaller increase in commission.
The equilibrium number of participants is obtained when $B(\cdot, \cdot)$ is equal to the participation cost $t = 0.025$. This leads to $n = 4.8631$ for $\alpha = 0$ and $\hat{n} = 2.2277$ for $\hat{\alpha} = 0.50$.

The increase in the commission rate leads has two main effects on the price paid. First, the second order bid decreases, since the increase in commission leads to a decrease in the degree of competition: $\hat{n} < n$; this will decrease the hammer price. Second, the reserve price increases, so that the price paid by the winner is more likely to be equal to the reserve price. Whether or not the (higher) reserve price is actually larger than the (lower) second order bid in the initial auction depends on how fast n decreases when r increases. The expected price paid by the winner of the auction if his valuation $v = 1$ is:

$$E(p|1) = rF(r^{n-1}) + \int_r^1 (n-1)xf(x)F(x)^{n-2}dx$$

$$= r^n + \frac{n-1}{n} (1 - r^n).$$

We can then compute the expected price paid by the highest type in both situations. These are: $p(\alpha = 0) = 0.7876$, and $p(\hat{\alpha} = 0.50) = 0.81528$. The expected price paid by the highest type is lower when commissions are high. He is better off with high

"8"
commissions. We now compute the expected price paid by a winner who has a valuation \(v \):

\[
E[p|v] = rF(r)^{n-1} + \int_r^1 (n-1)xF(x) \frac{F(x)^{n-2}}{F(v)^{n-1}} dx
= \frac{1}{v^{n-1}} \left(r^n + \frac{n-1}{n} (v^n - r^n) \right).
\]

Figure 3 displays the expected price of a winner of type \(v \) in both auctions. We see the single-crossing property at work. High types \((v < 0.93985) \) would pay a lower price in the auction with no commission. The downward effect on the price due to lower competition more than compensates the upwards pressure due to a higher reserve price. The effects are reversed for the low types.

![Figure 3: Expected price paid by the winner](image)

Comparing prices is only comparing markets along one dimension. The second dimension is the probability of winning. And on that dimension, observed winners have clearly benefited from the increase in commissions that has led to lower participation and lower competition. As suggested earlier, we make the thought experiment of finding the
monetary transfer that would make the winner indifferent between paying the current price or face more competition but a lower commission (compensating variation).

On average, the welfare of a successful winner of type \(v \) is:

\[
(v - E[p|v, \hat{n}]) = v - \frac{1}{v^{\hat{n}-1}} \frac{\hat{n} - 1}{\hat{n}} (v^\hat{n} - r^\hat{n}).
\]

We want to compare this to the welfare he would have had in the auction with low commissions, discounted with the probability that one of the additional bidders would have had a higher valuation, that is

\[
(v - E[p|v, n]) F^{n-\hat{n}} (v).
\]

Returning to our numerical example, we graph these two functions in Figure 4.

![Figure 4: Comparison of ex-post welfares](image)

We now have to average these values with the density of winners to recover a meaningful comparison between

\[
\hat{W} = \int_{\hat{p}}^1 (v - E[p|v, \hat{n}]) dF^{(1,n)} (v)
\]

20
\[
= \int_{\hat{r}}^{1} \left(v - \frac{1}{v^{n-1}} \hat{n} + \frac{n - 1}{\hat{n}} (v\hat{n} - r^n) \right) (nx^{n-1}) dv.
\]

and

\[
W = \int_{\hat{r}}^{1} (v - E[p|v, n]) F^{n-\hat{n}} (v) dF^{(1, n)} (v)
\]

\[
= \int_{\hat{r}}^{1} \left(v - \frac{1}{v^{n-1}} \left(r^n + \frac{n - 1}{n} (v^n - r^n) \right) \right) v^{n-\hat{n}} (n v^{n-1}) dv
\]

\[
= \frac{\hat{n} - nr^n - r^n - \hat{r}^{n+1} + \hat{r} r^n n + \hat{r} r^n}{n (n + 1)}.
\]

Numerical calculations yield \(\hat{W} = 0.0056 > W = 0.0052 \). The winners are better off in the high commission market and would be ready to pay not to be in a market with lower commissions.

5.4 Welfare and reserve prices

The previous analysis shows that observed winners may have gained when the intermediary increases its commission but that they may have lost if the reserve price binds. One way to simplify the welfare analysis is therefore to verify whether the reserve price set by the seller was binding. An increase in commissions leads to a higher price only if the price paid is equal to the reserve price, otherwise the decrease in the degree of competition \(n \) would have driven the price down. Successful buyers who did not pay more than the reserve price are better off in a regime of high commissions and low competition than in a regime of low commission and high competition.

6 Conclusion

The welfare analysis of taxes is well understood in traditional markets and leads to the simple conclusion that buyers and sellers are worse off. In this paper, we argue that a separate analysis is needed in auction markets with intermediaries. The welfare consequences of increased commissions is more ambiguous and effective buyers can be better
o! with higher commissions since the impact of commissions is compensated by lower participation and a lower degree of competition.

Our model is relevant to evaluate previous competition policy decisions. For instance, in 2001, Christie’s and Sotheby’s who had colluded between 1993 and 2000 to set (and increase their previous) commission rates were convicted to pay $52 million to compensate their clients for their welfare loss. Buyers received the largest share of this settlement. This was obviously based on poor understanding of how auctions work. With this decision, compensated bidders may have won twice, while sellers may not have been compensated as they should.
7 Appendix

7.1 Optimal Reserve Prices

The expected payment of a buyer with valuation $v \geq r$ can be written:

$$p(v, r) = r F^{n-1}(r) + \int_r^x y (n-1) f(y) F^{n-2}(y) \, dy.$$

The ex-ante expected payment of a bidder is:

$$E[p(x, r)] = \int_r^1 p(v, r) f(x) \, dx = \int_r^1 \left(r F^{n-1}(r) + \int_r^x y (n-1) f(y) F^{n-2}(y) \, dy \right) f(x) \, dx = r(1 - F(r)) F^{n-1}(r) + \int_r^1 y (1 - F(y)) (n-1) f(y) F^{n-2}(y) \, dy.$$

The expected revenue of the seller is thus $\Pi = (1 - \alpha) nE[p(x, r)] + F^n(r) v_s$. Differentiating with respect to r, we obtain:

$$\frac{\partial \Pi}{\partial r} = (1 - \alpha) n \left(1 - F(r) - r f(r) \right) F^{n-1}(r) + n F^{n-1}(r) f(r) v_s = (1 - \alpha) n \left(1 - \left(r - \frac{v_s}{1 - \alpha} \right) h(r) \right) (1 - F(r)) F^{n-1}(r),$$

where $h(x) = f(x)/(1 - F(x))$ is the hazard rate associated with distribution F.

Since $\partial \Pi/\partial r > 0$ at $r = v_s$, it is always optimal to choose a reserve price larger than the seller’s valuation.

The optimal reserve price has to satisfy $\partial \Pi/\partial r = 0$. This will be true if

$$1 - (r - \frac{v_s}{1 - \alpha}) h(r) = 0,$$

so that

$$r - \frac{1 - F(r)}{f(r)} = \frac{v_s}{1 - \alpha}.$$
7.2 Proof of Proposition 4

We have,

$$
\Delta (b) \equiv W(b; \hat{\rho}, \hat{n}) - W(b; \rho, n)
= \frac{b}{nn} \left[n \left(1 - \left(\frac{\hat{\rho}}{b} \right)^{\hat{n}} \right) - \hat{n} \left(1 - \left(\frac{\rho}{b} \right)^{n} \right) \right].
$$

Note that $\Delta (1) = \left[n \left(1 - \hat{\rho}^{\hat{n}} \right) - \hat{n} \left(1 - \rho^{n} \right) \right] / n\hat{n};$ this is negative only if $n/\hat{n} < (1 - \rho^{n})/(1 - \hat{\rho}^{\hat{n}}).

The sign of $\Delta (b)$ is equal to the sign of the term in brackets. The derivative of the term in brackets with respect to b is

$$
\frac{d}{db} \left(\hat{n} \left(\frac{\rho}{b} \right)^{n} - n \left(\frac{\hat{\rho}}{b} \right)^{\hat{n}} \right) = \frac{n\hat{n}}{b^{n+1}} \left(\hat{\rho}^{\hat{n}} b^{n} - \rho^{n} \right).
$$

Since $n - \hat{n} > 0,$ the expression is increasing in $b.$ As $b \leq \hat{\rho}, W(b; \hat{\rho}, \hat{n}) = 0 < W(b; \rho, n)$ and $\Delta (b) < 0,$ which proves (i). The issue is whether there exist values of b for which $\Delta (b) > 0.$

Suppose that there exists b_0 such that $\Delta (b_0) = 0;$ this requires that

$$
\frac{n}{\hat{n}} = \frac{1 - \left(\frac{\rho}{b_0} \right)^{n}}{1 - \left(\frac{\hat{\rho}}{b_0} \right)^{\hat{n}}}
\Leftrightarrow b_0^{n - \hat{n}} \hat{\rho}^{\hat{n}} - \rho^{n} = \frac{n - \hat{n}}{\hat{n}} b_0^{n} \left(1 - \left(\frac{\hat{\rho}}{b_0} \right)^{\hat{n}} \right)
\Rightarrow b_0^{n - \hat{n}} \hat{\rho}^{\hat{n}} - \rho^{n} > 0
$$

where the last implication follows $b_0 \geq \hat{\rho}.$ Hence, for $b > b_0,$ $\Delta (b) > 0$ and for $b < b_0,$ $\Delta (b) < 0.$ The existence of such a b_0 therefore requires that $\Delta (1) \geq 0,$ in which case we have the single crossing property (iii). When $\Delta (1) < 0,$ we must have $\Delta (b) < 0$ for all values of $b,$ which proves (ii).
8 References

<table>
<thead>
<tr>
<th>Issue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIV 2.2003</td>
<td>Ilona SCHINDELE</td>
<td>Theory of Privatization in Eastern Europe: Literature Review</td>
</tr>
<tr>
<td>PRIV 3.2003</td>
<td>Wietze LISE, Claudia KEMFERT and Richard S.J. TOL</td>
<td>Strategic Action in the Liberalised German Electricity Market</td>
</tr>
<tr>
<td>CLIM 4.2003</td>
<td>Laura MARSILIANI and Thomas I. RENSTRÖM</td>
<td>Environmental Policy and Capital Movements: The Role of Government Commitment</td>
</tr>
<tr>
<td>KNOW 5.2003</td>
<td>Reyer GERLAGH</td>
<td>Induced Technological Change under Technological Competition</td>
</tr>
<tr>
<td>ETA 6.2003</td>
<td>Efrem CASTELNUOVO</td>
<td>Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model</td>
</tr>
<tr>
<td>SIEV 7.2003</td>
<td>Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI</td>
<td>The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers</td>
</tr>
<tr>
<td>NRM 8.2003</td>
<td>Elissaios PAPYRAKIS and Reyer GERLAGH</td>
<td>Natural Resources: A Blessing or a Curse?</td>
</tr>
<tr>
<td>CLIM 9.2003</td>
<td>A. CAPARROS, J.-C. PEREAU and T. TAZDAÏT</td>
<td>North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information</td>
</tr>
<tr>
<td>KNOW 10.2003</td>
<td>Giorgio BRUNELLO and Daniele CHECCHI</td>
<td>School Quality and Family Background in Italy</td>
</tr>
<tr>
<td>CLIM 11.2003</td>
<td>Efrem CASTELNUOVO and Marzio GALEOTTI</td>
<td>Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis</td>
</tr>
<tr>
<td>KNOW 12.2003</td>
<td>Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI</td>
<td>Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art</td>
</tr>
<tr>
<td>KNOW 14.2003</td>
<td>Maddy JANSENS and Chris STEYAERT</td>
<td>Theories of Diversity within Organisation Studies: Debates and Future Trajectories</td>
</tr>
<tr>
<td>KNOW 15.2003</td>
<td>Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP</td>
<td>Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life</td>
</tr>
<tr>
<td>KNOW 16.2003</td>
<td>Alexandra BITUSIKOVA</td>
<td>Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia</td>
</tr>
<tr>
<td>KNOW 17.2003</td>
<td>Billy E. VAUGHN and Katarina MLEKOV</td>
<td>A Stage Model of Developing an Inclusive Community Network</td>
</tr>
<tr>
<td>KNOW 18.2003</td>
<td>Selma van LONDEN and Arie de RUIJTER</td>
<td>Managing Diversity in a Glocalizing World</td>
</tr>
<tr>
<td>PRIV 20.2003</td>
<td>Giacomo CALZOGLI and Alessandro PAVAN</td>
<td>Monopoly with Resale</td>
</tr>
<tr>
<td>PRIV 22.2003</td>
<td>Marco LiCalzi and Alessandro PAVAN</td>
<td>Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions</td>
</tr>
<tr>
<td>PRIV 23.2003</td>
<td>David ETTINGER</td>
<td>Bidding among Friends and Enemies</td>
</tr>
<tr>
<td>PRIV 24.2003</td>
<td>Hannu VARTIAINEN</td>
<td>Auction Design without Commitment</td>
</tr>
<tr>
<td>PRIV 26.2003</td>
<td>Christine A. PARLOUR and Uday RAJAN</td>
<td>Rationality in IPOs</td>
</tr>
<tr>
<td>PRIV 27.2003</td>
<td>Kjell G. NYBORG and Ilya A. STREBULAIEV</td>
<td>Multi Unit Auctions and Short Squeezes</td>
</tr>
<tr>
<td>PRIV 28.2003</td>
<td>Anders LUNANDER and Jan-Eric NILSSON</td>
<td>Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts</td>
</tr>
<tr>
<td>PRIV 29.2003</td>
<td>TungMkDANIEL and Karsten NEUHOFF</td>
<td>Use of Long-term Auctions for Network Investment</td>
</tr>
<tr>
<td>PRIV 30.2003</td>
<td>Emiel MAASLAND and Sander ONDERSTAL</td>
<td>Auctions with Financial Externalities</td>
</tr>
<tr>
<td>ETA 31.2003</td>
<td>Michael FINUS and Bianca RUNDHAGEN</td>
<td>A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games</td>
</tr>
<tr>
<td>KNOW 32.2003</td>
<td>Michele MORETTO</td>
<td>Competition and Irreversible Investments under Uncertainty</td>
</tr>
<tr>
<td>PRIV 33.2003</td>
<td>Philippe QUIRION</td>
<td>Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?</td>
</tr>
<tr>
<td>KNOW 34.2003</td>
<td>Giuseppe MEDA, Claudio PIGA and Donald SIEGEL</td>
<td>On the Relationship between R&D and Productivity: A Treatment Effect Analysis</td>
</tr>
<tr>
<td>ETA 35.2003</td>
<td>Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA</td>
<td>Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation</td>
</tr>
</tbody>
</table>
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats
PRIV 37.2003 Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection
CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW 39.2003 Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade
CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW 42.2003 Tino GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies
CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness
PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization
ETA 47.2003 Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany
CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing
CTN 50.2003 László A. KÖCZY and Luc LAUWERS: The Minimal Dominant Set is a Non-Empty Core-Extension
CTN 51.2003 Matthew O. JACKSON (lx): Allocation Rules for Network Games
CTN 52.2003 Ana MAULEON and Vincent VANNETELBOSCH (lx): Farsightedness and Cautiousness in Coalition Formation
CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation
CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lx): Free Trade Networks
CTN 56.2003 Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization
CTN 57.2003 Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements
KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research
KNOW 59.2003 Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change
ETA 60.2003 Ronnie SCHOB: The Double Dividend Hypothesis of Environmental Taxes: A Survey
CLIM 61.2003 Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game
SIEV 63.2003 Alberto PETRUCCHI: Taxing Land Rent in an Open Economy
CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures
SIEV 65.2003 Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy
SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment
CLIM 68.2003 Zhongxiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target
KNOW 69.2003 David FRANTZ (lx): Lorenzo Market between Diversity and Mutation
KNOW 70.2003 Ercole SORI (lx): Mapping Diversity in Social History
KNOW 71.2003 Liljana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?
KNOW 72.2003 Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case
KNOW 73.2003 Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration
KNOW 74.2003 Kazuma MATOBA (lxii): Glocal Dialogue- Transformation through Transcultural Communication
KNOW 75.2003 Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal
KNOW 76.2003 Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems
KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities
KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change
ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (Ixxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEG, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarni BRENDSTRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixxv): Equilibrium in the Two Player, k-Double Auction With Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSSEN (Ixxv): Auctions as Coordinating Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Marta STRYSZOWSKA (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF (Ixxv): R&D in Cleaner Technology and International Trade

NRM 18.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (Ixxvii): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (Ixxvii): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (Ixxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (Ixxvii): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 29.2004 Marian WEBER (Ixxvii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

NRM 30.2004 Tord BJÖRNDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxvii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Micheal FINUS (Ixxviii): International Cooperation to Resolve International Pollution Problems

KTHC 42.2004 Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
Marc ESCRIVUELA-FILLAR: Cartel Sustainability and Cartel Stability
Sebastian BERVOETS and Nicolas GRAVEL: An Axiomatic Approach
Signe ANTHON and Bo JELLESMARK THORSEN: Optimal Aforestation Contracts with Asymmetric Information on Private Environmental Benefits
Ekin BIROL, Ágnes GYOVAI and Melinda SMALE: Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme: Allowance Prices, Trade Flows, Competitiveness Effects
Francis BLOCH and Michael HOEL: Optimal Disease Eradication
Dinko DIMITROV, Peter BORM, Roald HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
Francis BLOCH and Armando GOMES
Àlex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-CTN 77.2004
Salvador BARBERÀ and Matthew O. JACKSON
ETA 75.2004
CCMP 74.2004
Rob DELLINK and Ekko van IERLAND
SIEV 73.2004
Margarita GENIUS and Elisabetta STRAZZERA
IEM 72.2004
Alessandro LANZA, Matteo MANERA and Michael MCALEER
Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA
IEM 71.2004
Alejandro CAPARRÓS, Abdelhakin HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents
Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
Margarita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
Salvador BARBERÀ and Matthew O. JACKSON (lxvii): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union
Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lxvii): Optimal Information Transmission in Organizations: Search and Congestion
Francis BLOCH and Armando GOMES (lxvii): Contracting with Externalities and Outside Options
Rabah AMIR, Effrosyni DIAMANToudi and Licun XUE (lxvii): Merger Performance under Uncertain Efficiency Gains
Francis BLOCH and Matthew O. JACKSON (lxvii): The Formation of Networks with Transfers among Players
Daniel DIERMEIER, Hulya ERASLAN and Antonio MERLO (lxvii): Bicameralism and Government Formation
Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited

Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach

Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic

Maria BERRITTELLA, Andrea BIGANO, Roberto ROSO and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism

Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy Savings

Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth

Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization

Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A Latent-Class Approach Based on Intensity of Participation

Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited

Ascensión ANDINA DÍAZ: Political Competition when Media Create Candidates’ Charisma

Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys

Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices

Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČIK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game

ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China

Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy

Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis

Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incomplete Contracts

Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory and Evidence from Timber Auctions

David GOLDRICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions

Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economics

Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUGUET (lxxi): How to Win Twice at an Auction. On the Incidence of Commissions in Auction Markets
<table>
<thead>
<tr>
<th>2003 SERIES</th>
<th>2004 SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>CCMP</td>
</tr>
<tr>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
<td>Climate Change Modelling and Policy (Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>GG</td>
</tr>
<tr>
<td>Global Governance (Editor: Carlo Carraro)</td>
<td>Global Governance (Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>SIEV</td>
</tr>
<tr>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
<td>Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>NRM</td>
</tr>
<tr>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
<td>Natural Resources Management (Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KNOW</td>
<td>KNOW</td>
</tr>
<tr>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
<td>Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>IEM</td>
</tr>
<tr>
<td>CSRM</td>
<td>CSRM</td>
</tr>
<tr>
<td>Corporate Social Responsibility and Management (Editor: Sabina Ratti)</td>
<td>Corporate Social Responsibility and Management (Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRIV</td>
<td>PRIV</td>
</tr>
<tr>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
<td>Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>ETA</td>
</tr>
<tr>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
<td>Economic Theory and Applications (Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>CTN</td>
</tr>
<tr>
<td>Coalition Theory Network</td>
<td>Coalition Theory Network</td>
</tr>
</tbody>
</table>
