Travisi, Chiara M.; Nijkamp, Peter

Working Paper
Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Nota di Lavoro, No. 100.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Travisi, Chiara M.; Nijkamp, Peter (2004) : Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents, Nota di Lavoro, No. 100.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/117981

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents
Chiara M. Travisi and Peter Nijkamp

NOTA DI LAVORO 100.2004

JULY 2004
SIEV – Sustainability Indicators and Environmental Valuation

Chiara M. Travisi, Department of Management Economics and Industrial Engineering, Polytechnic of Milan and Fondazione Eni Enrico Mattei
Peter Nijkamp, Department of Spatial Economics, Free University and Tinbergen Institute

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=562722

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents

Summary
The widespread use of pesticides in agriculture provides a particularly complex pattern of multidimensional negative side-effects, ranging from food safety related effects to the deterioration of farmland ecosystems. The assessment of the economic implications of such negative processes is fraught with many uncertainties. This paper presents results of an empirical study recently conducted in the North of Italy aimed at estimating the value of reducing the multiple impacts of pesticide use. A statistical technique known as conjoint choice experiment is used here in combination with contingent valuation techniques. The experimental design of choice modelling provides a natural tool to attach a monetary value to negative environmental effects associated with agrochemicals use. In particular, the paper addresses the reduction of farmland biodiversity, groundwater contamination and human intoxication. The resulting estimates show that, on average, respondents are prone to accept substantial willingness to pay premia for agricultural goods (in particular, foodstuff) produced in environmentally benign ways.

Keywords: Pesticide risks, Food safety, Willingness-to-pay, Choice modeling, Contingent valuation

JEL Classification: C42, H23, I12, Q24

The author wish to thank the research group on ecotoxicology of the University of Milano-Bicocca for providing scientific support during the survey design. A special word of thanks goes to Anna Alberini and Arianne de Blaeij for helpful comments and suggestions on an earlier draft, and to Guido Sali and Paulo Nunes for valuable advice.

Address for correspondence:
Chiara M. Travisi
Fondazione Eni Enrico Mattei
Corso Magenta 63
20123 Milan
Italy
Phone: +39 02 52036951
Fax: +39 02 52036946
E-mail: chiara.travisi@feem.it
1. Introduction

Conventional agriculture produces non-negligible negative side-effects that have been broadly scientifically documented in the scientific literature (Pimentel et al., 1992; Pimentel and Greiner, 1997). The order of magnitude of these externalities justifies the theoretical and political significance of the literature on agro-environmental regulations, pesticide and fertiliser reduction, and the assessment of the associated economic costs. In the European Union, the increasing awareness of governments and consumers for pesticide-related food safety and the changing social preferences towards improving the environmental sustainability of agriculture have culminated in a number of valuable studies on the estimation of consumers’ willingness to pay (WTP) for reducing the potential impact of pesticide use on human health and the environment (Swanson, 1998; Mourato et al., 2000; Foster and Mourato, 2000; Schou et al., 2002). Monetary estimates of individual WTP for pesticide risk reduction is a key input to design and implement appropriate pesticide policy measures (such as pesticide taxation, design of eco-labelling) or to plan national incentive programmes for the dissemination of more environmental benign agricultural practices. In this context, the Italian agricultural policy aims to decrease the risks attached to the use of pesticides by providing economic incentives for organic farming and Integrated Pest Management (IPM) [1].

The design of eco-labelling for fresh food produced with more benign agricultural practices is a major concern in the Italian agricultural sector. Economic theory suggests that an efficient incentive should be set equal to the marginal damage associated with pesticide usage. Similarly, estimates of individual WTP for pesticide risk reduction would provide key information to introduce price differentials in products, according to the type and severity of pesticide risks related to their production processes. In this perspective, a proper incentive programme for Italian farmers, or the design of eco-labelling, would require an estimating of the Italians’ WTP for pesticide risk reduction. This paper presents an original study recently conducted in Italy with the aim of providing estimates of the WTP of Italian consumers to gain improvements in the environmental and health safety of agriculture.

Our study has combined two stated preference methods, Conjoint Choice Experiment (CCE) and Contingent Valuation (CV) techniques, to estimate the value of reducing the multiple impacts of pesticide use. Examples of previous studies using CV methods for pesticide risk valuation can be found in Higley and Wintersteen (1992); Bubzy et al. (1995); Mullen et al. (1997); Fu et al., (1999); Brethour and Weersink (2001); Cuyno et al. (2001); Wilson (2002). Recently, Foster and Mourato
(2000) and Schou et al. (2002) have applied Contingent Ranking techniques to value multiple pesticide impacts, while several examples of Conjoint Analysis -applied to the valuation of various pesticide risks for consumers- can be found in Baker and Crosbie (1993), Eom (1994) and Baker (1999).

The CCE application was designed to estimate the value of some important pesticide-related environmental attributes, using a ‘green shopping’ payment vehicle. Respondents were asked to view the various environmental impacts of pesticide use in the agricultural production as foodstuff attributes to be taken into account in the purchase decision. The environmental attributes taken into considerations here were the reduction in farmlands’ biodiversity, the contamination of soil and groundwater in the agricultural land, and the health effects of pesticides on the general public. The monetary attribute used was the monthly food expenditure through which it is possible to estimate the marginal value of the other non-market characteristics. The CV experiment then asked the respondents to report a maximum WTP for eliminating all the negative environmental impacts under consideration.

The reminder of the present paper is organised as follows. Section 2 presents the survey design. Section 3 discusses the econometric model used for the analysis. Section 4 presents and discusses our main results.

2. Preferences for Agricultural Safety: A Survey of Milan Residents

This study assesses people’s preferences for alternative scenarios of agricultural production based on lower pesticides input (e.g., low pesticide input, integrated pest management, organic), focusing on the environmental and economic effects they generate. Elicitation of the public’s preferences for, and economic valuation of, alternative agricultural scenarios, however, is complicated by two factors. First, the environmental negative side effects of pesticide use –such as pollution of soil, surface and ground water, higher mortality of sensitive animal and insect species, effects on human health, etc- are not bought and sold in regular markets. This implies that we need to apply non-market valuation techniques.

Second, low-input agricultural practices have only recently been applied in Italy and have not been monitored in their environmental and economic effects, so we resort to stated preference non-market valuation techniques, relying on what people say they would do under hypothetical circumstances rather than actual behaviours. We deploy a combination of two stated preference methods, Conjoint Choice Experiment (CCE) and Contingent Valuation (CV) techniques.

In a typical conjoint choice experiment study, respondents are asked to choose between two or more goods (or policy scenarios) each of which is described by a set of few attributes, one of which
is usually its cost to the respondent. Attributes are varied across scenarios, and the scenarios are usually matched in such a way that the respondents have to trade off attributes. For the purpose of statistically modelling the respondent’s choice in a conjoint choice experiment it is assumed that the respondent chooses the alternative that gives the highest utility. Utility is a function of the alternative’s attributes and of residual income (income net of the cost of the alternative under consideration), plus a random term.

Depending on the assumption about the distribution of the error term, the resulting statistical model is either a conditional logit, a multinomial probit or a related choice model (Green, 2002). The implicit marginal prices of each attribute and the welfare changes associated with changes in the level of the attributes are easily derived. In a typical contingent valuation study, respondents are asked to choose between two scenarios, each of which is described by two attributes, an economic and a non-economic one.

2.1 SELECTION OF THE ATTRIBUTES

Since the range of the environmental impacts associated with pesticide use is potentially very wide, the selection of the relevant environmental attributes to be included in the questionnaire is a particularly delicate step. In choosing relevant attributes, we were guided by a group of Italian eco-toxicologists, which helped us identify main environmental effects of pesticides and select indicator variables describing each environmental effect. Environmental indicators are selected to describe, as accurately as possible, the main areas of well-documented environmental damage in Italy. Specifically, we focus on biodiversity, soil and groundwater (groundwater contamination is here considered intimately linked to soil contamination) and human health. By contrast, Foster and Mourato (2000) only considered human health and biodiversity. The impact on biodiversity is here quantified in terms of the number of endangered farmland bird species, while the impact on soil and groundwater is measured using the percentage of farmland areas contaminated by pesticides. The impact on human health is measured in terms of cases per year of acute intoxication, both as a result of work and domestic exposure. For each attribute we consider three different levels [5], as shown in Table 1.

When choosing the human health attribute we first reasoned that, since lay people –when asked about pesticides- are most frightened by potential risks related to pesticide residues in foodstuff (STOA, 1998), it would have been important to capture people WTP for improving food safety on such concern. Unfortunately, no epidemiological studies have been conducted in Italy to document pesticide residues risks. We felt, therefore, that valuing consumers WTP for a reduction of pesticide residues risk exposure would have required an appropriate analysis of risk perception concerning this, which was not our main research question. This is the reason why, rather than concentrating on
pesticide residues effects, we preferred to focus on risks due to domestic or work pesticide exposure, which is the best documented pesticide impact for Italy.

Selecting the most appropriate economic attribute required us to analyse the literature and the results from focus groups discussions. In the pesticide risk valuation literature, simulated markets for green produce are sometimes used in hopes of minimizing the problem of hypothetical bias (Ravenswaay and Hoehn, 1991). However, the results of our pre-test showed that respondents were disturbed by a “single-green produce” perspective, and felt more comfortable with choices related to the whole shopping basket for groceries. Therefore, a “green shopping” payment vehicle was preferred and respondents were presented with several agricultural foodstuff market scenarios.

Table 1 – Attributes and levels.

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>LEVEL-1</th>
<th>LEVEL-2</th>
<th>LEVEL-3</th>
<th>LEVEL-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food expenditure [€/household month]</td>
<td>current (*)</td>
<td>+50</td>
<td>+100</td>
<td>+200</td>
</tr>
<tr>
<td>Human health [N° cases intoxication/year]</td>
<td>250</td>
<td>150</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Soil and groundwater [% contaminated agricultural land]</td>
<td>65%</td>
<td>45%</td>
<td>25%</td>
<td>15%</td>
</tr>
<tr>
<td>Biodiversity [N° endangered farmland bird species]</td>
<td>15</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

(*) The current level of food expense is indicated by respondents before starting the CM exercise.

2.2 QUESTIONNAIRE AND SURVEY ADMINISTRATION

The questionnaire used in our experiment is comprised of three sections. The first part introduces the subject of the environmental side-effects of pesticides use in modern agriculture, via a costs-benefit perspective, which emphasized existing trade-offs between positive and negative externalities associated with agricultural production based on the use of synthetic inputs. The second section contains a Conjoint Choice Experiment/Contingent Valuation (CCE/CV) exercise, while the third one asks questions about the respondent socio-economic and attitudinal characteristics. The design of the CCE survey was inspired by recent literature on pesticide risk valuation, which extends the estimation of the social costs of pesticide applications in agriculture to both environmental and human well-being, modelled as different attributes of a common phenomenon (Mourato et al., 2000; Foster and Mourato, 2000; Schou et al., 2002).

Respondents are asked to view the various side-effects of pesticide usage due to conventional agricultural practices as food attributes to be taken into account in daily purchase decisions.
Alternatives are differentiated in terms of food expenditure and environmental sustainability, which describes the range of environmental externalities attached to the underlying production process.

Each respondent is presented with 4 or 5 choice sets developed using cyclic experimental design technique (Bunch et al., 1993) [6]. Each choice set requires respondents to make a choice among three alternative agricultural scenarios: the status quo scenario and two alternative ones (see Figure 1). The status quo scenario is represented by the conventional scenario of agricultural practices, priced at the household monthly food expense level (reported by respondents), for which each of the aforementioned environmental attributes is set at their current position (i.e., respectively, 250 cases of acute intoxication per year, 15 endangered bird species and 65% of farmland areas contaminated).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Option A Current Situation</th>
<th>Option B Alternative agricultural practices</th>
<th>Option C Alternative agricultural practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food expenditure €/household month</td>
<td>current</td>
<td>+ 50 €</td>
<td>+ 100 €</td>
</tr>
<tr>
<td>Biodiversity: N° of endangered bird species</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Soil and groundwater: % of contaminated farm land</td>
<td>65%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Human Health: cases of intoxication per year</td>
<td>250</td>
<td>160</td>
<td>90</td>
</tr>
</tbody>
</table>

- I would choose option A, obtained with conventional agricultural practices
- I would choose option B, obtained with more environmental benign agricultural practices
- I would choose option C, obtained with more environmental benign agricultural practices

Figure 1: Example of choice set.

A CV question follows each CCE exercise. A dichotomous choice format is used to elicit information about the respondents’ maximum WTP for eliminating all of the described negative effects of pesticide use on the environment and human health.

The questionnaire was developed by using the results from one focus group and one pre-test [2]. The focus group and the pre-test were necessary to test the appropriateness of the attributes included in the questionnaire, to select a proper payment vehicle of the WTP experiment, and to refine the initial draft questionnaire. On the basis of the results provided by the pilot study some minor modifications in the draft questionnaire were included [3]. The final survey was carried out in Milan between May and June 2003. The survey questionnaire was self-administered by respondents intercepted at three shopping malls in Milan by three interviewers. The enumerators were instructed...
to stop potential respondents and ask them to pick up the questionnaire, compile it and then drop it off after shopping. Overall, 484 questionnaires were distributed by three interviewers, 302 of which were returned in a completed form. The return rate was about 62 percent. Table 2 shows the survey statistics and the socio-demographics of the sample.

Table 2- Survey statistics and socio-demographics of the sample.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sample average or percentage</th>
<th>Milan average (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>33.9</td>
<td>44</td>
</tr>
<tr>
<td>Monthly Household Income in Euro (€/household)</td>
<td>2,098.1</td>
<td>2,791.3</td>
</tr>
<tr>
<td>Female</td>
<td>61.6</td>
<td>53.2</td>
</tr>
<tr>
<td>Household size</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Household with one or more persons under 15</td>
<td>15.1</td>
<td>NA</td>
</tr>
<tr>
<td>Year of schooling</td>
<td>13.04</td>
<td>NA</td>
</tr>
<tr>
<td>Attitudinal characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respondent with strong environmental attitude (a)</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>Respondent very well informed on pesticide risks (a)</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Respondents debriefs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Found some question hard to understand</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Did not find information provided enough</td>
<td>4.4</td>
<td></td>
</tr>
</tbody>
</table>

Note:

(a) Based on a five point Likert scale
(b) Authors' calculation based on the Milan Municipality Abstract of Statistics, 2002

3. **Modelling Consumers Preferences: the Econometric Model**

3.1 **THE CONJOINT CHOICE EXPERIMENT**

Our analysis of the responses to the conjoint choice questions uses the random utility model (McFadden, 1986). Let W represent a set of alternative agricultural practices, and T the set of vectors of measured attributes. The choice for a consumer can be defined as a draw from a multinomial distribution with a probability:

$$\Pr(x | t, A) \quad \forall x \in A \quad \text{with } A \subseteq W$$ \hspace{1cm} (1)$$

where $\Pr(x | t, A)$ is the probability of selecting agricultural practice x, given the vector of observed attributes t and the set of agricultural practices A, for each alternative contained in the choice set A.
The behavioural basis of stated choice data emerges from Random Utility Model (RUM). Let U_{iq} be the utility of the ith agricultural scenario for the qth consumer. Under the RUM framework, U_{iq} is assumed to be partitioned into two components: a systematic component V_{iq} that depends on the attributes, and a random component, ε_{iq} (see (2)), that is individual-specific (Ben-Akiva and Lerman, 1997).

\[U_{iq} = V_{iq} + \varepsilon_{iq} \quad (2) \]

The utility function V_{iq}, which represents the utility of the different options in the multinomial logit model, can have different functional forms. The simplest form assumes that V_{iq} has an additive structure and is homogeneous across the population in terms of the relative importance of the attribute (x_k). The additive structure only includes the k attributes from the choice set i, as follows:

\[V_{iq} = \sum_{k=1}^{K} \beta_{iq} x_k \quad (3) \]

The utility V_{iq} of the ith alternative for the qth respondent consists of the sum of the values of the different attributes k. In addition, utility maximisation theory assumes that consumers will choose the agricultural scenario that yields the highest utility. Then, the individual consumer q will choose the ith agricultural scenario if and only if:

\[U_{iq} > U_{jq} \quad \forall i, j \in A \text{ with } i \neq j \quad (4) \]

where U_{iq} is the utility level of all non-selected alternatives, and A is the set of possible choice alternatives.

Under the assumption that the error terms are independently and identically distributed and follow the Gumbel distribution, a multinomial logit model results.

Combining (3) and (4), we know that an agricultural scenario i is chosen if and only if:

\[(V_{iq} + \varepsilon_{iq}) > (V_{jq} + \varepsilon_{jq}) \text{ or } (V_{iq} - V_{jq}) > (\varepsilon_{jq} - \varepsilon_{iq}) \quad (5)\]

Since $(\varepsilon_{jq} - \varepsilon_{iq})$ cannot be observed, it is not possible to assess exactly whether $(V_{iq} - V_{jq}) > (\varepsilon_{jq} - \varepsilon_{iq})$. Therefore, the aim of this choice model is to calculate the probability that $V_{iq} - V_{jq}$ will be larger than $(\varepsilon_{jq} - \varepsilon_{iq})$, i.e.,
\[
\Pr(x_{iq}|q, A) = \Pr_{iq} = \Pr\left[\epsilon_{iq} - \epsilon_{jq} < [V_{iq} - V_{jq}]\right] \quad \forall i, j \text{ with } i \neq j
\]

This means that the probability that a consumer will choose the agricultural scenario \(x_i\) equals the probability than the difference between the random components of the utility function is smaller than the systematic component of the utility function across the two alternative agricultural practices under consideration. The purpose of the choice model is to estimate the value and statistical significance of the determinants of the utility function. The basic model assumes a linear, additive form of the attributes as specified in (2).

In our questionnaire, the CCE exercise implies a choice between three alternative agricultural scenarios, including the status quo. The agricultural scenarios differ with respect to food cost, effects on farmland birds’ biodiversity, contamination of soil and aquifers in farmland areas and threats to human health. The utility of alternative \(i\) for respondent \(q\) is assumed to depend on:

- the food cost of the \(q\)th respondent related to the \(i\)th agricultural scenario \((x_{fq})\);
- the effects of the \(i\)th agricultural scenario on birds’ biodiversity for the \(q\)th respondent \((x_{biq})\);
- the contamination of soil and groundwater related to the \(i\)th agricultural scenario for the \(q\)th respondent \((x_{siq})\);
- the effects of the \(i\)th agricultural scenario on the health of the general public for the \(q\)th respondent \((x_{hiq})\). This leads to the following utility expression:

\[
V_{iq} = \beta_{fjq}x_{fq} + \beta_{biq}x_{biq} + \beta_{siq}x_{siq} + \beta_{hiq}x_{hiq} \quad (6)
\]

We assume that the error terms of the resulting utility function are independently and identically distributed and follow the Gumbel distribution. A non-trivial consequence of using this error assumption is the property of independence of irrelevant alternatives (IIA). This property requires that the probability of choosing one alternative over a second one depends only on the utility of the respective alternatives [7]. In other words, the probability ratio of two options should be unaffected by including or omitting other alternatives.

Under this assumption, a conditional logit model results, which predicts the probability of selecting alternative \(i\) to be:

\[
P_{iq} = \frac{\exp(V_{iq})}{\sum_{j=1}^{J} \exp(V_{jq})} \quad (7)
\]

and:

\[
V_{iq} = \sum_{k=1}^{K} \beta_{iq}x_{ikq} \quad (8)
\]
This model is estimated by the method of maximum likelihood.

After estimating the model, we can infer the marginal rate of substitution between any of the attributes in our choice set. The marginal rate of substitution between the food expense coefficient and the biodiversity coefficient gives the implicit WTP to protect farmland bird biodiversity:

\[WTP_b = -(\beta_b / \beta_f) \quad (9) \]

Similarly, the marginal rate of substitution between the food expense coefficient and the soil contamination one gives the implicit WTP to reduce soil contamination:

\[WTP_s = -(\beta_s / \beta_f) \quad (10) \]

Finally, the marginal rate of substitution between the food expense coefficient and the human health one gives the implicit WTP to prevent cases of human illness:

\[WTP_h = -(\beta_f / \beta_h) \quad 11 \]

Nevertheless, it is likely that respondents to express their preferences for alternatives by considering reasons beyond the attributes specified.

An alternative-specific constant term, \(C \), can be added to the model to capture the effect of some systematic but unobserved factors on the respondents’ choices. In other words, while the \(x \) variables show the effect of deterministic variables in explaining choices (i.e., attributes in the choice sets), the constant \(C \) captures the unobserved factors that explain choices (see equation 12). Technically, they reflect the mean of the differences in the error terms (Ben-Akiva and Lerman, 1985). In a multinomial logit model it is possible to have \((a-1)\) alternative specific constants, where \(a \) is the number of options. This is because the constants are based on differences between the alternative options and the current situation.

In the present context, though we do not use labelled options, it may be that consumers attach a value to the status quo or to one of the two safer agricultural options as such. To test whether this is indeed the case, one can add an alternative specific constant to the utility function:

\[V_{iq} = \delta_{iq} C_{iq} + \sum_{k=1}^{K} \beta_{kiq} x_k \quad 12 \]

More complex specifications are possible which include socioeconomic and attitudinal variables [8].
3.2 THE CONTINGENT VALUATION EXERCISE

In CV surveys, one of the most widely used approaches to elicit information about the respondent’s WTP is the so-called dichotomous-choice format (Hanemann 1985, Carson 1985). In the follow-up of our CCE part, we use this type of elicitation question for the respondents’ WTP for eliminating all risks, both to human health and the environment, associated with pesticide applications in agriculture. The dichotomous-choice format mimics behaviour in regular markets, where people usually buy, or decline to buy, a certain good at the proposed retail price. Besides, similarly to the CCE technique, this CV format is consistent with the incentive comparability property and is also credited with reducing the cognitive burden placed on the respondent, except that its incentive comparability property might be affected by the previous conjoint questions.

The dichotomous-choice “double-bounded” payment question asked the respondent if he/she would be willing to pay B_1 percent extra on household monthly food expense to gain the proposed improvement in agricultural safety. In a follow-up question respondents who answered “yes” to the first bid value were asked if they would pay B_2^+ percent extra on household monthly food expense, with $B_2^+ > B_1$, while respondents who answered “no” were faced with a B_2^- amount, with $B_2^- < B_1$. The bid value B_1 varied randomly across respondents and the amount of the second bid B_2 depends on the amount of the first one [9].

Four response sequences were possible in our exercise: both answers are positive (yes/yes); both answers are negative (no/no); refuse the first bid but accept the second (no/yes); or accept the first but refuse the second (yes/no). Therefore, for any given underlying WTP distribution $F(B_i; \theta)$, the probability of response is given by:

\[
\Pr\{\text{yes/yes}\} = P_{yy} = 1 - F(B_2^+; \theta) \quad (13)
\]

\[
\Pr\{\text{no/no}\} = P_{nn} = 1 - F(B_2^-; \theta) \quad (14)
\]

\[
\Pr\{\text{yes/no}\} = P_{yn} = F(B_2^+; \theta) - F(B_i^-; \theta) \quad (15)
\]

\[
\Pr\{\text{no/yes}\} = P_{ny} = F(B_1^+; \theta) - F(B_2^-; \theta) \quad (16)
\]

Given these expressions, the log-likelihood function for the double-bounded model can be written as:

\[
\log L = \sum_{i=1}^n \left[I_{yy} \log P_{yy} + I_{yn} \log P_{yn} + I_{ny} \log P_{ny} + I_{nn} \log P_{nn} \right] \quad (17)
\]
Since the follow-up bid amount is greater (lower) than the first for those who answer “yes” (“no”) to the initial payment question, the four pairs above identify intervals in which the respondents’ WTP amount is assumed to fall. Specifically, the respondent’s WTP is greater than \(B_2 \) for (yes/yes) sequences; WTP falls between \(B_2 \) and \(B_1 \) for (no/yes) pairs; it falls between \(B_1 \) and \(B_2 \) for (yes/no); and it is lower than \(B_2 \) for (no/no). This yields the following log-likelihood function:

\[
\log L = \sum_{i=1}^{n} \log [F(WTP_{Hi}; \theta) - F(WTP_{Li}; \theta)]
\]

where \(WTP_{Hi} \) and \(WTP_{Li} \) are the higher and the lower bound of the interval around \(WTP \) as explained above [10]. Our results are based on the assumption that WTP follows a Weibull distribution.

4. Survey valuation results

4.1 DESCRIPTION OF THE DATA

Table 1 reports descriptive statistics for our sample and compares them with those for the population of Milan, showing that the socio-demographic of our sample are for some part different to those of the population of Milan. The average respondent is 34 years old, has a household income of roughly € 25,000 a year, and has completed high school. The sample is slightly unbalanced toward females, and overrepresents households that large relative to the Milan average. Fifteen percent of the sample has at least one person in the household who is younger than 15.

The main differences between the socio-demographics of our sample and those of the population of Milan concern age and income level. The average age of our sample is rather low -34 rather than 44 years old- and the household income is the 25 percent higher than the Milan average. This suggests that we should control for these individual characteristics in our statistical model of the choice responses. Moreover, twenty-six percent of the respondents have a strong environmental attitude and the 12.2 percent is very well concerned about pesticide risks.

Based on the responses to the choice question and to control questions, we believe that respondent had a reasonably good comprehension of survey material and choice tasks, as only 4.4 percent complained about insufficient information, and 8.5 percent reported that they had found some of the question difficult to understand.

4.2 RESULTS OF THE CONJOINT CHOICE EXPERIMENT

In this paper, we report the results of conditional logit models estimated from the data collected during the Milan survey. As shown in Table 3 we first estimate a basic model and, subsequently, we use interactions between the choice attributes and socio-demographic variables to control for individual characteristics.
All of our models include alternative-B and C-specific intercepts and are weighted with population weights to balance the sample age distribution according to distribution of age in Milan. The attribute FOODEXP is the cost of the alternatives to the respondent and is expressed as Euros per household per month. BIODIV takes on the values 15, 9, 6 and 3, representing the number of endangered bird species in the alternative scenario. The attribute GRWATER is the percentage of contaminated farmland and can assume values 65, 45, 25, 15. HEALTH takes on the value of 250, 150, 100 and 50, representing the number of cases of acute human intoxication per year due to pesticides.

To capture variation in the marginal utility of the attributes across individuals, one would like to control for the respondent’s socio-demographic characteristics. Regarding the preferences for the environmental attributes (biodiversity, soil and ground water protection, human health) one would expect them to vary across respondents’ profiles, depending on individual environmental attitude and socio-demographic characteristics. We attempt to control for socio-demographic by creating interactions of the environmental attributes with various socio-demographic characteristics, such as gender, age, education level and whether there are persons under 15 in the respondent’s household. A similar logic was applied to respondents’ environmental attitude, for which we tried several interactions with attitudinal individual specific variables. Results presented in Table 3 include models with simple interaction with a dummy on respondent’s pesticide risk concern.

An important prediction of economic theory is that WTP is an increasing function in the individuals’ income level. To capture preferences variation regarding respondents’ income level we try an interaction of the FOODEXP variable with the respondents’ income level variable.

We begin with a model that include interactions between choice attributes and selected respondents’ features, focusing in particular on the effect of respondents’ gender, education level, concern on pesticide risks, whether there are person under 15 in the household and income level, on their preferences for reduction of pesticide risks. Results for these conditional logit models are reported in Table 3. All attributes coefficients have the expected a priori sign and are highly statistically significant, with the exception of BIODIV. The explanatory power of the models is relatively high for a discrete choice model, with an R-square higher than 0.2 [11].

The coefficient for GRWATER is negative and is strongly statistically significant with a coefficient of -0.017, implying that, all else the same, reducing ground water contamination by 50%, raises the probability of selecting the agricultural scenario by about 2%. The level of impact on human health has a highly statistically significant coefficient equal to -0.0034, while the intensity of impact on bird biodiversity is significant at the 10 percent level with coefficient equal to 0.005.
-0.0319. These results indicate respondents are willing to accept higher food prices to obtain improvements in the agricultural production safety.

Results of the conditional logit model based on our full set of regressors (interactions with attributes) are reported in column (B) and (C). The likelihood ratio (LR) statistics for significant of all coefficients on the interactions between attributes and individual characteristics, which are equal to 9.51, 15.51 and 15.57, respectively, confirm that the choices do depend on certain individual characteristics. The probability of selecting one scenario out of the three alternative options, therefore, depends on the attribute of the agricultural scenarios and respondents’ profile in predictable ways.

Column (A) shows that running the model with interactions between attributes and respondents’ socio-demographic produces an insignificant and lower coefficient for the BIODIV attribute, and a slightly higher coefficient -though always strongly significant- for the FOODEXP variable (from 0.0008 to 0.0014). Consistently with what predicted by the economic theory, interaction between FOODEXP and income level produces a positive and statistically significant coefficient, even though rather low (0.19^0.04). The interaction between BIODIV and education level and HEALTH and gender are statistically significant at the 10% level, while the interaction between BIODIV and concern level and GRWATER and the dummy for household with persons under 15 are insignificant. The interaction between GRWATER and the dummy for household with persons under 15 has, in contrast with our expectations, a negative (though insignificant) coefficient.

In column (B), we include an interaction between GRWATER and age, BIODIV and gender, as well as an interaction between HEALTH and pesticide risk concern level. These specifications do not change the coefficient of the choice attributes, which remain stable, but produces a significant (10% level) and positive coefficient for the interaction between GRWATER and the dummy for household with persons under 15. The coefficients on the other regressors are also consistent with our a priori pattern of expectations, though not always statistically significant. Finally, column (C) shows that adding an interaction between HEALTH and the dummy for household with persons under 15 does not change previous results and shows a positive but not significant coefficient, as expected.

Table 3 shows that Milan’s respondents are on average willing to pay 24 Euros per household per month to avoid the loss of one species of farmland bird biodiversity, 15 Euros per household per month to avoid the contamination of one percent of farmland soil and aquifer, and 3 Euros per household per month to prevent one case per year of human ill-health. Willingness to pay is, therefore, substantially larger for environmental dimensions than for human health. Nevertheless, it is not possible to make direct comparisons across different pesticide risks and the related WTPs,
since the unit of measurement used to quantify risks in the experimental design varies. A more rigorous way of making direct comparisons is to observe unit trade-offs across choice attributes (see Table 4). From this simple exercise we can see that, on average, respondents are only willing to tolerate about 9 cases of human illness to save an entire species of farmland birds, and 5 cases of human intoxication to reduce soil and ground water contamination with 1 percent. Trade-offs between biodiversity protection and ground water quality show that the respondents were willing to accept only about 2 percent of soil and aquifer contamination to save an entire farmland bird’s species. This indicates the importance that the sample attached to both the preservation of human health and the protection of farmland soil and ground water resources. Clearly, the issue of farmland biodiversity decrease is still weakly perceived by Italian households.

Table 3: Conditional logit model results. T statistics in parentheses. $N = 4074$.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(A) Full model weighted</th>
<th>(B) Full model weighted</th>
<th>(C) Full model weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept option B ((c,d))</td>
<td>1.9220 (16.320)</td>
<td>1.9352 (16.227)</td>
<td>1.9356 (16.200)</td>
</tr>
<tr>
<td>Intercept option C ((c,d))</td>
<td>1.551 (13.201)</td>
<td>1.5653 (13.124)</td>
<td>1.5676 (13.098)</td>
</tr>
<tr>
<td>FOODEXP ((c,d))</td>
<td>-0.0014 (-5.308)</td>
<td>-0.0014 (-5.413)</td>
<td>-0.0014 (-5.412)</td>
</tr>
<tr>
<td>BIODIV ((c,d))</td>
<td>-0.0319 (-1.066)</td>
<td>-0.0341 (-1.114)</td>
<td>-0.0344 (-1.123)</td>
</tr>
<tr>
<td>GRWATER ((c,d))</td>
<td>-0.0170 (-5.831)</td>
<td>-0.0227 (-5.174)</td>
<td>-0.0227 (-5.181)</td>
</tr>
<tr>
<td>HEALTH ((c,d))</td>
<td>-0.0034 (-3.385)</td>
<td>-0.0043 (-2.483)</td>
<td>-0.0044 (-2.480)</td>
</tr>
<tr>
<td>FOODEXP x income</td>
<td>0.1884(10^{-6}) (2.592)</td>
<td>0.1992(10^{-6}) (2.712)</td>
<td>0.2002(10^{-6}) (2.721)</td>
</tr>
<tr>
<td>BIODIV x female</td>
<td>-- (-1.979)</td>
<td>-0.0035 (-1.552)</td>
<td>-0.0032 (-1.522)</td>
</tr>
<tr>
<td>BIODIV x education level</td>
<td>-0.0085 (-1.060)</td>
<td>-0.0071 (-0.867)</td>
<td>-0.0070 (-0.859)</td>
</tr>
<tr>
<td>BIODIV x pesticide risk concern</td>
<td>0.00022 (0.531)</td>
<td>0.2245(10^{-4}) (0.032)</td>
<td>0.0012(10^{-5}) (0.006)</td>
</tr>
<tr>
<td>GRWATER x household with person under 15 dummy</td>
<td>-0.00066 (-0.982)</td>
<td>0.0017 (1.192)</td>
<td>0.0012 (0.507)</td>
</tr>
<tr>
<td>GRWATER x age</td>
<td>-- (1.561)</td>
<td>0.0001 (1.582)</td>
<td>0.0011 (1.575)</td>
</tr>
<tr>
<td>HEALTH x female</td>
<td>0.00071 (1.120)</td>
<td>0.0015 (1.823)</td>
<td>0.0014 (1.775)</td>
</tr>
<tr>
<td>HEALTH x dummy for household with person under 15</td>
<td>-- --</td>
<td>0.0023 (0.249)</td>
<td>0.0011 (0.319)</td>
</tr>
<tr>
<td>HEALTH x pesticide risk concern</td>
<td>-- --</td>
<td>0.0001 (0.289)</td>
<td>0.0001 (0.319)</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-2036.134 -2033.130 -2033.099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of observations</td>
<td>4074 4074 4074</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Unit trade-offs across choice attributes.

<table>
<thead>
<tr>
<th></th>
<th>Human health</th>
<th>Soil and groundwater</th>
<th>Birds biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human health</td>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Soil and groundwater</td>
<td>5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Birds biodiversity</td>
<td>9.4</td>
<td>1.8</td>
<td>1</td>
</tr>
</tbody>
</table>

4.3 RESULTS OF THE CONTINGENT VALUATION EXPERIMENT

After having responded to the series of choice modelling questions, respondents were exposed to a CV question with a dichotomous choice double-bounded format (see above). Respondents were asked to indicate whether they would have been willing to accept an increase in their household food expense to eliminate all risks related to pesticide use in agricultural production, i.e. related to both human health and the environment. This exercise allows us to calculate an “overall” WTP estimate for reducing all pesticides negative side-effects, compared to a “target specific” WTP to be inferred by means of the CM questions. What we estimate, using a dichotomous choice format, is the mean WTP for an overall increase in agricultural safety. The density functions of the WTP with a Weibull distribution are plotted in Figure 2. The mean and median WTP estimates appeared to be, respectively, a 19.78 and 15.01 percent increase in the household food expense (see Table 5).
WTP are measured as percentage of increase in the household food expense

5. Discussion and Conclusions

This study presents the results of a stated choice approach combining choice experiment and contingent valuation techniques to isolate the willingness to pay for improvements in agricultural safety for human health and environmental concerns, namely farmland biodiversity, soil and groundwater. A rather more interesting part appears to be the choice experiment in which we use a “green” food expense payment package to elicit the respondents’ preferences for alternative agri-environmental scenarios, proposing them a series of four or five choice sets made up of three possible options of agricultural practices, including the status quo. The biggest advantage of this methodology in respect to contingent valuation is that respondents were forced to make trade-offs - not only between environmental issues and money- but also among different aspects of environmental safety. These are important and typical features of environmental decision-making and, therefore, it is easy to appreciate the merits of these kinds of results.

From a statistical point of view, the results of the choice modelling experiment perform well in terms of theoretical validity. Our a priori expectation on the effect of differences in the respondents’ socio-economic profile on attribute coefficients is confirmed by the statistical analysis, with the exception of the effect of gender and education level. This suggests that some degree of
bias, probably related to the sampling process might be present to be investigated in a following experiment.

Our conditional logit models of the choice responses indicate that the choice between agricultural scenarios does depend in predictable ways on the attributes. For example, respondents consider the food shopping less attractive if the groundwater pollution generated from the food production process is increased. As well, respondents are against cheaper shopping that, on the other hand, have heavier effects on biodiversity and human health. A first result is, therefore, that respondents are capable of assessing agricultural scenarios defined by multiple attributes. Second, respondents do assess agricultural scenarios described in terms of environmental and monetary attributes as we expected, showing a positive willingness-to-pay for a gain in agricultural environmental safety.

We examine also the effects of respondents’ attitudinal and socio-demographic characteristic on their preferences, via interactions between choice attributes and explanatory variables, with a special focus on: gender, age, education level, income level, pesticide risk concern and whether in the household there are persons under 15.

Our a priori pattern of expectations is satisfied with the exception of the interaction between BIODIV and gender and BIODIV and the respondent’s education level, which show negative coefficients (Table 3, column (C) and (D) (see also Hammitt, 1990). Women are less prone to pay for bird’s biodiversity than men, while they are more prone to pay for human health than men are. While previous studies on individual preferences for pesticide related issues (Govindasamy et al., 1998a, 1998b, Foster and Mourato, 2000) show that women usually exhibit a more altruistic attitude than men, our results seem to indicate that actually women are more willing to pay for enhancing agricultural safety for themselves and the general public, while are less willing to pay for protecting biodiversity than men. To some extent our study shows that female respondents do assign a higher priority to Italians’ safety than men do.

Using a five-point Likert scale, respondents were asked to declare their level of concern on the topic proposed in the questionnaire choosing between a not at all informed and a very well informed position. The interactions between both BIODIV and HEALTH with the pesticide risk concern variable have a positive coefficient in all our models. This means that the higher the respondent’s concern on the topic of our questionnaire, the higher the WTP for human health and for birds’ biodiversity.

Importantly, consistently with what predicted by the economic theory, interaction between FOODEXP and income level produces a positive and statistically significant coefficient in all our models, even though the elasticity is rather low (0.19°4).
In addition, the survey shows that Milan’s respondents are on average willing to pay 24 Euros per household per month to avoid the loss of one species of farmland bird biodiversity, 15 Euros per household per month to avoid the contamination of one percent of farmland soil and aquifer, and 3 Euros per household per month to prevent one case per year of human ill-health. Though one might be surprised by the fact that biodiversity and groundwater got a higher value compared to human health, a comparison of unit trade-offs reveals that Milan’s respondents perceive strongly the possible risks for human health related to pesticides use, while there is much less concern about the rather vague concept of biodiversity.

6. References

8. NOTES

1. Italy has the third highest level of pesticide consumption with the 13 percent of total purchases, and a rate of consumption of about 7.7 kg of pesticide per hectare of agricultural land treated (OECD, 1991).

2. A pre-test on 40 respondents was undertaken in April 2003 in Milan.

3. A draft version of the questionnaire asked respondents to choose among a conventional package of spaghetti and spaghetti produced with wheat from more environmentally benign agricultural practices. The pilot survey showed that respondents were disturbed by a “single-green produce” perspective, being more comfortable with choices related to the whole shopping basket for foodstuff (a “green food expense” payment portfolio).

4. University campuses and shopping centers were considered to be privileged locations to maximize the visibility of our questionnaire and the sampling size, curbing the generally high costs of surveys. In university campuses interviewers asked people to pick up the questionnaire, bring it home and make it compiled by the member of the family responsible for the daily food shopping. In shopping centers, people were asked to pick up the questionnaire before shopping, compile it and drop it off to the interviewer after shopping.

5. The attribute levels used in the choice sets were: monthly food expense (actual; +50€; +100€; +200€); number of endangered bird species (15, 9, 3); % of farmland contaminated (65, 45, 15); cases of acute pesticide intoxication per year (250; 100; 50).

6. The design of the 9 choice sets is consistent with modern principles of experimental design (Bunch et al., 1993; Lazari and Anderson, 1994). In particular, we used a shifted or cyclic design, which generally has a superior efficiency compared to other strategies for generating main effects designs (Bunch et al., 1993). These shifted designs use an orthogonal fractional factorial to provide the basic alternatives for each choice set. Subsequently, the alternatives within a choice set are cyclically generated. The attribute levels of the new alternatives add one to the general level of the previous alternative, until it is at its maximum. At this point, the assignment returns to the lowest level. We started, therefore, from a set of 81 possible permutations of the hypothetical agricultural scenario (3 levels×4 attributes). Then, we generated the ‘fractional factorial’ using a simple routine in the software package SPSS®. Subsequently, we used a cyclic designed to generate 9 choice sets. These choice sets satisfy the principle of orthogonality, level balance, and minimal overlap (see Huber and Zwerina, 1996).

7. Violation of the IIA assumption may occur for various reasons, such as the inclusion of close substitutes in choice sets or the existence of random taste variations, i.e. heterogeneous preferences. Various tests have been proposed for detecting violations of the assumption of identically and independently distributed error terms, including the estimation of a mother logit (McFadden et al., 1977; McFadden, 1986). If an IIA violation is found, it may be possible to modify the existing MNL model to remove the violation, for instance by including individual characteristics in the model, or by estimating more complex models that relax part or all of the IIA assumption.

8. It is not possible to include socioeconomic and attitudinal variables directly into utility functions, as these are invariant across the alternatives in a choice set. Hence, their coefficient cannot be estimated. Instead, they have to be estimated interactively, either with the alternative-specific constant (C), or with one of the attributes from a choice set (X) (see Swallow et al. 1994):

\[V_i = C + \sum CS_h + \sum \beta_k X_k + \sum \beta_h S_h X_k \]

where \(i = 1, \ldots, N \); \(k = 1, \ldots, K \); \(h = 1, \ldots, H \); \(C \) is an alternative-specific constant, \(\beta \) is a coefficient, \(X \) is a variable representing an attribute from a choice set, and \(S \) represents socioeconomic or attitudinal variables.

9. Three different initial bid values \(B \), randomly distributed among respondents, were used in our survey: plus 10 percent; plus 15 percent, plus 20 percent of the monthly household food expense. Those respondents who accepted the first bid were then faced with increments of, respectively, 20 percent, 30 percent and 40 percent; while respondents answering “no” where faced with increments of, respectively, 5 percent, 10 percent and 10 percent.

10. One should bear in mind that for respondents who give two positive responses, the upper bound of WTP might be infinity, +\(\infty \) (or the respondent’s income); while for those who give two negative answers, the lower bound is either zero (if the distribution of WTP admits only positive values) or negative infinity, -\(\infty \), if the WTP distribution is a normal or a logistic one.

11. Hensher and Johnson (1981) comment that “the value of R-square between 0.2 and 0.4 are considered extremely good fits, so that the analysis should not be looking for values in excess of 0.9, as it is often the case for when using R2 in ordinary regression”.

12. Coefficients across all segments of the population are implicitly restricted to be equal to \(\log LR \), while coefficients of
sub-models are allowed to vary (ΣlogLM). The test statistics is $2[\Sigma \text{logLM}]-\text{logLR}$ and is distributed as a chi-squared variable with degrees of freedom equal to (dofLR-dofLM).

13. The critical value for a chi-squared distribution with one degree of freedom (3.841) is considered for sub-models based on: sex, motherhood, education, attitude and concern. For sub-models based on income level we consider the critical value for a chi-squared distribution with three degrees of freedom (7.815).

14. Respondents can show a lexicographic behaviour even when unlabelled options are used. Rizzi and Ortùzar (2003) identify three main reasons for lexicographic response patterns. One is related to a weak experimental design in which the differences in the attribute levels are simply not large enough to enable respondents to trade-off the choice attributes. A second reason could be simplification. If the cognitive effort required to answer is excessive for the respondent, he or she might choose the option that is the best in terms of just one attribute. Finally, lexicographic answers might come from respondents with random response patterns.
Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html

NOTE DI LAVORO PUBLISHED IN 2003

PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Elisaisos PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. CAPARROS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003 Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 14.2003 Maddy JANSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories
KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOVA (lix): A Stage Model of Developing an Inclusive Community
PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lix): Monopoly with Resale
PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lix): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David ETTINGER (lix): Bidding among Friends and Enemies
PRIV 24.2003 Hannu VARTIAinen (lix): Auction Design without Commitment
PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lix): Rationing in IPOs
PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lix): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lix): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe MEDA, Claudio PIAGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003 Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
IEM 81.2003
Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets

CLIM 82.2003
Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation

CLIM 83.2003
Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

CLIM 84.2003
Royer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes

NRM 85.2003
Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence

KNOW 86.2003
Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

SIEV 87.2003
Lucas BRETTSCHEIDER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

CLIM 88.2003
Johan EYCKMANS and Michael FINUS: New Roads to International Environmental Agreements: The Case of Global Warming

CLIM 89.2003
Marzio GALEOTTI: Economic Development and Environmental Protection

CLIM 90.2003
Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

CLIM 91.2003
Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries

IEM 92.2003
A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia

ETA 93.2003
Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

CTN 94.2003
Parkash CHANDER: The v-Core and Coalition Formation

IEM 95.2003
Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

IEM 96.2003
Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices

CTN 97.2003

KNOW 98.2003
John CROWLEY, Marie-Cecile NAVES: (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities

KNOW 99.2003
Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue

KNOW 100.2003
Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

KNOW 101.2003
David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

KNOW 102.2003
Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

CLIM 103.2003
Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

CLIM 104.2003
Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

CLIM 105.2003
Aul MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy

NRM 106.2003
Anne Sophie CRÉPIN (lxiv): Management Challenges for Multiple-Species Boreal Forests

NRM 107.2003
Anne Sophie CRÉPIN (lxiv): Threshold Effects in Coral Reef Fisheries

SIEV 108.2003
Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example

SIEV 109.2003
Kenneth ARROW, Partha DASGUPTA and Karl-Göran MÄLER (lxiv): Evaluating Projects and Assessing Sustainable Development in Imperfect Economies

NRM 110.2003
Anastasios XEPAPADEAS and Catarina ROSETA-PALMA (lxiv): Instabilities and Robust Control in Fisheries

NRM 111.2003
Charles PERRINGS and Brian WALKER (lxiv): Conservation and Optimal Use of Rangelands

ETA 112.2003
Jack GOODY (lxiv): Globalisation, Population and Ecology

CTN 113.2003
Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

CTN 114.2003
Guillaume HAERRINGER and Myrna WOODERS: Decentralized Job Matching

CTN 115.2003
Hideo KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems

CTN 116.2003
Somdeb LAHRI: Stable Matchings for the Room-Mates Problem

CTN 117.2003
Somdeb LAHRI: Stable Matchings for a Generalized Marriage Problem

CTN 118.2003
Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty

CTN 119.2003
Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results

CTN 120.2003
Giuliano VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation

CTN 121.2003
Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players

CTN 122.2003
Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players

CTN 123.2003
Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players

1000
Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. FISHNATHAN (Ixxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENG, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarni BRENDSTRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixxv): Equilibrium in the Two Player, k-Dougle Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSSEN (Ixxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divisible Goods Auctions: An Experimental Examination

PRA 16.2004 Marcin STRZYZOWSKI (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Sten Bou YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (Ixxv): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

NRM 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (Ixxvii): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 27.2004 Raúl Hernández MARTÍN (Ixxviii): Impact of Tourism Consumption on GDP, The Role of Imports

NRM 29.2004 Marian WEBER (Ixxv): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

NRM 30.2004 Tord BJÖRNDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxv): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Micheal FINUS (btx): International Cooperation to Resolve International Pollution Problems
KTHC 42.2004 Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
CTN 43.2004 Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
CTN 44.2004 Marc ESCRIVUELA-VILLAR: Cartel Sustainability and Cartel Stability
NRM 45.2004 Sebastian BERTOETS and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
NRM 46.2004 Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
NRM 48.2004 Ekin BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
CCMP 49.2004 Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme. Allowance Prices, Trade Flows, Competitiveness Effects
GG 50.2004 Scott BARRETT and Michael HOEL: Optimal Disease Eradication
CTN 51.2004 Dinko DIMITROV, Peter BORM, Raoul HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
SIEV 52.2004 Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
NRM 54.2004 Ingo BRAUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renaturated Streams
NRM 55.2004 Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices
NRM 56.2004 Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
CCMP 57.2004 Katrin REHDANZ and David MADDISON: The Anenity Value of Climate to German Households
NRM 59.2004 Valentina BOSETTI, Mariäester CASSINELLI and Alessandro LANZA (lxvi): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
NRM 60.2004 Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
CCMP 61.2004 Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
NRM 63.2004 Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
NRM 64.2004 E.C.M. RULIGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
ETA 66.2004 Giannis VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
GG 67.2004 Anastasios XEPAPADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
GG 68.2004 Michael FINUS: Modesty Pays: Sometimes!
NRM 69.2004 Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
CTN 70.2004 Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAI: On Coalition Formation with Heterogeneous Agents
IEM 71.2004 Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
IEM 72.2004 Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
CCMP 74.2004 Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
ETA 75.2004 Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
CTN 76.2004 Salvador BARBERÁ and Matthew O. JACKSON (lxv): On the Weights of Nations: Assigning VotingWeights in a Heterogeneous Union
CTN 77.2004 Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUÍMERA and Fernando VEGA-REDONDO (lxv): Optimal Information Transmission in Organizations: Search and Congestion
CTN 78.2004 Francis BLOCH and Armando GOMES (lxv): Contracting with Externalities and Outside Options
CTN 79.2004 Rabab AMIR, Effrosyni DIAMANTOUDI and Licun XUE (lxx): Merger Performance under Uncertain Efficiency Gains

CTN 80.2004 Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

CTN 81.2004 Daniel DIERMEIER, Hulya ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation

CTN 82.2004 Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization and Coalition Government Formation

CTN 83.2004 Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

CTN 84.2004 Sanjeev GOYAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

IEM 86.2004 Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

KTHC 87.2004 Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income

IEM 89.2004 A. MARKANDYA, S. PEDROSO and D. STREIMIKIENE: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

GG 90.2004 Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

PRA 91.2004 Sergei IZMALKOV (lxv): Multi-Unit Open Ascending Price Efficient Auction

KTHC 92.2004 Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures

KTHC 93.2004 Massimo DEL GATTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution

CCMP 94.2004 Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

CCMP 95.2004 Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

CCMP 96.2004 Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

CTN 97.2004 Gustavo BERMUDEZ and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

CTN 98.2004 Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

GG 99.2004 Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

SIEV 100.2004 Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents
2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>