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De�ning rules in cost spanning tree problems
through the canonical form

1 Introduction

Many problems involving network formation have been studied in the opera-
tions research and the economic literature. In operations research two issues
have been extensively explored: the design of e¢ cient algorithms and the
computational complexity. The economic literature focuses on aspects such
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like the cost sharing of the network and the design of mechanisms trying to
explain the way in which the network forms.
In this paper we focus in the cost sharing aspect. Our contribution can

be considered in the well-known literature of cost allocation. We assume that
there are no external forces (for example, the market) which determine the
�nal allocation. Agents can achieve agreements directly among themselves,
or indirectly by letting the �nal decision to a neutral referee. In both cases
the important issue is to �nd a "fair allocation" of the cost.
In particular we study cost spanning tree problems (cstp). Consider that a

group of agents, located at di¤erent geographical places, want some particular
service which can only be provided by a common supplier, called the source.
Agents will be served through connections which entail some cost. However,
they do not care whether they are connected directly or indirectly to the
source.
There are many economic situations that can be modeled in this way.

For instance, several towns may draw power from a common power plant,
and hence have to share cost of the distribution network. This example
appears in Dutta and Kar (2002). Bergantiños and Lorenzo (2003) study a
real situation where villagers should pay the cost of constructing pipes from
their respective houses to a water supplier.
The literature on cstp starts by de�ning algorithms for constructing min-

imal cost spanning trees (mcst). We can mention, for instance, the papers
of Kruskal (1956) and Prim (1957). But constructing an mcst is only a part
of the problem. Other important issue is how to allocate the cost associated
to the mcst among agents.
Bird (1976) studies it using game theory. Bird associates to any cstp a

cooperative game and proposes a cost allocation rule called the Bird�s rule
(we call it B). Granot and Huberman (1981, 1984) study the core and the
nucleolus of the game. Sharkey (1995) survey most of the literature. Kar
(2002) study the Shapley value of the cooperative game de�ned by Bird,
which we call K. Recently, Dutta and Kar (2002) propose a new rule, which
we call DK:
Feltkamp, Tijs, and Muto (1994a) introduce a rule for cstp called Equal

Remaining Obligations. Later, Branzei, Moretti, Norde, and Tijs (2003)
call it the P � value, which is the name we use, and give an axiomatic
characterization of it.
We associate to each cstp a canonical form, which is a cstp with the

property that by reducing the cost of any arc, the total cost of connecting
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agents to the source is also reduced. We argue that the canonical form
is a relevant concept for this class of problems and, that it, can be used
for de�ning nice rules. The canonical form "coincides" with the minimal
network de�ned in Bird (1976). In this paper we introduce it in a di¤erent
way and prove, in propositions 1, 2, and 3, new properties of the canonical
form. These new properties will be crucial in our results.
We prove that in canonical problems B and K coincide. Then, for each

cstp we de�ne a rule ' as K applied to the canonical form associated.
Surprisingly, ' coincides with P:When we start to study this problem we

did not know the unpublished paper of Feltkamp et al (1994a). In January
2004 we come across the paper of Branzei et al (2003), which was available
in the web in December 2003. Through this paper we knew the �rst one.
Then, the originality of our paper is not in the rule we study; it is in the way
we introduce it, which has no relation with the way in which is de�ned P;
and the results obtained.
This rule satis�es much more interesting properties that B; K; and DK:

We also give two characterizations of '; which are completely unrelated with
the characterization given in Branzei et al (2003).
We also present four approaches to this rule without using the canonical

form. In the �rst approach, we prove that P coincides with ':
The other three approaches are de�ned in this paper. In the second ap-

proach we prove that ' is the Shapley value of a game de�ned in a similar
way to Bird (1976) : In the third approach, we give a de�nition of ' consid-
ering only the original problem. In the fourth approach, we obtain that '
can be obtained considering the costs as indivisible goods.
Moreover, Bergantiños and Vidal-Puga (2004) prove that ' can be ob-

tained as the equilibrium payo¤ of a non-cooperative mechanism.
The paper is organized as follows. In Section 2 we give an overview of the

paper. In Section 3 we introduce the cstp; along with the rules and properties
considered in the paper. In Section 4 we introduce the canonical form and
the rule '. In Section 5 we study the properties satis�ed by ' and provide
two axiomatic characterizations. The other approaches to ' are presented in
Section 6. All the proofs are in the Appendix.
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2 An overview of the paper

In this section we present, in an informal way, our most relevant results.
We �rst discuss, in a very simple example, the allocation proposed by B,

K, and DK.
The �rst non-trivial case in cstp occurs when two agents want to be

connected to the source and the optimal choice is that one of the agents
connect through the other. The next example is a particular case of this
situation.
Example 1. There are two agents. The connection cost between agent 1

and the source is 10, between agent 1 and 2 is 2, and between agent 2 and the
source is 10 + x; where x � 0: This situation can be represented as follows:

0

21

10

2

10+X

We now discuss how these rules work in this example for each x � 0: If
x = 0; the problem is symmetric. The three rules coincide with the symmetric
allocation (6; 6) :
If x > 0; the problem is not symmetric. The uniquemcst is f(0; 1) ; (1; 2)g.

We can proceed in two di¤erent ways. First, we ignore x because the arc (0; 2)
will not be constructed. Second, since the problem is asymmetric we use the
information given by x: Next table shows the proposal given by each of the
three rules.

Agent 1 Agent 2
B 10 2
DK 2 10
K 6� x

2
6 + x

2

The three rules use the information given by x. B and DK propose the
same allocation independently of x: Moreover, small changes in the cost of
arc (0; 2) produce large changes in the proposal. We think that this is unfair.
What we are saying is that these rules are not continuous functions on C:
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K is a continuous function on C: Take x = 100; thenK = (�44; 56) : This
means that agent 2 pays 44 units to agent 1 plus the cost of the network.
Again we believe that this allocation is unfair. In this case we claim that the
rule must be positive, i:e: agents cannot get bene�ts.
Our conclusion, in Example 1, is that it is better not to take into account

the information given by x and always propose (6; 6) ; even the problem is
not symmetric. This example suggests that in some cases it could be better
to ignore part of the cost of some arcs if we want to obtain fair rules. In this
paper we generalize this idea to the class of all cstp.

A cstp can be characterized through a matrix C where cij represents the
connection cost between agents i and j: We say that a matrix is canonical if
reducing the cost of any arc, the cost of connecting all agents to the source
is also reduced. Notice that in Example 1, if x = 0 the matrix is canonical
but if x > 0 the matrix is not canonical.
We de�ne an algorithm for associating to each arbitrary matrixC a unique

canonical matrix C� (Proposition 2). Then, we de�ne the canonical form of
a problem as the problem obtained when we change the matrix C by its
canonical matrix C�. In Example 1 the matrix of the problem x = 0 is the
canonical matrix of each problem with x > 0:
Canonical matrices are nice mathematical objects as we prove in propo-

sitions 1 and 3. The canonical matrix "coincides" with the minimal network
de�ned in Bird (1976). In this paper we de�ne it in a di¤erent way. We
also obtain new properties, which will be crucial in most of the proofs of our
results.
In Example 1 the three rules coincide in the canonical form (x = 0). Even

though this result is not true in general; we prove that B and K coincide
in canonical matrices and DK is di¤erent. Then, we de�ne a rule ' for a
general matrix C as the rule K (or B) applied to its canonical matrix C�:

Our next step is to explain why ' is a suitable rule for these problems.
We �rst study which properties are satis�ed by ' and compare it with the
other three rules.
In Example 1 we criticize the proposals of B; DK; and K in terms of the

properties of continuity (CON) and positivity (POS). Nevertheless, these
rules satisfy other interesting properties. B satis�es core selection (CS).
However B fails to satisfy cost monotonicity (CM), which says that if the
connection cost between agents i and j increases, none of these agents should
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pay less. K satis�es CM but fails to satisfy CS and DK satis�es both.
We also consider other properties as strong cost monotonicity (SCM),

population monotonicity (PM), equal sharing of extra cost (ESEC) ; sep-
arability (SEP ) ; equal contributions (EC) ; and independence of irrelevant
trees (IIT ).

SCM means that if the connection cost between agents i and j increases,
no agent should pay less. PM says that if we add new agents to the problem
no agent is worse.
Consider a problem where, for any agent, his most expensive cost is to

the source. Moreover, the connection cost to the source is the same for each
agent. Assume that this connection cost increases x: ESEC says that if
agent i pays fi in the original problem and n is the number of agents, he
must pay fi + x

n
when the cost increases.

Two subsets of agents, S and N nS; can connect to the source separately
or can connect jointly. If there are no savings when they connect jointly,
SEP says that agents must pay the same in both circumstances.

EC says that the impact of the connection of agent j on agent�s i cost
coincides with the impact of the connection of agent i on agent�s j cost. IIT
says that if two cstp have a common mcst, both problems must have the
same solution.
The next table summarizes the properties satis�ed by the four rules.

B K DK '
CON no YES no YES
POS YES no YES YES
CS YES no YES YES
CM no YES YES YES
SCM no no no YES
PM no no no YES
ESEC YES YES no YES
SEP YES no YES YES
EC no no no YES
IIT no no no YES

These results suggest two comments. Firstly, ' satis�es much more in-
teresting properties than the other three rules.
Secondly, ' and K coincide in canonical matrices. ' does not use the

information of C which is not in its canonical form and then ' (C) = K (C�).
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K uses this information and thus K (C) can be di¤erent to K (C�) : If we
consider the properties satis�ed by both rules, it seems better not to use this
information. A similar comment can be applied to ' and B:
Even though we are considering two particular rules, the above suggests

that we may de�ne rules in the general problem through its canonical form.
A natural question is whether this is a good strategy.
In Proposition 5 (a) we characterize the rules de�ned through its canonical

form as the only rules satisfying IIT . In Proposition 5 (b) we prove that if a
rule is not de�ned through the canonical form then it does not satisfy SCM .
This means that if we do not use the canonical form we miss at least an
important property. Is it possible to gain anything? If we focus on B; DK;
K; and ' and the properties mentioned here the answer is no. In general,
we do not know. Although we believe that this is an interesting question, it
is out of the scope of the paper. Here, we only want to point out that the
canonical form is an important concept, which should be studied carefully
because it can be very in�uential in the problem.

Later, we present two characterizations of '. The �rst one is with EC
and the second one is with SCM , PM , and ESEC.
Let us comment the second characterization. SCM and PM are quite

standard properties, which are used often in many economic problems. We
believe that these properties are very natural and any fair rule should satisfy
both. ESEC is a property de�ned explicitly for cstp. We believe that is
a natural property with a clear meaning but we do not feel that every fair
rule should satisfy it. Thus, we can see ESEC as a property selecting a rule
among the set of "fair rules" (rules satisfying SCM and PM):
Moreover, the de�nition of these three properties is unrelated to the

canonical form. We believe that this is other argument supporting the canon-
ical form as a good way for de�ning rules.

Finally, we argue that ' is a "focal point" of this class of problems because
it can be achieved from di¤erent approaches. We mention four. In three of
these approaches we do not use canonical matrices. In the fourth we use it
but in a di¤erent way.
The �rst approach is through the P � value. As we said before the

P � value was introduced in Feltkamp et al (1994a) in a very di¤erent way.
In this paper we prove that ' coincides with P:
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Second approach. Bird (1976) associated to each problem C a character-
istic function v where v (S) denotes the cost of connecting agents in S to the
source assuming that agents of N nS are not present. Since the Shapley value
is a suitable concept for TU games we can use it in cstp: Kar (2002) gives
additional arguments supporting the Shapley value of v: He characterizes it
considering only the problem C:
Following Bird�s approach we associate to each problem C a characteristic

function v+ where v+ (S) denotes the cost of connecting agents in S to the
source assuming that agents of N n S are already connected. Surprisingly,
the Shapley value of v+ coincides with ':
The third approach is looking only to the problem C: We explain it with

an example. Assume that f(0; 1) ; (1; 2) ; (2; 3)g is the uniquemcst:Moreover,
the cost of its arcs are 12, 4, and 6, respectively. We address the problem
of how to divide the cost of each arc between the agents. We de�ne a rule
through an algorithm in which, at each step, we select for each agent both
an arc and the part of the cost of this arc he must pay for.
Step 1. Every agent selects the cheapest arc to which he belongs. Thus

agents 1 and 2 select (1; 2) and agent 3 selects (2; 3) : Since agents 1 and 2
select arc (1; 2) this cost is equally divided between them. Agent 3 pays half
of the cost of arc (2; 3) :
Step 2. Agents 1 and 2 select the cheapest non-paid arc to which one of

them belong. Thus, both select (2; 3) : Agent 3 selects the cheapest non-paid
arc to which he belongs, i:e: (2; 3) : Then, the non-paid cost of arc (2; 3) is
equally divided among the three agents.
Step 3. The three agents select arc (0; 1) ; the only whose cost was not

paid. This cost is divided equally among agents.
Then, agents 1 and 2 pay 3

6
4 + 1

6
6 + 2

6
12 = 7 and agent 3 pays 3

6
6 + 1

6
6 +

2
6
12 = 8:
Fourth approach. In B and DK we �rst select a tree minimizing the cost

of connecting agents to the network. Then, we assign the whole cost of each
arc to one agent following some speci�c protocol. Thus, we can consider B
and DK as rules assigning indivisible goods (cost of the arcs).
In the case of B we can interpret it assuming that agents sequentially

connect to one of the cheapest available options. Each agent pays his con-
nection cost. This protocol can provoke unfair allocations as we can see in
Example 1 when x is very small.
A classical way for recovering fairness from an order-depending allocation

is to take the average over the set of all permutations. In general problems,
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this approach is incompatible with e¢ ciency. Nevertheless, if C is a general
problem and C� is its canonical matrix, it is possible to generate an e¢ cient
and fair allocation for C averaging over the permutations in C�: This is the
fourth approach.

3 The cost spanning tree problem

This section is divided in three subsections. In the �rst subsection, we intro-
duce the problem. In the second subsection, we introduce some rules of the
literature. Finally, in the third subsection, we present some properties of the
rules.

3.1 The problem

Let N = f1; 2; :::g be the set of all possible agents. We are interested in
networks whose nodes are elements of a setN0 = N[0, whereN � N is �nite
and 0 is a special node called the source. Usually we take N = f1; :::; ng :
Our interest lies on networks where each node in N is (directly or indirectly)
connected to the source.
Let �N be the set of all permutations over the �nite set N: Given � 2 �N ;

let Pre (i; �) denote the set of elements of N which come before i in the order
given by �; i. e. Pre (i; �) = fj 2 N j � (j) < � (i)g : Given S � N , let �S
denote the order induced by � among agents in S:
A cost matrix C = (cij)i;j2N0 on N represents the cost of direct link

between any pair of nodes. We assume that cij = cji � 0 for each i; j 2 N0
and cii = 0 for each i 2 N0. Since cij = cji we will work with undirected
arcs, i:e (i; j) = (j; i) :
We denote by CN the set of all cost matrices on N . Given C; C 0 2 CN we

say C � C 0 if cij � c0ij for all i; j 2 N0:
A cost spanning tree problem, brie�y cstp; is a pair (N0; C) where N � N

is the set of agents, 0 is the source, and C 2 CN is the cost matrix.
A network g over N0 is a subset of f(i; j) such that i; j 2 N0g : The ele-

ments of g are called arcs:
Given a network g and a pair of nodes i and j, a path form i to j in g is a

sequence of arcs f(ih�1; ih)glh=1 satisfying (ih�1; ih) 2 g for all h 2 f1; 2; :::; lg,
i = i0 and j = il. We say that i; j 2 N are linked in g if there exists a path
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from i to j which does not include the source. If (i; j) 2 g, we say that i
and j are directly linked in g. We say that the node i is connected in the
network g if there exists a path from i to the source. Otherwise we say that
i is unconnected in g:
Given a network g and S � N we denote by gS the network induced by

g among agents in S; i:e:

gS = f(i; j) 2 g such that fi; jg � Sg :

A tree is a network satisfying that for all i 2 N there is a unique path
from i to the source. If t is a tree we usually write t = f(j; j0)gj2N where j0
represents the �rst agent in the unique path in t from j to 0:
We denote by GN the set of all networks over N0 and by GN0 the set of

networks such that every agent in N is connected to the source.

Given a cstp (N0; C) and g 2 GN , we de�ne the cost associated to g as

c (N0; C; g) =
X
(i;j)2g

cij:

When there are no ambiguities, we write c (g) or c (C; g) instead of c (N0; C; g).
Aminimum cost spanning tree for (N0; C), brie�y amcst; is a tree t 2 GN0

such that c (t) = min
g2GN0

c (g). It is well-known in the literature about cstp that

there exists a mcst, even though it does not need to be unique. Given a cstp
(N0; C) we denote by m (N0; C) the cost associated to any mcst t in (N0; C) :
Given a cstp (N0; C) ; we de�ne the cstp induced by C in S � N as

(S0; C).
Bird (1976) associated to each cstp (N0; C) a TU game (N; vC) where for

each coalition S � N;
vC (S) = m (S0; C) :

Usually, we write v instead of vC :

We now introduce some well-known results of TU games, which will be
used through the paper. We introduce them considering the TU game as a
cost game.
We de�ne the core of the TU game (N;w) as

core (N;w) =

(
x 2 RN j

X
i2N

xi = w (N) and 8S � N;
X
i2S

xi � w (S)

)
:

10



We say that (N;w) is concave if, for all S; T � N and i 2 N such that
S � T and i =2 T;

w (S [ i)� w (S) � w (T [ i)� w (T ) :

We denote by Sh (N;w) the Shapley value (Shapley, 1953) of the TU
game (N;w) : It is well-known that the Shapley value belongs to the core
when the game is concave.

3.2 Rules

One of the most important issues addressed in the literature about cstp is
how to divide the cost of connecting agents to the source among them. We
now introduce, brie�y, some of the rules studied in the literature.
A (cost allocation) rule is a function  such that  (N0; C) 2 RN for

each cstp (N0; C) and
P
i2N

 i (N0; C) = m (N0; C) : As usually,  i (N0; C)

represents the cost assigned to agent i.
Notice that we implicitly assume that agents built a mcst. As far as we

know, all the rules proposed in the literature make this assumption.

Given a cstp, Prim (1957) provides an algorithm for solving the problem
of connecting all agents to the source such that the total cost of creating
the network is minimal. The idea of this algorithm is quite simple: starting
from the source we construct a network by consecutively adding arcs with
the lowest cost, without introducing cycles.
Formally, Prim�s algorithm is de�ned as follows. We start with S0 = f0g

and g0 = ;:
Stage 1: Take the arc (0; i) such that c0i = min

i2N
fc0ig : If there are several

arcs (0; i) satisfying this condition, select one of them. Now, S1 = f0; ig and
g1 = f(0; i)g :
Assume that we have de�ned Sp and gp: We now de�ne Sp+1 and gp+1:

Take an arc (j; i) such that cji = min
k2Sp;l2NonSp

fcklg : If there are several arcs

(j; i) satisfying this condition, select one of them. Now, Sp+1 = Sp [ fig and
gp+1 = gp [ f(j; i)g :
This process �nishes in n stages. We say that gn is a tree obtained

via Prim�s algorithm. Notice that this algorithm leads to a tree, but not
neccesarily unique.
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We now introduce four rules of the literature: Bird�s rule, P�s rule, Kar�s
rule and Dutta-Kar�s rule.
Bird�s rule (Bird, 1976) and Dutta-Kar�s rule (Dutta and Kar, 2002) are

de�ned through Prim�s algorithm. We �rst assume that there is a unique
tree t obtained through Prim�s algorithm.
Let i0 be the �rst node in the unique path in t from i to the source. Then,

given a cstp (N0; C) ; Bird�s rule (B) is de�ned for each i 2 N as

Bi (N0; C) = ci0i:

The idea of this rule is quite simple. Agents connect sequentially to
the source following Prim�s algorithm and each agent pays the cost of his
connection.

Dutta-Kar�s rule is de�ned in a more elaborate way. Assume that agents,
according with Prim�s algorithm, connect in the order 1; 2; :::; n: First agent 1
connects to the source. We de�ne p1 = c01: Now agent 2 connects to 20 where
c202 = min fc02; c12g : We take x1 = min fp1; c202g and p2 = max fp1; c202g :
Now agent 3 connects to 3� where c303 = min fc03; c13; c23g : We take x2 =
min fp2; c303g and p3 = max fp2; c303g : This process continue until agent n:
In this case we take xn = max fpn�1; cn0ng : See Dutta and Kar (2002) for a
formal de�nition.
Dutta-Kar�s rule (DK) is de�ned for each i 2 N as

DKi (N0; C) = xi:

Assume now that the tree associated to Prim�s algorithm is not unique.
In this case Bird�s rule and Dutta-Kar�s rule can be de�ned as an average
over the trees associated to Prim�s algorithm.
Dutta and Kar (2002) proceed as follows. Given � 2 �N they de�ne

DK� (N0; C) as the allocation obtained when we apply the previous protocol
to (N0; C) and solving the indi¤erences selecting the �rst agent given by �:
Then, they de�ne

DK (N0; C) =
1

n!

X
�2�N

DK� (N0; C) :

B (N0; C) can be de�ned in a similar way.
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Kruskal (1956) introduced an algorithm for computing themcst of a cstp.
Feltkamp et al (1994a) de�ne a rule through Kruskal�s algorithm. This rule
was called Equal Remaining Obligations (ERO) in this paper. Recently,
Branzei et al (2003) call it the P � value (P ). We give the idea of this rule
following Branzei et al (2003). Initially, every agent has an obligation 1 and
the network is empty. We now apply Kruskal�s algorithm and the obligations
of the agents decrease when we add an arc to the network. This obligation
is 1

ni
; where ni is the number of agents connected directly or indirectly to

agent i through the network. At each step of the algorithm each agent pays
the part of the cost of the arc we add given by the di¤erence between his
obligation before adding the arc and his obligation after adding the arc. See
Branzei et al (2003) for a formal de�nition.

Another approach for de�ning rules is using game theory. Bird (1976)
associated a cooperative game with any cstp: Later, several authors de�ned
rules to the cstp using this cooperative game. For instance, Granot and
Huberman (1981, 1984) studied the core and the nucleolus, and Kar (2002)
studied the Shapley value.
Kar�s rule (K) is de�ned as

K (N0; C) = Sh (N; v) :

3.3 Properties

We now introduce some properties of rules.

We say that a rule  satis�es:

Core selection (CS) if for all cstp (N0; C) and all S � N ,X
i2S

 i (N0; C) � m (S0; C) :

This property says that no group of agents can be better constructing
their own network instead of paying what the rule  proposes to them. Notice
that core selection is equivalent to say that  (N0; C) 2 core (N; vC) :
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Cost monotonicity (CM) if for all cstp (N0; C) and (N0; C 0) such that
cij < c0ij for some i; j 2 N0 and c0kl = ckl otherwise,

 i (N0; C) �  i (N0; C
0) :

Cost monotonicity implies that if the connection cost between agents i
and j increases and the rest of costs are the same, then agents i and j cannot
be better.

Strong cost monotonicity (SCM) if for all cstp (N0; C) and (N0; C 0) such
that cij < c0ij for some i; j 2 N0 and c0kl = ckl otherwise,

 k (N0; C) �  k (N0; C
0) for all k 2 N:

Strong cost monotonicity implies that if the connection cost between
agents i and j increases and the rest of the costs remain the same, then
no agent can be better.

Population monotonicity (PM) if for all cstp (N0; C) ; all S � N; and all
i 2 S;

 i (N0; C) �  i (S0; C) :

Population monotonicity says that if new agents joint a society no agent
of the initial society can be worse.

Continuity (CON) if  is a continuous function of C: This property says
that small changes in the connection costs of agents cannot provoke large
changes in the amount they have to pay.

Positivity (POS) if for all cstp (N0; C) and all i 2 N

 i (N0; C) � 0:

This property says that agents cannot get bene�ts.

Separability (SEP ) if for all cstp (N0; C) and S � N satisfyingm (N0; C) =
m (S0; C) +m ((N n S)0 ; C) ;

 i (N0; C) =

�
 i (S0; C) if i 2 S
 i ((N n S)0 ; C) if i 2 N n S:
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Two subset of agents, S and N n S; can connect to the source separately
or can connect jointly. If there is not savings when they connect jointly,
separability says that agents must pay the same in both circumstances.
This property appears in Megiddo (1978), Granot and Huberman (1981),

and Granot and Maschler (1998). They use the name decomposition, in-
stead of separability, and study it relation with the core and the nucleolus
of (N; vC) : For instance, Granot and Huberman (1981) prove that the core
and the nucleolus satisfy SEP:

Equal Sharing of Extra Cost (ESEC). Let (N0; C) and (N0; C 0) be such
that c0i = c0 and c00i = c00 for all i 2 N; c0 < c00, and cij = c0ij � c0 for all
fi; jg � N: Then,

 i (N0; C
0) =  i (N0; C) +

c00 � c0
n

:

A group of agents face a problem (N0; C) in which all of them have the
same connection cost to the source (ci0 = c0) and this cost is larger than the
connection costs between agents (cij � c0) : Under these circumstances, in all
mcst one agent (any of them) connects to the source directly, and the rest
connect to the source through this agent. Moreover, they agree that the right
solution is  (N0; C) : Assume that there was a mistake and the connection
cost to the source is c00 > c0. ESEC says that agents must pay equally this
extra cost c00 � c0:

The next properties are more technical but still very reasonable.

We say that two cstp (N0; C) and (N0; C 0) are directly equivalent if there
exists a tree t such that t is a mcst for both (N0; C) and (N0; C 0) and it
satis�es cij = c0ij for all (i; j) 2 t.
We say that (N0; C) and (N0; C 0) are equivalent if there exists a succession

of cost matrices fC0; C1; :::; Cpg with C0 = C, Cp = C 0, and (N0; Cq�1)
directly equivalent to (N0; Cq) for each q = 1; 2; :::; p.
Notice that if (N0; C) and (N0; C 0) are equivalent then m (N0; C) =

m (N0; C
0).

A rule  satis�es Independence of Irrelevant Trees (IIT) if  (N0; C) =
 (N0; C

0) whenever (N0; C) and (N0; C 0) are equivalent.

Remark 1. Dutta and Kar (2002) de�ne the property of tree invariance.
This property says that the rule must depends only on the set of mcst. They
prove that DK satis�es tree invariance.
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Notice that if a rule satis�es IIT it also satis�es tree invariance. However,
tree invariance does not imply IIT . It is easy to check it in Example 1 taking
x = 0 and x = 100:

Given a cstp (N0; C) and i 2 N we denote by ((N n fig)0 ; C+i) the cstp
obtained from (N0; C) when agents of N nfig have to be connected, assuming
that agent i is already connected. This means that for all j 2 N n fig,
c+ij0 = min fcij; cj0g and c+ijk = cjk when k 6= 0:
We say that  satis�es Equal Contributions (EC) if for all i; j 2 N; i 6= j;

 i (N0; C)�  i
�
(N n fjg)0 ; C+j

�
=  j (N0; C)�  j

�
(N n fig)0 ; C+i

�
:

EC says that the impact of the connection of agent j on agent�s i cost
coincides with the impact of the connection of agent i on agent�s j cost.

There are some relations among these properties. It is trivial that SCM
implies CM whereas the reciprocal is false.

PM implies SEP: Let  be a rule satisfying PM and S � N as in
the de�nition of SEP: By PM we know that  i (S0; C) �  i (N0; C) for all
i 2 S and  i ((N n S)0 ; C) �  i (N0; C) for all i 2 N n S: Since m (N0; C) =
m (S0; C) +m ((N n S)0 ; C) it is easy to conclude that  satis�es SEP: The
reciprocal is false.

PM impliesCS: For all S � N;
P
i2S

 i (N0; C) �
P
i2S

 i (S0; C) = m (S0; C) :

The reciprocal is false.
In Section 4 (Proposition 5) we prove that SCM implies IIT:

4 The canonical form of a cost spanning tree
problem

In this section we associate to each cstp a unique canonical matrix, which has
the property that, if we reduce the cost of any arc, then the cost of connecting
agents to the source is also reduced. The canonical matrix coincides with the
minimal network de�ned in Bird (1976). We de�ne the canonical form of
a cstp as the problem obtained by replacing the initial cost matrix by its
canonical matrix associated.
We prove in propositions 1 and 3 that canonical matrices have nice math-

ematical properties, which will be often used in the paper.
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Moreover, Bird�s rule and Kar�s rule coincide in canonical matrices. This
allows us to de�ne the rule ' for general cstp as Kar�s rule (or Bird�s rule)
of the canonical form of the original problem.
We also study the rules that only depend on the canonical form and we

prove that they coincide with the rules satisfying IIT: Finally, we obtain
that if a rule does not only depend on the canonical form, it does not satisfy
strong cost monotonicity. This allows to argue that de�ning rules through
the canonical form is a good approach to cstp:

Given a cstp (N0; C) ; we say that C is canonical if we cannot decrease
the cost of an arc without decreasing m (N0; C) :

Remark 2. If C is canonical, for any i; j 2 N0 there exists a mcst t of
(N0; C) such that (i; j) 2 t:

In the next proposition we characterize the canonical matrices.

Proposition 1. C is a canonical matrix if and only if there exists a mcst
t in (N0; C) satisfying the two following conditions:
(A1) t = f(ip�1; ip)gnp=1 where i0 = 0 (the source).
(A2) Given ip; iq 2 N0, p < q then, cipiq = max

p<r�q

�
cir�1ir

	
.

Proof. See the appendix.

This means that canonical matrices are uniquely determined by a mcst t:

Given a cstp (N0; C) we say that C� is a canonical matrix associated to
C if C� is a canonical matrix, C � C�; and m (N0; C) = m (N0; C

�) : Later
we will prove that any cstp has a unique associated canonical matrix.

We now introduce an algorithm for associating to each arbitrary matrix
C 2 CN a canonical matrix C�. This algorithm has n + 1 stages and it is
inspired by Prim�s algorithm.
Let t0 = f(i0; i)gi2N be a mcst in (N0; C) : Remember that i0 is the �rst

agent in the unique path in t from i to 0: Initially, take C0 = C; S0 = f0g ;
and g0 = ?:
Stage 1. De�ne T1 = fi 2 N j i0 = 0g : Since t0 is a tree, T1 6= ;: Take

an arc (0; i1) such that i1 2 T1 and c0i1 = min
i2T1

fc0ig : If there are several arcs
satisfying this condition, take one of them. Now C1 = C0; S1 = f0; i1g ; and
g1 = f(0; i1)g :
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Assume that we have de�ned Stage r for all r � p � 1: We now de�ne
Stage p when p � n:
Stage p: We de�ne Tp = fi 2 N j i 2 N0 n Sp�1 and i0 2 Sp�1g : Since t0

is a tree, Tp 6= ;: Take an arc
�
i0p; ip

�
such that ci0pip = min

i2Tp
fci0ig : If there

are several arcs satisfying this condition, take one of them. We de�ne Cp

such that cpkj = cp�1kj if (k; j) 6= (ip�1; ip) and cpip�1ip = ci0pip . Moreover,
Sp = Sp�1 [ fipg and gp = gp�1 [ f(ip�1; ip)g :
Stage n+ 1. We de�ne C� such that c�ipiq = max

p<r�q

�
cnir�1ir

	
for all ip; iq 2

N0, p < q: Moreover t = gn:

If we apply this algorithm to Example 1 we obtain that for all cstp where
x > 0; the canonical matrix associated corresponds to the cstp where x = 0:
We now apply this algorithm in a more complicate example.
Example 2. Consider the following cstp :

0

21

3

12 15

20

4

6 8

It is trivial to see that there is a unique mcst f(0; 1) ; (1; 2) ; (1; 3)g :

1. Stage 1. We select the arc (0; 1) : Then, g1 = f(0; 1)g, S1 = f0; 1g ; and
C1 = C:

2. Stage 2. We select the arc (1; 2) : Then, g2 = f(0; 1) ; (1; 2)g, S2 =
f0; 1; 2g, and C2 = C1:

3. Stage 3. We select the arc (1; 3) : Then, g3 = f(0; 1) ; (1; 2) ; (2; 3)g,
S3 = f0; 1; 2; 3g, and C3 is given by
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0

21

3

12 15

20

4

6 6

4. Stage 4. t = f(0; 1) ; (1; 2) ; (2; 3)g : Moreover, C� is given by

0

21

3

12 12

12

4

6 6

Proposition 2. C� is a canonical matrix, C � C�; C� is equivalent to
C; and C� is the unique canonical matrix associated to C:
Proof : See the Appendix.

As a consequence of this proposition, for any cstp (N0; C) we can de�ne
the canonical form (N0; C

�) as the cstp where C� is the unique canonical
matrix associated to C:

If we compute the B; DK; and K in Example 2 we obtain

Agent 1 Agent 2 Agent 3
Bird 12 4 6
Dutta-Kar 4 6 12
Kar 3.5 7.5 11
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If we compute B; DK; andK in the canonical form associated to Example
2 we obtain

Agent 1 Agent 2 Agent 3
Bird 7 7 8
Dutta-Kar 6 6 10
Kar 7 7 8

Notice B and K coincide in the canonical form associated to Example 1.
Later we will prove that this is a general result.

In the next proposition we give a list of properties of canonical matrices.
These properties will be used often in the rest of the paper. We will assume
t = f(i� 1; i)gni=1 only to simplify the notation.

Proposition 3. Let (N0; C) be a cstp where C is canonical and t =
f(i� 1; i)gni=1 is amcst in (N0; C) satisfying (A1) and (A2) : Take S � N:We
can assume that S =

�
i1; :::; ijSj

	
; i0 = 0; and ip�1 � ip for all p = 1; :::; jSj :

Then,

(a) t0 = f(ip�1; ip)gjSjp=1 is a mcst of (S0; C) and v (S) =
jSjP
p=1

cip�1ip :

(b) v (S) � v (S n fiqg) = min
�
ciq�1iq ; ciqiq+1

	
if iq 6= ijSj and v (S) �

v
�
S n

�
ijSj
	�
= cijSj�1ijSj :

(c) (N; v) is concave.
Proof. See the Appendix.

Remark 3. Given a tree t and (i; j) 2 t; cij denote the cost of the arc
(i; j) : Bird (1976) de�ne the minimal network (N0; Ct) associated to t in the
following way. For each i; j 2 N0 such that (i; j) =2 t let gij denote the unique
path in t connecting i and j: Then, ctij = cij if (i; j) 2 t and ctij = max

(k;l)2gij
fcklg

if (i; j) =2 t: Bird (1976) uses this minimal network in order to de�ne the
irreducible core of a cstp; which is a subset of the core.
Let (N0; C) be a cstp and t a mcst in (N0; C). It is not di¢ cult to

prove that Ct coincides with C�. Then, for all mcst t the minimal network
associated to t coincides with the canonical form.

Proposition 4. Let (N0; C) be a cstp where C is canonical. Then,
K (N0; C) = B (N0; C) :
Proof. See the Appendix.
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Proposition 4 allows the following de�nition.

De�nition 1. Given a cstp (N0; C) we de�ne the rule ' as

' (N0; C) = K (N0; C
�) = B (N0; C

�)

where C� is the canonical matrix associated to C:

As we said in the initial discussion of Example 1 we de�ne the rule through
the canonical form. Moreover, we de�ne it as K and B because the fact that
these rules, which are very di¤erent in general, coincide in canonical matrices
could mean something. In the next section we will give more arguments
justifying this approach.

But now we discuss an important issue of the paper, which is de�ning rules
through the canonical form. We �rst characterize the rules which depends
only on the canonical form, i:e:  (N0; C) =  (N0; C

�) for all cstp (N0; C) :

Proposition 5. (a) A rule  depends only on the canonical form if and
only if  satis�es IIT .
(b) SCM implies IIT:

Proof. See the Appendix.

The reciprocal of part (b) is false because there exist rules satisfying IIT
but not SCM . For instance,

 i (N0; C) =
c�0i
nP
j=1

c�0j

m (N0; C) for all i 2 N

satis�es IIT but not SCM:

One of the main messages of the paper is that de�ning rules through
the canonical form is a very good approach for obtaining nice rules in cstp:
Proposition 5 (b) is a strong argument supporting this approach. If we con-
sider a rule that does not depend on the canonical form, this rule will not
satisfy SCM . Something will be missing for sure.
An interesting question from our point of view is whether it is possible

to de�ne a rule which does not depend on the canonical form, it satis�es
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interesting properties, but no rule depending only on the canonical form
satis�es these properties. In the next section we will see that this is not
a trivial question because this is not the case of the rules studied in the
literature.

5 Properties of the rule

In this section we prove that the rule ' satis�es all the properties stated in
the paper. If we compare it with the other rules we realize that ' satis�es
much more interesting properties than the other rules. This support the idea
of de�ning rules through canonical matrices.
Finally, we obtain two axiomatic characterizations of ': The second char-

acterization says that ' is the only rule satisfying strong cost monotonicity,
population monotonicity, and equal sharing of extra costs. We believe that
this is a nice characterization because we use properties based in clear eco-
nomic principles.

In the next theorem we prove that the new rule ' satis�es all the prop-
erties mentioned in the paper.

Theorem 1. ' satis�es CS; CM; SCM; PM; CON; POS; SEP; ESEC;
IIT; and EC:

Proof. See the Appendix.

Remark 4. Sprumont (1990) introduced the Population Monotonic Al-
location Schemes (PMAS) for TU games. Let (N0; C) be a cstp and let C�

be its canonical matrix. By Proposition 3 (c) ; vC� is concave and hence it
is possible to �nd a PMAS for vC�. Since C � C�; vC (S) � vC� (S) for all
S � N and hence, the PMAS of vC� are also PMAS in vC : Since ' satis�es
PM we conclude that f' (S0; C)gS�N is a PMAS of v:

In the next table we summarize the properties satis�ed by the rules men-
tioned in the paper (in the Appendix we prove that this table is correct).
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B K DK '
CS YES no YES YES
CM no YES YES YES
SCM no no no YES
PM no no no YES
CON no YES no YES
POS YES no YES YES
SEP YES no YES YES
ESEC YES YES no YES
IIT no no no YES
EC no no no YES

This table shows clearly that ' satis�es much more interesting properties
that the other rules mentioned in the paper.
This table together with Proposition 5 (b) suggest that we must take a

lot of care when we de�ne rules which do not depend only on the canonical
form. K and B use information which is not contained in the canonical form.
Nevertheless this table suggests that they use this information in a wrong
way because they loss many properties. A similar argument can be applied
to DK:
Our feeling is that the canonical form is a good environment for de�ning

rules in cstp:

Remark 5. A natural subclass of cstp is the one which arises when we
assume that for any i; j 2 N0, cij; the direct cost of connecting i and j; is not
larger that the cost of connecting i and j indirectly through other agents.
Formally, for all i; j 2 N0;

cij = min
g2Gij

c (N0; C; g)

where Gij is the set of paths connecting i and j:
It is not di¢ cult to check that in this subclass of problems the only change

in the table is that now K satis�es POS:

In the next theorem we give two characterizations of '.

Theorem 2.(a) ' is the only rule satisfying IIT; SEP; and ESEC:
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(b) ' is the only rule satisfying EC:
Proof. See the Appendix.

Since PM implies SEP; SCM implies IIT; and ' satis�es PM and SCM
next corollary is a trivial consequence of Theorem 2.

Corollary 1. ' is the only rule satisfying SCM; PM; and ESEC:

Even though Corollary 1 is a trivial consequence of Theorem 3 (a) we
state it explicitly because we believe that PM and SCM are more appealing
properties that SEP and IIT:

Remark 6. Corollary 1 and Theorem 2 (a) are tight characterization
results (the proof is in the Appendix).

6 Other approaches to the problem

In this section we present four alternative de�nitions for ': The �rst one is,
of course, the de�nition of the P �value given by Feltkamp et al (1994a). In
the second one we write ' as the Shapley value of a game. In the third we
de�ne it looking only to the problem (N0; C) in a intuitive way. The fourth
is made considering the costs as indivisible goods.
We believe that these results are very interesting because we arrive to it

from very di¤erent approaches. In some way we can consider ' as a "focal
point" of cstp:

First approach: The P�value.
Feltkamp et al (1994a) introduce a rule for cstp called Equal Remaining

Obligations. Later, Branzei et al (2003) study it more and call it P � value,
which is the name we use. As we say before when we start to study this
problem we didn�t know the paper of Feltkamp et al (1994a), which is an
unpublished paper. In January 2004 we come across the paper of Branzei et
al (2003), which was available in the web in December 2003. Through this
paper we know the �rst one.
In this section we prove that the P � value, which has been de�ned in a

completely di¤erent way that '; coincides with ':

Second approach: The Shapley value.
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We already know that ' is the Shapley value of (N; vC�) : This approach
is interesting because we prove that ' is the Shapley value of a game which
is independent of the canonical form.
Given a cstp (N0; C) we denote by

�
S0; C

+T
�
the cstp obtained from

(N0; C) assuming that agents of S have to be connected and agents of T
are already connected. This means that c+Tij = cij for all i; j 2 S and
c+Ti0 = min

j2T0
cij for all i 2 S:

Notice that if S = N n fig and T = fig this de�nition coincides with
((N n fig)0 ; C+i) ; which has been de�ned before property of EC:

Now, we associate to each cstp (N0; C) a TU game
�
N; v+C

�
where for

each S � N;
v+C (S) = m

�
S0; C

+(NnS)� :
Usually, we write v+ instead of v+C :
Given S � N , v+ (S) is the minimal cost of connecting all agents of S to

the source assuming that agents of N n S are already connected. Note that
v (S) is the minimal cost of connecting all agents of S to the source assuming
that agents in NnS are not participating.
If we compute v and v+ in Example 1 with x = 100 we obtain

S v v+

{1} 10 2
{2} 100 2
{1,2} 12 12

This example shows that v and v+ are very di¤erent. Nevertheless, for
all cstp (N0; C) we have that v (N) = v+ (N) = m (N0; C) :

De�nition 2. For all cstp (N0; C) ; we de�ne

'1 (N0; C) = Sh
�
N; v+

�
:

In the next proposition we give some results about v+ and '1 which will
be useful to prove that '1 coincides with ': Moreover, we also prove that '1

satis�es EC:
Proposition 6. (a) If C is a canonical matrix then, v (S)+v+ (N n S) =

m (N0; C) for all S � N:
(b) '1 satis�es IIT:
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(c) '1 satis�es EC:

Proof. See the Appendix.

Third approach: Looking to the problem.
We now introduce a rule to cstp looking only to the problem. Assume

that there is a unique mcst t = f(i0; i)gi2N in (N0; C). The problem that
agents face is how to divide the cost induced by t among agents. We believe
that a reasonable approach is to decide, for each arc of t; the part of the
cost every agent has to pay. Notice that B and DK decide to assign (with
di¤erent criteria) the cost of any arc to a single agent. We allow to divide
the cost of an arc among several agents.
If we back to Example 1 with x = 100 we realize that the unique mcst

is t = f(0; 1) ; (1; 2)g : We argue that both agents have rights over the cost
of arc (1; 2) : In the case of agent 2 this is clear because he connects to the
source through this arc. We also believe that agent 1 has rights over this
cost. Agent 2 can connect through agent 1 only because agent 1 connects to
the source. We believe that a fair rule must assign some of the bene�ts that
agent 2 obtains by connecting through agent 1, which can be identi�ed with
the small cost of arc (1; 2) ; to agent 1.
Since both agents are using the arc (0; 1) for connecting to the source, we

believe that any fair rule must assign this cost between both agents.
We then de�ne a multi-step procedure to compute the part of the cost of

any arc of t that every agent has to pay. The idea is the following. We ask
agents by the cost of the arc of t they want to pay for. In order to take into
account the structure of t; each agent must select an arc which he belongs
to. We assume each agent chooses the arc with the lowest cost. If several
agents select the same arc we divide this cost equally among the agents who
selected it. Each agent pays the same proportion of the cost of the arc he
selected. It is trivial to see that in the �rst step this proportion should be
0:5 or 1:
In the next steps we apply the same idea but now agents can also select

other arcs. Agent i can select arc (j; k) if there is a path in t connecting i
with j or k through arcs whose cost have been already paid.
In Example 1 each agent selects the arc (1; 2) : Since both agents select

the same arc this is divided equally between both. Then, agents 1 and 2 pay
half of the cost of arc (1; 2) : In step 2 both agents select the arc (0; 1) and
the cost is divided equally among them. Agent 2 selects (0; 1) because 2 is
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connected to 1 through arc (1; 2) ; which has been paid in step 1.
If there are several mcst we select any of them. Later we will prove that

the �nal allocation is independent of the selected mcst.

We now present this procedure in a formal way. Let t be a mcst in
(N0; C) :

Step 0. We consider:
a0 (i) = ; for all i 2 N: In general a0 (i) belongs to t:
p0 = 0:
%0 (i; j) = 0 for all (i; j) 2 t.
A0 = f(i; j) 2 t such that %0 (i; j) < 1g : Notice that A0 = t:
P 0 = fP 01 ; :::; P 0ng is a partition of N such that P 0i = fig for all i 2 N .
f 0i = 0 for all i 2 N:

Assume we have de�ned Step r for all r � s� 1: We now de�ne Step s:
In order to clarify this de�nition we will compute Step 1 of the process

when applied to the following example.
Example 3. Let (N0; C) be the cstp with mcst t = f(0; 1) ; (1; 2) ; (2; 3)g

and c01 = 12; c12 = 4; and c23 = 6: We do not specify the cost of the other
arcs because it is not necessary for the procedure.
Given P s�1q 2 P s�1, agents of P s�1q select, among the non-paid arcs, an

arc connecting them with agents outside P s�1q whose cost they want to pay.
Formally, let (iq; jq) 2 As�1 be such that iq 2 P s�1q ; jq 2 N0 n P s�1q and

ciqjq = min
�
cij : (i; j) 2 As�1; i 2 P s�1q ; and j 2 N0 n P s�1q

	
:

If there exist many (iq; jq) 2 As�1 we select any of them. We de�ne
as (i) = (iq; jq) for all i 2 P s�1q :

Example 3. For P 01 = f1g there are two possibilities: (0; 1) and (1; 2) :
Then, (i1; j1) = (1; 2) : For P 02 = f2g there are two possibilities: (1; 2) and
(2; 3) : Then, (i2; j2) = (1; 2) : For P 03 = f3g there is only one possibil-
ity (2; 3). Then, (i3; j3) = (2; 3) : Moreover, a1 (1) = a1 (2) = (1; 2) ; and
a1 (3) = (2; 3) :
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We now compute ps; the proportion (of the arc he selected) that any agent
pays at this step. For each arc (i; j) 2 As�1 we de�ne

N s
ij = fk 2 N : as (k) = (i; j)g and

ps = min
(i;j)2As�1

(
1� %s�1 (i; j)��N s

ij

��
)
:

We de�ne %s (i; j) = %s�1 (i; j) +
��N s

ij

�� ps for each (i; j) 2 As�1: Then,
%s (i; j) � 1 for each (i; j) 2 As�1 and there exists at least one (i0; j0) 2 As�1
such that %s (i0; j0) = 1: Notice that %s (i; j) denotes the proportion of the
cost of arc (i; j) paid at the end of Step s.

Example 3. N1
01 = ;; N1

12 = f1; 2g ; and N1
23 = f3g : Then, p1 = 1

2
(we

take 1
0
= +1): %1 (0; 1) = 0; %1 (1; 2) = 1; and %1 (2; 3) = 1

2
:

We now compute the arcs whose cost has not been paid.

As =
�
(i; j) 2 As�1 such that %s (i; j) < 1

	
:

We de�ne P s joining elements of P s�1 in the following way. Two elements
P s�1q and P s�1q0 of P s�1 are in the same element of P s if (iq0 ; jq0) = (iq; jq)
and %s (iq; jq) = 1:

Example 3. A1 = f(0; 1) ; (2; 3)g and P 1 = ff1; 2g ; f3gg

Finally, for each i 2 P s�1q we compute the cost that agent i pays in Step
s.

f si = psciqjq :

Example 3. f 11 = 2; f
1
2 = 2; and f

1
3 = 3:

This process ends when As = ;: Since A0 = t, As � As�1 and As 6= As�1;
this process ends in a �nite number of steps (at most n), say 
.

Since each tree has n arcs it is trivial to see that

P
s=1

ps = 1:

De�nition 3. For all cstp (N0; C) and i 2 N we de�ne '3i (N0; C) =

P
s=1

f si .

28



We must prove that '3 is well de�ned (it does not depend on things such
as the tree t, the arc (iq; jq) ...): We will do it later.

Remark 71. Feltkamp, Tijs, and Muto (1994b) introduce the decentral-
ized rule for generic cstp: A cstp is generic if di¤erent arcs have di¤erent
costs (without violating that cij = cji for all i; j 2 N0): The decentralized
rule is de�ned with a procedure similar to our procedure de�ning '3: At each
step each agent select a non paid arc with the same criteria that with our
procedure.
The main di¤erence between both procedures is the following. In the

decentralized rule, all the cost of each arc selected is divided between the
agents who select it. In our procedure it is possible that only a part of this
cost is divided. We now compute the decentralized rule in Example 3.
Step 1. Agents 1 and 2 select arc (1; 2) : Agent 3 selects arc (2; 3) : Then,

the cost of arc (1; 2) is divided equally between agents 1 and 2. The cost of
arc (2; 3) is paid by agent 3. Agent 3 has not more obligations.
Step 2. Agents 1 and 2 select arc (0; 1) and divided this cost equally

among them.
Thus, agents 1 and 2 pay 1

2
4 + 1

2
12 = 8; whereas agent 3 pays 6.

Fourth approach: Indivisible costs.
To clarify the motivation of this approach we assume that there is a unique

mcst in (N0; C). We can think in B and DK as rules assigning indivisible
goods (cost of the arcs) because the cost of any arc of t is paid only by one
agent. Of course, the indivisible goods are not really indivisible.
Given � 2 �N assume that the agents connect sequentially in the order

given by � to one of the cheapest available options. Following this procedure
we can associate a tree (not necessarily unique) to any permutation. We say
that the tree t� is induced by the permutation � 2 �N if:

t� =

�
(i�; i) such that i 2 N; i� 2 Pre (i; �) [ f0g
and ci�i � cij for all j 2 Pre (i; �) [ f0g

�
:

Let us suppose that any agent pays his connection cost in accordance to
t�, i:e: agent i pays ci�i for all i 2 N: It is self-evident that if t� and t0� are
two di¤erent trees induced by � 2 �N ; then agents pay the same under t� as
under t0�. Thus it makes sense to de�ne the cost allocation induced by the
permutation � 2 �N as the vector c� = fci�igi2N :

1This remark is based on a suggestion of Stef Tijs.
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Assume that � 2 �N satis�es c (N0; C; t�) = m (N0; C) : Then, t� is a
mcst and B (N0; C) and DK (N0; C) are obtained from c�. It is trivial to see
that Bi (N0; C) = ci�i and DKi (N0; C) = ci�j ij for all i 2 N: Then, B and
DK could be very unfair (see, for instance Example 1 with x > 0):
A classical way for recovering fairness from an allocation depending on

the permutations is taking the average over the set of all permutations. In
cstp problems this approach is incompatible with e¢ ciency because for some
� 2 �N ; c (N0; C; t�) > m (N0; C) :
Nevertheless, if C is a canonical matrix, for all � 2 �N ; c (N0; C; t�) =

m (N0; C) (we will prove this statement later). Then, in canonical matrices
it is possible to generate an e¢ cient and fair allocation taking the average
over the permutations.
We then de�ne the rule '3 as follows.

De�nition 4. For all cstp (N0; C) and i 2 N we de�ne

'3i (N0; C) =
1

n!

X
�2�N

c�i�i

where c�i�i is the connection cost among i and i
� in the canonical form C�

associated to C:

In this approach the canonical form appears in a natural way. Neverthe-
less, this approach is di¤erent from the original de�nition of ':

We now prove that all the rules de�ned in this section coincide with ':

Theorem 3. P = '1 = '2 = '3 = ':

Proof. See the Appendix.

In the next corollary, which is a trivial consequence of Theorem 3 and
Proposition 6 (c) ; we prove that ' satis�es EC:
Corollary 2. ' satis�es EC:

We believe that Theorem 3 gives more support to this rule because we
can justify it from di¤erent approaches to the problem. This rule is in some
sense a focal point of the problem.
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7 Appendix

In this section we prove the results stated in the paper.

7.1 Proof of Proposition 1

We �rst prove that if C satis�es A1 and A2 then C is canonical. By
simplicity we assume that ip = p for all p = 0; 1; :::; n: This means that
t = f(i� 1; i)gni=1 :
Take i; j 2 N0 and C 0 such that c0ij < cij and c0kl = ckl otherwise. We

need to prove that m (N0; C 0) < m (N0; C) : It is enough to prove that there
exists a tree t such that c (N0; C 0; t) < m (N0; C) :
Assume without loss of generality that i < j. By (A2) ; cij = c(k�1)k

where i < k � j:We de�ne t0 = (t n f(k � 1; k)g)[f(i; j)g. Then, t0 is a tree
and

c (N0; C
0; t0) = m (N0; C)� c(k�1)k + c0ij

= m (N0; C)� cij + c0ij
< m (N0; C) :

We now prove that if C is canonical then C satis�es A1 and A2:
Let (N0; C) be a cstp and t = f(i0; i)gi2N a mcst in (N0; C) : If (j; k) =2 t

there exists a unique path g in t connecting j and k: Take (l; l0) 2 g such
that cl0l = max

(i0;i)2g
fci0ig :We now prove two claims.

Claim 1. cjk � cl0l:
Assume that cjk < cl0l. Take t0 = (t n f(l0; l)g) [ f(j; k)g : Then, t0 is a

tree and

c (N0; C; t
0) = c

�
N0; C; t

2
�
� cll0 + cjk < c (N0; C; t)

which is a contradiction because t is a mcst in (N0; C) :
Notice that Claim 1 holds also when C is not canonical.

Claim 2. cjk � cl0l:
Assume that cjk > cl0l: By Remark 2, we can �nd a mcst t0 such that

(j; k) 2 t0. Let Tj be the set of nodes in N0 which are connected to j in
t0 n f(j; k)g : We can de�ne Tk in a similar way. Notice that j 2 Tj and
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k 2 Tk: Since t0 is a tree we can �nd (p0; p) 2 g such that (p0; p) =2 t0 and
t00 = (t0 n f(j; k)g) [ f(p0; p)g is a tree. Then,

c (N0; C; t
00) = c (N0; C; t

0)� cjk + cp0p < c (N0; C; t
0)

which is a contradiction because t0 is a mcst in (N0; C) :

We proceed by induction on n (the number of agents). If n = 1 the result
is trivial. Assume that the result holds for n � s and we prove it when
n = s+ 1:
We �rst prove that we can �nd a mcst satisfying (A1) :
Let t0 be a mcst obtained following Prim�s algorithm. Then, t0 can be

obtained assuming that agents connect sequentially in some order � 2 �N :
By simplicity we take � = f1; 2; :::; ng :
Because of the de�nition of Prim�s algorithm we know that t0Nnfng is a

mcst in ((N n fng)0 ; C) : Since N n fng has n � 1 agents, by induction hy-
pothesis, we can �nd t1 = f(ip�1; ip)gn�1p=1 satisfying (A1) and (A2) :Moreover,

c
�
(N n fng)0 ; C; t0Nnfng

�
= c

�
(N n fng)0 ; C; t1

�
:

Let iq 2 f0; 1; :::; n� 1g be the agent to whom n connects according with
t0: We take t2 = t1 [ (iq; n) : It is easy to see that c (N0; C; t2) = c(N0; C; t).
Thus, t2 is a mcst in (N0; C).

For all p = q+1; :::; n�1; gp =
n
(iq; n) ; f(ir�1; ir)gpr=q+1

o
is the only path

in t2 connecting n and ip: By claims 1 and 2, cipn = max
�

max
r=q+1;:::;p

�
cir�1ir

	
; ciqn

�
:

Assume that there exist r 2 fq + 1; :::; n� 1g such that cip�1ip � ciqn for
all p = q + 1; :::; r and ciqn � cirir+1. It is trivial to see that the tree

t = f(ip�1; ip)grp=1 [ (ir; n) [ (ir+1; n) [ f(ip�1; ip)g
n�1
p=r+2

is a mcst satisfying (A1) because cirn = ciqn and cir+1n = cirir+1 :
Assume that cip�1ip � ciqn for all p = q + 1; :::; n� 1: Then, the tree

t = f(ip�1; ip)gn�1p=1 [ (iq; n)

is a mcst satisfying (A1) because cin�1n = ciqn.
We have proved that we can �nd a mcst t = f(ip�1; ip)gnp=1 satisfying

(A1) : We now prove that t also satis�es (A2) :

32



For all ip; iq 2 N , p < q we have that g = f(ir�1; ir)gqr=p+1 is the unique
path in t connecting ip and iq: By claims 1 and 2 we conclude that t also
satis�es (A2) :

7.2 Proof of Proposition 2

We prove several claims.

Claim 1. For all p = 1; :::; n;

ci0pip = min
l2Sp�1;k2N0nSp�1

�
cp�1lk

	
:

Because of the de�nition of Cp�1; cp�1lk = clk when l 2 Sp�1 and k 2
N0 n Sp�1: Since i0p 2 Sp�1 and ip 2 N0 n Sp�1 we conclude that ci0pip �

min
l2Sp�1;k2N0nSp�1

fcklg :

Assume that ci0pip > min
l2Sp�1;k2N0nSp�1

fclkg = clpkp :We take t
0 =
�
t0 n

��
i0p; ip

�	�
[

f(lp; kp)g : Then, t0 is a tree and

c (N0; C; t
0) = c

�
N0; C; t

0
�
� ci0pip + clpkp < c

�
N0; C; t

0
�

which is a contradiction because t0 is a mcst in (N0; C) :

Claim 2. For all p = 1; :::n; Cp�1 � Cp and Cp�1 and Cp are directly
equivalent.
We prove that Cp�1 � Cp: By de�nition cpjk = cp�1jk if fj; kg 6= fip�1; ipg

it is enough to prove that cp�1ip�1ip � cpip�1ip : Since ip�1 2 Sp�1, by Claim 1,

cp�1ip�1ip � ci0pip = cpip�1ip :

Assume that t0 is a tree obtained through Prim�s algorithm in (N0; Cp�1) :
By Claim 1 it is straightforward to prove that t0 can be obtained also through
Prim�s algorithm in (N0; Cp) : Now is easy to conclude that Cp�1 and Cp are
directly equivalent.

Claim 3. Cn � C�:
We must prove that cnipiq � c�ipiq = max

p<r�q

�
cnir�1ir

	
for all ip; iq 2 N0, p < q:

Suppose not. Then, there exist ip; iq; ir�1; ir 2 N0, p < r � q such that
cnir�1ir > cnipiq :
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As a consequence of Prim�s algorithm, t = f(ip�1; ip)gnp=1 is a mcst of
(N0; C

n) : We consider the tree t0 = (t n f(ir�1; ir)g) [ f(ip; iq)g : Then,

c (N0; C
n; t0) = c (N0; C

n; t)� cnir�1ir + cnipiq < c (N0; C
n; t)

which is a contradiction because t is a mcst of (N0; Cn) :

Claim 4. Cn and C� are directly equivalent.
In the proof of Claim 3 we argue that t = f(ip�1; ip)gnp=1 is a mcst in

(N0; C
n) :

We now apply Prim�s algorithm to (N0; C�) : Stage 1. We must select
an arc (0; i) such that c�0i = min

j2N

�
c�0j
	
: We know that for all p = 1; :::; n;

q = 1; :::; n and p > q; c�0ip � c�0iq : Then, in Stage 1 we can select the arc
(0; i1) :
Repeating this argument we can prove that in each Stage p; p = 1; :::; n

we can select the arc (ip�1; ip) :
Thus, t is amcst in (N0; C�) and hence, Cn and C� are directly equivalent.

Claim 5. C� is a canonical matrix, C � C�; C and C� are equivalent,
and C� is a canonical matrix associated to C:
By Proposition 1 C� is a canonical matrix.
By Claim 2, C = C0 � C1 � ::: � Cn: By Claim 3, Cn � C�: Then,

C � C�:
Since Cp�1 and Cp are directly equivalent for all p = 1; :::; n (Claim 2)

and C0 = C; we conclude that C and Cn are equivalent. By Claim 4, Cn

and C� are equivalent. Then, C and C� are equivalent.
Since C� is a canonical matrix, C � C�; and m (N0; C) = m (N0; C

�) (C
and C� are equivalent) we conclude that C� is a canonical matrix associated
to C:

Claim 6. C� is the unique canonical matrix associated to C.
Since C� is a canonical matrix associated to C we must prove that if C 0

is another canonical matrix associated to C then, C 0 = C�: Because of the
de�nition of canonical matrices it is enough to prove that C 0 � C�:
Since C� and C 0 are canonical matrices associated to C and t0 is amcst in

(N0; C), t0 is also amcst in (N0; C�) and (N0; C 0) :Moreover, c0i0i = c�i0i = ci0i
for all i 2 N:
Let t be the tree obtained in Stage n + 1 of the algorithm. Assume,

without loss of generality, that t = f(i� 1; i)gni=1 :
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We prove that given i; j 2 N0; c0ji � c�ji: Assume, without loss of general-
ity, that i > j. Since ck0k = c�(k�1)k (because of the de�nition of t),

c�ji = max
j<k�i

�
c�(k�1)k

	
= max

j<k�i
fck0kg :

Let k 2 N be such that j < k � i: We consider two cases:

1. k is in the unique path in t0 from i to 0. Then, t0 = t0nf(k0; k)g[f(j; i)g
is a tree. Since t0 is a mcst in (N0; C 0), Thus,

c
�
N0; C

0; t0
�
� c (N0; C

0; t0) = c
�
N0; C

0; t0
�
� ck0k + c0ji:

which means that c0ji � ck0k:

2. k is not in the unique path in t0 from j to 0. Let l be such that
k < l � j; l is in the unique path in t0 from j to 0, and for all
r 2 fk; k + 1; :::; l � 1g, r is not in the unique path in t0 from j to 0.
Because of the de�nition of the algorithm we know that fl0; k0g � Sk�1;
fl; kg � N0 n Sk�1; and

c0k0k = ck0k = min
p2Sk�1;q2N0nSk�1

fcpqg � cl0l = c0l0l:

By case 1, c0ji � cl0l and then, c0ji � ck0k:

Now c0ji � max
i<k�j

fck0kg = c�ji is a trivial consequence of cases 1 and 2.

7.3 Proof of Proposition 3

(a) We compute t0 following Prim�s algorithm. Since t satis�es (A2) and
ip�1 � ip for all p = 1; :::; s we conclude that c0i1 � c0ip for all p = 1; :::; jSj :
Then, the arc (0; i1) could be the �rst arc in Prim�s algorithm.
Since t satis�es (A2) we conclude that c0i2 � c0ip and ci1i2 � ci1ip for all

p = 2; :::; jSj : Then, min fc0i2 ; ci1i2g � min
�
c0ip ; ci1ip

	
for all p = 2; :::; jSj :

By (A2) ; ci1i2 � c0i2. Thus, ci1i2 = min fc0i2 ; ci1i2g and, hence, we can choose
the arc (i1; i2) as the second arc in Prim�s algorithm.
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If we continue with this process we obtain that t0 = f(ip�1; ip)gjSjp=1 is a
tree obtained following Prim�s algorithm. This means that t0 is a mcst in
(S0; C) and hence,

v (S) = m (S0; C) = c (S0; C; t
0) =

jSjX
p=1

cip�1ip :

(b) Assume �rst that iq 6= ijSj: By (a);

v (S)� v (S n fiqg) =

jSjX
p=1

cip�1ip �

0@ q�1X
p=1

cip�1ip + ciq�1iq+1 +

jSjX
p=q+1

cip�1ip

1A
= ciq�1iq + ciqiq+1 � ciq�1iq+1 :

Since t satis�es (A2) we conclude that ciq�1iq+1 = max
�
ciq�1iq ; ciriq+1

	
:

Then,
v (S)� v (S n fiqg) = min

�
ciq�1iq ; ciqiq+1

	
:

Assume now that iq = ijSj: By (a);

v (S)� v (S n fiqg) =
jSjX
p=1

cip�1ip �
jSj�1X
p=1

cip�1ip = cijSj�1ijSj :

(c) Let S 0 be such that S � S 0 � N . Assume that S 0 = fi01; :::; i0s0g and
i0p�1 � i0p for all p = 1; :::; jS 0j : Notice that jS 0j � jSj because S � S 0: We
prove that for all i 2 S,

v (S)� v (S n fig) � v (S 0)� v (S 0 n fig) :

We consider three cases:

� i 6= ijSj: Then, i = iq = i0q0 and i
0
q0 6= i0jS0j: By (b),

v (S)� v (S n fig) = min
�
ciq�1i; ciiq+1

	
v (S 0)� v (S 0 n fig) = min

n
ci0
q0�1i

; cii0
q0+1

o
:

Since S � S 0 we conclude that iq�1 � i0q0�1 and i
0
q0+1 � iq+1: Then,

ciq�1i � ci0
q0�1i

and ciiq+1 � cii0
q0+1

because t satis�es (A2) : Thus,

v (S)� v (S n fig) � v (S 0)� v (S 0 n fig) :
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� i = ijSj and i 6= i0jS0j: Then i = ijSj = i0q0 < i0jS0j: By (b) ;

v (S)� v (S n fig) = cijSj�1i

v (S 0)� v (S 0 n fig) = min
n
ci0
q0�1i

; cii0
q0+1

o
:

Since S � S 0 we conclude that ijSj�1 � i0q0�1. Then, cijSj�1i � ci0
q0�1i

because t satis�es (A2) : Thus,

v (S)� v (S n fig) � v (S 0)� v (S 0 n fig) :

� i = ijSj = i0jS0j: By (b) ;

v (S)� v (S n fig) = cijSj�1i

v (S 0)� v (S 0 n fig) = ci0jS0j�1i
:

Since S � S 0 we conclude that ijSj�1 � i0jS0j�1. Then, cijSj�1i � ci0jS0j�1i

because t satis�es (A2) :

7.4 Proof of Proposition 4

Let t = f(ip�1; ip)gnp=1 be the tree associated to C satisfying (A1) :
We know that for all i 2 N;

Bi (N0; C) =
1

n!

X
�2�N

B�
i (N0; C) and

Ki (N0; C) =
1

n!

X
�2�N

(vC (Pre (i; �) [ fig)� vC (Pre (i; �))) :

We prove that B coincides with K using an induction argument over the
set of agents. If n = 1 it is clear that B coincides with K: Assume that
B (N0; C) = K (N0; C) when n � p� 1:
We prove it when n = p: We consider two cases.
Case 1. There exists an arc (iq�1; iq) with q > 1 such that ciq�1iq � c0i1 :
We take S = fi1; :::; iq0�1g where q0 satis�es that ciq0�1iq0 � c0i1 and

cir�1ir < c0i1 for all r < q0:
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By Proposition 3 (a) and condition (A2) ;

m (N0; C) =
nX
r=1

cir�1ir =

q0�1X
r=1

cir�1ir +
nX

r=q0

cir�1ir

= m (S0; C) + ciq0�1iq0 +
nX

r=q0+1

cir�1ir

= m (S0; C) + c0iq0 +

nX
r=q0+1

cir�1ir

= m (S0; C) +m ((N n S)0 ; C) :

Later, we will prove that B and K satisfy SEP without using this propo-
sition. Then,

Bi (N0; C) =

�
Bi (S0; C) if i 2 S
Bi ((N n S)0 ; C) if i 2 N n S and

Ki (N0; C) =

�
Ki (S0; C) if i 2 S
Ki ((N n S)0 ; C) if i 2 N n S

Since S and N n S has at most q � 1 agents, by induction hypothesis we
conclude that B coincides with K:

Case 2. c0i1 > cip�1ip for all p = 2; :::; n:
Take i 2 N: Then, i = ip for some p = 1; :::; n: Since t satis�es (A2)

c0i = max
r=1;:::;p

�
cir�1ir

	
= c0i1 :

Given i 2 N we de�ne the cstp
�
N�i
0 ; Ci

�
where N�i = N n fig and for

all j; k 2 N�i
0 ; j � k

cijk =

�
cjk if j 6= 0
cik if j = 0:

Since Ci is symmetric we can compute cijk when j > k:

Notice that
�
N�i
0 ; Ci

�
is obtained from (N0; C) by considering agent i as

the source. We then write N�i
i instead of N�i

0 :
We prove several claims.
Claim 1. Ci is a canonical matrix and m

�
N�i
i ; Ci

�
= m (N0; C)� c0i1 :
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We �rst prove that m
�
N�i
i ; Ci

�
= m (N0; C)� c0i1 : We know that i = iq

for some q = 1; :::; n: Then, ti = t n f(0; i1)g is a tree in
�
N�i
0 ; Ci

�
and

c
�
ti; N�i

i ; Ci
�
= m (N0; C)� c0i1 : Thus, m

�
N�i
i ; Ci

�
� m (N0; C)� c0i1 :

Assume that m
�
N�i
i ; Ci

�
< m (N0; C) � c0i1 : There exists a tree t

0 in�
N�i
0 ; Ci

�
satisfying that c

�
t0; N�i

i ; Ci
�
< c

�
ti; N�i

i ; Ci
�
: We de�ne t00 =

t0 [ (0; i) : Since t00 is a tree in (N0; C)

c (t00; N0; C) = c0i + c
�
t0; N�i

i ; Ci
�
< c0i1 + c

�
ti; N�i

i ; Ci
�

= m (N0; C)

which is a contradiction. Then, m
�
N�i
i ; Ci

�
= m (N0; C)� c0i1 :

Using arguments similar to those used in the proof of m
�
N�i
i ; Ci

�
<

m (N0; C)�c0i1 we can prove that if we reduce the cost of an arc in
�
N�i
i ; Ci

�
then the mcst in

�
N�i
i ; Ci

�
is also reduced. Thus, Ci is a canonical matrix.

This ends the proof of Claim 1.

Given i 2 N we de�ne �i = f� 2 �N such that � (1) = ig ; i:e: the orders
in which agent i is the �rst.

Claim 2. For all i 2 N and j 2 N�i;

Bj
�
N�i
i ; Ci

�
=

1

(n� 1)!
X
�2�i

B�
j (N0; C) :

Take j 2 N�i: Since t satis�es (A2) and c0i1 > cip�1ip for all p = 2; :::; n;
we conclude that cji < cj0: Because of the de�nition of Prim�s algorithm, for
all � 2 �i;

B�
j (N0; C) = B

�N�i
j

�
N�i
i ; Ci

�
:

Since � 2 �i if and only if �N�i 2 �N�i ;

Bj
�
N�i
i ; Ci

�
=

1

(n� 1)!
X

�2�N�i

B�
j

�
N�i
i ; Ci

�
=

1

(n� 1)!
X
�2�i

B�
j (N0; C) :

Claim 3. For all i 2 N and j 2 N�i;

Kj

�
N�i
i ; Ci

�
=

1

(n� 1)!
X
�2�i

vC (Pre (j; �) [ fjg)� vC (Pre (j; �)) :
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Using arguments similar to those used when we prove thatm
�
N�i
i ; Ci

�
=

m (N0; C)� c0i1 it is easy to prove that if i 2 S � N ,

m (S0; C) = m
�
(S n fig)i ; Ci

�
+ c0i:

Then, for all � 2 �i and j 2 N�i;

vC (Pre (j; �) [ fjg)� vC (Pre (j; �)) =

= m ((Pre (j; �) [ fjg)0 ; C)�m (Pre (j; �)0 ; C)

= m
�
(Pre (j; �) [ fjg n fig)i ; Ci

�
�m

�
(Pre (j; �) n fig)i ; Ci

�
= vCi (Pre (j; �N�i) [ fjg)� vCi (Pre (j; �N�i)) :

Since � 2 �i if and only if �N�i 2 �N�i ;

Kj

�
N�i
i ; Ci

�
=

1

(n� 1)!
X

�2�N�i

vCi (Pre (j; �) [ fjg)� vCi (Pre (j; �))

=
1

(n� 1)!
X
�2�i

vC (Pre (j; �) [ fjg)� vC (Pre (j; �)) :

Claim 4. For all i 2 N and � 2 �i;

B�
i (N0; C) = vC (Pre (i; �) [ fig)� vC (Pre (i; �)) = c0i1 :

Take i 2 N and � 2 �i:
We know that c0j = c0i1 for all j 2 N: Then, in Stage 1 of Prim�s algorithm

we can select any agent j 2 N: Since � (1) = i; B�
i (N0; C) = c0i = c0i1 :

Moreover,

vC (Pre (i; �) [ fig)� vC (Pre (i; �)) = vC (fig)� vC (?) = vC (fig)
= m (fig0 ; C) = c0i = c0i1 :

Claim 5. For all j 2 N; Bj (N0; C) = Kj (N0; C) :
Take j 2 N:
By claims 2 and 4,
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Bj (N0; C) =
1

n!

X
�2�N

B�
j (N0; C) =

1

n!

X
i2N

X
�2�i

B�
j (N0; C)

=
1

n!

X
�2�j

B�
j (N0; C) +

1

n

X
i2Nnfjg

1

(n� 1)!
X
�2�i

B�
j (N0; C)

=
1

n!

X
�2�j

c0i1 +
1

n

X
i2Nnfjg

Bj
�
N�i
i ; Ci

�
=

1

n
c0i1 +

1

n

X
i2Nnfjg

Bj
�
N�i
i ; Ci

�
:

By claims 3 and 4,

Kj (N0; C) =
1

n!

X
�2�N

(vC (Pre (j; �) [ fig)� vC (Pre (j; �)))

=
1

n!

X
i2N

X
�2�i

(vC (Pre (j; �) [ fig)� vC (Pre (j; �)))

=
1

n!

X
�2�j

(vC (Pre (j; �) [ fig)� vC (Pre (j; �)))

+
1

n

X
i2Nnfjg

1

(n� 1)!
X
�2�i

(vC (Pre (j; �) [ fig)� vC (Pre (j; �)))

=
1

n!

X
�2�j

c0i1 +
1

n

X
i2Nnfjg

Kj

�
N�i
i ; Ci

�
=

1

n
c0i1 +

1

n

X
i2Nnfjg

Kj

�
N�i
i ; Ci

�
:

By induction hypothesis we know that Bj
�
N�i
i ; Ci

�
= Kj

�
N�i
i ; Ci

�
for

all i; j 2 N: Then, Bj (N0; C) = Kj (N0; C) :

7.5 Proof of Proposition 5

(a) Assume that  satis�es IIT: By Proposition 2, C is equivalent to C�:
Then,  (N0; C) =  (N0; C

�) :
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Assume that  depends only on the canonical form. Because of the
de�nition of equivalent problems, it is enough to prove that, if C and C 0 are
two directly equivalent problems, then  (N0; C) =  (N0; C

0).
Assume that C and C 0 are directly equivalent problems. There exists

a mcst t = f(i0; i)gi2N in (N0; C) and (N0; C 0) such that ci0i = c0i0i for
all i 2 N: It is straightforward to prove, because of the de�nition of the
algorithm, that C� = C 0�: Since  depends only on the canonical form,
 (N0; C) =  (N0; C

0) :
(b) If  satis�es SCM ,  (N0; C) �  (N0; C

�) because C � C� (Propo-
sition 2). Since m (N0; C) = m (N0; C

�) ;  (N0; C) =  (N0; C
�) : By (a) we

conclude that  satis�es IIT:

7.6 Proof of Theorem 1

Let (N0; C) be a cstp and (N0; C�) its canonical form. We know that ' (N0; C) =
K (N0; C

�) = Sh (N; vC�) :We now prove that ' satis�es the following prop-
erties:

Independence of irrelevant trees (IIT ) : It is a consequence of Propo-
sition 5 (a) :

Strong cost monotonicity (SCM) : Let (N0; C) and (N0; C 0) be two
cstp such that there exist j; k 2 N0 satisfying c0jk = cjk + a where a > 0 and
c0il = cil otherwise. We must prove that 'i (N0; C) � 'i (N0; C

0) for all i 2 N:
Since C � C 0 we conclude that m (N0; C) � m (N0; C

0) :
Assume �rst there exists a mcst t in (N0; C) such that (j; k) =2 t: Then,

c (N0; C
0; t) = c (N0; C; t) = m (N0; C) :

Thus, m (N0; C) = m (N0; C
0) and t is a mcst in (N0; C 0). Moreover,

cil = c0il for all (i; l) 2 t: This means that (N0; C) and (N0; C 0) are directly
equivalent. Then, ' (N0; C) = ' (N0; C

0) because ' satis�es IIT .

Assume that for all mcst t in (N0; C), (j; k) 2 t: Let G be the set of trees
which do not contain the arc (j; k), i:e:

G =
�
g 2 GN0 j g is a tree and (j; k) =2 g

	
:
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Let t1 2 G be such that

c
�
N0; C; t

1
�
= min

t2G
fc (N0; C; t)g :

Since (j; k) =2 t1; we conclude that c (N0; C; t1) = c (N0; C
0; t1).

We de�ne b = c (N0; C; t
1)�m (N0; C) : Notice that b � 0 because t1 is a

tree in (N0; C) :
We now distinguish two cases:

Case 1 : a � b: Let t0 = f(i0; i)gi2N be a mcst in (N0; C) : We assume,
without loss of generality, that j0 = k. Then, (k; j) 2 t0 and t0 is a mcst in
(N0; C

0) :We can assume, without loss of generality, that t; the tree obtained
when we apply the algorithm to (N0; C) ; is f(i� 1; i)gi2N :
Let t0 = f(ip�1; ip)gnp=1 be the tree obtained when we apply the algorithm

to (N0; C 0) : It is trivial to see that we can choose t0 satisfying that ip = p for
all p < j. Moreover, t0 is computed in such a way that t0 = t if it is possible.
We consider two subcases:

Subcase 1.1 : t = t0:
We �rst prove that C� � C 0�:
When i 6= j; c�(i�1)i = ci0i = c0i0i = c0�(i�1)i: Moreover, c

�
(j�1)j = cj0j <

cj0j + a = c0�(j�1)j:
Let i; l 2 N0 such that i < l: Because of the de�nition of C� and C 0� we

have that c�il = max
i<p�l

n
c�(p�1)p

o
and c0�il = max

i<p�l

n
c0�(p�1)p

o
: Then, c�il � c0�il :

We now prove that ' (N0; C) � ' (N0; C
0).

We know that ' (N0; C) = Sh (N; vC�) and ' (N0; C 0) = Sh (N; vC0�) :
Take S =

�
j1; :::; jjSj

	
such that jp�1 < jp for all p = 2; :::; jSj and jq 2 S:

By Proposition 3 (b) we conclude that

vC� (S)� vC� (S n fjqg) � vC0� (S)� vC0� (S n fjqg)

because C� � C 0�:
Take i 2 N: Then,

Shi (N; vC�) =
1

n!

X
�2�N

(vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)))

� 1

n!

X
�2�N

(vC0� (Pre (i; �) [ fig)� vC0� (Pre (i; �)))

= Shi (N; vC0�) :
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Subcase 1.2 : t 6= t0.
It is trivial to see that cj0j � cij�1ij < cj0j + a = c0j0j: This means that

j = iq with q > j: Because of the de�nition of the algorithm we can take t0

such that c0�ip�1ip < c0�iq�1iq for all p = j; :::; q�1. Then, c0�iq�1iq = c0j0j = cj0j+a:

Take C 0(j�1) = C. For all p = j; :::; q we de�ne C 0p such that c0pj0j =

c
0(p�1)
j0j +max

n
ci0pip � c

0(p�1)
j0j ; 0

o
and c0pil = c

0(p�1)
il otherwise. Let t0p be the tree

obtained when we apply the algorithm to (N0; C 0p) :
Notice that

C 0 = C 0q � C 0(q�1) � ::: � C 0j � C 0(j�1) = C:

and t0 is a mcst in (N0; C 0p) for all p = j; :::; q:
We prove that for all p = j; :::; q we can take t0(p�1) and t0p such that

t0(p�1) = t0p: We prove it when p = j; the other cases are similar.
We take t0(j�1) = t: If we apply the algorithm to C 0j, for all i = 1; :::;

j � 1, we can select the arc (i0; i) :
Since c0(j�1)j0j = cj0j and cj0j � ci0j ij ,

c0jj0j = c
0(j�1)
j0j +max

n
ci0j ij � c

0(j�1)
j0j ; 0

o
= ci0j ij :

Then, in Stage j of the algorithm we can select the arc (j0; j). Now it is
trivial to see that in Stage i; i > j; we can select the arc (i0; i). Thus, t0j = t:
Take p 2 fj; :::; qg : Since t0(p�1) = t0p and

�
N0; C

0(p�1)� and (N0; C 0p) are
in subcase 1.1 we conclude that ' (N0; C 0p) � '

�
N0; C

0(p�1)� :
Thus,

' (N0; C
0) = ' (N0; C

0q) � ::: � '
�
N0; C

0(j�1)� = ' (N0; C) :

Case 2 : a > b. Then, t1 is a mcst in (N0; C 0) but t is not.
Let C 00 such that c00jk = cjk + b and c00il = cil otherwise. Notice that

C � C 00 � C 0:
We are then under the hypothesis of Case 1, and thus 'i (N0; C) �

'i (N0; C
00) for all i 2 N:

We know that t1 is a mcst of (N0; C 0) and (N0; C 00) and (k; j) =2 t1. Then,
c0il = c00il for all (i; l) 2 t1:
This means that (N0; C 0) and (N0; C 00) are directly equivalent. Since '

satis�es IIT (Proposition 5 (a)) we conclude that ' (N0; C 00) = ' (N0; C
0) .

Thus, ' (N0; C) � 'i (N0; C
0).
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Cost monotonicity (CM) : Since ' satis�es SCM we conclude that '
also satis�es CM:

Population monotonicity (PM) : We must prove that for all cstp
(N0; C) ; all S � N; and all i 2 S

'i (N0; C) � 'i (S0; C) :

It is enough to prove it when S = N n fjg and j 2 N:
We prove several claims.

Claim 1. Let (N0; C) be such that there exists j 2 N satisfying: cj0 = a;
cji = b for all i 2 N n fjg, and b > a > max

i;k2N0nfjg
fcikg : Then,

'i (N0; C) =

�
a if i = j
'i ((N n fjg)0 ; C) otherwise.

By simplicity we assume that j = n: Let t00 be amcst in ((N n fng)0 ; C) :
Then, t0 = t00 [ f(n; 0)g is a mcst in (N0; C) :
Let t0 be the tree obtained when we apply the algorithm to ((N n fng)0 ; C)

starting in t00: By simplicity we assume that t0 = f(i� 1; i)gn�1i=1 : It is trivial
to see that t = t0 [ f(n� 1; n)g is the tree obtained when we apply the al-
gorithm to (N0; C) starting in t0. For all i = 1; :::; n� 1; the cost of the arc
(i� 1; i) is the same in the canonical form associated to ((N n fng)0 ; C) and
(N0; C) : Moreover, the cost of arc (n� 1; n) in (N0; C�) is a:
Let v�n be the characteristic function associated to the cstp ((N n fng)0 ; C�).
By Proposition 3 (a) ; vC+ (S) = v�n (S n fng)+a if n 2 S and vC� (S) =

v�n (S) if n =2 S:
Consider the TU games (N;w1) and (N;w2) where for all S � N

w1 (S) = v�n (S n fng) and

w2 (S) =

�
a if n 2 S
0 if n =2 S:

It is trivial to see that

Shi (N;w1) = Shi (N n fng ; v�n) = 'i ((N n fjg)0 ; C) if i 6= n;

Shn (N;w1) = 0;

Shi (N;w2) = 0 if i 6= n; and

Shn (N;w2) = a:
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Since v (S) = w1 (S) + w2 (S) for all S � N and the Shapley value is
additive on the characteristic function, Claim 1 holds.

Claim 2. Given j 2 N; 'i (N0; C) � 'i ((N n fjg)0 ; C) for all i 2 N nfjg :
By simplicity assume that j = n: Let a 2 R be such that a > max

i;j2N0
fcijg :

Take b = a+ 1: Let C 00 be such that c000n = a and c00ij = cij otherwise, Let C 01

be such that c011n = b and c01ij = c00ij otherwise. In general, for all k = 2; :::; n�1
we de�ne c0kkn = b and c0kij = c0k�1ij otherwise.
Take i 2 N n fng : Since ' satis�es SCM;

'i (N0; C) � 'i
�
N0; C

00� � 'i
�
N0; C

01� � :::: � 'i
�
N0; C

0n�1� :
By Claim 1, 'i (N0; C

0n�1) = 'i ((N n fng)0 ; C 0n�1) : Since c0n�1kl = ckl for all
k; l 2 (N n fng)0 we conclude that

'i
�
(N n fng)0 ; C 0n�1

�
= 'i ((N n fng)0 ; C) :

Then, 'i (N0; C) � 'i ((N n fng)0 ; C) :

Continuity (CON) : Since C� is a continuous function of C; vC� is a
continuous function of C�; and Sh is a continuous function of vC�, ' is a
continuous function of C:

Separability (SEP ) : We know that ' satis�es PM . Since PM implies
SEP; the result holds.

Core selection (CS) :We know that ' satis�es PM . Since PM implies
CS; the result holds.

Equal Sharing of Extra Costs (ESEC) : Let (N0; C) and (N0; C 0) be
as in the de�nition of ESEC: Assume that t0 is a mcst in (N0; C) : Then, t0

is also a mcst in (N0; C 0).
If t = f(ip�1; ip)gnp=1 is the tree given by the algorithm when we apply to

(N0; C) ; t is also the tree given by the algorithm when we apply to (N0; C 0) :
Moreover, c�0i1 = c0, c0�0i1 = c00; and c

�
ip�1ip = c0�ip�1ip for all p = 2; :::; n:

By Proposition 3 (a) ; vC0� (S) = vC� (S) + (c
0
0 � c0) for all S � N:

Then, for all i 2 N

'i (N0; C
0) = Shi (N; vC0�) = Shi (N; vC�) +

c00 � c0
n

= 'i (N0; C) +
c00 � c0
n

:
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Positivity (POS) :Given S � N; by Proposition 3 (b), vC� (S)�vC� (S n fig) �
0 for all i 2 N: Then, 'i (N0; C) = Shi (N; vC�) � 0.

Equal contributions (EC) : We will prove it in Corollary 2.

7.7 Proof of the table

About Bird�s rule B:

� CS: YES. See Bird (1976).

� CM: NO. See Dutta and Kar (2002).

� SCM: NO because B does not satisfy CM:

� PM: NO. Let (N0; C) be such that N = f1; 2; 3g ; c01 = 30; c02 = 100;
c03 = 10; c12 = 10; c13 = 40; and c23 = 20:

Then, B2 (N0; C) = 20 but B2 (f1; 2g0 ; C) = 10:

� CON: NO. See Example 1.

� POS: YES. It is trivial.

� SEP:YES. Set S � N be such thatm (N0; C) = m (S0; C)+m ((N n S)0 ; C) :
Applying Prim�s algorithm it is trivial to see thatB�

i (N0; C) = B�S
i (S0; C)

when i 2 S and B�
i (N0; C) = B

�NnS
i ((N n S)0 ; C) when i 2 N n S:

Take i 2 S (the case i 2 N n S is similar and we omit it)

Bi (N0; C) =
1

n!

X
�2�N

B�
i (N0; C)

=
1

n!

X
�2�N ;�S=�0

 X
�02�S

B�0

i (N0; C)

!

=
1

n!

n!

s!

X
�02�S

B�0

i (N0; C) = Bi (S0; C) :

Then, B satis�es SEP:
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� ESEC: YES. Let (N0; C) and (N0; C 0) be as in the de�nition os ESEC:
It is straightforward to see that for all � 2 �N ;

B�
i (N0; C

0) =

�
B�
i (N0; C) + (c

0
0 � c0) if i = � (1)

B�
i (N0; C) otherwise.

Now it is easy to conclude that B satis�es ESEC:

� IIT: NO. See Example 1 and Proposition 5 (a) :

� EC: NO. It is a trivial consequence of Theorem 2.

About Kar�s rule K:

� CS: NO. Let (N0; C) be such that N = f1; 2; 3g, c01 = 10; c02 = 18;
c03 = 9; c12 = 10; c13 = 10; and c23 = 9: Making some computations
we obtain that K (N0; C) = (8:66; 12:16; 7:16) and v (f1; 2g) = 20:

� CM: YES. If cij increases, vC (S [ i)�vC (S) does not decrease. Then,
Ki (N0; C) = Shi (N; vC) does not decrease.

� SCM: NO. See Example 1 (K does not depend on the canonical form)
and Proposition 5:

� PM: NO. K does not satisfy CS and PM implies CS:

� CON: YES because K (N0; C) = Sh (N; vC) :

� POS: NO. See Example 1 with x = 100:

� SEP: NO. Let (N0; C) be such that N = f1; 2; 3g, c01 = 10; c02 = 100;
c03 = 20; c12 = 10; c13 = 100; and c23 = 40: Take S = f1; 2g : Then,
K1 (S0; C) = �35 but K1 (N0; C) = �15:

� ESEC: YES. Let (N0; C) and (N0; C 0) be as in the de�nition of ESEC:
It is easy to see that vC0 (S) = vC (S) + (c

0
0 � c0) for all S � N . Then,

Ki (N0; C) = Shi (N; vC0) = Shi (N; vC) +
c00 � c0
n

= Ki (N0; C) +
c00 � c0
n

:
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� IIT: NO. See Example 1 and Proposition 5 (a).

� EC: NO. It is a trivial consequence of Theorem 2.

About Dutta-Kar�s rule DK:

� CS: YES. See Dutta and Kar (2002).

� CM: YES. See Dutta and Kar (2002).

� SCM: NO. See Example 1 (K does not depend on the canonical form)
and Proposition 5:

� PM: NO. Let (N0; C) be such that N = f1; 2; 3g and c01 = 10; c02 =
100; c03 = 8; c12 = 2; c13 = 5; and c23 = 4: Making some computations
we obtain that DK1 (N0; C) = 8 > 2 = DK1 ((f1; 2g)0 ; C). Then, DK
does not satisfy PM:

� CON: NO. See Example 1.

� POS: YES. It is trivial.

� SEP: YES. Assume that when we apply Prim�s algorithm in (N0; C)
the order induced is � = fi1; ::::; ing : Applying an induction argument
over pq it is easy to prove that if iq 2 S and xq = min

n
pq; ciq+1i�q+1

o
=

ciq+1i�q+1 < pq then, iq+1 2 S: This means that �switches costs�among
an agent of S and an agent of N n S are not possible.
Now it is easy to see that DK�

i (N0; C) = DK�S
i (S0; C) when i 2 S

and DK�
i (N0; C) = DK

�NnS
i ((N n S)0 ; C) when i 2 N n S: Since

DKi (N0; C) =
1

n!

X
�2�N

DK�
i (N0; C)

using similar arguments to those used when we proved that B satis�es
SEP; we can conclude that DK satis�es SEP:

� ESEC: NO. Take (N0; C) and (N0; C 0) such that c01 = c02 = c03 = 10;
c001 = c002 = c003 = 13, c12 = c13 = c012 = c013 = 10; and c23 = c023 = 6:
Then, B (N0; C) = (10; 8; 8) and B (N0; C 0) = (12; 8:5; 8:5) :
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� IIT: NO. See Example 1 and Proposition 5 (a) :

� EC: NO. It is a trivial consequence of Theorem 2.

7.8 Proof of Theorem 2

(a) By Theorem 1 we know that ' satis�es SEP; ESEC; and IIT:
We now prove the uniqueness. Let  be a rule satisfying these properties.

We apply an induction argument over n. If n = 1,  = ': Assume that the
result holds for all n � p� 1: We prove it for n = p:
Since  satis�es IIT; by Proposition 5 (a), we can restrict to canonical

matrices. By simplicity assume that the tree t associated to the canonical
matrix C satisfying (A1) is f(i� 1; i)gni=1 : Let j 2 N be such that c(j�1)j =
max
i2N

�
c(i�1)i

	
: We distinguish two cases:

Case 1. j > 1: Take S = f1; :::; j � 1g. By Proposition 3 (a) we
know that t0 = f(i� 1; i)gj�1i=1 is a mcst in (S0; C) and t0 = f(0; j)g [

f(i� 1; i)gni=j+1 is a mcst in ((N n S)0 ; C). Then, m (S0; C) =
j�1P
i=1

c(i�1)i

and m ((N n S)0 ; C) = c0j +
nP

i=j+1

c(i�1)i:

Since C is a canonical matrix, c0j = max
i�j

�
c(i�1)i

	
= c(j�1)j: Then,

m (S0; C) +m ((N n S)0 ; C) =
nX
i=1

c(i�1)i = m (N0; C) :

By SEP;  i (N0; C) =  i (S0; C) when i 2 S and  i (N0; C) =  i ((N n S)0 ; C)
when i =2 S:
We know that S 6= ; and N n S 6= ; because j > 1: By induction

hypothesis,  (S0; C) = ' (S0; C) and  ((N n S)0 ; C) = ' ((N n S)0 ; C) :
Since ' satis�es SEP we can conclude that  (N0; C) = ' (N0; C) :
Case 2. j = 1: Let k 2 N n f1g be such that c(k�1)k = max

i>1

�
c(i�1)i

	
:

If c(k�1)k = c(j�1)j using similar arguments to those used in Case 1 we can
conclude that  (N0; C) = ' (N0; C) :
Assume that c(k�1)k < c(j�1)j:
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Consider now the cstp (N0; C1) where c1il = cil if 0 =2 fi; lg and c1i0 = ci0�x
where x = c(j�1)j � c(k�1)k > 0: Since ci0 = c(j�1)j for all i 2 N we can apply
the property of ESEC to problems (N0; C1) and (N0; C) : Then, for all i 2 N;

 i (N0; C) =  i
�
N0; C

1
�
+
x

n
and

'i (N0; C) = 'i
�
N0; C

1
�
+
x

n
:

It is straightforward to prove that C1 is a canonical matrix satisfying
that c1(k�1)k = max

i2N

n
c1(i�1)i

o
: Applying Case 1 to C1 we conclude that

 (N0; C
1) = ' (N0; C

1) : Then,  (N0; C) = ' (N0; C) :

(b) By Theorem 1 we know that ' satis�es EC:
We now prove the uniqueness. Let  be a rule satisfying EC: We prove

that ' =  by induction on n. If n = 1 it is trivial to see that ' =  : Assume
that the result holds when n � p� 1 and we prove it when n = p:
Given i; j 2 N; by simplicity we write 'i = 'i (N0; C) ;  i =  i (N0; C) ;

'+ji = 'i ((N n fjg)0 ; C+j) ; and  
+j
i =  i ((N n fjg)0 ; C+j) :

EC can be written, for  ; as

 i �  +ji =  j �  +ij :

Then, X
j2Nnfig

 i �
X

j2Nnfig

 +ji =
X

j2Nnfig

 j �
X

j2Nnfig

 +ij :

Since
P

j2Nnfig
 i = (n� 1) i and

P
j2Nnfig

 j = m (N0; C)�  i,

n i = m (N0; C) +
X

j2Nnfig

 +ji �
X

j2Nnfig

 +ij :

Since ' also satis�es EC;

n'i = m (N0; C) +
X

j2Nnfig

'+ji �
X

j2Nnfig

'+ij :

By induction hypothesis, for all i; j 2 N;  +ji = '+ji and  +ij = '+ij :
Then, 'i =  i for all i 2 N:
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7.9 Proof of Remark 6

We prove that new rules appear if we remove some of the properties of Corol-
lary 1 or Theorem 2 (a) :

IIT in Theorem 2 (a) and SCM in Corollary 1. Consider the following
subset of permutations:

�0 = f� 2 �N j � (i) < � (j) when c0i < c0jg :

For each cstp (N0; C) and i 2 N we de�ne

 1i (N;C) =
1

j�0j
X
�2�0

(vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))) :

It is not di¢ cult to prove that  1 satis�es PM (and hece SEP ) and
ESEC:
Nevertheless  1 does not satisfy IIT: Let (N0; C) and (N0; C 0) be such

that N0 = f1; 2; 3g ; c01 = 2; c02 = 2; c03 = 15; c12 = 9; c13 = 1; c23 = 1; c002 =
3, and c0ij = cij if (i; j) 6= (2; 0) : Then,  12 (N;C

0) = 1 < 1:5 =  12 (N;C) :
Since (N0; C) and (N0; C 0) are directly equivalents (f(0; 1) ; (1; 3) ; (2; 3)g is
a mcst in both problems) we conclude that  1 does not satisfy IIT: Since
SCM implies IIT (Proposition 5 (a)) we conclude that  1 does not satisfy
SCM:

SEP in Theorem 2 (a) and PM in Corollary 1.. Let  2 be the egalitarian
rule, i:e:

 2i (N;C) =
m (N0; C)

n
for all i 2 N:

It is trivial to see that  2 satis�es SCM (and hence IIT ) and ESEC:
Let (N0; C) be such that N0 = f1; 2g ; c01 = 2; c02 = 4; and c12 = 6:

Then, m (N0; C) = m (f1g0 ; C) + m (f2g0 ; C) and  
2
1 (f1g ; C) = 2 6= 3 =

 21 (N;C) : Then,  
2 does not satisfy SEP . Since PM implies SEP we

conclude that  2 does not satisfy PM:

ESEC in Theorem 2 (a) and Corollary 1. Given S � N = f1; 2; ::::g we
denote by �S the order induced in S by the index of the agents, i:e. given
i; j 2 S; �S (i) < �S (j) if and only if i < j:
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For each cstp (N0; C) and i 2 N we de�ne

 3i (S;C) = vC�
�
Pre

�
i; �S

�
[ fig

�
� vC�

�
Pre

�
i; �S

��
:

It is not di¢ cult to see that  3 satis�es SCM (and hence IIT ) and PM
(and hence SEP ):
Nevertheless  2 does not satisfy ESEC: Let (N0; C) be as in Example

1 when x = 0 and C 0such that c001 = 12 and c002 = 12: Then,  3 (N;C) =
(10; 2) whereas  3 (N;C) = (12; 2) :

7.10 Proof of Proposition 6

(a) Assume that t = f(i� 1; i)gni=1 is the tree associated to C satisfying
(A1) : Take S =

�
i1; :::; ijSj

	
where ip�1 � ip for all p = 2; :::; jSj :

For each p = 1; :::; jSj we consider the following sets

Sp = fi 2 N j ip�1 < i < ipg :

Moreover,

SjSj+1 =

� �
i 2 N j ijSj < i � n

	
if ijSj < n

? otherwise.

In order to simplify the notation we take ijSj+1 = n.

Notice that, Sp � N n S for all p = 1; :::; jSj + 1;
jSj+1S
p=1

Sp = N n S; and

Sp \ Sq = ; for all p 6= q: Notice that Sp can be empty.
We know that v+ (N n S) = m

�
(N n S)0 ; C+S

�
= c

�
(N n S)0 ; C+S; t0

�
where t0 is computed following Prim�s algorithm. We now compute t0:
Assume that i 2 Sp; j 2 Sq and p < q. Then, i < ip � iq�1 < j: Since t

satis�es (A2) ;

c+S0i = min
k2S0

fcikg = min
�
cip�1i; ciip

	
� ciip :

Moreover, c+Sij = cij: Since t satis�es (A2) we conclude that ciip � cij and
hence c+S0i � c+Sij : This means that we can construct t

0 such that there is no
arc linking directly agents of Sp and Sq:
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Then, t0 can be expressed as
jSj+1S
p=1

t0
Sp0
where t0

Sp0
is a mcst computed fol-

lowing Prim�s algorithm in
�
Sp0 ; C

+S
�
: If Sp = ; we take t0

Sp0
= ;:

We now apply Prim�s algorithm to
�
Sp0 ; C

+S
�
where p < jSj + 1: We

�rst select an arc (0; i) such that c+S0i = min
j2Sp

�
c+S0j
	
: Since t satis�es (A2) we

conclude that c+S0i = min
�
cip�1i; ciip

	
:

Since t satis�es (A2),

min
j2Sp

�
c+S0j
	
= min

�
cip�1(ip�1+1); c(ip�1)ip

	
= min

n
c+S0(ip�1+1); c

+S
(ip�1)0

o
:

Assume that the arc selected is (0; ip�1 + 1) (the case where the arc se-
lected is (ip � 1; 0) is similar). Then, c+S0(ip�1+1) = cip�1(ip�1+1); i:e: thè arc

(0; ip�1 + 1) in
�
Sp0 ; C

+S
�
is the arc (ip�1; ip�1 + 1) n (N0; C) :

Using arguments similar to those used before we can conclude that the
second arc selected is the arc (i; j) such that

c+Sij = min
�
c(ip�1+1)(ip�1+2); c(ip�1)ip

	
:

If we continue with this procedure we obtain that the cost of the tree t0
Sp0

in
�
Sp0 ; C

+S
�
coincide with the cost of the network tSp[fip�1;ipg n f(ip0�1; ip0)g

in (N0; C) where (ip0�1; ip0) satis�es that

cip0�1ip0 = max
(i;j)2t

Sp[fip�1;ipg
cij:

Since t satis�es (A2) we conclude that cip0�1ip0 = cip�1ip : Then,

m
�
Sp0 ; C

+S
�
=

ipX
j=ip�1+1

c(j�1)j � cip�1ip .

Notice that if Sp = ; and we compute m
�
Sp0 ; C

+S
�
according with the

previous formula we obtain that

m
�
(Sp)0 ; C

+S
�
= cip�1ip � cip�1ip = 0:

If p = jSj+ 1 it is trivial to see that

m
�
S
jSj+1
0 ; C+S

�
=

nX
j=ip+1

c(j�1)j:
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Thus,

v+ (N n S) = c
�
(N n S)0 ; C+S; t0

�
=

jSj+1X
p=1

m
�
(Sp)0 ; C

+S
�

=

jSjX
p=1

0@ ipX
j=ip�1+1

c(j�1)j � cip�1ip

1A+ nX
j=ip+1

c(j�1)j

=

jSjX
p=1

ipX
j=ip�1+1

c(j�1)j +
nX

j=ip+1

c(j�1)j �
jSjX
p=1

cip�1ip

=
nX
j=1

c(j�1)j �
jSjX
p=1

cip�1ip :

Since t is a mcst of (N0; C) ;
nP
j=1

c(j�1)j = m (N0; C) :Moreover, by Propo-

sition 3 (a) ;
jSjP
p=1

cip�1ip = v (S) : This concludes the proof of (a) :

(b) In order to prove that '1 satis�es IIT it is enough to prove that if
(N0; C) and (N0; C 0) are directly equivalent, then '1 (N0; C) = '1 (N0; C

0) :
Assume that t = f(i0; i)gni=1 is a mcst of (N0; C) and (N0; C 0) satisfying that
ci0i = c0i0i for all i = 1; :::; n:
We proceed by induction on n: If n = 1 it is trivial to see that '1 (N0; C) =

'1 (N0; C
0) : Assume that the result holds when n � p� 1: We now prove it

when n = p:
In order to simplify the notation we take N�i = N n fig :
We prove it in several claims.

Claim 1. Given a cstp (N0; C), S � N , and j 2 N n S;
�
S0; C

+NnS� =�
S0; (C

+j)
+(N�jnS)

�
.

Take i; k 2 S such that i 6= 0 and k 6= 0: Then,

c
+NnS
ik = cik =

�
c+jik
�+(N�jnS)

:
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Given i 2 S;

c
+NnS
0i = min

k2(NnS)0
fckig

= min

�
min

k2(N�jnS)
fckig ;min fc0i; cjig

�
= min

�
min

k2(N�jnS)

�
c+jki
	
; c+j0i

�
= min

k2(N�jnS)0

�
c+jki
	

=
�
c+j0i
�+(N�jnS)

:

Thus, C+NnS = (C+j)+(N
�jnS).

Claim 2. Assume that t� is a mcst in (N0; C) and j 2 N . Let g =
f(ip�1; ip)grp=1 be the unique path in t� from 0 (= i0) to j (= ir) : Assume

that ciq�1iq = max
p=1;:::;r

�
cip�1ip

	
: Then, t� nf(iq�1; iq)g is a mcst in

�
N�j
0 ; C+j

�
:

We denote t�q = t� n f(iq�1; iq)g : Then, t�q can be identi�ed with a tree in�
N�j
0 ; C+j

�
simply by changing the arc (k; j), when (k; j) 2 t�q; by (k; 0) :

Suppose that t�q is not a mcst in
�
N�j
0 ; C+j

�
. Then, it exists a tree t0 in�

N�j
0 ; C+j

�
such that

c
�
N�j
0 ; C+j; t0

�
< c

�
N�j
0 ; C+j; t�q

�
:

Let Sj denote the set of agents of N�j who are connected to the source
in t0 through agent j: We now de�ne Sj formally. For each i 2 N�j, let
f(0; l1) ; (l1; l2) ; :::; (lp�1; i)g be the unique path in t0 from the source to i:
Then,

Sj =
�
i 2 N�j j c+j0l1 = cjl1 and (j; l1) 2 t�

	
:

Notice that there is no arc (i; k) 2 t0 such that i 2 Sj; k 2 N�j n Sj:
Otherwise, t0 have a cycle and could not be a tree in

�
N�j
0 ; C+j

�
: We can

�nd (ir�1; ir) 2 g � t� such that ir�1 2 (N�j n Sj) [ f0g and ir 2 Sj [ fjg.
If we change the arcs (0; l) 2 t0 such that c+j0l1 = cjl1 and (j; l1) 2 t� by the

arc (j; l1) ; t0 [ f(ir�1; ir)g could be identi�ed with a tree in (N0; C) :
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Since

c (N0; C; t
0 [ f(ir�1; ir)g) = c

�
N�j
0 ; C+j; t0

�
+ cir�1ir ;

c (N0; C; t
�) = c

�
N�j
0 ; C+j; t�q

�
+ ciq�1iq ; and

cir�1ir � ciq�1iq

we conclude that

c (N0; C; t
0 [ f(ir�1; ir)g) < c (N0; C; t

�) ;

which is a contradiction because t� is a mcst of (N0; C) :

Claim 3. Take j 2 N: For all i 2 N�j

'1i
�
N�j; C+j

�
= '1i

�
N�j; C 0+j

�
:

Let g = f(ip�1; ip)grp=1 be the unique path in t from 0 (= i0) to j (= ir) :

Take ck0k = max
p=1;:::;r

�
cip�1ip

	
: Since t is a mcst in (N0; C) and (N0; C 0)

we conclude, by Claim 2, that t n f(k0; k)g is a mcst of
�
N�j
0 ; C+j

�
and�

N�j
0 ; C 0+j

�
satisfying that ci0i = c0i0i for all i 2 N n fkg : Then,

�
N�j
0 ; C+j

�
and

�
N�j
0 ; C 0+j

�
are directly equivalents.

By induction hypothesis, '1i (N
�j; C+j) = '1i (N

�j; C 0+j) :

Claim 4. Given a cstp (N0; C) and i; j 2 N such that i 6= j;

'1i
�
N�j; C+j

�
= Shi

�
N�j; v+

�
:

For all S � N�j;

v+C (S) = m
�
S0; C

+NnS� and
v+
C+j

(S) = m
�
S0;
�
C+j

�+((Nnj)nS)�
:

By Claim 1, v+C (S) = v+
C+j

(S) : Then,

'1i
�
N�j; C+j

�
= Shi

�
N�j; v+

C+j

�
= Shi

�
N�j; v+C

�
:

Claim 5. For all i; j 2 N; i 6= j;

Shi
�
N�j; v+C

�
= Shi

�
N�j; v+C0

�
:
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By Claim 4, Shi
�
N�j; v+C

�
= '1i (N

�j; C+j) and Shi
�
N�j; v+C0

�
= '1i (N

�j; C 0+j) :
By Claim 3, '1i (N

�j; C+j) = '1i (N
�j; C 0+j) : Thus, Claim 5 holds.

Claim 6. For all i 2 N; '1i (N0; C) = '1i (N0; C
0) :

In Pérez-Castrillo and Wettstein (2001) appears the following expression
of the Shapley value:

Shi (N;w) =
1

n

24w (N)� w
�
N�i�+ X

j2N�i

Shi
�
N�j; w

�35 :
Since w (N�i) =

P
j2N�i

Shj (N
�i; w) we conclude that

Shi (N;w) =
1

n

24w (N)� X
j2N�i

Shj
�
N�i; w

�
+
X
j2N�i

Shi
�
N�j; w

�35 :
Since '1 (N0; C) = Sh

�
N; v+C

�
and '1 (N0; C 0) = Sh

�
N; v+C0

�
,

'1i (N0; C) =
1

n

24v+C (N)� X
j2N�i

Shj
�
N�i; v+C

�
+
X
j2N�i

Shi
�
N�j; v+C

�35 and

'1i (N0; C
0) =

1

n

24v+C0 (N)� X
j2N�i

Shj
�
N�i; v+C0

�
+
X
j2N�i

Shi
�
N�j; v+C0

�35 :
Since v+C (N) = v+C0 (N) = m (N0; C) = m (N0; C

0) and Claim 5 we con-
clude that '1i (N0; C) = '1i (N0; C

0) :

(c) We must prove that for all i; j 2 N; i 6= j;

'1i (N0; C)� '1i
�
N�j
0 ; C+j

�
= '1j (N0; C)� '1j

�
N�i
0 ; C+i

�
:

Given a TU game (N;w) Myerson (1980) proved that the Shapley value
satis�es that for all i; j 2 N; i 6= j;

Shi (N;w)� Shi
�
N�j; w

�
= Shj (N;w)� Shj

�
N�i; w

�
:

We know that '1 (N0; C) = Sh (N; v+) : By Claim 4 of part (b), '1i ((N
�j)0 ; C

+j) =
Shi (N

�j; v+) and '1j ((N
�j)0 ; C

+i) = Shj (N
�i; v+) :

Applying Myerson�s result to the TU game (N; v+) we obtain that '1

satis�es EC:
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7.11 Proof of Theorem 3

We prove several claims:

Claim 1. '1 = ':
By de�nition, ' (N0; C) = K (N0; C

�) = Sh (N; vC�). By Proposition
6 (b) and Proposition 5 (a) we conclude that '1 (N0; C) = '1 (N0; C

�) =
Sh
�
N; v+C�

�
.

By Proposition 6 (a) ; vC� (S) + v+C� (N n S) = m (N0; C) for all S � N:
Since vC� (N) = v+C� (N) = m (N0; C

�) and the Shapley value of a TU game
(N;w) can be expressed for all i 2 N as

Shi (N;w) =
1

n!

X
�2�N

(w (Pre (i; �) [ fig)� w (Pre (i; �))) ;

it is easy to conclude that Sh (N; vC�) = Sh
�
N; v+C�

�
. Thus, ' (N0; C) =

K (N0; C) :

Claim 2. ' = '3:
We must prove that for all i 2 N; 'i (N0; C) =

1
n!

P
�2�N

c�i�i: Since '

satis�es IIT it is enough to prove that if C is a canonical matrix then,
'i (N0; C) =

1
n!

P
�2�N

ci�i.

We proceed in several claims.

Claim 2a. Let (N0; C) be a cstp where C is a canonical matrix and
t = f(ip�1; ip)gnp=1 is the tree given by (A1). Assume that cip�1ip 6= ciq�1iq
for all p; q such that p 6= q: Given � 2 �N we can �nd a one-to-one appli-
cation f� : N ! t such that f� (i) = (ip�1; ip) satis�es v (Pre (i; �) [ fig) �
v (Pre (i; �)) = cip�1ip = ci�i:
By simplicity we take � = (1; 2; :::; n) : Assume that 1 = iq: By Proposi-

tion 3 (b) we know that

v (Pre (1; �) [ f1g)� v (Pre (1; �)) = v (1) = ci0iq :

Since C is a canonical matrix we can �nd (ip1�1; ip1) 2 t such that p1 � q
and ci0iq = cip1�1ip1 : Moreover 1

� = 0 and c01 = ci0iq = cip1�1ip1 : We de�ne
f� (1) = (ip1�1; ip1) :
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Assume that we have de�ned f� (j) for all j � i � 1 satisfying that
f� (j) =

�
ipj�1; ipj

�
2 t for all j � i� 1 and f� (j) 6= f� (k) for all j � i� 1;

k � i� 1; j 6= k:
We now de�ne f� (i) :Assume that i = iq and Pre (i; �) =

�
iq1 ; iq2 ; :::; iqi�1

	
where ql�1 � ql for all l = 2; :::; i � 1: Notice that we order the agents of
Pre (i; �) according with t. Two cases can occur:
Firstly, q < qi�1: By Proposition 3 (b),

v (Pre (i; �) [ fig)� v (Pre (i; �)) = min
n
ciqk�1 iq ; ciqiqk

o
where qk�1 < q < qk and k � i� 1:
Since t satis�es (A2) and cip�1ip 6= ciq�1iq for all p; q such that p 6= q we

conclude that ciqk�1 iq 6= ciqiqk : Assume that min
n
ciqk�1 iq ; ciqiqk

o
= ciqiqk (the

other case is similar).
By Proposition 3 (b), for all j � i

ciqiqk 6= v (Pre (j; �) [ fjg)� v (Pre (j; �)) :

Then, we can �nd (ipi�1; ipi) 2 tn
 
i�1S
j=1

�
ipj�1; ipj

�!
such that q � pi�1 <

pi � qk and cipi�1ipi = ciqiqk : Moreover, ci�i = min
j2Pre(i;�)

fcjig = ciqiqk :

We now de�ne f� (i) = (ipi�1; ipi) :
Secondly, q > qi�1: By Proposition 3 (b),

v (Pre (i; �) [ fig)� v (Pre (i; �)) = ciqi�1 iq :

By Proposition 3 (b) we can �nd (ipi�1; ipi) 2 t n
 
i�1S
j=1

�
ipj�1; ipj

�!
such

that qi�1 � pi � 1 < pi � q and cipi�1ipi = ciqi�1 iq : Moreover, ci�i =
min

j2Pre(i;�)
fcjig = ciqi�1 iq :

We now de�ne f� (i) = (ipi�1; ipi) :

Claim 2b. Let (N0; C) be a cstp where C is a canonical matrix and
t = f(ip�1; ip)gnp=1 is the tree given by (A1). Assume that cip�1ip = ciq�1iq for
some p; q such that p 6= q: Given � 2 �N we can �nd a one-to-one appli-
cation f� : N ! t such that f� (i) = (ip�1; ip) satis�es v (Pre (i; �) [ fig) �
v (Pre (i; �)) = cip�1ip = ci�i:
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Let C" be a canonical matrix obtained from C modifying slightly the cost
of the arcs cip�1ip such that there exist q 6= p with cip�1ip = ciq�1iq :We modify
these cost in such a way that if cip�1ip < ciq�1iq then, c

"
ip�1ip < c"iq�1iq and if

cip�1ip = ciq�1iq then c
"
ip�1ip 6= c"iq�1iq :

By Claim 2a, given the cstp (N0; C") and � 2 �N we can �nd a one-to-one
application f "� = N ! t such that f "� (i) = (ip�1; ip) satisfy v

" (Pre (i; �) [ fig)�
v" (Pre (i; �)) = c"ip�1ip = c"ii� :
Given the cstp (N0; C) and � 2 �N we de�ne f� = f "�: Of course, f� is

a one-to-one application. Since v is a continuous function of C we conclude
that

v (Pre (i; �) [ fig)� v (Pre (i; �)) = cip�1ip = ci�i:

Claim 2c. If C is a canonical matrix, 'i (N0; C) =
1
n!

P
�2�N

ci�i for all

i 2 N:
Since ' (N0; C) = Sh (N; v), for all i 2 N;

'i (N0; C) =
1

n!

X
�2�N

(v (Pre (i; �) [ fig)� v (Pre (i; �)))

=
1

n!

X
�2�N

ci�i:

Claim 3. ' = '2:
Before proving Claim 3 we need an additional result. Let (N0; C) be a

cstp where C is a canonical matrix and t = f(ip�1; ip)gnp=1 is the tree given
by (A1) : For each i 2 N and p = 1; :::; n we de�ne

�pi = f� 2 �N j f� (i) = (ip�1; ip)g and �
p
i =

j�pi j
n!

:

Claim 3a. Let (N0; C) be a cstp: Given a mcst t0 = f(j0; j)gj2N , for all
i 2 N

'i (N0; C) =
nX
p=1

�jicj0j:

where for all i 2 N;
nP
j=1

�ji = 1 and for all j 2 N;
nP
i=1

�ji = 1:
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Let t = f(ip�1; ip)gnp=1 be themcst associated to C� given by the algorithm
when we start with the tree t0:
We de�ne the one-to-one application g : t0 ! t such that g (j0; j) =

(ip�1; ip) where j = ip:

By claims 2a, 2b, and 2c, for all i 2 N; 'i (N0; C) =
nP
p=1

�pi c
�
ip�1ip ;

nP
p=1

�pi =

1 for all i 2 N ; and
nP
i=1

�pi = 1 for all p = 1; :::; n:

We proceed by induction on the number of agents. If n = 1 then ' = '2:
Assume that the result holds when n � p� 1. We now prove for n = p:
Let t = f(i0; i)gi2N be a mcst in (N0; C) :We denote by '2 (N; t) the rule

'2 computed when the set of agents is N and the tree starting the process
is t:We will prove that '2 (N; t) = ' (N0; C) : Notice that this imply that '2

is well de�ned because ' is independent of t:
Take j 2 N such that cj0j = max

i2N
fci0ig : We assume thatcj0j > ci0i for

all i 2 N n fjg : Otherwise we can achieve the same conclusion using similar
ideas but in a more elaborate way.
We de�ne N 0 = fi 2 N j i0 = 0g : We consider three cases:

Case 1. jN 0j � 2. For any i 2 N 0 let F i be the set of agents j 2 N such
that (i; 0) is in the unique path from j to 0: Then, fF igi2N 0 is a partition of
N satisfying that

P
i2N 0

m ((Fi)0 ; C) = m (N0; C) and tF i is a tree in (F i; C) :

Since ' satis�es SEP; for all i 2 N 0 and k 2 F i; 'k (N0; C) = 'k (F
i
0; C) :

Because of the process de�ning '2 it is straightforward to prove that for
all i 2 N 0 and k 2 F i; '2k (N; t) = '2k (F

i; tF i) :
Since jN 0j � 2 we can apply the induction hypothesis to each F i: Then,

for all i 2 N 0 and k 2 F i; '2k (F i0; tF i) = 'k (F
i
0; C) :

This means that '2 is well de�ned and '2 (N0; C) = ' (N0; C) :

Case 2. jN 0j = 1 and j0 6= 0: Let F be the set of agents i 2 N such that
the arc (j0; j) is in the unique path from i to 0 and B = N n F: Notice that
F 6= ; and B 6= ; because j 2 F and j0 2 B:
Next statements are a trivial consequence of the process de�ning '2: If

as (i) = (j0; j) for some step s and i 2 N then the only arc inAs�1 = f(j0; j)g.
Since in tB there is exactly jBj arcs,


P
s=1

ps = 1; and the previous state-

ments we conclude that the arcs of tB are paid by agents in B and the arcs
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in t n tB are paid by agents in F:
Now it is easy to conclude that '2i (N; t) = '2i (B; tB) for all i 2 B.

Moreover, if we take j0 as the source in (F; t n tB) , '2i (N; t) = '2i (F; t n tB)
for all i 2 F .
We can compute the canonical form C� associated to (N0; C) starting

with the tree t. Then, we obtain that the tree f(iq�1; iq)gnq=1 associated to
C� satis�es that it exists ijBj such that B =

�
i1; :::; ijBj

	
; F =

�
ijBj+1; :::; in

	
;

j0 = ijBj; and j = ijBj+1.
It is straightforward to prove that m (N0; C�) = m (B0; C

�)+m (F0; C
�) ;

tB is a mcst in (B0; C�) and t n tB is a mcst in (F0; C�) :
Since ' satis�es SEP , 'i (N0; C) = 'i (B0; C

�) for all i 2 B and 'i (N0; C) =
'i (F0; C

�) for all i 2 F:
By induction hypothesis we conclude that '2i (B; tB) = 'i (B0; C

�) for all
i 2 B and '2i (F; t n tB) = 'i (F0; C

�) for all i 2 F:
Then, '2 is well de�ned and '2 (N0; C) = ' (N0; C) :

Case 3. jN 0j = 1 and j0 = 0: Take k 2 N n fjg such that ck0k =
max
i2Nnfjg

fci0ig :We assume that ck0k > ci0i for all i 2 N n fj; kg : Otherwise we
can achieve the same conclusion using similar ideas but in a more elaborate
way.
Let F be the set of agents i 2 N such that the arc (k0; k) is in the unique

path from i to 0 and B = N n F: Notice that F 6= ; and B 6= ; because
k 2 F and k0 2 B:
We assume that jBj � jF j : The case jBj < jF j can be proved in a similar

way.
Next statements are a trivial consequence of the process de�ning '2: If

as (i) = (0; j) for some Step s and i 2 N then As�1 = f(0; j)g : If as (i) =
(k0; k) for some Step s and i 2 N then As�1 = f(0; j) ; (k0; k)g : Moreover,
the cost of the arcs in tF are paid only by agents in F and the cost of arcs
in tB n f(0; j)g are paid only by agents in B:
Thus, we can �nd �; �0 < 
 such that: In Step �; for all (i; i0) 2 tF ,

% (i; i0) = 1, % (k0; k) = % (0; j) = 0; and
�P
s=1

ps = jF j�1
jF j : In Stage �

0 for all

(i; i0) 2 tB, % (i; i0) = 1, % (0; j) = 0; and
�0P
s=1

ps = jBj�1
jBj : Notice that � = �0 if

and only if jBj = jF j :
We can compute the canonical form C� starting with the tree t. Then we
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obtain that the tree f(iq�1; iq)gnq=1 associated to C� satis�es that it exists ijBj
such that B =

�
i1; :::; ijBj

	
; F =

�
ijBj+1; :::; in

	
; k0 = ijBj; and k = ijBj+1.

By Claim 3a, for all i 2 N;

'i (N0; C) =
nX
q=1

�qi cq0q

where �qi =
j�qi j
n!

and

�qi = f� 2 �N j v (Pre (i; �) [ fig)� v (Pre (i; �)) = cqq0g :

Since '2 can be expressed as
nP
q=1

�qi cqq0 we only need to prove that for all

(q0; q) 2 t; �qi = �qi for all i 2 N:
Consider the problem (F0; C�). For each i; q 2 F we denote by �qi (F ) the

corresponding function associated to (F0; C�) : It is straightforward to prove
that for all q 2 F n fkg and i 2 F; �qi (F ) = �qi : Moreover, for all q 2 F n fkg
and i 2 B; �qi = 0:
We know that tF [ f(0; k)g is a mcst in (F0; C�) and c�0k = c0j > ck0k:

For each i; q 2 F0 we denote by �qi (F ) the corresponding function associated
to '2 (F; tF [ f(0; k)g). We saw before that when we compute '2 (N; t) the
cost of the arcs of tF are paid only by agents in F . Then, for all q 2 F n fkg
and i 2 F; �qi (F ) = �qi : Moreover, for all q 2 F n fkg and i 2 B; �

q
i = 0:

Take q 2 F n fkg and i 2 F: By induction hypothesis we know that
�qi (F ) = �qi (F ) and hence, �

q
i = �qi : Then, for all q 2 F n fkg and i 2 N;

�qi = �qi :
Using similar arguments to those used with F we can conclude that for

all q 2 B n fjg and i 2 N; �qi = �qi :
We only need to prove that �qi = �qi when q 2 fj; kg and i 2 N: It is

straightforward to prove that for all i 2 N; �ji = �ji =
1

n
:

We now prove that for all i 2 N; �ki = �ki :
Take i 2 F: �ki corresponds to the permutations satisfying that, in the

order given by �; the �rst agent belongs to B and i is the �rst agent of F .

It is straightforward to prove that �ki =
jBj
n jF j . Applying a similar argument

to B we obtain that �ki =
jF j
n jBj if i 2 B:
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Take i 2 F: From Step � to Step �0 we have that as (i) = (k0; k) for all
i 2 F whereas as (i) 6= (k0; k) for all i 2 B: This means that from Step � to

Step �0 each agent i 2 F pays
�
jBj�1
jBj �

jF j�1
jF j

�
ck0k: Then,

%�
0 �
k; k0

�
=

�
1� jF j

�
jBj � 1
jBj � jF j � 1jF j

��
In Step �0 + 1; a�

0+1 (i) = (k0; k) for all i 2 N: Then, each agent i 2 N
pays

1

n

�
1� jF j

�
jBj � 1
jBj � jF j � 1jF j

��
and %�

0+1 (k0; k) = 1; which means that the cost of this arc is already paid.
Then,

�ki =
1

n

�
1� jF j

�
jBj � 1
jBj � jF j � 1jF j

��
if i 2 B and

�ki =

�
jBj � 1
jBj � jF j � 1jF j

�
+
1

n

�
1� jF j

�
jBj � 1
jBj � jF j � 1jF j

��
if i 2 F:

Making some computations we obtain that �ki = �ki for all i 2 N:
Then, '2 is well de�ned and '2 (N0; C) = ' (N0; C) :

Claim 4. ' = P:
Branzei et al (2003) characterizes P as the only rule satisfying e¢ ciency

(EF ), upper bound contributions (UBC), equal treatment (ET ), and cone-
wise positive linearity (CPL). We prove that ' satis�es these four properties.

EF means that
P
i2N

'i (N0; C) = m (N0; C) for all cstp (N0; C) : Of course,

' satis�es it.
Given a cstp (N0; C), i and j are (C; S)� connected if there exists a path

g from i to j satisfying that for all (k; l) 2 g; fk; lg � S0 � N0 and ckl = 0.
S � N is a C � component if two conditions hold. First, for all i; j 2 S; i
and j are (C; S) � connected. Second, if S  T there exists i; j 2 T such
that i and j are not (C; T )� connected:

UBC means that for all C � component S;
P
i2S

'i (N0; C) � min
j2S

fc0jg :

Let P = fS1; :::; Spg be the partition induced in N by C � component
coalitions. ' satis�es ET if for all Sq 2 P and all i; j 2 Sq; 'i (N0; C) =
'j (N0; C).
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Let C� be the canonical form associated to C: Because of the de�nition
of the algorithm it is trivial to see that if S is a C � component and t =
f(ip�1; ip)gnp=1 is the tree satisfying (A1), there exist iq 2 N such that S =�
iq; iq+1; :::; iq+jSj�1

	
; c�0iq � minj2S

fc0jg ; and c�ip�1ip = 0 for all p = q+1; :::q+

jSj � 1 .
Take � 2 �N and i 2 S; by Proposition 3 (b) ; vC� (Pre (i; �) [ fig) �

vC� (Pre (i; �)) � c�0iq if Pre (i; �) \ S = ? and vC� (Pre (i; �) [ fig) �
vC� (Pre (i; �)) = 0 otherwise.
We now conclude that ' satis�es UBC and ET because ' (N0; C) =

Sh (N; vC�) :
CPL: Let (N0; C) and (N0; C 0) be two cstp such that given i; j; k; l 2

N0; cij � ckl if and only if c0ij � c0kl: Take x; x
0 � 0: ' satis�es CPL if

' (N0; xC + x0C 0) = x' (N0; C) + x0' (N0; C
0) where xC is the cost matrix

de�ned by (xC)ij = xcij for all i; j 2 N0:
Let t0 be amcst in (N0; C) : Then, t0 is amcst in (N0; C 0) and (N0; xC + x0C 0) :

Assume that t = f(ip�1; ip)gnp=1 is the tree satisfying (A1) given by the algo-
rithm when we apply it to C: It is trivial to see that t is also the the tree
satisfying (A1) given by the algorithm when we apply it to C 0 and xC+x0C 0:
Let us denote by C�, C

0�; and (xC + x0C 0)� the canonical matrices com-
puted applying the algorithm when we start in t0: Again, it is straightforward
to prove that for all p = 1; :::; n

(xC + x0C 0)
�
ip�1ip

= xc�ip�1ip + x0c0�ip�1ip :

By Proposition 3 (a) we conclude that for all S � N;

v(xC+x0C0)� (S) = x vC� (S) + x0 vC0� (S) :

Since the Shapley value is additive on the characteristic function we con-
clude that ' satis�es CPL:
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