

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Weikard, Hans-Peter; Altamirano-Cabrera, Juan-Carlos; Finus, Michael

Working Paper The Impact of Surplus Sharing on The Stability of International Climate Agreements

Nota di Lavoro, No. 99.2004

Provided in Cooperation with: Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Weikard, Hans-Peter; Altamirano-Cabrera, Juan-Carlos; Finus, Michael (2004) : The Impact of Surplus Sharing on The Stability of International Climate Agreements, Nota di Lavoro, No. 99.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at: https://hdl.handle.net/10419/117974

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

The Impact of Surplus Sharing on the Stability of International Climate Agreements

Hans-Peter Weikard, Michael Finus and Juan-Carlos Altamirano-Cabrera

NOTA DI LAVORO 99.2004

JUNE 2004

GG – Global Governance

Hans-Peter Weikard and Juan-Carlos Altamirano-Cabrera, Department of Social Sciences, Environmental Economics and Natural Resources Group, Wageningen University Michael Finus, Department of Economics, Hagen University

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index: http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei

The Impact of Surplus Sharing on The Stability of International Climate Agreements

Summary

This paper analyses stability of coalitions for greenhouse gas abatement for different sharing rules applied to the gains from co-operation. We use a 12-regions model designed to examine internal and external stability of coalitions (STACO). We compare different sharing rules like, for example, grandfathering *(i.e.* sharing proportional to emissions) and a number of so-called equitable rules like, for example, sharing proportional to population or according to historical responsibilities. Due to strong free-rider incentives we find only small stable coalitions for all sharing rules examined. As a general pattern we observe that coalitions consist of regions with low marginal abatement costs, which are attractive partners in any coalition, and regions which have the highest claims according to the respective sharing rule. Furthermore, we find that a grandfathering scheme leads to the largest and – in terms of greenhouse gas abatement – most successful coalition, while many of the equitable rules achieve very little.

Keywords: International environmental agreements, Sharing rules, Stability of coalitions

JEL Classification: D62, D63, Q25

We would like to thank Rob Dellink and Ekko van Ierland for comments and Niels Olieman and Elena Sáiz for help with programming and computations.

Address for correspondence:

Hans-Peter Weikard Department of Social Sciences Environmental Economics and Natural Resources Group Wageningen University Hollandseweg 1 NL-6706 KN Wageningen The Netherlands E-mail: Hans-Peter.Weikard@wur.nl

1 Introduction

The distribution of emission rights ranks high on the international agenda to reach agreements to reduce greenhouse gases (GHGs) and to mitigate climate change. Emission rights in the form of tradable permits are seen as a cost-effective instrument to achieve emission reduction targets for GHGs. However, the introduction of new property rights raises distributional concerns. Grandfathering schemes that allocate tradable permits proportional to emissions in a base year have been criticised for giving advantage to the largest polluters. In the course of the discussion a number of alternative suggestions have been brought forward, summarised by Rose (1992), Barrett (1992), Kverndokk (1995) and Rose *et al.* (1998). Following Rose *et al.* (1998) it is useful to distinguish three different types of rules for equitable sharing: allocation based rules which apply to the initial distribution of emission reductions, and process based rules which comprise criteria for fair decision-making.

This paper deals with outcome based sharing rules. But both, our focus and our approach, are different from previous studies of outcome based rules because we do not stipulate the existence of a binding international agreement. Rather we examine the possibility of self-enforcing agreements. In the absence of an enforcing supra-national body an international environmental agreement will have to be self-enforcing (Barrett 1994). In this paper we study the impact of different rules to share the gains from cooperation on the stability of international climate agreements.

International environmental agreements have be described as games of coalition formation and have been studied by Hoel (1992), Barrett (1994), Na and Shin (1998) and others; see Bloch (2003) for a general survey of coalition formation games and Finus (2003) for a survey focusing on international environmental agreements. It is our prime interest in this paper to examine the stability of international climate coalitions under different surplus sharing rules. This problem has not yet received any attention. The work that comes closest to this paper is by Altamirano-Cabrera *et al.* (2004) who consider the impact of permit distribution on coalition stability, *i.e.* they consider allocation based rules. Bosello *et al.* (2003) have examined the impact of "outcome based equity criteria" on coalition stability, however, their equity concept is severely biased; they consider only equality on the abatement cost side and they disregard of the distribution of benefits from abatement completely.

To analyse stability of international climate agreements we employ a cartel formation game with open membership introduced by d'Aspremont *et al.* (1983). The game is a two-stage game. At stage one players decide whether or not to participate in an international agreement.

Those who decide to participate form a coalition.¹ We refer to those who do not participate as singletons. At stage two the coalition behaves like a single player; each singleton region and the coalition set emission reduction levels as an optimal response to others' emissions. For a singleton it is optimal to reduce emissions such that marginal abatement costs equal marginal benefits from a reduction of damages. Since emission reduction is a global public good, it is optimal for a coalition to reduce emissions such that the sum of the marginal benefits of all coalition members equal the marginal abatement costs. Payoffs are calculated from costs and benefits of abatement assuming the coalition employs a given sharing rule. The (subgame perfect) equilibria of the game coincide with the set of stable coalitions; see Finus *et al.* (2003). A coalition is stable if no member has an incentive to leave the coalition (internal stability) and no singleton player has an incentive to join (external stability).

In our specification of the game (see section 4 for details) any coalition of two or more regions will always generate a surplus for its members as compared to the case where all regions are singletons; but it will also generate positive spillovers to non-members. Although there is a surplus, there will still be incentives to free-ride. An important factor determining the free-rider incentives is the distribution of the surplus between coalition members, *i.e.* the sharing rule applied. We determine stable international climate coalitions for eight different sharing rules using a regionalised global model (12 regions) in which marginal costs of and marginal benefits from a reduction of GHGs are specified for each region. The model, called STACO, is designed to analyse the stability of coalitions. It has been introduced by Finus *et al.* (2003) and it has been used in subsequent work by Finus *et al.* (2004) and Altamirano-Cabrera *et al.* (2004).

We find that, in general, coalitions consist of regions with low marginal abatement costs, which are attractive partners in any coalition, and regions which receive the largest share of the coalition surplus under a given sharing rule. While we do not claim that the empirical specification of the STACO model reflects the current knowledge on the impacts of climate change in all details, it reflects the main inter-regional differences of GHG abatement costs and damage costs of climate change. Therefore, our results may be instructive for the future design of climate policies.

The next section introduces a formal model of coalition formation. Stability of international climate coalitions depends on how the gains from cooperation are shared. We assume that sharing is based on claims and a rule how surplus shares are derived from claims. Section 3 discusses the selection of a surplus sharing rule. We go one step beyond the consideration of the *ad hoc* rules presented by Rose *et al.* (1998) and provide a rationale for the use of

¹ There is only a single coalition ("the cartel") and every player is free to join; this explains the name "cartel formation game with open membership".

proportional sharing. However, an *ad hoc* element remains regarding what constitutes a claim. Section 4 introduces the empirical specification of the model introduced in section 2. Section 5 presents the results of the stability checks for a sample of reasonable claims. Section 6 concludes.

2 Coalition formation and coalition stability

We apply the cartel formation game introduced by d'Aspremont *et al.* (1983) to the case of GHG abatement. The game proposed is a two-stage game where a coalition forms at the first stage; at the second stage abatement decisions are taken. To explain the structure of the game and its most important characteristics we first consider a simple transboundary pollution game without coalition formation (Mäler 1989, Folmer and von Mouche 2000). Then, we introduce coalition formation.

Consider a simple transboundary pollution game. Let $N = \{1, 2, ..., n\}$ be a set of players (regions). Suppose each player *i* has an initial level of uncontrolled emissions $\overline{e_i}$ and each player adopts a pollution control strategy (abatement level) $q_i \in [0, \overline{e_i}]$. In the case of GHGs abatement q_i is a pure public good. Each player receives benefits b_i from total abatement $q = \sum_{i \in N} q_i$ and incurs costs c_i for own abatement q_i . We assume $db_i / dq > 0$, $d^2b_i / dq^2 \le 0$, $dc_i / dq_i > 0$ and $d^2c_i / dq_i^2 > 0$. Individual payoffs are

$$\pi_i = b_i(q) - c_i(q_i)$$

Further specifications of benefits and costs are provided in section 4. In the equilibrium each player adopts an abatement level q_i which is an optimal response to others' emissions. It holds for each player that marginal benefits equal marginal abatement costs. Under a set of standard assumptions about production and damage cost functions and under a regularity assumption² such transboundary pollution game has a unique interior Nash equilibrium if pollution is uniformly distributed (Folmer and von Mouche 2000, Proposition 3). As this condition applies to GHGs we will have a unique Nash equilibrium in a simple (no coalitions) GHG emissions game. Denote the Nash equilibrium abatement of player $i q_i^*$, then the Nash equilibrium payoffs are

$$\pi_i^* = b_i(q^*) - c_i(q_i^*).$$

This serves as a benchmark for the following.

² The regularity assumption guarantees an interior solution. It requires that both, some small amount of emissions and some small amount of abatement, will be beneficial.

We now consider coalition (cartel) formation. At the first stage each player chooses a strategy σ_i from a strategy set $\sigma_i \equiv \{0,1\}$; $\sigma_i = 0$ means that *i* is not joining the coalition; $\sigma_i = 1$ means that *i* is joining the coalition. Denote $K \subseteq N$ the set of *k* coalition members; $|K| \equiv k$. As there is only a single coalition, if any, we will also refer to *K* as a coalition structure. If $k \leq 1$ the singletons coalition structure emerges. Given a non-trivial coalition *K* with $k \geq 2$, the coalition maximises the joint payoff of the coalition members at the second stage. The game played at stage two is the simple transboundary pollution game described above where the coalition K and n-k singletons are the players; *i.e.* there are n-k+1 players. Hence, (i) the coalition adopts an abatement strategy which is an optimal response to others' emissions; and (ii) each singleton player adopts an abatement level which is an optimal response to others' emissions are as follows.

For singleton players we obtain the payoffs:

$$\pi_i^K = b_i(q^K) - c_i(q_i^K) \quad \text{for all } i \in N \setminus K$$

For coalition members a sharing rule applies. A sharing rule assigns a share s_i of the coalition surplus S^K to every coalition member $i \in K$. The coalition surplus S^K is defined as the joint gain of the coalition members compared with their payoff in the benchmark situation of a singletons coalition structure. Formally,

$$S^{K} = \sum_{i \in K} \left(b_{i}(q^{K}) - c_{i}(q^{K}_{i}) \right) - \sum_{i \in K} \pi_{i}^{*} .$$

The payoff of a coalition member is given by her benchmark payoff plus her share of the coalition surplus.

$$\pi_i^K = \pi_i^* + s_i \cdot S^K$$
 for all $i \in K$.

An important special case to consider is the case of the grand coalition, K = N. The grand coalition will internalise all externalities of GHG emissions and adopt a Pareto efficient abatement strategy. The resulting abatement strategy profile $(q_1^N, ..., q_n^N)$ is unique (see Folmer and von Mouche 2000, Theorem 1).

3 Sharing rules

Regions which join an international agreement will do so to secure a benefit from cooperation. Whether there is a benefit for an individual region and how large this benefit will be is a matter of the sharing rule used to distribute the overall benefit within the coalition. Note that, although there is a benefit from cooperation, a coalition might not be stable because the benefit from free-riding is even larger. Hence, a given coalition faces a surplus sharing problem and the rule according to which the surplus is shared is important for the decision of a region whether or not to join.

Formally a surplus sharing problem is a triple $\langle K, \lambda, S \rangle$ where $K \subseteq N$ is a set of *k* coalition members; $\lambda = (\lambda_1, ..., \lambda_k) \in \mathbb{R}^k_+$ is vector of individual claims of the coalition members; $S \in \mathbb{R}_+$ is the surplus to be shared. Claims are based on characteristics that are considered relevant for the sharing problem. This will be discussed below. Let Ω be the set of all surplus sharing problems. A solution to a surplus sharing problem, called sharing rule, is a mapping $\mathcal{R}: \Omega \to \mathbb{R}^k_+$, *i.e.* a rule \mathcal{R} assigns a payoff vector $s = (s_1, ..., s_k)$ to every surplus sharing problem $\langle K, \lambda, S \rangle$, and $\sum_{i=1}^k s_i = S$. Hence, a sharing rule is always efficient in the sense that it distributes the entire surplus.³

Following Moulin (1987) and, particularly, Pfingsten (1991) we require that a sharing rule satisfies the following properties:

Anonymity: For all $i, j \in K$, all $\lambda \in \mathbb{R}_+^k$, and all $S \in \mathbb{R}_+$, $\lambda_i = \lambda_j \Longrightarrow s_i = s_j$.

Surplus monotonicity: For all $i \in K$, all $\lambda \in \mathbb{R}^k_+$, and all $S, S' \in \mathbb{R}_+$, $S > S' \Rightarrow s_i(K, \lambda, S) \ge s_i(K, \lambda, S')$.

Additivity: For all $i \in K$, all $\lambda \in \mathbb{R}^k_+$ and all $S, S' \in \mathbb{R}_+$, $s_i(K, \lambda, S + S') = s_i(K, \lambda, S) + s_i(K, \lambda, S')$.

Separability: For all $i \in K$, all $H \subset K$ and $H \neq \emptyset$, all $\lambda, \lambda' \in \mathbb{R}^k_+$, and all $S, S' \in \mathbb{R}_+$, $\lambda_i = \lambda'_i$ for all $i \in H$ and $\sum_{i \in H} s_i(K, \lambda, S) = \sum_{i \in H} s_i(K, \lambda', S') \implies s_i(K, \lambda, S) = s_i(K, \lambda', S')'$.

Anonymity requires equal treatment of equals. Surplus monotonicity says that no one should loose if the surplus increases. Additivity says that payoffs should not change if the surplus is paid out in two instalments instead of one. Separability is a subgroup consistency requirement which says that individual payoffs in every subgroup depend only on the claims of the players in the subgroup and the subgroup's surplus. Anonymity and Surplus monotonicity are hardly debatable. We would argue that Additivity applies to the case at hand. As the true damages of climate change and, hence, the true benefits of abatement become known at a later stage, the distribution should not depend upon the pattern of how benefits become available. The case for Separability is that it should not matter for the final outcome whether a player receives her

³ This is a formal definition of a sharing rule when claims are given; in other sections of the paper we use the term "sharing rule" in a broader sense reflecting also claims.

share of the coalition surplus directly or whether payment is received by a subcoalition who then distributes the joint share of the surplus to its members.

Pfingsten (1990) has shown that these properties characterise a family of sharing rules:⁴

PROPOSITION 1 (Pfingsten): A sharing rule \mathcal{R} satisfies Anonymity, Surplus monotonicity, Additivity and Separability if and only if \mathcal{R} is either

(i) equal sharing: $s_i(K,\lambda,S) = \frac{1}{k}S$, (ii) proportional sharing $s_i(K,\lambda,S) = \frac{\lambda_i}{\sum_{j \in K} \lambda_j}S$, or (iii) a combination of (i) and (ii) $s_i(K,\lambda,S) = \frac{\lambda_i}{\sum_{j \in K} \lambda_j} \alpha S + \frac{1}{k}(1-\alpha)S$, where $0 < \alpha < 1$.

As *Anonymity*, *Surplus monotonicity*, *Additivity* and *Separability* are defendable properties for the case of coalitions for GHG abatement, proposition 1 characterises the set of reasonable sharing rules.

In what follows we consider a set of 8 sharing problems which differ with respect to what constitutes a claim. One can apply different rules to these sharing problems (equal sharing, proportional sharing and combinations), our focus is, however, on proportional sharing.

<u>Egalitarian claims:</u> $\lambda_i = \lambda_i$, for all *i*, *j*.

All players (regions) have equal claims. Egalitarian claims seem not to be convincing in the case of climate coalitions of heterogeneous regions. But still we include this case as a benchmark case because proportional sharing under egalitarian claims coincides with equal sharing.

<u>Regional income claims:</u> $\lambda_i = GDP_i$,

where GDP_i is region *i*'s gross national product in a base year. This rule has also been dubbed "horizontal equity" by Rose *et al.* (1998). One appealing feature of the rule is that it maintains relative welfare positions.

<u>Population claims:</u> $\lambda_i = pop_i$,

⁴ In the proof Pfingsten (1991) also uses a property called *No advantageous reallocation* which requires that the coalition surplus is independent of the distribution of claims. This always holds in the GHG abatement game analysed in this paper.

where pop_i is region *i*'s population in a base year. The motivation for this rule is straightforward: If individuals have equal rights to the global commons, gains from cooperation should be distributed evenly across the global population.

<u>Ability-to-pay claims</u>: $\lambda_i = (GDP_i / pop_i)^{-\gamma}, \gamma > 0.$

Regions with a lower per capita income have a larger claim. Under this rule climate policy is used a means to reduce inequality. So the motivation stems from outside climate policy. The distribution may be guided by some principle of "international justice".

```
<u>Emissions claims</u>: \lambda_i = e_i,
```

where e_i are region *i*'s emissions in a base year. Emissions claims can be interpreted as historical rights.

<u>Inverse emissions claims</u>: $\lambda_i = e_i^{-\gamma}$ with $\gamma > 0$.

Regions with a higher emissions share receive a lower share of the gains from cooperation. These claims reflect historical responsibilities.

<u>Damage cost claims</u>: $\lambda_i = d_i$,

where d_i is the net present value of region *i*'s damages from climate change. After implementation of abatement policies, some damages due to climate change will still remain. Those who suffer larger damages, should receive a larger compensation.

<u>Abatement cost claims:</u> $\lambda_i = c_i$,

where c_i is the net present value of region *i*'s abatement cost. The coalition surplus can be interpreted as a return to abatement investments. Who bears larger costs should be entitled to a larger share of the surplus.

Of course, a longer list of possible claims could be generated. Next to egalitarian claims which serve as a benchmark we include income, population and ability-to-pay claims because they have received extensive discussion by Rose *et al.* (1998). Emissions claims are probably the most prominent and are the outcome based analogue to a grandfathering scheme of emission permits. Inverse emission claims, which reflect historical responsibilities, are less prominent in economic analysis, but they have received some discussion in philosophy (Gosseries 2004, Weikard 2004). We have included damage cost and abatement cost claims because they reflect different views on compensation. Marginal damage cost claims seem worth considering as they have been discussed in the literature (cf. Chander and Tulkens 1995). However, our empirical results are derived using a linear damage cost function. In this case, the use of marginal damage cost claims will lead to the same result as the use of damage cost claims. Marginal abatement cost claims have not been included because the optimal abatement strategy for the coalition requires equal marginal abatement cost for all coalition members; hence, such claims will lead to equal sharing.

4 Empirical model and data

In order to examine the sharing problems described in the previous section we adopt a 12regions model, called STACO, introduced by Finus *et al.* (2003). STACO considers a baseline scenario of growing emissions over a 100 years time horizon. A discount rate of 2% is used for intertemporal aggregation to calculate the net present values of costs and benefits of abatement.

STACO uses a specification of regional abatement cost functions from Ellerman and Decaux (1998). Marginal abatement costs are specified as $a'_i(q_i) = \xi_i q_i^2 + \zeta_i q_i$, where $\xi_i, \zeta_i > 0$ are regional parameters. The model regions are the following: United States (USA), Japan (JPN), European Union (EEC), other OECD countries (OOE), Eastern European countries (EET), former Soviet Union (FSU), energy exporting countries (EEX), China (CHN), India (IND), dynamic Asian economies (DAE), Brazil (BRA), and all remaining other countries (ROW). STACO considers constant abatement paths; abatement costs are assumed to be constant over time. Table 1 gives discounted marginal abatement costs for a uniform abatement level across regions (column 2). Furthermore, Table 1 reports emissions reductions for the Nash equilibrium of the singletons coalition structure (column 3), and the corresponding marginal and total abatement costs (columns 4 and 5). Emissions reductions and marginal and total abatement costs are also reported for the grand coalition (columns 6-8). It can be seen from column 2 that, for a uniform abatement level, CHN has the lowest marginal abatement costs followed by USA and FSU while BRA has by far the highest. CHN, USA and FSU have high emissions levels (see Table 2, column 5) and cheap abatement options, while BRA's abatement options are expensive due to low emissions levels. For the singletons coalition structure the picture changes. EET and BRA have the lowest marginal abatement cost while EEC and USA have the highest. In this case each region equates marginal abatement costs with marginal damage costs which causes USA and EEC to adopt high levels of abatement while BRA chooses to abate very little. Under a grand coalition 37 % of the global abatement will take place in CHN since CHN provides the cheapest abatement options. One can presume that CHN is an attractive partner in any stable climate coalition that might emerge.

The STACO model uses a linear approximation of the damage cost function of the DICE model introduced by Nordhaus (1997). Moreover, the damage cost function is rescaled using estimates of Tol (1997). Global benefits from abatement are defined as avoided damages. Regional benefits are calculated as shares of global benefits from abatement based on estimates from Fankhauser (1995) and Tol (1997); see Finus *et al.* (2003). The shares are reported in Table 2, column 7. Because STACO uses a linear benefits function marginal benefits are constant and are reported in Table 1, column 4 (recall that for each region marginal benefits equal marginal abatement costs for the singletons coalition structure).

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	_	Singletor	ns coalition s	tructure	G	rand coalition	
Region	Marginal	Emissions	Marginal	Total	Emissions	Marginal	Total
	abatement	reduction	abatement	abatement	reduction	abatement	abatement
	costs at		costs	costs over		costs	costs over
	50 Mton/year			100 years			100 years
	(\$/ton)	(Mton/year)	(\$/ton)	(bln \$)	(Mton/year)	(\$/ton)	(bln \$)
USA	1.40	162.3	8.46	53.33	379	37.4	513
JPN	55.84	7.7	6.45	2.44	36	37.4	63
EEC	5.82	66.2	8.83	24.22	161	37.4	229
OOE	8.94	19.0	1.29	0.82	102	37.4	127
EET	9.56	9.3	0.49	0.18	102	37.4	130
FSU	2.57	49.6	2.52	4.24	193	37.4	242
EEX	9.98	7.9	1.12	0.43	124	37.4	188
CHN	0.59	154.9	2.32	16.09	956	37.4	1,348
IND	3.31	33.6	1.87	2.73	216	37.4	295
DAE	13.20	5.4	0.93	0.24	102	37.4	155
BRA	787.81	0.2	0.57	0.00	7	37.4	12
ROW	4.00	37.2	2.54	3.95	185	37.4	250
World		553.2		108.68	2,563	37.4	3,553

Table 1: Benchmark cases: singletons coalition structure and grand coalition

Source: Finus et al. (2003), own calculations.

As explained in section 2 any coalition chooses a level of abatement where marginal abatement costs (for each of the coalition members) equals the sum of the marginal benefits from abatement. Under the STACO specification benefits are linear in abatement. In a transboundary pollution game the following holds:

PROPOSITION 2 (Folmer and von Mouche): Under linear damage costs (constant marginal damage costs) players have a dominant abatement strategy.

No coalition or singleton will adjust its strategy if others change theirs, because there is no change in marginal damage cost. Proposition 2 states an important feature of the STACO specification. That regions have a dominant strategy in the global pollution game implies that there is no "leakage". Members of a non-trivial coalition will abate more compared with the singletons coalition structure. This additional abatement is *not* offset by less abatement of the remaining singletons, as they have dominant strategies. Note that this feature does not generally apply in a broader class of transboundary pollution games.

The information on benefits and costs of abatement described above is sufficient to determine the payoffs for every singleton or coalition in the global pollution game. To determine the payoffs and equilibria of the coalition formation game we need information on the sharing of coalition surplus. Surplus is shared proportional to claims. Table 2 presents the input data for the claims specified in section 3. The table does not report egalitarian claims which are the same for all. Also the table does not report abatement cost claims which are coalition sensitive.

Coalition membership is most attractive for a region if it has a high claim and receives a large share of the surplus. So we expect to find EEC and USA in a coalition if surplus sharing is according to income or damages. EEX and CHN receive the largest shares under population claims, CHN and IND under ability-to-pay claims, USA and CHN under emissions claims, and BRA and DAE under inverse emission claims.

Table 2: Overview of claims

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Regions	Income	Population	Ability-to-	Emissions	Inverse	Damage
	(a)(b)	(D)(C)	pay ^(d)	in 2010 ^(e)	emissions	cost
					in 2010 ^(f)	shares ^(g)
	(billion	(million in-				
	US\$)	habitants)	(US\$) ⁻¹	(Gton)	(Gton)⁻¹	(%)
USA	8845	305	431	2.42	0.41	22.6
JPN	5584	124	386	0.56	1.80	17.3
EEC	9579	375	445	1.40	0.71	23.6
OOE	1902	142	523	0.62	1.61	3.5
EET	405	120	736	0.51	1.93	1.3
FSU	501	287	863	1.00	1.00	6.7
EEX	1650	1602	1000	1.22	0.82	3.0
CHN	1021	1340	1057	2.36	0.42	6.2
IND	458	1145	1257	0.63	1.56	5.0
DAE	972	207	679	0.41	2.47	2.5
BRA	774	190	703	0.13	7.81	1.5
ROW	1119	584	852	0.70	1.43	6.8
WORLD	32810	6421	-	11.96	-	100.0

Notes: (a) Data refer to the level of GDP in 2010 in 1985 US\$. Global figure for 2010 level taken from DICE model and regional shares from table 1.1 of World Bank (2002). (b) Data for individual countries was aggregated into our 12 regions following Babiker et al. (2001). (c) Data refer to the level of population in 2010. Extrapolated figures from 2000 levels using information from table 2.1 of World Bank (2002). (d) From columns 2 and 3 for $\gamma = 0.25$. (e) Own calculations from STACO. (f) From column 5 for $\gamma = 1$. (g) STACO calibration, Finus et al. (2003).

5 Results and discussion

The STACO model is used to generate the payoffs for every possible coalition structure $(2^{12}-12 = 4084 \text{ in a } 12 \text{ regions model})$ for the sharing schemes described above. STACO performs a stability check and identifies the internally stable coalitions (where no member would want to leave) and the externally stable coalitions (where no singleton would want to join). The findings for the 8 sharing schemes and the benchmark cases (singletons coalition structure and the grand coalition) are summarised in Table 3.⁵ The stable coalitions for each scheme are listed in column 2. Column 3 reports the global annual emission reduction and columns 4-6 report costs, benefits and the resulting net benefits from abatement. Note that a considerable amount of benefits is obtained under the singletons coalition structure. The additional net benefits due to coalition formation are reported in column 7 as the sum of coalition surplus and external benefits; in column 8 this is expressed as a percentage.

There are several findings. It can be seen from Table 3, column 7, that for all sharing rules considered the remaining singletons receive large shares of the benefits generated by the

⁵ For a more detailed discussion of the benchmark cases see Finus *et al.* (2003).

coalition. This indicates that there are strong incentives to free-ride. Accordingly, the stable coalitions we find are small and comprise of only two regions for most sharing schemes, but larger stable coalitions of three or four regions exist for some sharing schemes. However, transfer schemes enhance stability. We find stable coalitions for all rules considered. For comparison, Finus *et al.* (2003) look at results from the STACO model without considering transfers; they do not find any stable coalition in this case.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Sharing scheme	Members of	Global	Global	Global	Global net	Coalition	Benefits
(benchmark case)	coalition	annual	abatement	benefits	benefits	surplus +	relative to
		emissions	costs			external	grand coalition
		reduction				benefit	
		Mton	bln US\$ over	bln US\$ over	bln US\$ over	bln US\$ over	%
			100 years	100 years	100 years	100 years	
(Singletons)*		553	109	2,069	1,960	0+0	0.0
(Grand coalition)*	USA, JPN, EEC,	2563	3,553	9,584	6,031	4071+0	100.0
	OOE, EET, FSU,						
	EEX, CHN, IND,						
	DAE, BRA, ROW						
Egalitarian	EET, CHN, IND	711	159	2,658	2,499	22+516	13.2
Regional income	EEC, CHN	870	311	3,253	2,942	151+831	24.1
Population	EEX, CHN	620	127	2,317	2,190	4+226	5.7
Ability-to-pay	EET, FSU, CHN	731	172	2,735	2,563	32+571	14.8
	EET, EEX, CHN	665	140	2,485	2,346	12+374	9.5
	EET, CHN, IND	711	159	2,658	2,499	22+516	13.2
Emissions	USA, EET, EEX,	1030	436	3,854	3,418	264+1194	35.8
	CHN						
Inverse emissions	EET, BRA	559	109	2,090	1,981	0.2+21	0.5
	CHN, BRA	582	116	2,176	2,059	1+98	2.4
Damage cost	USA, CHN	874	314	3,270	2,956	142+854	24.5
-	EEC, CHN	870	311	3,253	2,942	151+831	24.1
Abatement cost	USA, CHN	874	314	3,270	2,956	142+854	24.5
	JPN, CHN	796	237	2,976	2,739	85+694	19.1
	OOE, CHN	626	129	2,341	2,212	6+246	6.2
	FSU, CHN	683	154	2,553	2,398	17+421	10.8
	EEX, CHN	620	127	2,317	2,190	4+226	5.7
	CHN, IND	662	143	2,477	2,334	11+363	9.2
	CHN, ROW	683	155	2,555	2,400	17+423	10.8

Table 3: Overview of results

* The benchmark cases are not stable coalition structures.

The design of the transfer schemes is important. Our result is strikingly different from the findings of Altamirano-Cabrera *et al.* (2004) who consider sharing of emission permits and not, as in this paper, sharing of net benefits from coalition formation. Altamirano-Cabrera *et al.* (2004) find a total of 4 stable coalitions for grandfathering schemes of emission permits; they do not find any stability for any of the "equitable rules" they consider. To understand the difference notice that the following holds:

PROPOSITION 3: In a climate coalition (cartel) formation game with linear abatement benefits and with surplus sharing all two-player coalitions are internally stable.

Proof: In such game abatement is a global public good. Consider coalitions K' and K with $K' \subset K$ and $K' \neq \emptyset$. It holds that $q^K > q^{K'}$ as the larger coalition will abate more and the singletons maintain their dominant strategy (Proposition 2). Hence, it also holds that the

coalition surplus is increasing in coalition size, $S^K > S^{K'}$. Suppose now K' = 1. Then, for any two-player coalition K, it holds that $\sum_{i \in K} \pi_i(K) > \sum_{i \in K} \pi_i^*$. Hence, there always exists a positive surplus to be shared and for all $i \in K : \pi_i(K) > \pi_i(K - \{i\}) = \pi_i^*$.

We observe that the use of egalitarian claims, population claims, ability-to-pay claims and inverse emission claims is not very successful in terms of emission reduction and in terms of net benefits as compared to the singletons case. Abatement cost claims give a mixed picture. Sharing according to regional income and damages is more successful. The best results are obtained when claims are according to emissions. The stable coalition found for that case comprises of USA, EET, EEX and CHN and achieves about 35% of the gains that the grand coalition would achieve.

Another observation is that CHN always joins the coalition except for the "extreme" case of inverse emissions. The explanation here is straightforward. Due to low marginal abatement cost CHN is an attractive partner in a coalition. But it depends on the sharing rule who will sign an agreement with CHN. For example, with an equal sharing rule USA or EEC are not involved. On equal sharing CHN would receive a too large share of the surplus and it is better for USA or EEC to take a free-rider position. A similar situation arises with sharing according to population or ability-to-pay. The situation is different with income claims and damages claims. In these cases USA or EEC can reap more of the benefits, sufficiently much to make the free-rider position unattractive.

In the "extreme case" of inverse emissions there are coalitions with BRA. The intuitive explanation is as follows. With inverse emission claims BRA has by far the largest claim. This makes it attractive for BRA to join any existing coalition which makes them externally unstable. Coalitions with BRA, however, are unattractive for other coalition partners, which makes them internally unstable, unless the coalition is of size 2 (see Proposition 3). Also note that BRA has little options for CO_2 emission abatement and, hence, high abatement costs. Coalitions with BRA achieve very little as compared to the singletons benchmark case.

More generally, the following pattern emerges. As CHN has by far the lowest abatement costs, it has an incentive to join (almost) any two-player coalition. CHN's low cost abatement options generate a high coalition surplus of which it receives a sufficient share under almost every reasonable rule. Therefore, (almost) every two-player coalition not involving CHN will be externally unstable. Hence, if a two-player coalition is stable it is likely to involve CHN. From proposition 3 we know that every two-player coalition is *internally* stable. However, it is, in general, attractive for others to join a coalition including CHN, in particular for regions with large claims. Thus, where we find stable two-player coalitions they will consist of CHN and the region with the largest claim. This pattern applies in a straightforward manner to income claims ({EEC, CHN}), population claims ({EEX, CHN}), inverse emission claims ({CHN, BRA}), and damage cost claims ({USA, CHN} and {EEC, CHN}). This simple

pattern does not apply to abatement cost claims as abatement costs are coalition dependent. In this case, seven (out of eleven) two-player coalitions with CHN are stable.

In the remaining cases of equal sharing, ability-to-pay claims and emissions claims we find coalitions of size three or more. The subsequent analysis seeks to identify the factors which are relevant for the composition of stable coalitions. Can we identify regions that are more likely to join a coalition than others? In general, in our setting, regions are described by three parameters: marginal abatement cost, marginal benefits, and the claims to a coalition surplus. For the decision whether or not to join a coalition a region compares its share of the surplus when joining a coalition with its free-rider surplus. First, consider the impact of marginal abatement costs. Regions which have low marginal abatement costs contribute more to the size of the coalition surplus. Hence, with other things equal, we would expect to find the regions with the lowest marginal abatement costs in a coalition. Second, the impact of marginal benefits is ambiguous. On the one hand, high marginal benefits stimulate coalition partners to abate more which contributes to a higher coalition surplus. On the other hand high marginal benefits are an incentive to free-ride. One can define a free-rider surplus as the product of marginal benefits from abatement and the additional abatement of the coalition (compared to the singletons coalition structure).⁶ We presume that high marginal benefits cause stronger incentives to free-ride than incentives to join the coalition. This is because the additional surplus of joining will have to be shared with other coalition members. Other things being equal a region is more likely to be in coalition if its marginal benefits are low. Third, with unequal claims, a region is more likely to join a coalition if its claims are high.

We use this argument to construct a rough indicator for the relative advantage from coalition membership. We use the following ingredients: (i) marginal abatement cost at 50 Mton per year (Table 1, column 3), c', (ii) marginal benefits (Table 1, column 5), b', and (iii) the share of total claims (Table 2). Rescaling the cost and benefits parameters, we propose the following coalition membership index *I*:

$$I = \frac{\ln(1+b'_i)}{\ln(1+c'_i)} \cdot \frac{1}{\left(\ln(1+b'_i)\right)^2} \cdot \frac{\lambda_i}{\sum_{j \in \mathbb{N}} \lambda_j}.$$

The first factor captures surplus size; the second captures free-rider incentives; the third captures 'the size of a region's share in a coalition. A region is more likely to be a coalition member if it has a high coalition membership index, that is if its marginal abatement costs are low, if its marginal benefits are low, and if its share of the surplus is high. Of course, such indicator cannot work "precisely" as marginal abatement cost and the share of the surplus a

⁶ Marginal benefits are assumed to be constant and are given in Table 1 column 5; in the singletons coalition structure marginal benefits equal marginal abatement costs.

region receives will be coalition dependent. A general coalition membership index cannot be constructed as this requires to attach weights to each component of the index which will differ between claim types. However, based on parameters c'_i , b'_i and λ_i we can obtain a partial ordering of coalition membership: If region *i* is a coalition member, then region *j* with $c'_j < c'_i$, $b'_j < b'_i$ and $\lambda_j > \lambda_i$ will also be a coalition member. If region *i* is not a coalition member, then region *j* with $c'_j > c'_i$, $b'_j < b'_i$ and $\lambda_j < \lambda_i$ cannot be a coalition member either.

The index we suggest is reported in Table 4. For equal sharing the highest coalition membership indices are reported for CHN, EET and IND. These regions form the only externally stable coalition of the about 100 internally stable coalitions for the case of equal sharing. This confirms our expectation. In the case of income claims EEC has a higher index than CHN. In this case the index identifies only USA correctly as a coalition member. For the cases of population claims, ability-to-pay claims, inverse emission claims and damage cost claims the index performs well, identifying correctly members of stable coalitions. For emission claims three of the four coalition members are correctly identified.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Regions	Equal	Income	Population	Ability-to-	Emissions	Inverse	Damage
	sharing			pay		emissions	cost
USA	0.22	0.73	0.13	0.13	0.54	0.05	0.61
JPN	0.05	0.11	0.01	0.03	0.03	0.05	0.11
EEC	0.10	0.35	0.07	0.06	0.14	0.04	0.29
OOE	0.23	0.16	0.06	0.16	0.14	0.20	0.10
EET	0.47	0.07	0.11	0.46	0.24	0.49	0.07
FSU	0.28	0.05	0.15	0.32	0.28	0.15	0.22
EEX	0.25	0.15	0.73	0.33	0.30	0.11	0.09
CHN	0.79	0.30	1.99	1.13	1.88	0.18	0.59
IND	0.29	0.05	0.61	0.48	0.18	0.25	0.17
DAE	0.25	0.09	0.10	0.23	0.10	0.34	0.08
BRA	0.15	0.04	0.05	0.14	0.02	0.63	0.03
ROW	0.22	0.09	0.24	0.25	0.15	0.17	0.18

Table 4: Coalition membership index*

* Members of stable coalitions are indicated with bold figures. Italics indicate the two cases where coalition membership is not correctly described by the index.

The most successful coalition we find is when claims are according to emissions. As can be seen from Table 5 the success of the coalition for the global surplus depends largely on the presence of both, USA and CHN, in the coalition. Three players coalitions {EET, EEX, CHN} and {USA, EET, EEX} are less successful than {USA, CHN}, which achieves a global surplus of 996 bln US\$ over 100 years (not reported in the table). In the case of emissions claims CHN has strong incentives to join as it has high claims (and obtains a large share of the surplus when joining) *and* it has low abatement costs. In fact, no coalition that does not include CHN is externally stable. USA joins CHN because under emission claims USA receives the largest share. EEC has the third largest claim, but they have a strong free-rider incentive. USA and CHN are joined by EET and EEX who receive lower shares than EEC but

have less incentive to free-ride. The simple intuitive explanation why emission based claims are more successful than any alternative rule considered here is as follows. A high level of emissions is linked to better opportunities for abatement and, hence, low abatement costs. Coalitions that include regions with lower abatement costs create a larger surplus. Under emissions claims these regions are encouraged to join a coalition.

	ana neignde	juring coui	nons		
Regions	EET, EEX,	USA, EEX,	USA, EET,	USA, EET,	USA, EET,
	CHN	CHN	CHN	EEX	EEX, CHN
	share	of coalition s	urplus (bold)	or free-rider	surplus
		(bln U	S\$ over 100	years)	
USA	94	83	85	26	96
JPN	72	265	248	66	308
EEC	98	362	339	90	421
OOE	14	53	50	13	62
EET	2	20	19	6	22
FSU	28	104	97	26	120
EEX	4	45	43	14	52
CHN	7	81	83	24	94
IND	21	77	72	19	89
DAE	10	38	36	10	44
BRA	6	23	22	6	27
ROW	28	104	98	26	121
World	386	1,256	1,191	326	1,458

Table 5: Results for coalition structure {USA, EET, EEX, CHN} and neighbouring coalitions*

* This coalition is internally and externally stable.

6 Conclusion

Greenhouse gas abatement is a global public good. It is hardly surprising that the implementation of the Kyoto protocol is hampered by adverse incentives of potential coalition partners although a large coalition could create large scale global benefits. Due to the public goods character of abatement the very success of a coalition undermines its viability. The more abatement a coalition achieves the stronger grow the incentives to free-ride. This paper explores the role of surplus sharing for coalition stability. We have identified the stable coalitions for a set of different modes of surplus sharing; in particular we examine equal sharing and sharing proportional to claims. The results show that some of the sharing schemes, for example when claims reflect historical responsibilities (inverse emissions), generate only small and ineffective coalitions ({EET, BRA} and {CHN, BRA}). These achieve only 0.5% and 2.4% of the potential surplus of globally optimal carbon abatement, respectively. In the given set of rules proportional sharing with emission claims performs best. The coalition {USA, EET, EEX, CHN} achieves about 35% of the potential surplus. Emissions claims set the right incentives to get the large emitters with low abatement costs "into the boat". As a general pattern one can observe coalitions where CHN is joined by the region with the largest claim. CHN provides low-cost abatement options and is, thus, an attractive coalition partner for regions with a large claim. Hence, CHN is joined by EEC under income claims, by EEX under population claims, by IND (and others) under ability-to-pay claims, by USA (and others) under emission claims, by BRA with inverse emission claims, and by USA under damage cost and abatement cost claims.

This paper studies the performance of a set of given sharing rules that have been proposed in the debate on climate change policies. The task for subsequent research is to use these insights for the design of sharing rules which will stabilise larger and more successful coalitions. For the success of a coalition it is important to get the regions with low abatement costs to join. But these will do little unless regions with high marginal damage costs are also joining. Only this would lead to a large scale internalisation of the externalities from carbon emissions.

Finally, our results indicate that concerns for equity, taking ability to pay or historical responsibilities into account, may well be counterproductive as surplus sharing under such rules leads to small and ineffective coalitions.

References

- Altamirano-Cabrera, Juan-Carlos / Finus, Michael / Olieman, Niels (2004) Permit Trading and Stability of Climate Agreements. Wageningen University, unpublished.
- Babiker, M.H. / Reilly, J.M. / Mayer, M. / Eckaus, R.S./ Wing I.S. / Hyman, R.C. (2001) The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Revisions, Sensitivities and Comparisons Results, MIT Report No. 41, Cambridge, Ma.: MIT.
- Barrett, Scott (1992) 'Acceptable' Allocations of Tradeable Carbon Emission Entitlements in a Global Warming Treaty. In: United Nations (eds.) Combating Global Warming. Study on a global system of tradeable carbon emission entitlements. New York: United Nations. 85-113.
- Barrett, Scott (1994) Self-enforcing international environmental agreements. Oxford Economic Papers 46, 878-894.
- Bloch, Francis (2003) Non-cooperative models of coalition formation in games with spillovers. In Carraro, Carlo (ed., 2003) The Endogenous Formation of Economic Coalitions. Cheltenham: Elgar. 35-79.
- Bosello, Francesco / Buchner, Barbara / Carraro, Carlo (2003) Equity, Development and Climate Change Control. Journal of the European Economic Association 1(2-3), 600-611.
- Chander, Parkash/Tulkens, Henry (1995) A Core-theoretic Solution for the Design of Cooperative Agreements. on Transfrontier Pollution. International Tax and Public Finance 2, 279-293.
- d'Aspremont, Claude/Jaquemin, Alexis/Gabszewicz, Jean Jaskold/Weymark, John A. (1983) On the stability of collusive price leadership. Canadian Journal of Economics 16(1), 17-25.
- Ellerman, A.D. / Decaux, A. (1998) Analysis of Post-Kyoto CO2 Emissions Trading Using Marginal Abatement Curves. MIT Report #40. Cambridge, Mass.: MIT.

Fankhauser, Samuel (1995) Valuing Climate Change. Earthscan: London.

- Finus, Michael (2003) Stability and Design of International Environmental Agreements: The Case of Transboundary Pollution. Folmer, Henk /Tietenberg, Tom (eds.) The International Yearbook of Environmental and Resource Economics 2003/2004. Cheltenham: Edward Elgar. 82-158.
- Finus, Michael / van Ierland, Ekko / Dellink, Rob (2003) Stability of Climate Coalitions in a Cartel Formation Game. Fondazione Eni Enrico Mattei, Nota di lavoro 61.2003.
- Finus, Michael / Altamirano-Cabrera, Juan-Carlos / van Ierland, Ekko (2004) The effect of membership rules and voting schemes on the success of international environmental agreements. Public Choice, forthcoming.
- Folmer, Henk / von Mouche, Pierre (2000) Transboundary Pollution and International Cooperation. In: Tietenberg, Tom/Folmer, Henk (eds., 2000) The International Yearbook of Environmental and Resource Economics 2000/2001. Cheltenham: Edward Elgar. 231-252.
- Gosseries, Axel P. (2004) Historical Emissions and Free-riding. In L. Meyer (ed.) Justice in Time: Responding to Historical Injustice. Baden-Baden: Nomos. (in press)
- Hoel, Michael (1992) International environmental conventions: the case of uniform reductions of emissions. Environmental and Resource Economics 2, 141-159.
- Kverndokk, Snorre (1995) Tradable CO2 Emission Permits: Initial Distribution as a Justice Problem. Environmental Values 4, 129-148.
- Mäler, Karl-Göran (1989) The acid rain game. In Folmer, Henk/van Ierland, Ekko (eds.) Valuation Methods and Policy Making in Environmental Economics. Amsterdam: Elsevier. 231-252.
- Moulin, Hervé (1987) Equal or Proportional Division of a Surplus, and Other Methods. International Journal of Game Theory 16, 161-186.
- Na, Seong-lin / Shin, Hyun Song (1998) International Environmental Agreements under Uncertainty. Oxford Economic Papers 50, 173-185.
- Nordhaus, William D. (1997) Managing the Global Commons: The Economics of Climate Change. Cambridge, Mass.: MIT Press.
- Pfingsten, Andreas (1991) Surplus sharing methods. Mathematical Social Sciences 21, 287-301.
- Rose, Adam (1992) Equity Considerations of Tradeable Carbon Emission Entitlements. In: United Nations (eds.) Combating Global Warming. Study on a global system of tradeable carbon emission entitlements. New York: United Nations. 55-83.
- Rose, Adam / Stevens, Brandt / Edmonds, Jae / Wise, Marshall (1998) International Equity and Differentiation in Global Warming Policy. An Application to Tradeable Emissions Permits. Environmental and Resource Economics 12, 25-51.
- Tol, Richard S.J. (1997) A decision-analytic treatise of the enhanced greenhouse effect. PhD-thesis, Amsterdam: Vrije Universiteit.
- Weikard, Hans-Peter (2004) Who should receive the CO2 emission permits? In: Döring, Ralf / Rühs, Michael (eds.) Ökonomische Rationalität und praktische Vernunft – Gerechtigkeit, Ökologische Ökonomie und Naturschutz. Festschrift für Ulrich Hampicke. Würzburg: Königshausen und Neumann. 71-82. (in press).

World Bank (2002), World Development Indicators 2002, CD-ROM edition, The World Bank, Washington D.C.

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI

Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses: http://www.feem.it/Feem/Pub/Publications/WPapers/default.html http://www.ssrn.com/link/feem.html

NOTE DI LAVORO PUBLISHED IN 2003

PRIV	1.2003	Gabriella CHIESA and Giovanna NICODANO: Privatization and Financial Market Development: Theoretical Issues
PRIV	2.2003	Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV	3.2003	Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity
	4 2002	Market
CLIM	4.2003	Laura MARSILIANI and Thomas I. RENSTRÖM: Environmental Policy and Capital Movements: The Role of
KNOW	5.2003	Government Commitment Rever GERLAGH: Induced Technological Change under Technological Competition
ETA	6.2003	<i>Efrem CASTELNUOVO</i> : <u>Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model</u>
SIEV	7.2003	Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The
SIEV	7.2003	Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment:
		Evidence from Surveys of Developers
NRM	8.2003	Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM	9.2003	A. CAPARRÓS, JC. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game
		with Asymmetric Information
KNOW	10.2003	Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM	11.2003	<i>Efrem CASTELNUOVO and Marzio GALEOTTI</i> : <u>Learning By Doing vs Learning By Researching in a Model of</u> Climate Change Policy Analysis
KNOW	12.2003	Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural
	12.2005	Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW	13.2003	Carole MAIGNAN, Gianmarco OTTAVIANO, Dino PINELLI and Francesco RULLANI (lix): <u>Bio-Ecological</u>
	15.2005	Diversity vs. Socio-Economic Diversity. A Comparison of Existing Measures
KNOW	14.2003	Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and
	11.2005	Future Trajectories
KNOW	15.2003	<i>Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP</i> (lix): <u>Diversity in Entrepreneurship</u> : Ethnic and
KINO W	15.2005	Female Roles in Urban Economic Life
KNOW	16.2003	Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from
	10.2005	Slovakia
KNOW	17.2003	Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community
KNOW	18.2003	Selma van LONDEN and Arie de RUIJTER (lix): <u>Managing Diversity in a Glocalizing World</u>
Coalition	10.2005	Sering for DOLDER and the de RODOTER (ma). <u>Interneging Enterory in a Orocaneing Horiz</u>
Theory	19.2003	Sergio CURRARINI: On the Stability of Hierarchies in Games with Externalities
Network	19.2000	
PRIV	20.2003	Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV	21.2003	Claudio MEZZETTI (lx): Auction Design with Interdependent Valuations: The Generalized Revelation
110	21.2000	Principle, Efficiency, Full Surplus Extraction and Information Acquisition
PRIV	22.2003	Marco LiCalzi and Alessandro PAVAN (lx): <u>Tilting the Supply Schedule to Enhance Competition in Uniform-</u>
110		Price Auctions
PRIV	23.2003	David ETTINGER (lx): Bidding among Friends and Enemies
PRIV	24.2003	Hannu VARTIAINEN (lx): Auction Design without Commitment
PRIV	25.2003	Matti KELOHARJU, Kjell G. NYBORG and Kristian RYDOVIST (lx): Strategic Behavior and Underpricing in
1101	20.2000	Uniform Price Auctions: Evidence from Finnish Treasury Auctions
PRIV	26.2003	Christine A. PARLOUR and Uday RAJAN (1x): <u>Rationing in IPOs</u>
PRIV	27.2003	<i>Kjell G. NYBORG and Ilya A. STREBULAEV</i> (lx): <u>Multiple Unit Auctions and Short Squeezes</u>
PRIV	28.2003	Anders LUNANDER and Jan-Eric NILSSON (1x): Taking the Lab to the Field: Experimental Tests of Alternative
	20.2005	Mechanisms to Procure Multiple Contracts
PRIV	29.2003	TangaMcDANIEL and Karsten NEUHOFF (lx): Use of Long-term Auctions for Network Investment
PRIV	30.2003	<i>Emiel MAASLAND and Sander ONDERSTAL</i> (Ix): Auctions with Financial Externalities
ETA	31.2003	Michael FINUS and Bianca RUNDSHAGEN: <u>A Non-cooperative Foundation of Core-Stability in Positive</u>
		Externality NTU-Coalition Games
KNOW	32.2003	Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV	33.2003	<i>Philippe OUIRION:</i> Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW	34.2003	Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A
	51.2005	Treatment Effect Analysis
ETA	35.2003	Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different
		Capital Inputs: A Firm-level Investigation

GG	36.2003	Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats
PRIV	37.2003	Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate
		Governance: the Role of Ownership Structure and Investor Protection
CLIM	38.2003	Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers
KNOW	39.2003	Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade
CTN	40.2003	Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations
KNOW	41.2003	Sonia OREFFICE: Abortion and Female Power in the Household: Evidence from Labor Supply
KNOW	42.2003	Timo GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing
		Biotechnologies
ETA	43.2003	Giorgio BUSETTI and Matteo MANERA: STAR-GARCH Models for Stock Market Interactions in the Pacific
		Basin Region, Japan and US
CLIM	44.2003	Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its
CLIM	44.2003	· · · · · ·
		Effectiveness
PRIV	45.2003	Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization
SIEV	46.2003	Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste
		Disposal Methods
ETA	47.2003	Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometrical
		Results for Germany
CLIM	48.2003	Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology
CLIM	48.2003	
a b c	10.000	Diffusion: The Case of Chlorine Manufacturing
CLIM	49.2003	Lori SNYDER, Robert STAVINS and Alexander F. WAGNER: Private Options to Use Public Goods. Exploiting
		Revealed Preferences to Estimate Environmental Benefits
CTN	50.2003	László Á. KÓCZY and Luc LAUWERS (lxi): The Minimal Dominant Set is a Non-Empty Core-Extension
CTN	51.2003	Matthew O. JACKSON (lxi): Allocation Rules for Network Games
CTN	52.2003	Ana MAULEON and Vincent VANNETELBOSCH (Ixi): <u>Farsightedness and Cautiousness in Coalition Formation</u>
CTN	53.2003	Fernando VEGA-REDONDO (lxi): Building Up Social Capital in a Changing World: a network approach
CTN	54.2003	Matthew HAAG and Roger LAGUNOFF (lxi): On the Size and Structure of Group Cooperation
CTN	55.2003	Taiji FURUSAWA and Hideo KONISHI (lxi): Free Trade Networks
CTN	56.2003	Halis Murat YILDIZ (lxi): National Versus International Mergers and Trade Liberalization
CTN	57.2003	Santiago RUBIO and Alistair ULPH (lxi): An Infinite-Horizon Model of Dynamic Membership of International
		Environmental Agreements
KNOW	58.2003	Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: <u>ICT, Clusters and Regional Cohesion: A</u>
KNOW	38.2003	
		Summary of Theoretical and Empirical Research
KNOW	59.2003	Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change
ETA	60.2003	Ronnie SCHÖB: The Double Dividend Hypothesis of Environmental Taxes: A Survey
CLIM	61.2003	Michael FINUS, Ekko van IERLAND and Robert DELLINK: Stability of Climate Coalitions in a Cartel
		Formation Game
GG	62.2003	Michael FINUS and Bianca RUNDSHAGEN: How the Rules of Coalition Formation Affect Stability of
00	02.2005	International Environmental Agreements
CIEV	63.2003	
SIEV		Alberto PETRUCCI: Taxing Land Rent in an Open Economy
CLIM	64.2003	Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate
		Policy Architectures
SIEV	65.2003	<i>Edi DEFRANCESCO</i> : The Beginning of Organic Fish Farming in Italy
SIEV	66.2003	Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment
SIEV	67.2003	Paulo A.L.D. NUNES, Luca ROSSETTO, Arianne DE BLAEIJ: Monetary Value Assessment of Clam Fishing
SIL (07.2005	Management Practices in the Venice Lagoon: Results from a Stated Choice Exercise
CL IM	(0.2002	
CLIM	68.2003	ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada's Ability to Comply with its
		Kyoto Target
KNOW	69.2003	David FRANTZ (lix): Lorenzo Market between Diversity and Mutation
KNOW	70.2003	Ercole SORI (lix): Mapping Diversity in Social History
KNOW	71.2003	Ljiljana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?
KNOW	72.2003	Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural
KINO W	12.2005	Environment: Saint-Petersburg's Case
UNION	72 2002	
KNOW	73.2003	Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of
		Globalisation and Migration
KNOW	74.2003	Kazuma MATOBA (lxii): Glocal Dialogue- Transformation through Transcultural Communication
KNOW	75.2003	Catarina REIS OLIVEIRA (lxii): Immigrants' Entrepreneurial Opportunities: The Case of the Chinese in
		Portugal
KNOW	76.2003	Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems
KNOW	77.2003	Richard PEARCE (Ixii): <u>A Biologist's View of Individual Cultural Identity for the Study of Cities</u>
KNOW	78.2003	Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the
		Dilemmas
KNOW	79.2003	Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P.OTTAVIANO: Child Labor and Resistance
		to Change
ETA	80.2003	Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm's Value under
		Profit Sharing Regulation
		- totte Sharing Hegunaton

IEM	81.2003	Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International
CLIM	on 2002	Petroleum Markets
CLIM	82.2003	Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation
CLIM	83.2003	<i>Giuseppe DI VITA</i> : Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?
CLIM	84.2003	Rever GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes
NRM	85.2003	Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing?
		The cross-country evidence
KNOW	86.2003	Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks
		for the Mezzogiorno
SIEV	87.2003	Lucas BRETSCGHER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources.
		How resource prices affect long-term R&D investments
CLIM	88.2003	Johan EYCKMANS and Michael FINUS: <u>New Roads to International Environmental Agreements</u> : The Case of
CL IV	00 0000	<u>Global Warming</u>
CLIM	89.2003 90.2003	Marzio GALEOTTI: Economic Development and Environmental Protection
CLIM CLIM	90.2003 91.2003	<i>Marzio GALEOTTI</i> : Environment and Economic Growth: Is Technical Change the Key to Decoupling? <i>Marzio GALEOTTI and Barbara BUCHNER</i> : Climate Policy and Economic Growth in Developing Countries
IEM		
ILIVI	92.2003	A. MARKANDYA, A. GOLUB and E. STRUKOVA: The Influence of Climate Change Considerations on Energy Policy: The Case of Russia
ETA	93.2003	Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium
CTN	93.2003	Parkash CHANDER: The γ -Core and Coalition Formation
IEM	95.2003	Mattee MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption
12/01	95.2005	Using Principal Components
IEM	96.2003	Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of
		Oil Stock Prices
CTN	97.2003	Steven J. BRAMS, Michael A. JONES, and D. Marc KILGOUR: Forming Stable Coalitions: The Process
		Matters
KNOW	98.2003	John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical
		Schemes to Socio-Political Realities
KNOW	99.2003	Richard THOMPSON FORD (lxiii): Cultural Rights and Civic Virtue
KNOW	100.2003	Alaknanda PATEL (Ixiii): Cultural Diversity and Conflict in Multicultural Cities
KNOW	101.2003	David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood
KNOW	102.2003	Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii) : Municipal Reform on the
a. n. <i>i</i>	100.000	Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City
CLIM	103.2003	Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime
CLIM	104.2003	Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in
CLIM	105.2003	International Climate Agreements Anil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy
NRM	105.2003	Anne Sophie CRÉPIN (lxiv): Management Challenges for Multiple-Species Boreal Forests
NRM	100.2003	Anne Sophie CRÉPIN (Ixiv): <u>Management Chanenges for Multiple-Species Borear Forests</u>
SIEV	107.2003	Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela's Example
SIEV	108.2003	Kenneth ARROW, Partha DASGUPTA and Karl-Göran MÄLER(Ixiv): Evaluating Projects and Assessing
SILV	107.2003	Sustainable Development in Imperfect Economies
NRM	110.2003	Anastasios XEPAPADEAS and Catarina ROSETA-PALMA(lxiv): Instabilities and Robust Control in Fisheries
NRM	111.2003	Charles PERRINGS and Brian WALKER (Ixiv): Conservation and Optimal Use of Rangelands
ETA	112.2003	Jack GOODY (lxiv): Globalisation, Population and Ecology
CTN	113.2003	Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in
		International Environmental Treaties
CTN	114.2003	Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching
CTN	115.2003	Hideo KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems
CTN	116.2003	Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem
CTN	117.2003	Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem
CTN	118.2003	Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty
CTN	119.2003	Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary
		Games with Incomplete Information: Some First Results
CTN	120.2003	Gianluigi VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation
CTN	121.2003	Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many
0.000	100 0 0 0 0	<u>Players</u>
CTN	122.2003	Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players
CTN	123.2003	Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many
	1000	Players Cords CARDARO, Alessandra I ANZA and Valeria BARDONETTI, One Theusand Working Banara
	1000	Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: <u>One Thousand Working Papers</u>

NOTE DI LAVORO PUBLISHED IN 2004

IEM	1.2004	Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and
ETA	2.2004	So2 Emissions in Selected European Countries Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries
PRA	3.2004	Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy
ETA	4.2004	Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union
ETA	5.2004	Romano PIRAS: Growth, Congestion of Public Goods, and Second-Best Optimal Policy
CCMP	6.2004	Herman R.J. VOLLEBERGH: Lessons from the Polder: Is Dutch CO2-Taxation Optimal
PRA	7.2004	Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms
PRA	8.2004	Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market
PRA	9.2004	Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets
PRA	10.2004	<i>Florian ENGLMAIER, Pablo GUILLEN, Loreto LLORENTE, Sander ONDERSTAL and Rupert SAUSGRUBER</i> (lxv): The Chopstick Auction: A Study of the Exposure Problem in Multi-Unit Auctions
PRA	11.2004	<i>Bjarne BRENDSTRUP and Harry J. PAARSCH</i> (lxv): <u>Nonparametric Identification and Estimation of Multi-</u> Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders
PRA	12.2004	Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values
PRA	13.2004	Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices
PRA PRA	14.2004 15.2004	Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): <u>All-Pay Auctions with Weakly Risk-Averse Buyers</u> Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): <u>Competition and Cooperation in Divisible</u>
	16 2004	Good Auctions: An Experimental Examination
PRA CCMP	16.2004 17.2004	Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade
NRM	17.2004	Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (Ixvi): Biodiversity and Economic Growth:
INIXIVI	18.2004	Stabilization Versus Preservation of the Ecological Dynamics
SIEV	19.2004	Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to
		Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice
NRM	20.2004	Guido CANDELA and Roberto CELLINI (lxvii): Investment in Tourism Market: A Dynamic Model of
NRM	21.2004	Differentiated Oligopoly Jacqueline M. HAMILTON (lxvii): Climate and the Destination Choice of German Tourists
	22.2004	Javier Rey-MAQUIEIRA PALMER, Javier LOZANO IBÁÑEZ and Carlos Mario GÓMEZ GÓMEZ (lxvii):
NRM	22.2004	Land, Environmental Externalities and Tourism Development
NRM	23.2004	Pius ODUNGA and Henk FOLMER (lxvii): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya
NRM	24.2004	Jean-Jacques NOWAK, Mondher SAHLI and Pasquale M. SGRO (lxvii): Tourism, Trade and Domestic Welfare
NRM	25.2004	Riaz SHAREEF (lxvii): Country Risk Ratings of Small Island Tourism Economies
NRM	26.2004	Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxvii): Tourism and
NDM	27.2004	Economic Growth in Latin American Countries: A Panel Data Approach Raúl Hernández MARTÍN (lxvii): Impact of Tourism Consumption on GDP. The Role of Imports
NRM	27.2004 28.2004	Nicoletta FERRO: Cross-Country Ethical Dilemmas in Business: A Descriptive Framework
CSRM	29.2004	Marian WEBER (lxvi): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation:
NRM		an Application to Canada's Boreal Mixedwood Forest
NRM	30.2004	<i>Trond BJORNDAL, Phoebe KOUNDOURI and Sean PASCOE</i> (lxvi): <u>Output Substitution in Multi-Species</u> <u>Trawl Fisheries: Implications for Quota Setting</u>
CCMP	31.2004	Marzio GALEOTTI, Alessandra GORIA, Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on
CCMD	32.2004	Natural, Social and Economic Systems (WISE) Part I: Sectoral Analysis of Climate Impacts in Italy Marzio GALEOTTI, Alessandra GORIA, Paolo MOMBRINI and Evi SPANTIDAKI: Weather Impacts on
CCMP	52.2004	Natural, Social and Economic Systems (WISE) Part II: Individual Perception of Climate Extremes in Italy
CTN	33.2004	Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution
KTHC	34.2004	Gianmarco I.P. OTTAVIANO and Giovanni PERI (lxviii): The Economic Value of Cultural Diversity: Evidence
		from US Cities
KTHC	35.2004	Linda CHAIB (Ixviii): Immigration and Local Urban Participatory Democracy: A Boston-Paris Comparison
КТНС	36.2004	Franca ECKERT COEN and Claudio ROSSI (lxviii): Foreigners, Immigrants, Host Cities: The Policies of Multi-Ethnicity in Rome. Reading Governance in a Local Context
KTHC	37.2004	Kristine CRANE (Ixviii): Governing Migration: Immigrant Groups' Strategies in Three Italian Cities – Rome, Naples and Bari
КТНС	38.2004	<i>Kiflemariam HAMDE</i> (lxviii): Mind in Africa, Body in Europe: The Struggle for Maintaining and Transforming
ETA	39.2004	<u>Cultural Identity - A Note from the Experience of Eritrean Immigrants in Stockholm</u> <u>Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly</u>
ETA		Alberto CAVALLERE: Price Competition with Information Disparities in a vertically Differentiated Duopoly Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy:
PRA	40.2004	Does the Degree of Competition Matter?
CCMP	41.2004	Micheal FINUS (lxix): International Cooperation to Resolve International Pollution Problems
COM		mentation (MM). International Cooperation to resolve international Fondation Floblens

KTHC	42.2004	Francesco CRESPI: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
CTN	43.2004	Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
CTN	44.2004	Marc ESCRIHUELA-VILLAR: Cartel Sustainability and Cartel Stability
NRM	45.2004	Sebastian BERVOETS and Nicolas GRAVEL (lxvi): <u>Appraising Diversity with an Ordinal Notion of Similarity:</u> An Axiomatic Approach
NRM	46.2004	Signe ANTHON and Bo JELLESMARK THORSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
NRM	47.2004	John MBURU (lxvi): Wildlife Conservation and Management in Kenya: Towards a Co-management Approach
NRM	48.2004	<i>Ekin BIROL, Ágnes GYOVAI and Melinda SMALE</i> (lxvi): <u>Using a Choice Experiment to Value Agricultural</u> Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
CCMP	49.2004	Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme. Allowance Prices, Trade Flows, Competitiveness Effects
GG	50.2004	Scott BARRETT and Michael HOEL: Optimal Disease Eradication
CTN	51.2004	Dinko DIMITROV, Peter BORM, Ruud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
SIEV	52.2004	Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
SIEV	53.2004	Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: <u>Willingness to Pay for</u> Mortality Risk Reductions: Does Latency Matter?
NRM	54.2004	Ingo BRÄUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in
		Renaturated Streams
NRM	55.2004	<i>Timo GOESCHL and Tun LIN</i> (lxvi): <u>Biodiversity Conservation on Private Lands: Information Problems and</u> <u>Regulatory Choices</u>
NRM	56.2004	Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
CCMP	57.2004	Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households
CCMP	58.2004	Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration
NRM	59.2004	Effects on Energy Scenarios Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
NRM	60.2004	<i>Timo GOESCHL and Danilo CAMARGO IGLIORI</i> (lxvi): <u>Property Rights Conservation and Development: An</u> Analysis of Extractive Reserves in the Brazilian Amazon
ССМР	61.2004	Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
NRM	62.2004	Elissaios PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.
NRM	63.2004	Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
NRM	64.2004	E.C.M. RUIJGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
NRM	65.2004	<i>E.C.M. RUIJGROK</i> (lxvi): <u>Reducing Acidification: The Benefits of Increased Nature Quality. Investigating the</u> <u>Possibilities of the Contingent Valuation Method</u>
ETA	66.2004	Giannis VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings
GG	67.2004	Anastasios XEPAPADEAS and Constadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
GG	68.2004	Michael FINUS: Modesty Pays: Sometimes!
NRM	69.2004	Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
CTN	70.2004	Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents
IEM	71.2004	Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
IEM	72.2004	Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
SIEV	73.2004	Margarita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
CCMP	74.2004	Rob DELLINK and Ekko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
ETA	75.2004	<i>Rosella LEVAGGI and Michele MORETTO</i> : Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
CTN	76.2004	Salvador BARBERÀ and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union
CTN	77.2004	Àlex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA- REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion
CTN	78.2004	Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options

CTN	79.2004	Rabah AMIR, Effrosyni DIAMANTOUDI and Licun XUE (lxx): Merger Performance under Uncertain Efficiency Gains
CTN	80.2004	Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players
CTN	81.2004	Daniel DIERMEIER, Hülya ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation
CTN	82.2004	Rod GARRATT, James E. PARCO, Cheng-ZHONG QIN and Amnon RAPOPORT (lxx): Potential Maximization
0111	02.2001	and Coalition Government Formation
CTN	83.2004	Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement
CTN	84.2004	Sanjeev GOYAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): <u>Economics: An Emerging</u> Small World?
CTN	85.2004	Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players
IEM	86.2004	Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by
		Hydroelectric Power
KTHC	87.2004	Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income
CCMP	88.2004	Marzio GALEOTTI and Claudia KEMFERT: Interactions between Climate and Trade Policies: A Survey
IEM	89.2004	A. MARKANDYA, S. PEDROSO and D. STREIMIKIENE: Energy Efficiency in Transition Economies: Is There
		Convergence Towards the EU Average?
GG	90.2004	Rolf GOLOMBEK and Michael HOEL : Climate Agreements and Technology Policy
PRA	91.2004	Sergei IZMALKOV (lxv): Multi-Unit Open Ascending Price Efficient Auction
KTHC	92.2004	Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures
KTHC	93.2004	Massimo DEL GATTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading
		Cities. Centralisation versus devolution
CCMP	94.2004	Pierre-André JOUVET, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits
CCMP	95.2004	Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy
		Supply
CCMP	96.2004	Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL: Economy-Wide Estimates of
		the Implications of Climate Change: Sea Level Rise
CTN	97.2004	Gustavo BERGANTIÑOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through
		the Canonical Form
CTN	98.2004	Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of
		Proportional Representation
GG	99.2004	Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus
		Sharing on the Stability of International Climate Agreements

(lix) This paper was presented at the ENGIME Workshop on "Mapping Diversity", Leuven, May 16-17, 2002

(lx) This paper was presented at the EuroConference on "Auctions and Market Design: Theory, Evidence and Applications", organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002

(lxi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003

(lxii) This paper was presented at the ENGIME Workshop on "Communication across Cultures in Multicultural Cities", The Hague, November 7-8, 2002

(lxiii) This paper was presented at the ENGIME Workshop on "Social dynamics and conflicts in multicultural cities", Milan, March 20-21, 2003

(lxiv) This paper was presented at the International Conference on "Theoretical Topics in Ecological Economics", organised by the Abdus Salam International Centre for Theoretical Physics - ICTP, the Beijer International Institute of Ecological Economics, and Fondazione Eni Enrico Mattei – FEEM Trieste, February 10-21, 2003

(lxv) This paper was presented at the EuroConference on "Auctions and Market Design: Theory, Evidence and Applications" organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003

(lxvi) This paper has been presented at the 4th BioEcon Workshop on "Economic Analysis of Policies for Biodiversity Conservation" organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003

(lxvii) This paper has been presented at the international conference on "Tourism and Sustainable Economic Development – Macro and Micro Economic Issues" jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003

(lxviii) This paper was presented at the ENGIME Workshop on "Governance and Policies in Multicultural Cities", Rome, June 5-6, 2003

(lxix) This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference "The Future of Climate Policy", Cagliari, Italy, 27-28 March 2003

(lxx) This paper was presented at the 9th Coalition Theory Workshop on "Collective Decisions and Institutional Design" organised by the Universitat Autònoma de Barcelona and held in Barcelona, Spain, January 30-31, 2004

	2003 SERIES
CLIM	Climate Change Modelling and Policy (Editor: Marzio Galeotti)
GG	Global Governance (Editor: Carlo Carraro)
SIEV	Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)
NRM	Natural Resources Management (Editor: Carlo Giupponi)
KNOW	Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM	International Energy Markets (Editor: Anil Markandya)
CSRM	Corporate Social Responsibility and Management (Editor: Sabina Ratti)
PRIV	Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)
ЕТА	Economic Theory and Applications (Editor: Carlo Carraro)
CTN	Coalition Theory Network

	2004 SERIES
ССМР	Climate Change Modelling and Policy (Editor: Marzio Galeotti)
GG	Global Governance (Editor: Carlo Carraro)
SIEV	Sustainability Indicators and Environmental Valuation (Editor: Anna Alberini)
NRM	Natural Resources Management (Editor: Carlo Giupponi)
КТНС	Knowledge, Technology, Human Capital (Editor: Gianmarco Ottaviano)
IEM	International Energy Markets (Editor: Anil Markandya)
CSRM	Corporate Social Responsibility and Management (Editor: Sabina Ratti)
PRA	Privatisation, Regulation, Antitrust (Editor: Bernardo Bortolotti)
ЕТА	Economic Theory and Applications (Editor: Carlo Carraro)
CTN	Coalition Theory Network