Scarpa, Riccardo; Willis, Kenneth G.; Acutt, Melinda

Working Paper
Comparing Individual-Specific Benefit Estimates for Public Goods: Finite Versus Continuous Mixing in Logit Models

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 132.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

This Version is available at:
http://hdl.handle.net/10419/118007

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Comparing Individual-Specific Benefit Estimates for Public Goods: Finite Versus Continuous Mixing in Logit Models
Riccardo Scarpa, Kenneth G. Willis and Melinda Acutt

NOTA DI LAVORO 132.2004

NOVEMBER 2004
SIEV – Sustainability Indicators and Environmental Valuation

Riccardo Scarpa, Environment Department, University of York
Kenneth G. Willis, School of Architecture Landscape and Planning, University of Newcastle Upon Tyne
Melinda Acutt, Revenue and Economic Policy Unit, Yorkshire Water

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Comparing Individual-Specific Benefit Estimates for Public Goods: Finite Versus Continuous Mixing in Logit Models

Summary

Multi-attribute stated preference data, derived through choice experiments, is used to investigate the consequence of a finite number of preference groups in a sample of Yorkshire Water residential customers on the conditional distributions of willingness to pay in the sample. The research focuses on ‘public good’ values, and retrieves the implicit customer specific welfare measures conditional on a sequence of four observed choices. We assess and contrast the sample evidence for the presence of a finite number of 2, 3, 4 and 5 latent preference groups (classes), and contrast these with the presence of a continuous distribution of parameter estimates using mixed logit models. The main focus is the conditional valuations in the form of marginal values for the consequence of waste water handling and treatment, namely: river water quality, area flooding by sewage, presence of odour and flies, and other water related amenities.

Keywords: Choice experiments, Mixed logit, Latent classes, Individual-specific estimates, Non-market valuation

JEL Classification: C25, C42, H41

Address for correspondence:

Riccardo Scarpa
Environment Department
University of York
York YO10 5DD
UK
Phone: +44 01904 434 791
Fax +44 01904 432 998
E-mail: rs24@york.ac.uk
Introduction

As well as the provision of water as a private good for residential and business customers, water companies are responsible for management actions that affect the provision of public goods. This is well recognised and for this, as well as social policy reasons, the market operations of such companies are publicly regulated. Water customers pay a flat rate for water provision, either on property value or measured consumption. In the process of water provision the management of water companies has discretion on how to achieve targets of water delivery and waste water disposal to satisfy demand, subject to legal minimum standards. In doing so they also jointly provide certain levels of ‘public goods’, such as bathing water quality, water quality in rivers, risk of flood in case of piping malfunctions etc.

The supply of water delivery targets is compatible with a large variety of combinations of different levels of related public goods. Optimal supply level will depend on consumer preferences and willingness to pay for alternative levels of joint supply of the private/public good package. Such preferences cannot be derived from market transactions because customers cannot shop around for different levels of provisions of the public goods associated with water supply. An alternative way to investigate these preferences is via statements of choice.

Stated preference studies have recently established themselves as an important method to guide public good provision in joint production processes. In the recent periodic price review in the UK, which will set the water tariff for 2004-09, a leading UK water company, Yorkshire Water, employed this approach to guide their management decisions in accordance with the preferences of the customers they serve. In this chapter we present the results of a portion of a much larger study. In that study a series of choice experiments was administered to a representative sample of Yorkshire Water residential customers. We focus on two of these choice experiments that address issues of preferences for the quality of ‘public good’ aspects of waste water disposal and treatment.

The first choice-experiment illustrated here (WW1) deals with the way customers trade-off money with the percentage of area protected from sewage flooding (AF), the percent of river length capable of supporting healthy fisheries and other aquatic life in the long term (RQ), and the number of businesses/households exposed to bad odour and flies (OF). The second experiment reported in this chapter (WW2) looks at how customers trade-off money with the number of areas with waste water discharges designed to allow recreational activities on rivers (AM), and the standard of sewage works and disinfection designed to exceed government standards for bathing water (BB).

In this paper we depart from the conventional way of analyzing multinomial discrete choice responses via multinomial logit model and mixed logit models. The major focus of the analysis is an alternative characterization of preference heterogeneity via finite mixing (Provencher, et al. 2002) or latent class analysis (Boxall and Adamovicz, 2002). This approach, perhaps less elegant and flexible than the continuous mixing allowed by mixed logit, is shown to have some appeal on the basis of ease of interpretation of the utility
functions of each preference group, ease of computation, and interpretation of the results obtained. The main feature is that, instead of a continuous of taste intensities for each attribute of choice, it provides the preference structure for each of a small number – two to five – groups in the sample. The probability of membership to each group is endogenous, although the number of groups is exogenously imposed, albeit statistically tested for.

On the basis of such preference estimates, we exploit the panel nature of the dataset to retrieve the distribution of part-worths (marginal willingness-to-pay values) for the individual in the sample, conditional on the individual sequence of observed choices in the choice experiment. This also departs from customary approaches in which the willingness to pay estimates are normally expressed as measures of central tendency of an a-priori distribution, such as mean or median value estimates with their computed standard errors. Instead, we compare and contrast the conditional kernel-smoothed distributions of these values estimated for each individual for as series of finite mixing models and for the mixed logit with normally distributed utility parameters.

In both samples we find statistical evidence in favour of the existence of four distinct preference groups. We argue that in some cases an immediate interpretation of the differences between groups is possible. While most preference structures in the groups are consistent with theoretical expectations in terms of signs, groups representing small fractions of the sample tend to show low significance of parameter estimates. Finally, the graphical representation of the distributions, of individual estimates of willingness-to-pay values for the attributes, show that while the 2 and 3 group latent class models (LCM) portray bi-modal WTP distributions, the 4-group latent class specification implies WTP distributions very similar to those produced by the normally-distributed mixed logit.

The remainder of the paper is organised as follows. Section 2 first provides a background to the representation of taste heterogeneity in finite and continuous preference mixture logit models; and then briefly discusses the subject of heterogeneity in logit-based random utility modelling. Section 3 documents the data sources; whilst section 4 addresses the econometric issues. The results are presented and discussed in section 5, and section 6 draws some conclusions.

Heterogeneity in random utility-based multinomial logit models

Taste heterogeneity and mixed logit

The last decade has seen much attention paid to the development of alternative forms of modelling heterogeneity of preferences in discrete multinomial choice models based on random utility (Train 2003). It is a fact of life that preferences dictating decision rules vary across both individuals and choices made by the same individual. Taste heterogeneity, as captured by mixed logit models (or random parameter logit) is often quite instructive in this context, and it virtually allows the researcher to approximate any preference structure (McFadden and Train 2000). The notion that parameters of the utility function can vary according to continuous parametric distributions has greatly expanded the
number of modelling assumptions available to researchers. Even the few limitations originally imposed by the relative restrictive set of empirically tractable taste distributions has recently been overcome by more flexible forms that allow for censoring and bounding (Train and Sonnier 2003; Hensher and Greene 2003). The underlying hypothesis in this modelling approach is a continuity of preferences over some range of parameter values.

Variance heterogeneity and heteroskedastic logit

Even if preferences are fairly stable, decision contexts and respondent knowledge or cognitive ability may vary, thereby introducing sources of heterogeneity in observed choice. One example of this source is the effect of choice-complexity and respondent familiarity with the choice task on the scale parameter of the unobserved component of utility, as illustrated empirically by deShazo and Fermo (2002). However, for those more inclined to think in terms of heteroskedasticity as the presence of co-variates affecting the error variance, instead of the scale parameter one can make the error variance a function of co-variates (e.g. Scarpa, Ruto et al. 2003). Either approach models heterogeneity affecting the spread of the noise or unobserved component (error) of utility in logit models. These models are normally called heteroskedastic logit, not to be confused with the Heteroskedastic Extreme Value model originally proposed by Bhat (1995). In this category of models a different scale parameter is fitted to each alternative in the set. One interesting recent example of heteroskedastic logit in the context of meta-design is the paper by Caussade et al. 2003, in which factors affecting the design of the choice-experiments are shown to have a systematic effect on the variance of the error term, along with individual-specific covariates.

Observed and unobserved taste heterogeneity

From the researcher’s perspective we find it quite useful to think of heterogeneity as observed and unobserved. When some individual-specific variables that the researcher can observe can be linked to systematic differences in choice behaviour, for example by creating interaction terms between attributes or alternatives with such individual-specific variables, then preference heterogeneity across individuals can be captured (Pollack and Wales 1992).

On the other hand, when differences in taste for attributes are known to exist, but the available individual-specific variables cannot adequately capture this variability, then a generic form of heterogeneity of taste can be simply accommodated by mixed logit models, assuming that some attributes have taste parameters distributed according to some distributive law.

Of course, a single dataset can still display an amount of unobserved heterogeneity of taste, when unobserved heterogeneity is accounted for (Scarpa et al. 2001), and hybrid models accounting for individual specific effects on the unobserved component of taste heterogeneity can be estimated. For example, by making the mean of a normally distributed parameter
dependent upon some individual-specific variable [Nlogit v.3 allows for such a model, but the default application constrains standard deviations to be the same].

Continuous versus finite taste heterogeneity

Mixed logit models assume heterogeneity to be continuous over the interval spanned by the assumed distribution for the varying taste parameters. For example, if no theoretical reason exists to limit the domain of a parameter value, one can assume a normal distribution. In that case the range of parameter values spans the real line and the values of the estimated mean and variance will dictate the probability with which these values are found in each segment of the line. A correlation structure can also be estimated. For example, if more than one parameter is normally distributed and there are reasons to believe that they are not independent then the correlation structure can be estimated (Train, 1998). The structure of correlation can be informative for joint probability inference and segmentation of taste groups (Scarpa, Spalatro and Canavari 2003, Scarpa and Del Giudice 2004).

However, the computational cost of estimating mixed logit with continuous distributions is high, especially when parameters need to be bounded in their domain for theoretical reasons (Train and Sonnier 2003). Furthermore, some research questions are best answered through the identification of defined preference groups, with homogenous preferences within the group. For example, from the perspective of a water company that wishes to optimize its management plan according to the preferences of its customers, the identification of such preference groups can be informative in allocating services accordingly.

This poses the practical query of identifying the size, number and preference structure of these distinct preference groups. This approach is sometime referred to as finite mixing (Provencher et al. 2002) or latent class modelling (Swait 1994). Although the latent class finite / mixing approach is well established theoretically (Heckman and Singer 1984) and in the econometric application of count models (Cameron and Trivedi 1998, section 4.8), despite its relative merits it does not seem to be very popular in multinomial discrete choice models.

Recent applications include three travel cost revealed preference studies in recreational site choice (Provencher et al. 2002; Shonkwiler and Shaw 2003; Scarpa and Thiene 2004). Provencher et al. 2002 assume group membership to be conditional on individual characteristics and a serially correlated error structure across the sequence of one individual’s choices. They conclude that there is evidence of time dependence across choices and that finite mixing (as they called it) is a convenient and intuitive alternative to mixed logit, especially in terms of computational cost. They find evidence for three separate preference groups.

Shonkwiler and Shaw 2003, also assume group membership to be conditional on individual characteristics, and observe how the two-group models they estimate display different marginal utility of income. They suggest that this could be an elegant yet uncomplicated way to allow for non-linear
preferences for money. This has implications in the valuation of attributes, which differ across groups. They also, like us in this paper, identify the potential use of posterior probabilities, although they do not seem to use them in the derivation of their welfare estimates.

Scarpa and Thiene (2004) investigate destination choices of rock-climbers in the North Eastern Alps and assume group membership to be semi-parametric. They find evidence of four preference groups and derive individual-specific welfare measures for various attributes and illustrate how to investigate the distribution of benefit and losses from a given policy in the sample.

Recent stated preference applications using latent class models (LCM) include Hensher and Greene (2003), in which the authors use a dataset on choice of road types in New Zealand and systematically contrast the merits of mixed logit with those of latent class modelling. Comparisons are carried out in terms of choice elasticities, distributions of predicted choice probabilities and changes in absolute choice shares. Based on the results from this data-set they conclude that no unambiguous recommendation can be made as to the superiority of any of the two approaches, although they find strong statistical support for the LCM approach with three preference groups.

Boxall and Adamovicz (2002), conduct a lucid investigation using factor analysis to determine the motivational determinants of trips to wilderness, and build individual specific factor loadings that are then used as determinants in the group membership equation. Their analysis supports the existence of four group preferences and a much richer interpretation than a conventional multinomial logit model. They do not contrast this approach with continuous taste heterogeneity models, such as mixed logit.

Scarpa, Drucker et al. 2003, use LCM analysis as an accessory to a more conventional conditional heterogeneity multinomial logit analysis of the choice of piglet breeds, in an effort to value an indigenous pig breed in Yucatan. They find evidence for two distinct preference groups, using membership equations including various individual specific variables.

As both theoretical and empirical evidence on the usefulness of finite mixed logit models is mounting we observe that little attention has been devoted to one of its most promising features to inform decision makers. This is the identification of conditional distributions of attribute valuations. Although conditional probabilities can be computed even with one single choice per individual, the more numerous the panel, the sharper is the estimation of individual posterior statistics. Such a feature is of particular interest in the context of motivating the collection of panel data on consumer’s choice.

Choice experiment data

In spring and summer 2002, as a part of a large-scale investigation into the preference structure of its customers, Yorkshire Water conducted a set of choice experiments. The aim was to characterize the preference for fifteen different attributes related to water provision, called here service factors (SFs). As a result of focus-group activities and discussion with the management, these SFs were separated into five groups, giving rise to five separate choice experiments. The first three were mostly concerned with SFs of a private good
nature, and are ignored here. In this study we are concerned with the two choice experiments that addressed attributes of the service that can be commonly interpreted as 'public goods'.

The first choice experiment, defined here as WW1, looked at four attributes: area flooding by sewage (AF); river quality (RQ); nuisance from odour and flies (OF); and cost of service (change in water bill payment). There were eight levels of payment expressed as increases or decreases on the current bill, while all other attributes were expressed at four levels. The design chosen was an orthogonal main effect factorial with a total of 32 profiles, which were split in sequences of four choices for each respondent.

The second choice experiment looked at three attributes: water amenities for recreation (AM); quality of bathing water (BB), and cost of service. There were seven levels of payment expressed as increases or decreases on the current bill, while all other attributes were expressed at three levels. The orthogonal main effect factorial of choice gave a total of 27 cards, which were also split in sequences of four choices for each respondent.

The survey instrument was tested in a pilot study and further refined as a consequence. It was finally administered face-to-face by personnel experienced in stated-preference questionnaires through a computer-assisted survey. A representative sample of 767 Yorkshire Water residential customers completed the sequence of choices in the first choice experiment for a total of 3,068 choices (sample WW1), and a representative sample of 777 residential customers completed the sequence for the second choice experiment with a total of 3,108 choices (sample WW2).

A full report on the study and the tested validity of the chosen experimental design are available to the interested reader (Scarpa and Willis 2002, Willis and Scarpa 2002).

Econometric issues

The derivation of the latent class logit model is based on a membership equation, and on a choice alternative equation, both of which turn out to have a convenient logit formulation when two independent Gumbel-distributed error components are used.

The membership equation explains the probabilistic assignment into a number of K groups, where K is exogenously defined and outside the space of estimable parameters. The choice probability equation explains the mechanics of probabilistic choice across alternatives based on a conventional random utility framework. For the sake of brevity, and to avoid unduly repetition, we refer the reader to cited works for the details of the formal derivation. In this study, we have adopted the approach documented in Hensher and Greene (2003), which is conveniently applicable using Nlogit version 3.

In brief, our specification does not use any socio-economic covariate in the membership probability specification, which assumes therefore a semi-parametric format for the membership probabilities. The utility function for each of the three alternatives in each choice context is simply specified as a function of the attribute values.
The main focus of this study is to compare estimates of marginal WTP for attributes conditional on the sequence of observed choices from a balanced panel. We run this comparison across different group-sized latent class models (2, 3 and 4 LCM), and with the mixed logit specification with all attributes but cost distributed normal and zero off-diagonal covariance (MXL). The emphasis on conditional WTP estimate is justified on the basis of the interest that a water company can have in identifying groups with specific public-good preferences and WTP amongst its customers, so as to better address and target management plans. In what follow we describe in some detail the derivation of the individual WTP values from the LCM and MXL models.

Derivation of conditional WTP estimates from LCM models

Consider a population with \(c \) preference-groups (or classes) and a sequence of four observed choices per \(t \) individual over \(J \) alternatives, including the status-quo. Given a sequence of four choices by the same individual and conditional on belonging to a given preference group or class \(c \), say for example class \(A \), the joint logit probability of a sequence is:

\[
P_{jt} | A = \prod_{t=1}^{4} \frac{\exp(\beta_A'x_t)}{\sum_{j(t)} \exp(\beta_A'x_{j(t)})}
\]

With the individual probabilities of membership to a group \(c \) defined as \(Q_{tc} \) one can derive the unconditional probability taking the expectation over all the \(c \) classes:

\[
P_{jt} = \sum_{c=1}^{C} Q_{tc} \prod_{t=1}^{4} \frac{\exp(\beta_c'x_t)}{\sum_{j(t)} \exp(\beta_c'x_{j(t)})},
\]

where in this study the \(C = 2, 3, 4 \) and 5.

A conditional estimate of the individual-specific class probability can be obtained given the observed sequence of four choices and using Bayes’ formula:

\[
Q^*_c = P_{jc} | y_t, x_t = \frac{Q_c \prod_{t=1}^{4} \exp(\beta_c'x_t)}{\sum_{c=1}^{C} Q_c \prod_{t=1}^{4} \sum_{j(t)} \exp(\beta_c'x_{j(t)})},
\]

where \(y_t \) and \(x_t \) are respectively the observed choices and the attributes of the alternatives in the choice set.

Given this set of individual-specific probabilities of membership in each preference-group \(c \), one can derive individual-specific conditional estimates of the marginal WTP as:

\[
\hat{WTP}_t = \sum_{c=1}^{C} Q^*_c \left(-\frac{\beta}{\gamma} \right),
\]

where \(\hat{\gamma} \) is the marginal utility of money.
Notice that Nlogit v. 3 allows you to store the values for the posterior individual parameter $\hat{\beta}_i = \sum_{c=1}^{C} Q^c \beta_c$ by using the subcommand “.parameters” in the vector “beta_i”. However, setting

$$WTP_t = \frac{\sum_{c=1}^{C} Q^c \beta_c}{\sum_{c=1}^{C} Q^c (-\gamma_c)} = \frac{\hat{\beta}}{\gamma_t}$$

is obviously incorrect. So, this part was computed in Gauss.\(^1\)

Derivation of conditional WTP estimates from MXL models

Train (2003, Ch. 11) discusses the derivation of posterior means for normally distributed parameters of taste, conditional on observed choices in mixed logit models.

In our mixed logit specification the marginal utility of income γ is fixed, so the distribution of estimates for the individual specific WTP for each attribute is given by the mean of the individual parameter distribution $\bar{\beta}_i$ divided by $-\gamma$, which is assumed to be fixed.

In general, $\bar{\beta}_i$ is to be found by taking the expectation of the parameter over the parameter distribution conditional on observed choices and parameter estimates:

$$\bar{\beta}_i = \int \beta \cdot h(\beta \mid y_i, x_i, \theta) d\beta$$

By Bayes’ rule:

$$h(\beta \mid y_i, x_i, \theta) = \frac{P(y_i \mid x_i, \beta)g(\beta \mid \theta)}{P(y_i \mid x_i, \theta)} = \frac{P(y_i \mid x_i, \beta)g(\beta \mid \theta)}{\int P(y_i \mid x_i, \beta)g(\beta \mid \theta) d\beta}$$

where $g(\beta \mid \theta)$ is the assumed distribution of the parameter in the entire population (in our case assumed to be normal, so $\theta = \{\mu, \sigma^2\}$). So:

$$\bar{\beta}_i = \int \beta \cdot h(\beta \mid y_i, x_i, \theta) d\beta = \frac{\int \beta P(y_i \mid x_i, \beta)g(\beta \mid \theta) d\beta}{\int P(y_i \mid x_i, \beta)g(\beta \mid \theta) d\beta}$$

Because of the non-closed form of these expressions, in practice one uses simulation methods. Posterior simulated estimates of $\bar{\beta}_i$ can be obtained in Nlogit v.3 for each individual by using the subcommand “.parameters” in the “RPL” estimation routine and are automatically stored in the matrix “beta_i”. The one used here were obtained using 100 Halton draws (Train, 2000).

\(^{1}\) We understand from personal communication from Bill Greene, the author of Nlogit and LimDep, that future versions of Nlogit will include a routine to compute these values.
Number of groups with different preferences

The number of groups with different preferences is not part of the maximization process from which the parameter estimates are derived. In other words it is outside the space of the estimable parameters. The conventional specification tests used for maximum likelihood estimates (likelihood ratio, Lagrange Multipliers and Wald tests) are not valid in this context because they do not satisfy the regularity conditions for a limiting chi-square distribution under the null.

Resampling from the empirical distribution is feasible but very impractical because of the computational complexity it involves. As a guidance some authors have used the Akaike information criterion: $\text{AIC} = -2 \times \ln L - P$, where $\ln L$ is the log-likelihood of the model at convergence, and P is the number of estimated parameters in the model. Others have suggested the Bayesian Information Criterion: $\text{BIC} = -\ln L + (P/2) \times \ln(N)$, where N is the number of respondents. Boxall and Adamovicz (2002) also used the Akaike Likelihood Ratio index, which we omit here, since the other two methods provide concordant conclusions. However, these criteria also fail some of the regularity conditions under the null for a valid test under the null (Leroux, 1992). The AIC is reported to over-estimate the number of groups, while the BIC does not do this, asymptotically, although in small sample sizes it tends to favour too few groups (McLachlan and Peel 2000).

Results and discussion

For the sake of space we omit the presentation of all the model estimates. The testing for the number of preference-groups is reported in Table 1 and it is consistent with the hypothesis that there are four distinct groups of preferences in the sample in each of the two choice-experiments. We hence only present the LCM estimate for 4 classes along with the more ‘conventional’ mixed logit model with normally distributed parameters. Such estimates are presented in Tables 2 and 3.

The descriptive statistics of the distribution of conditional WTP estimates are reported in Tables 4 and 5. However, these distributions are best illustrated graphically by means of normal kernel densities in Figures 1-5, discussed below.

Preference groups for WW1

Three attributes were investigated in this experiment. The attributes could either be improved by YW management from the status quo condition at an additional cost to customers; or they could be decreased at the advantage of a lower water bill for customers.

One attribute (RQ) was defined as “the percent of river length capable of supporting healthy fisheries and other aquatic life in the long term” and has the character of a pure public good. The other two were (AF) defined as “percent of
areas protected from sewage escape in gardens, roads, paths and open areas” and (OF) “number of households & businesses affected by odour & high numbers of flies from sewage treatment works”. Attributes AF and OF concern goods whose benefits are probably perceived by most respondents as accruing to other members of the collective, and were therefore special types of mixed public goods. For OF the expected sign for the taste parameter is negative for people who value improvement, as fewer houses affected means better quality.

The latent class analysis is consistent with the presence of four groups of preferences in the sample. The highest probability (57.33%) belongs to preference Group A, followed by preference Group B with 21.68%. Preference Group C and D have 17.67 and 3.32 percent respectively.

Estimates for the taste parameters for attributes are all significantly different from zero at conventional levels only in Group A, the group with largest probability. This group shows WTP estimates slightly larger but not dissimilar from those obtained by the conventional MNL model, except for the OF attribute for which this group seem to have a marginal valuation of £1.22, rather than £0.93.

Group B and C have relatively high significance but they do not reach conventional significance levels. Group B has valuations practically identical to Group A, while the valuations in Group C are smaller by at least a factor of 10 for AF and RQ, and less than half those for OF. This result is consistent with the existence of a small segment of customers (17.7%) with low values for these public goods. Group D has the smallest probability and its parameter estimates show lowest precision, so this group is ignored in the discussion.

Distribution of conditional WTP estimates for Area Flooding

As can be seen the plot of the kernel estimates in Figure 1 shows the conditional WTP for each LCM model and for the MXL one. The 2-group LCM (dashed line) displays a bi-modal distribution implying the existence of 2 groups, one with large and another with smaller WTPs. The 3-group LCM (dotted line) is also bi-modal, but one modal value is negative, contrary to what one would expect, and altogether the distribution implies a much larger spread, with 0.41% of the respondents displaying negative WTPs for this attribute. The MXL estimates (continuous line) and the 4-group LCM (dashed/dotted line) display similar one-peaked modal values, although the latter shows 4.56% of respondents with negative values.

Distribution of conditional WTP estimates for River Quality

Figure 2 reports similar plots but for the conditional distributions of WTP for River Quality. Again, the dashed line of the 2-group LCM displays a bi-modal distribution implying the existence of 2 groups, one with large WTPs and another with WTPs centred round zero. The dotted line for the 3-group LCM also implies a WTP distribution centred round zero with a much larger spread and 41% of individuals displaying negative WTPs. The estimates from MXL and from the 4-group LCM display similar one-peaked modal values, and both seem
more consistent with a-priori expectations as they have much smaller portions of the densities with negative values.

Distribution of conditional WTP estimates for Odour and Flies

Figure 3 shows the plots of kernels smoothing for the WTP for the number of households exposed to nuisance from Odour and Flies. WTP is negative because of the way the variable was coded, as improvements are represented by a lower number of households, hence a decrease in this value increases utility. The pattern observed for the 5 distributions is very similar to the one for Area Flooding, although it is developed along the negative orthant. Again MXL estimates are closest to 4-group LCM ones.

Altogether, in this sample the conditional WTP predictions from the LCM analysis results show that the selection procedure for the number of groups identifies a group composition of four preference groups. Such a model is producing conditional WTP distributions consistent with economic theory and not very dissimilar from those obtained by the mixed logit model with normally distributed parameters for the non-monetary attributes.

Preference groups for WW2

This choice experiment investigated preferences for the ability to use inland waters for recreation (AM), and for improvements in the quality of bathing beaches (BB) above the current mandatory standard. In the choice experiment only improvements from the status quo were investigated. So, there was no option to reduce the level of provision and gain a reduction in the water bill in this case. The latent class estimation identified four distinct preference groups, three have large probabilities (Group A 35.05%, Group B 28.41% and Group C 29.38%), while the fourth (Group D) has only 7.15%.

When values for AM are estimated using the conventional logit model (MNL) one obtains £0.41 per each additional area with waste water discharges managed so as to allow recreational activities on rivers. In the LCM results, however, it can be seen that in Group A the average valuation is 50% higher than the MNL, while in group B is ten times higher and in group C nearly ten times smaller, although it does not reach the conventional levels of statistical significance. The valuation for Group D, instead is not statistically different from zero.

The MNL values for bathing water quality (BB) for each consecutive 50% improvement on the current standard is very low: £0.08. LCM analysis reveals that customers in the largest Group A have a valuation of similar magnitude to that obtained by MNL. However, the valuation by Group B is ten times higher at £0.83, while Group C has a valuation less than half the MNL estimate. Again, the valuation for the smallest group (only 7.2%) cannot be discussed due to lack of significance of the parameter estimates.

The fact that Group B has a valuation for these attributes of water management ten times higher than the MNL is consistent with a high concern for amenity-related public good provision amongst a fraction of the Yorkshire
Water residential customers. This group has a probability of 28.41%, nearly 1/3 of the sample. On the other hand, a similarly sized fraction (29.4%) represented by Group C, seem to value these goods much less, and such a result is consistent with a polarization of tastes, perhaps linked to diversity in use values from recreation.

Distribution of conditional WTP estimates for water quality of bathing beaches

Figure 4 shows the kernel smoothing plots of individual WTP for water quality of bathing beaches. As in all the other cases the dashed and dotted lines of respectively the 2-group and 4-group LCM show a bi-modal distribution. The former with a much large taller peak, while the latter with two similar sized ones. Altogether they predict small variation in WTP values.

The dashed/dotted line for the 4-group LCM WTP distributions and the continuous line for the mixed logit show a completely different picture. They both represent a much spread out distribution, with great variability. In particular, the 4-group LCM shows a bi-modal distribution with a large fraction of respondents spread around £0.8 per each extra area “with waste water discharges designed to allow recreational activities on rivers”. This group of customers might be keen recreationists, or people who care strongly for the quality of water that the water company can provide in bathing beaches.

Distribution of conditional WTP estimates for Water Amenities

A similar pattern is observed in Figure 5 for the plots for WTP for water amenities. The distributions of predicted conditional WTPs for 2 and 3 group LCM show a bimodal and narrowly spread pattern, while those for the mixed logit and 4-group LCM show a much more spread out distribution, only the latter, however, shows high densities of conspicuous values. This result would seem to indicate that care must be paid in selecting the adequate model when the purpose is the analysis of conditional WTP distributions. The choice of model can disguise some patterns that might be of interest to water managers, such as clear taste segmentation into separate preference-groups, rather than a continuum of taste intensities.

In this case the statistical evidence from the log-likelihood values obtained in the analysis would seem to lend some support to the hypothesis that a finite group of 4 sets of preferences exists in the sample. The mixed logit assumption rests on the belief that taste attributes have a specific continuous distribution, in our case the normal. There is no test that can be performed to compare LCM with MXL, and hence the choice of heterogeneity specification ultimately rests with the researcher and her beliefs. In our empirical case the log-likelihood values are once in favour of the 4-group LCM, in the WW1 sample, and once in favour of the MXL, in the WW2 sample. The LCM approach, however, may be desirable in some respects: it does not require distributional assumptions, the estimates are relatively easier to compute (no simulation methods are needed), and it is consistent with the existence of well-defined segments in the market for the public good. Finally, at least with
respect to the conditional distribution of WTP values, LCM estimation seems to produce a richness of information similar to the mixed logit estimation.

Conclusions

This chapter explores alternative ways of modelling heterogeneity of tastes for attributes of a composite public good via choice experiments. It contrasts two advanced modelling techniques, the use of the mixed logit random parameter model with the use of latent class models, to explain water company customer choice; and to derive welfare estimates of changes in the levels of provision of a number of ‘public goods’ jointly produced as a function, in part, of changes to waste water treatment.

The mixed logit approach requires the analyst to specify a-priori a parameter distribution in the population (normal, log-normal, uniform, etc.), which is assumed to characterise the heterogeneity of preferences for that attribute. The choice of distribution from which to report WTP estimates is then determined by whatever mixed logit model is perceived to have the best ‘goodness-of-fit’ statistics and theoretical consistency.

Latent class modelling (or finite mixing) does not require any assumptions about the mixing variable: in a sense LCMs ‘let the data speak’. LCMs provide further insights into the data by identifying groups of customers who have high or low preferences for particular ‘public goods’; and the share of water company customers that these potential purchasers represent. Such form of segmented information is potentially very useful to company managers for a wide range of purposes. The LCM analysis could be readily extended to assess the significance that socio-economic characteristics of customers, such as income or ethnicity, as well as attribute or SF levels have on choice.

There is no unambiguous test of the superiority of one approach (mixed logit or LCM) over the other. However, the LCM approach may offer insights into the heterogeneity of consumer preferences that are not readily identifiable through a traditional mixed logit random parameter model, especially when there are reasons to believe that these are clustered around certain values.

Finally, we focussed on estimates of welfare conditional on observed choice, in the form of the distribution of marginal willingness to pay values, rather than focussing on more conventional estimates of central tendency based on a-priori statistics. Conditional distributions are obviously more informative than single values, and they should be pursued when possible. We would also argue that conditional estimates display richer information because they are informed by the observed sequence of choices. Water companies intending to adequately characterize the preferences of their customer base should endeavour to collect panel data from representative samples. This paper shows that even with as few as four choices conditional distributions can be usefully derived and studied. Other literature illustrating similar results in this field includes Hensher and Greene (2003), Scarpa and Thiene (2004) and Greene et al. (forthcoming).
References

Table 1. Tests for group numbers in latent class models

<table>
<thead>
<tr>
<th>LCM groups</th>
<th>Parameters</th>
<th>Log-lik.</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>-2213.78</td>
<td>4429.55</td>
<td>2227.06</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>-2092.13</td>
<td>4188.26</td>
<td>2122.02</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>-2063.60</td>
<td>4133.20</td>
<td>2110.10</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>-2027.00</td>
<td>4062.00</td>
<td>2090.10</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>-2020.26</td>
<td>4050.52</td>
<td>2099.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LCM groups</th>
<th>Parameters</th>
<th>Log-lik.</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-2776.10</td>
<td>5554.21</td>
<td>2786.09</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>-2484.98</td>
<td>4973.96</td>
<td>2508.27</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>-2431.74</td>
<td>4869.47</td>
<td>2468.34</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>-2372.22</td>
<td>4752.43</td>
<td>2422.13</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>-2372.22</td>
<td>4754.43</td>
<td>2438.77</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>Group B</td>
<td>Group C</td>
<td>Group D</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Area Flooding</td>
<td>0.012</td>
<td>0.950</td>
<td>0.451</td>
<td>0.710</td>
</tr>
<tr>
<td>(AF)</td>
<td>(12.21)</td>
<td>(1.58)</td>
<td>(1.32)</td>
<td>(1.13)</td>
</tr>
<tr>
<td>River Quality</td>
<td>0.062</td>
<td>6.192</td>
<td>1.311</td>
<td>2.730</td>
</tr>
<tr>
<td>(RQ)</td>
<td>(20.12)</td>
<td>(1.10)</td>
<td>(1.53)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>Odour and Flies</td>
<td>-0.103</td>
<td>-9.487</td>
<td>-11.094</td>
<td>-2.600</td>
</tr>
<tr>
<td>(OF)</td>
<td>(-19.94)</td>
<td>(-1.63)</td>
<td>(-1.60)</td>
<td>(-1.02)</td>
</tr>
<tr>
<td>Cost</td>
<td>-0.084</td>
<td>-7.128</td>
<td>-27.674</td>
<td>2.267</td>
</tr>
<tr>
<td></td>
<td>(-17.13)</td>
<td>(-1.65)</td>
<td>(-1.54)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>Group Probability</td>
<td>0.573</td>
<td>0.217</td>
<td>0.177</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(24.68)</td>
<td>(9.98)</td>
<td>(9.04)</td>
<td>(3.88)</td>
</tr>
</tbody>
</table>

Table 2. Model estimates for sample WW1, asymptotic z-values in parenthesis

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Mean</th>
<th>St.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Amenities</td>
<td>0.451</td>
<td>0.166</td>
<td>0.010</td>
<td>-10.005</td>
<td>0.160</td>
<td>0.038</td>
</tr>
<tr>
<td>(AM)</td>
<td>(6.75)</td>
<td>(15.70)</td>
<td>(1.38)</td>
<td>(0.00)</td>
<td>(11.15)</td>
<td>(15.54)</td>
</tr>
<tr>
<td>Bathing</td>
<td>0.056</td>
<td>0.033</td>
<td>0.007</td>
<td>-0.211</td>
<td>0.028</td>
<td>0.081</td>
</tr>
<tr>
<td>Beaches (BB)</td>
<td>(6.82)</td>
<td>(23.50)</td>
<td>(7.73)</td>
<td>(-4.23)</td>
<td>(14.11)</td>
<td>(13.13)</td>
</tr>
<tr>
<td>Cost</td>
<td>-0.704</td>
<td>-0.039</td>
<td>-0.216</td>
<td>1.777</td>
<td>-0.305</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>(-7.29)</td>
<td>(-3.415)</td>
<td>(-17.93)</td>
<td>(3.50)</td>
<td>(-20.56)</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>0.350</td>
<td>0.284</td>
<td>0.294</td>
<td>0.072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability</td>
<td>(10.97)</td>
<td>(9.52)</td>
<td>(11.65)</td>
<td>(7.41)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Model estimates for sample WW2, asymptotic z-values in parenthesis
<table>
<thead>
<tr>
<th>Area flooding with sewage</th>
<th>LCM-2</th>
<th>LCM-3</th>
<th>LCM-4</th>
<th>MXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.1260</td>
<td>0.0356</td>
<td>0.1035</td>
<td>0.1036</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>0.0488</td>
<td>0.0990</td>
<td>0.0531</td>
<td>0.0327</td>
</tr>
<tr>
<td>Median</td>
<td>0.1687</td>
<td>0.1225</td>
<td>0.1103</td>
<td>0.1038</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-1.7127</td>
<td>-1.7550</td>
<td>25.3722</td>
<td>0.8207</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water quality in rivers</th>
<th>LCM-2</th>
<th>LCM-3</th>
<th>LCM-4</th>
<th>MXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.5999</td>
<td>0.1964</td>
<td>0.5970</td>
<td>0.7085</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>0.1878</td>
<td>0.4153</td>
<td>0.2489</td>
<td>0.2845</td>
</tr>
<tr>
<td>Median</td>
<td>0.7642</td>
<td>0.5608</td>
<td>0.5760</td>
<td>0.7771</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-1.7127</td>
<td>-1.7550</td>
<td>18.3691</td>
<td>0.3625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuisance from odour and flies</th>
<th>LCM-2</th>
<th>LCM-3</th>
<th>LCM-4</th>
<th>MXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.9864</td>
<td>-0.8187</td>
<td>-1.0404</td>
<td>-1.1104</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>0.3393</td>
<td>0.4165</td>
<td>0.2954</td>
<td>0.2515</td>
</tr>
<tr>
<td>Median</td>
<td>-1.2832</td>
<td>-1.1842</td>
<td>-1.0287</td>
<td>-1.1734</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-1.7127</td>
<td>-1.7550</td>
<td>15.6647</td>
<td>4.7375</td>
</tr>
</tbody>
</table>

Table 4. Statistics of the conditional distributions of WTP in the sample WW1

<table>
<thead>
<tr>
<th>Water amenities</th>
<th>LCM-2</th>
<th>LCM-3</th>
<th>LCM-4</th>
<th>MXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.4316</td>
<td>0.5705</td>
<td>2.4119</td>
<td>0.5155</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>0.4772</td>
<td>0.2140</td>
<td>1.7605</td>
<td>0.5815</td>
</tr>
<tr>
<td>Median</td>
<td>0.6764</td>
<td>0.5895</td>
<td>1.7713</td>
<td>0.5741</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.1024</td>
<td>-1.5857</td>
<td>-1.1759</td>
<td>-0.4934</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water quality in bathing beaches</th>
<th>LCM-2</th>
<th>LCM-3</th>
<th>LCM-4</th>
<th>MXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0787</td>
<td>0.1062</td>
<td>0.3560</td>
<td>0.0945</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>0.0637</td>
<td>0.0482</td>
<td>0.2857</td>
<td>0.0961</td>
</tr>
<tr>
<td>Median</td>
<td>0.1114</td>
<td>0.1105</td>
<td>0.2323</td>
<td>0.1059</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.1024</td>
<td>-1.5857</td>
<td>-1.2139</td>
<td>-0.6479</td>
</tr>
</tbody>
</table>

Table 5. Statistics of the conditional distributions of WTP in the sample WW2
Figure 1

Individual WTP estimates for Area Flooding

Probability density function

MXL
4 LCM
2 LCM
3 LCM
Figure 2

Individual WTP estimates for River Quality

Probability density function

4 LCM
3 LCM
2 LCM
MXL
Figure 3

Individual WTP estimates for Odor and Flies

Probability density function

MXL

2 LCM

4 LCM

3 LCM
Figure 4

Individual WTP estimates for Bathing Beaches
Figure 5: Probability density function of Individual WTP estimates for Water Amenities.
NOTE DI LAVORO PUBLISHED IN 2003

PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review

PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market

KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition

ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model

SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

NRM 8.2003 Elisaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?

CLIM 9.2003 A. CAPARRÓS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information

KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy

CLIM 11.2003 Efrem CASTELNUOVO and Marzo GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis

KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art

KNOW 14.2003 Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories

KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life

KNOW 16.2003 Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia

KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community

KNOW 18.2003 Selma van LONDON and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World

PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale

PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions

PRIV 23.2003 David ETTINGER (lx): Bidding among Friends and Enemies

PRIV 24.2003 Hannu VARTIAINEN (lx): Auction Design without Commitment

PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs

PRIV 27.2003 Kjell G. NYBORG and Illya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes

PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts

PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities

ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games

KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty

PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?

KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis

ETA 35.2003 Alessandra DEL BOCA, Marzo GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

PRIV 37.2003 Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers

KNOW 39.2003 Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations

KNOW 42.2003 Tino GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies

CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness

PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization

ETA 47.2003 Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing

CTN 50.2003 László A. KOCZY and Luc LAUWERS: The Minimal Dominant Set is a Non-Empty Core-Extension

CTN 51.2003 Matthew O. JACKSON (lx): Allocation Rules for Network Games

CTN 52.2003 Ana MAULEON and Vincent VANNETELBOSCH (lx): Farsightedness and Cautiousness in Coalition Formation

CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation

CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lx): Free Trade Networks

CTN 56.2003 Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization

CTN 57.2003 Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements

KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

KNOW 59.2003 Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change

ETA 60.2003 Ronnie SCHOB: The Double Dividend Hypothesis of Environmental Taxes: A Survey

CLIM 61.2003 Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel Formation Game

SIEV 63.2003 Alberto PETRUCCI: Taxing Land Rent in an Open Economy

CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures

SIEV 65.2003 Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment

CLIM 68.2003 Zhongxiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target

KNOW 69.2003 David FRANTZ (lx): Lorenzo Market between Diversity and Mutation

KNOW 70.2003 Ercole SORI (lx): Mapping Diversity in Social History

KNOW 71.2003 Liljana DERU SIMIC (lx): What is Specific about Art/Cultural Projects?

KNOW 72.2003 Natalya V. TARANOVA (lx): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

KNOW 73.2003 Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

KNOW 74.2003 Kazuma MATOBA (lxii): Global Dialogue- Transformation through Transcultural Communication

KNOW 75.2003 Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

KNOW 76.2003 Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems

KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities

KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemma

KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change

ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
IEM 81.2003
Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets

CLIM 82.2003
Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation

CLIM 83.2003
Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

CLIM 84.2003
Reyer GERLAGH andWieze LISE: Induced Technological Change Under Carbon Taxes

NRM 85.2003
Rinaldo BRAU, Alessandro LANZA and Francesco PILOLIU: How Fast are the Tourism Countries Growing? The cross-country evidence

KNOW 86.2003
Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

SIEV 87.2003
Lucas BRETSCGHER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

CLIM 88.2003
Johan EYCKMANS and Michael FINUS: New Roads to International Environmental Agreements: The Case of Global Warming

CLIM 89.2003
Marzio GALEOTTI: Economic Development and Environmental Protection

CLIM 90.2003
Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

CLIM 91.2003
Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries

IEM 92.2003
A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia

ETA 93.2003
Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

CTN 94.2003
Parkash CHANDER: The +Core and Coalition Formation

IEM 95.2003
Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components.

IEM 96.2003
Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices

CTN 97.2003

KNOW 98.2003
John CROWLEY, Marie-Cecile NAVES (lxxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities

KNOW 99.2003
Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue

KNOW 100.2003
Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

KNOW 101.2003
David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

KNOW 102.2003
Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

CLIM 103.2003
Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

CLIM 104.2003
Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

CLIM 105.2003
Aul MARKANDYA and Dirk T.G. RÜBRELKE: Ancillary Benefits of Climate Policy

NRM 106.2003
Anne Sophie CRÉPIN (lxiv): Management Challenges for Multiple-Species Boreal Forests

NRM 107.2003
Anne Sophie CRÉPIN (lxiv): Threshold Effects in Coral Reef Fisheries

SIEV 108.2003
Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example

SIEV 109.2003
Kenneth ARROW, Partha DASGUPTA and Karl-Göran MÄLER (lxiv): Evaluating Projects and Assessing Sustainable Development in Imperfect Economies

NRM 110.2003
Anastasios XEPAPADEAS and Catarina ROSETA-PALMA (lxv): Instabilities and Robust Control in Fisheries

NRM 111.2003
Charles PERRINGS and Brian WALKER (lxv): Conservation and Optimal Use of Rangelands

ETA 112.2003
Jack GOODY (lxv): Globalisation, Population and Ecology

CTN 113.2003
Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

CTN 114.2003
Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching

CTN 115.2003
Hideo KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems

CTN 116.2003
Sondhe LAHRIF: Stable Matchings for the Room-Mates Problem

CTN 117.2003
Sondhe LAHRIF: Stable Matchings for a Generalized Marriage Problem

CTN 118.2003
Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty

CTN 119.2003
Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results

CTN 120.2003
Gianluigi VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation

CTN 121.2003
Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players

CTN 122.2003
Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players

CTN 123.2003
Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players

1000
Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

ETA 5.2004 Roman LOHNER: Growth, Composition of Public Goods, and Second-Best Optimal Policy

PRA 8.2004 Wolfgang AUSSENENEGG, Pegaret PICHLER and Alex STOMPER (Ixx): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixx): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjørn BRENDBRUP and Harry J. JAARSS (Ixx): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixx): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (Ixx): Auctions as Coordination Devices

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixx): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Marta STRYSZOWSKA (Ixx): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (Ixxii): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 27.2004 Raúl Hernández MARTÍN (Ixxii): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 29.2004 Marian WEBER (Ixxii): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest

NRM 30.2004 Trond BJORNDAHL, Phoebe KOUNDOURI and Sean PASCOE (Ixxii): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Micheal FINUS (Ixx): International Cooperation to Resolve International Pollution Problems

KTHC 42.2004 Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
Marc ESCRIHUELA-FILLAR: Cartel Sustainability and Cartel Stability
Sebastian BERVOETS and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
Siegfried ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Aforestation Contracts with Asymmetric Information on Private Environmental Benefits
Ekin BİROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transitionable Economy
Francis BLOCH and Armando GOMES: The Emissions Trading Scheme, Allowance Prices, Trade Flows, Competitiveness Effects
Scott BARRETT and Michael HOEL: Optimal Disease Eradication
Dinko DIMITROV, Peter BORM, Roud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
Anna ALBERINI, Maureen CROPPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?
Ingo BRAUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturated Streams
Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices
Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
Katrin REHDANZ and David MADISON: The Amenity Value of Climate to German Households
Koen SMEEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios
Valentina BOSETTI, Mariaeser CASSINELLI and Alessandro LANZA (lxvi): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
Timo GOESCHL and Danilo CAMARGO IGLOIO (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
Elissiaos PAPYRIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.
Györgyi BELA, György PATAKI, Melinda SMALE and Marians HAJDU (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
Györgyi BELA, György PATAKI, Melinda SMALE and Marians HAJDU (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
Giannis YARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
Anastasios XEPAPADEAS and Constantina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
Michael FINUS: Modesty Pays: Sometimes!
Trond BJØRNDAL and Ana BRASÍO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
Alejandro CAPARRÓS, Abdelhakin HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents
Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
Margarita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
Rob DELINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
Salvador BARBERÁ and Matthew O. JACKSON (lx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union
Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMÉ and Fernando VEGA-REDONDO (lx): Optimal Information Transmission in Organizations: Search and Congestion
Francis BLOCH and Armando GOMES (lx): Contracting with Externalities and Outside Options
Rahab AMIR, Effrosyni DIAMANTOUDI and Licun XUE (lx): Merger Performance under Uncertain Efficiency Gains
Francis BLOCH and Matthew O. JACKSON (lx): The Formation of Networks with Transfers among Players
Daniel DIERMEIER, Hülya ERASLAN and Antonio MERLO (lx): Bicameralism and Government Formation
Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited

Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach

Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic

Maria BERRITTELLA, Andrea BIGANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism

Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy Savings

Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Innovation, and Growth

Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization

Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A Latent-Class Approach Based on Intensity of Participation

(lxix) This paper was presented at the EN GIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002
(lx) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002
(lxi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003
(lxii) This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002
(lxiii) This paper was presented at the ENGIME Workshop on “Social dynamics and conflicts in multicultural cities”, Milan, March 20-21, 2003
(lxiv) This paper was presented at the International Conference on “Theoretical Topics in Ecological Economics”, organised by the Abdus Salam International Centre for Theoretical Physics - ICTP, the Beijer International Institute of Ecological Economics, and Fondazione Eni Enrico Mattei – FEEM Trieste, February 10-21, 2003
(lxv) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications” organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003
(lxvi) This paper has been presented at the 4th BioEcon Workshop on “Economic Analysis of Policies for Biodiversity Conservation” organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003
(lxvii) This paper has been presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003
(lxviii) This paper was presented at the ENGIME Workshop on “Governance and Policies in Multicultural Cities”, Rome, June 5-6, 2003
(lxix) This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference “The Future of Climate Policy”, Cagliari, Italy, 27-28 March 2003
(lxx) This paper was presented at the 9th Coalition Theory Workshop on "Collective Decisions and Institutional Design" organised by the Universitat Autònoma de Barcelona and held in Barcelona, Spain, January 30-31, 2004
2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>(Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>(Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>(Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>(Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>(Editor: Anil Markandya)</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>(Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>(Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>(Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>(Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>(Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>(Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>(Editor: Anil Markandya)</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>(Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>(Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>