Papyrakis, Dlisraios; Gerlagh, Reyer

Working Paper
Natural Resources, Investment and Long-Term Income

Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 87.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Papyrakis, Dlisraios; Gerlagh, Reyer (2004) : Natural Resources, Investment and Long-Term Income, Nota di Lavoro, Fondazione Eni Enrico Mattei, No. 87.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/117961

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Natural Resources, Investment and Long-Term Income
Elissaios Papyrakis and Reyer Gerlagh
NOTA DI LAVORO 87.2004

MAY 2004
KTHC – Knowledge, Technology, Human Capital

Elissaios Papyrakis and Reyer Gerlagh, IVM, Institute for Environmental Studies, Vrije Universiteit

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Natural Resources, Investment and Long-Term Income

Summary
We study the negative correlation between natural resource-abundance and long-term income focusing on the savings-investment channel. We first present empirical evidence on this channel and then develop an OverLapping-Generations (OLG) model to study the issue. In this model, savings adjust downwards to income from natural resources, and investment in capital contributes to knowledge creation, a feature based on endogenous growth theory. We analyze the link from resource income future income through savings and investment. Natural resources have two counteracting effects on income. In the short term, resource wealth augments income, but in the long-term, it decreases income through a crowding-out effect on capital and knowledge. We discuss different scenarios under which the resource curse is most likely to take place.

Keywords: Natural resources, Growth, Investment, OLG models

JEL Classification: E22, O13

Address for correspondence:
Elissaios Papyrakis
IVM/VU
De Boelelaan 1087
1081 HV Amsterdam
The Netherlands
Phone: +31 20 44 49502
Fax: +31 20 44 49553
E-mail: elissaios.papyrakis@ivm.vu.nl
1. INTRODUCTION

Over the last three decades a negative correlation between resource-abundance and economic growth has been observed as a general pattern (Gylfason 2000, 2001a, 2001b, Leite and Weidmann 1999, Papyrakis and Gerlagh 2004, Rodriguez and Sachs 1999, Sachs and Warner 1995, 1997, 1999a, 1999b, 2001). Countries rich in minerals, oil, fish banks and agriculture tend to grow at slower pace compared to resource-scarce countries. Despite the potential beneficial role that resource abundance may play in fostering economic development, experience over the last decades reveals that natural resources seem to frustrate rather than promote economic growth. The OPEC countries, rich in natural wealth, experienced on average a negative rate of GDP per capita growth over the last four decades (Gylfason 2001b). Alaska, the richest U.S. state in natural resources with vast fish banks and oil reserves, was the only U.S. state experiencing a negative income growth rate the last two decades. In contrast, resource-scarcity was no obstacle to economic development for countries such as Switzerland, Singapore, Japan and South Korea that surged ahead during the last decades.

Figure 1 illustrates the relation between natural resources and income with a scatter plot of 84 countries. Growth of GDP per capita between 1975-96, adjusted for initial income, has been set out against resource-abundance as measured by the share of natural capital in total capital. The figure also presents the estimated regression line and the adjusted-R². Data on GDP per capita and natural capital are provided by the 6.1 Penn World Tables of the Center for International Comparisons at the University of Pennsylvania (CIC), (2002) and the World Bank (1997) respectively.³ As shown in the figure, there is a significant negative statistical association between the two variables. An increase in the natural capital share by 10% results in a decrease of annual

³ Although earlier observations on natural capital would be preferable in order to avoid endogeneity, 1994 is the only year for which data on natural capital are available from the World Bank Database. Gylfason (2001) argues that the share of natural capital is still a good proxy for resource-abundance, since resource-abundance is not a variable varying substantially over time. Indeed, the results in all tables can be reproduced by using alternative measures of resource abundance, such as the Sachs and Warner (2002) measure of the share of primary exports in GDP in 1971 or the share of agricultural production in GDP for the same year.
growth by about 0.8%. The regression line shows that on average, a natural capital share of around 12% implies economic stagnation in terms of growth.

In the literature, the resource curse is often associated with a crowding-out logic (Sachs and Warner 2001). Natural resources are not harmful to growth per se but tend to crowd-out growth-promoting activities. We mention three channels. First, natural resources reduce institutional quality, as they induce rent-seeking behaviour and corruption. Gains from bribing officials and from forming politically powerful interest groups to obtain privileged access to the resource-rents rise (Krueger 1974, Leite and Weidmann 1999, Gray and Kaufmann 1998, Torvik 2002). Second, resource-abundance tends to deteriorate the terms and reduce the degree of openness. A major cause is an overvaluation of the local currency and the resulted loss of competitiveness, as well as the imposition of tariffs and quotas that are supposed to protect domestic producers (Auty 1994, Torvik 2001, Sachs and Warner 1995). Third, natural resources reduce the investment in high-quality education and skilled-labour. Resource booms are often followed by a contraction of the manufacturing sector, for which human capital is an important production factor and the demand and returns to educational quality successively decline as well (Gylfason 2001a, Sachs and Warner 1999b).

Figure 1. Resource-Abundance and Economic Growth
This paper is concerned with a fourth channel, namely the role of resource-abundance in crowding-out investments. Papyrakis and Gerlagh (2004, Table 4) argue that the investment channel is probably the most important channel in terms of its contribution to the resource curse. There are various mechanisms that can explain the crowding out of investments. World prices for primary commodities tend to be very volatile and this creates uncertainty for investors in resource-abundant economies (Sachs and Warner 1999b). Additionally, resource booms reallocate factors of production from the manufacturing sector to the primary sector. Since it is often the manufacturing sector that is characterized by increasing returns to scale and positive externalities, this shift in production factors reduces the productivity and profitability of investments (Sachs and Warner 1995, 1999a, Gillis et al.1996). As another mechanism, Atkinson and Hamilton (2003) show that governments often spend resource rents on public consumption. The few countries that use resource rents for public investments are those that have avoided the resource curse.

Our analysis combines the insights from the various studies mentioned above. We develop an overlapping-generations model to demonstrate how public spending of resource rents decreases national savings. Furthermore, we show that the decrease in the level of investment is exacerbated when, in turn, labor productivity (through technology or education) depends on the level of investment. The decline in income may more than offset the increase in resource revenues, when we take account of the decrease in savings and the responsiveness of technology to investment.

The paper is organized as follows. Section 2 provides empirical evidence to the negative correlation between alternative measures of resource-abundance and savings, investment, and growth. Section 3 presents the OLG model, and explains how resource-abundance crowds-out savings and investment. Section 4 compares the steady states of the OLG model under different parameter scenarios and provides numerical examples of the resource curse hypothesis under alternative assumptions. Section 5 concludes.
2. EMPIRICAL EVIDENCE: RESOURCE-ABUNDANCE, SAVINGS, INVESTMENT AND GROWTH

In this section we graphically depict correlations between several measures of resource-abundance, savings, investment and growth in order to establish empirically the relations that we study in our theoretical analysis of section 3. Data on GDP per capita, investment and savings are provided by the 6.1 Penn World Tables of the Center of International Comparisons at the University of Pennsylvania (CIC), (2003). Data on natural capital and agricultural production are provided by the World Bank (1997) and the Sachs and Warner dataset at the Center for International Development at Harvard University (CID), (2002). The causal chain linking resource-abundance to economic performance we study here operates in three steps: first, resource-abundance discourages national savings, second, lower national savings frustrate investment, and third, lower investment slows down economic growth.

Figures 2 and 3 depict a scatter plot of the share of net national savings in GDP set out against two measures of resource abundance. Both scatter plots indicate that resource-abundance tends to significantly decrease the level of savings in the economy. Figure 2 points out a significantly negative correlation between national savings and the share of agriculture in GDP. Agricultural production can explain by itself almost half of the overall variation in savings across the sample of 107 countries. It is striking to see that negative net national savings throughout the period 1975-96 characterizes the majority of countries with a share of agricultural production above 35%. Many resource-abundant countries seem to suffer from over-debt problems. Sao Tome and Principe, where agriculture makes up about a quarter of the total economy, has the lowest net savings rate of the sample. Over the last two decades, it had an average current account deficit ratio of almost –40%, and a debt value as a percentage of GDP close to 400% at the end of the 90’s.

4 The correlation is significant at the 1% level in both scatterplots.
Figure 2. Savings and Agriculture

Figure 3 shows a similar scatter plot for 84 countries taking the share of natural capital in total wealth as a proxy of resource-abundance. The results are equally revealing and the negative correlation is highly significant at the 1% level. We notice also that the coefficients for natural wealth are of similar magnitude in both regressions.

As a second step, we investigate whether our data support the assumed positive correlation between savings and investment. Figure 4 depicts, for a cross-sectional sample of 113 countries, the relation between net national savings and domestic investment for the 1975-96 period. Indeed,
we find a highly significant and positive correlation between the two variables. The correspondence is less than one-to-one, which is not surprising, since foreign investment can compensate for a lack of national savings when an economy offers attractive opportunities. Nonetheless, it is a resource-scarce country, Singapore, which has an agricultural product close to zero, with the highest savings and investment ratio: above 44%.

![Graph showing the relationship between national saving and real gross domestic investment from 1975-1996.](image)

Figure 4. *Investment and Savings*

The sample used for Figure 4 is fairly diverse; the relation between national savings and domestic investments becomes stronger when we focus on a more homogeneous group of countries, such as a sample of 27 OECD countries. Figure 5 is restricted to this group, and shows that savings can explain almost all variation in investment levels, and the estimated coefficient almost doubles. In OECD countries, most of the national savings is converted into investment.
Finally, Figure 6 shows the significant and positive correlation between economic growth and investment for a cross-sectional sample of 113 countries. We corrected economic growth for initial income, so that our data reflect the economic growth rate explained by other factors than convergence. A 10% increase in the investment ratio increases on average the annual economic growth rate by almost 1.4%. To summarize, our data reveal three major relationships: first, resource-abundance varies inversely with savings, second, investment is positively correlated to savings, and third, economic growth depends positively on investment. Together, there seems to be ample statistical evidence that investment is a significant crowding-out channel through which resource-abundance frustrates economic growth.
3. Model Specification

The model employed in this paper extends the usual OLG models by containing reference to a primary sector that provides the consumers with pure resource rents, and by including a technology spill-over from the capital stock to a labour productivity variable. The model distinguishes discrete time steps, $t \in \mathbb{T} = \{1, \ldots, \infty\}$.

A. Demography

We assume that in every interval two generations live, an old and a young generation. At the beginning of a period, a new generation enters the model and the previously old generation leaves the model, so that there is a turnover in population. Each generation is indexed by their date of entering the model t (as a subscript). Each individual’s lifetime consists of two periods. The generations work when young and live from savings when old. We thus only examine the adult part of the life-cycle, i.e. from the age of 20 onwards, and each interval consists of a period of about 30 years. Population grows exponentially at a rate n:

$$L_t = (1+n)L_{t-1}$$ (1)
where \(L_t \) stands for the population size. Each individual provides inelastically one unit of labour during her youth time and retires at the second period of her lifetime. Therefore \(L_t \) also measures the supply of labor.

B. Producers

There is a simple production sector for a man-made consumer good \(Y_t \), where physical capital \(K_t \), technology \(h_t \) and labour \(L_t \) are combined to produce output \(Y_t \). We assume a constant returns to scale Cobb-Douglas production function for the economy:

\[
Y_t = K_t^\alpha (h_t L_t)^{1-\alpha}, \quad 0 < \alpha < 1.
\]

(2)

Setting \(y_t = Y_t/L_t \) and \(k_t = K_t/L_t \) we can rewrite the production process in its intensive form:

\[
y_t = k_t^{\alpha} h_t^{1-\alpha}.
\]

(3)

We assume a simple form of learning-by-doing based on the endogenous growth models developed by Romer (1990) and Aghion and Howitt (1992), where human capital or technology \(h_t \) is a by-product of physical capital production. The rate of knowledge or technological accumulation depends directly on the rate of physical capital accumulation. We assume the following specification for the level of technology or knowledge:

\[
h_t = k_t^\pi, \quad 0 < \pi < 1
\]

(4)

Since each period covers about 30 years, we assume that the capital of the previous period fully depreciates, and we set the capital stock equal to the level of investment of the previous period,

\[
k_t = i_{t-1}/(1+n).
\]

(5)

Markets for labour and capital are competitive so that the interest rate and labour wage per labour unit are given by:
\[r_t = \alpha k_t^{\alpha - 1} h_t^{1-\alpha} - 1, \quad \text{and} \]

\[w_t = (1-\alpha)k_t^{\alpha} h_t^{1-\alpha}, \]

respectively. Taking account of the endogenous channel for human capital (eq.(4)) the output, interest, and wage equations become:

\[y_t = k_t^{\alpha + (1-\alpha)\pi}, \quad (8) \]

\[r_t = \alpha k_t^{(\alpha-1)(\pi-1)} - 1, \quad (9) \]

\[w_t = (1-\alpha)k_t^{\alpha + \pi(1-\alpha)}. \quad (10) \]

C. Consumers

Each generation maximises its lifetime utility derived from its two-period consumption scheme. Its utility function \(U(c_t^t, c_{t+1}^t(1+n)) \) only depends on consumption per capita in the two periods \(c_t^t \) and \(c_{t+1}^t(1+n) \), and is assumed to be logarithmic, which implies a unitary inter-temporal elasticity of consumption. The variable \(c_{t+1}^t \) denotes the consumption of the old in period \(t+1 \), divided by \(L_{t+1} \), whereas \(c_t^t \) is defined as the consumption of the old in period \(t \) divided by \(L_t \); the multiplication with \((1+n)\) corrects for this change in unit of measurement. Thus:

\[U_t = \ln c_t^t + \left[1/(1+\rho) \right] \ln [c_{t+1}^t(1+n)], \quad (11) \]

where \(\rho > -1 \) is the pure rate of time preference. Higher values of \(\rho \) represent a larger preference for current compared to future consumption. The restriction \(\rho > -1 \) rules out a negative weight on second-period consumption. Notice that the utility function is differentiable, concave and strictly increasing in its arguments.

Each generation divides its labour income (wages) in the first period between its first period consumption and savings, \(s_t \). These savings are used to finance their second period consumption.
\[c_t' + s_t = w_t, \quad (12) \]
\[c_{t+1}' = \left(\frac{1 + r_{t+1}}{1 + n}\right)s_t. \quad (13) \]

where \(w_t, r_{t+1}, c_t \) and \(c_{t+1} \) indicate the first-period wage, the interest rate between the first and second-period, and the level of consumption per capita during her two lifetime periods. Notice that when writing variables in intensive form, we should correct for population growth. Over the two periods, the present value of an individual’s consumption stream is equal to labour income:

\[c_t' + c_{t+1}' \left(1 + n\right)/(1 + r_{t+1}) = w_t, \quad (14) \]

Now, we extend the economy with a natural-resource base (e.g. oil reserves) that generates resource rents \(G_t, \) or \(g_t \) per person, at period \(t. \) For convenience of the analysis, these rents are assumed to be a proportion \(q \) of that period’s total income \(Y_t. \) In the appendix, we show that results do not change much when resource rents are assumed independent of the income level \(Y_t. \) The distribution of resource rents over generations will determine its effect on savings. We distinguish two resource policies. First, resources are considered public property and the rents are used to pay for public expenditures such as social security. Second, resources are considered common property and the rents are equally distributed over all consumers. This paper focuses on the first resource policy, when resource rents are used for public expenditures. In the appendix, we briefly analyse the second case.

We assume that the resource rents are used for social security; i.e. in every period, resource rents are paid to the retired generation. The second-period budget constraint becomes:

\[c_{t+1}' = \left(\frac{1 + r_{t+1}}{1 + n}\right)s_t + q y_{t+1}. \quad (15) \]

The inter-temporal budget constraint adjusts to:

\[c_t' + c_{t+1}' \left(1 + n\right)/(1 + r_{t+1}) = w_t + q y_{t+1}(1 + n)/(1 + r_{t+1}). \quad (16) \]
Each generation maximises utility subject to the budget constraint. The first order conditions with respect to consumption provide us with the Euler equation for the inter-temporal consumption allocation:

\[c_{t+1}^t = c_t^t \left[\frac{(1+r_{t+1})}{(1+n)(1+\rho)} \right] \] \hspace{1cm} (17)

The distribution of consumption over time does not depend on resource-income or labour income. It only depends on the interest rate, population growth, and the pure rate of time preference.

Substitution of the Euler equation in the budget constraint (eq.(16)) gives consumption \(c_t^t \) as a function of the interest rate, the rate of time preference, population growth, and labour and resource income. Thus:

\[c_t^t = \left[\frac{(1+\rho)}{2+\rho} \right] (w_t + qy_{t+1}(1+n)/(1+r_{t+1})) \] \hspace{1cm} (18)

Savings, \(s_t \), will be given by:

\[s_t = w_t - c_t^t = \left[\frac{1}{2+\rho} \right] w_t - \left[\frac{(1+n)(1+\rho)}{2+\rho}(1+r_{t+1}) \right] qy_{t+1}. \] \hspace{1cm} (19)

The savings curve is upwards-sloping with respect to the interest rate. An increase in the interest rate lowers the net present value of the resource revenues and increases the need for savings.

When substituting for \(y_t, r_t \) and \(w_t \) from equations (8), (9), and (10), the savings equation becomes:

\[s_t = \left[\frac{(1-\alpha)}{2+\rho} \right] k_t^{\alpha+\pi(1-\alpha)} - \left[\frac{(1+n)(1+\rho)}{2+\rho}\alpha \right] qk_{t+1} \] \hspace{1cm} (20)

D. Equilibrium

The commodity balance is given by:

\[c_t^{t-1} + c_t^t + i_t = (1+q)y_t, \] \hspace{1cm} (21)

where \(c_t^{t-1}, c_t^t \) and \(i_t \) stand for total consumption of the older and younger generation and total investment, respectively. Equation (21) indicates that total production inclusive of resource rents
can be used for either consumption or investments. The value of consumption of the older generation is equal to the value of capital rents, \(\alpha y_t\), plus resource rents, \(q y_t\). Thus, (15) can be restated as:

\[
c_{t}^{t-1} = (\alpha + q)y_t
\]

(22)

The remainder of the manufactured income \((1 - \alpha)y_t\) is used by the younger generation to both consume and save. Thus, equation (12) becomes:

\[
c_t + s_t = (1 - \alpha)y_t
\]

(23)

Equations (21)-(23) combined reveal the saving-investment balance:

\[
i_t = s_t.
\]

(24)

The savings-investment balance, together with the capital identity (5) and the savings equation (20), enables us to write the equilibrium as a recursive dynamic equation for \(k_t\):

\[
(1 + \rho)k_{t+1} = \left[\frac{(1 - \alpha)}{(2 + \rho)} \right] k_t^{\alpha + \pi(1 - \alpha)} - \left[\frac{(1 + n)(1 + \rho)}{(2 + \rho)\alpha} \right] q k_{t+1}
\]

(25)

Rearranging terms provides \(k_{t+1}\) as a function of \(k_t\):

\[
k_{t+1} = \psi(k_t) = \frac{\alpha(1 - \alpha)}{(1 + n)[(2 + \rho)\alpha + (1 + \rho)q]} k_t^{\alpha + \pi(1 - \alpha)}
\]

(26),

where \(\psi' > 0\), \(\psi'' < 0\), \(\psi(0) = 0\), \(\psi'(0) = \infty\), \(\psi'(\infty) = 0\). This implies that the sequence \(k_t\) is convergent, and there is a unique non-trivial equilibrium level of capital per person denoted by \(k^*\).

We set \(k_{t+1} = k_t\) in equation (26) in order to calculate the steady-state value of capital per capita. This provides us with:

\[
k^* = \left[\frac{\alpha(1 - \alpha)}{(2 + \rho)(1 + n)\alpha + (1 + \rho)(1 + n)q} \right]^{-\frac{1}{(1 - \alpha)(1 - \pi)}
\]

(27)
Similarly, the steady-state value of man-made output per capita is given by:

\[
y^* = \frac{\alpha(1-\alpha)}{(2+\rho)(1+n)\alpha + (1+\rho)(1+n)q}^{\frac{\alpha+\pi(1-\alpha)}{(1-\alpha)(1-\pi)}} \tag{28}
\]

As the parameter \(q\) positively enters the denominator and the power coefficients are positive, it follows immediately from these equations that the capital stock and output are decreasing in the resource wealth parameter \(q\), as stated in the next proposition.

Proposition 1. *An increase in the share \(q\) of resource rents in income results in a decrease in the steady-state levels of capital and output.*

The responsiveness of output to resource rents depends, to a large part, on the spill-over effects of capital on technology, \(\pi\). From equation (28), we derive the relative increase of steady-state output \(y^*\) with respect to the resource share \(q\), that is the semi-elasticity:

\[
\frac{dy^*}{dq} \frac{1}{y^*} = -\frac{\alpha + \pi(1-\alpha)(1+\rho)}{(1-\pi)(1-\alpha)(2+\rho)\alpha + (1+\rho)q} < 0 \tag{29}
\]

In turn, taking the derivative of \((dy^*/dq)/y^*\) with respect to \(\pi\), we find,

\[
\frac{d}{d\pi} \{\frac{(dy^*/dq)/y^*}{y^*}\} < 0 \tag{30}
\]

That is, a larger value for \(\pi\) intensifies the negative effect of resource revenues on the steady state levels of capital and man-made income. This result is stated in the next proposition.
Proposition 2. A large responsiveness of technology to capital accumulation, as captured by \(\pi \), enhances the negative impact of resource wealth on the steady-state levels of capital and man-made income per person.

Furthermore, as we can see from (29), the impact of resource rents on long-term output is independent of population growth.

4. The Resource Curse

For the resource curse to materialize, the decrease in output should exceed the increase in income brought by the resource rents. In order to investigate the effect of resource rents on total income, \((1+q)y^*\), we compare an initial situation, denoted with subscript ‘0’, in which there is a negligible proportion of man-made income \(q_0 = 0\), with an alternative situation after a resource boom, denoted with subscript ‘1’, when a resource base is discovered and revenues account for 10% of man-made income, \(q_1 = 0.1\). The change in resource income is about one standard deviation of the share of natural capital in GDP used for Figure 1 in the introduction.

We use a set of parameter values to test the dependence of the resource curse thereon. In the baseline, we set the discount factor \(\rho \) equal to one, which implies that individuals value their first-period consumption twice as much their second period consumption. In terms of pure time preference, for periods of 30 years, this assumption is equivalent to a pure rate of time preference of 2.3 per cent annually. We assume an annual population growth rate of 1%, which is approximately equivalent to a rate of 35% for a period of thirty years.\(^5\) We consider ranges for both parameters as the analysis proceeds. We allow the capital share \(\alpha \) to vary between 0.30 and 0.70. The lower value is a reasonable approximation for a narrow concept of physical capital (see, e.g. Romer 1996 ch.3), while the latter parameter value is reasonable if we interpret capital \(k_t \) broadly to consist of human capital as well (e.g. see Mankiw, Romer and Weil 1992 and Romer

\(^5\) This is the population growth rate for Canada and the U.S. in 1999 (World Bank (WB), 2003).
In the first case, h_t can be thought of as a measure of both technological and educational improvements induced by capital investments. In the latter case, h_t stands for technological advancement rather than educational quality. Finally, we let the technological parameter π of the endogenous technological channel vary between 0 and 0.9. We evaluate the steady-state values for total income $(1+q)y^*$ before and after the resource boom, assuming the above parameter values. We calculate the steady-state income differential created by the resource exploitation. The resource curse is defined as the negative relative income change,

$$RC = 1 - \frac{y^*(1+q_0)}{y_0(1+q_t)}$$

(31)

The results are depicted in Figure 7. The vertical axis presents the steady-state income differential defined by (31). Positive values imply that resource exploitation results in a lower steady-state income per capita. The legend on the right hand side of the figure divides the figure area according to the magnitude of the resource curse.

6 Barro and Sala-I-Martin (1992 p.226) set α equal to 0.80 for an augmented measure of capital.
As Figure 7 depicts, for almost all parameter values, the steady-state income per capita decreases when resource rents enter the economy. Only for the lowest values of π and α, assuming a narrow concept of capital and the absence of capital spill-over effects, the economy benefits from the resource rents.

As the occurrence of a resource curse depends to a large extent on the value for the technological parameter π, we investigate which is a plausible range of values for it. Linearizing equation (20) around k^* shows that the economy converges to its balanced growth path at a rate $\alpha + \pi(1-\alpha)$:

$$k_{t+1} - k^* \approx [\alpha + \pi(1-\alpha)](k_t - k^*).$$ \hspace{1cm} (32)

Most econometric studies find an annual convergence speed in the range between 0.005 and 0.025, depending on the set of additional variables included and the time span under investigation (e.g. Gylfason 2001a p.856, Barro and Sala-i-Martin 1992 p.242, Kormendi and Meguire 1985 p.149, Mo 2000 p.72, Sachs and Warner 1995 p.24). For a 30-year period, we calculate that the
factor \(\alpha + \pi(1-\alpha) \) should lie in the range \([0.47,0.85]\). For \(\alpha=0.3 \), this range is consistent with \(\pi \in [0.24,0.79] \). For \(\alpha=0.7 \), this range is consistent with \(\pi \in [0.0,0.46] \). For all possible pairs \((\alpha, \pi)\) that produce a rate of convergence in the abovementioned range, the resource curse is minimal for the pair \(\alpha=0.30, \pi=0.24 \), when it has the value 0.078. It is maximal for the pair \(\alpha=0.3, \pi=0.79 \), when it has the value 0.657. The numerical calculations confirm the presence of a resource curse for the plausible range of parameters.

As a further check of our results, we also investigate how changes in the discount factor \(\rho \) affect the resource curse effect. An increased value of \(\rho \) enhances the resource curse, as can be calculated by equation (29):

\[
\frac{d\{dy^*/dq\}(1/y^*)}{d\rho} = \frac{\alpha + \pi(1-\alpha)}{(1-\pi)(1-\alpha)(2+\rho)\alpha + (1+\rho)q} < 0
\]

(33)

Barro and Sala-i-Martin (1992 p.226) assume a rate of pure time preference of 0.05 per year for their calibrations for the U.S. This approximates a parameter value \(\rho \) of 3.35 for a period of 30 years. One could claim that for a developing country this parameter value could be even higher, since consumers in the developing world tend to value current consumption more compared to uncertain future consumption. Kotlikoff and Summers (1981) assume a range of (0.02, 0.07) for their yearly discount factor for their calibrations, which implies that the parameter value \(\rho \) lies approximately in the (0.8, 6.6) range for a 30-year period. For our robustness check, we set the capital share \(\alpha \) and the population growth rate \(n \) equal to 0.3 and 0.35, respectively, and let the technological parameter \(\pi \) vary as aforementioned. We allow the discount factor \(\rho \) to vary between 1 and 6, so that the values remain in the range adopted by Kotlikoff and Summers (1981). We calculate the resource curse effect and present our results in Figure 8. For increased values of \(\rho \), the resource curse becomes more acute. For instance, for a \(\pi \) value of 0.5, an increase of the discount rate from 1 to 6 amplifies the resource curse from 0.242 to 0.316.
Finally, we investigate whether our measurements in Figures 7 and 8 conform with empirical results found in the literature. Papyrakis and Gerlagh (2003) estimate the resource curse effect for revenues from mineral production, for the 1975-96 period, for a sample of 39 countries. They conclude that an increase in resource income of 10% decreases long-term income per capita by 60%, about half of which (30%) is due to a drop in investments in capital and education. The 30% decrease can be reproduced by our model for a set of parameters, e.g. for \((\alpha, \pi, \rho) = (0.3,0.5,4)\), or \((0.5,0.6,1)\), or \((0.7,0.4,1)\).

5. Conclusions

During the last three decades, a tendency has been observed of resource-abundant countries to grow at a relatively slow pace. In this paper, we have focused on a situation in which resource income decreases the incentive to save and invest. The focus has been motivated by earlier papers and by empirical data analysis.
We have developed a stylized model in which technology (or education) depends endogenously on the level of investment. In this setting, increasing resource rents lead to a decrease in investment that multiply over time, and long-term income substantially diminishes. For most of the reasonable parameter values, the effect of the decline in investment more than offsets the increase in income through resource revenues. Our analysis also reveals that the resource curse worsens with an increasing elasticity of output to capital and with a larger inter-temporal pure rate of time preference.

The mechanism described here provides an explanation to the resource-curse hypothesis that is an alternative to the mechanisms described in earlier literature. From the literature, we know that resource rich countries tend to suffer from currency overvaluations and loss of competitiveness (Corden 1984), enhanced corruption and rent-seeking (Krueger 1974, Torvik 2002), bad-decision making (Sachs and Warner 1999b, Auty 2001), political instability (Collier and Hoeffler, 1998), low levels of educational quality (Gylfason 2001a), and low capital investment (Atkinson and Hamilton, 2003). Papyrakis and Gerlagh (2004) claim that the last-mentioned channel is most important in explaining the resource curse phenomenon. In this paper, we describe a mechanism to explain this transmission channel, focusing on the role of resource abundance in crowding-out savings by enhancing future income for which no savings are required. Assuming that labor productivity depends endogenously on the level of investment, the decrease in savings and investment leads to a decline in output that exceeds the increase in resource income, thus producing the resource curse. Such a mechanism can help to understand why resource-abundant countries are characterized by smaller shares of savings and investment in their GDP and lack behind in terms of long-run income.
Appendix

A. Exogenous versus endogenous resource rents

The dynamics of our analysis are much simplified by assuming a constant share of resource rents in man-made income over time, $G = qY$, for constant q. It can be the case, though, that resource revenues are an either increasing or decreasing proportion of man-made income y as time evolves. Figure 9 depicts the relationship between the share of primary exports in GDP in 1990 and 2001. Data are compiled from the United Nations (UN, 2003) Database of Human Development Indicators. As the figure shows, the share of primary exports remained fairly stable over a period of eleven years. For instance, the share of primary exports in GDP fell from 30 to 29% for Panama and rose from 42 to 44% for Kuwait.

$y = 0.90x + 2.24$

$R^2 = 0.73$

Figure 9. Share of primary exports in GDP over time

Still, the objective of this appendix is to show that our steady state model results carry over to an economy where total resource rents R are exogenous with an adjusting share in total income q, instead of the opposed assumption made in the main text. Figure 10 is helpful in this respect; it depicts the relation between q, y^*, and g. It shows the steady state levels of man-made income y^*, resource income g, and total income $y^* + g = (1+q)y^*$, as functions of q. We adopt the following values for the capital share, $\alpha=0.4$, the discount factor, $\rho=2$, the population growth rate, $n=1$ and
the technological externality, \(\pi = 0.5 \). The figure shows that, as \(q \) increases, the steady-state man-made income \(y^* \) decreases (Proposition 1). Furthermore, steady-state income per capita \(y^* + g^* = (1+q)y^* \) strictly decreases in \(q \). Resource rents \(g^* \) (equal to \(qy^* \)) increase initially, and then decrease after a certain value of \(q \), that is, when the decrease in output \(y^* \) more than offsets the increase in \(q \).

![Graph showing resource income, man-made income, and total income](image)

Figure 10. Resource income \(g \), man-made income \(y^* \), and total income \(y^* + g \)

Graph based on \(\alpha = 0.4, \pi = 0.5, \rho = 2, n = 1 \).

Consider the case that a resource starts to be exploited and revenues \(R \) are constant and independent of other income sources \(y \). The steady-state per capita income level \(y^* \) decreases due to the resource revenues, and as the economy shifts to the new equilibrium, the share of resource revenues in total income \(q \) will gradually increase over time.\(^7\) Consequently, for fixed total resource revenues \(R \), the resource curse will turn out worse when compared to a situation where \(q \) is constant.

\(^7\) We implicitly assume that an economy is initially on a steady-state point. The assumption is inessential to the argument.
B. The case of equal intergenerational distribution of resource rents

As an alternative scenario of distribution of the resource rents G_t, we assume that the rents are equally distributed between the young and the old generation. Since population increase at an exogenous growth rate n, this implies that $(1+n)/(2+n)$ share of the resource rents accrues to the younger generation and the rest $1/(2+n)$ to the older one. The commodity balance for the consumer good is the same as in equation (21). The older generation consumes in period t the resource rents $[1/(2+n)]G_t$ and the savings from period $t-1$, which is a share α of manufactured income. Thus, equation (22) becomes

$$c_{t-1}^t = (\alpha + q/(2+n))y_t$$

(34)

The remainder of manufactured income $(1-\alpha)y_t$ and resource rents $[1/(2+n)]G_t$ are used by the younger generation to both consume and save. Thus, equation (23) becomes

$$c_t^t + s_t = (1-\alpha + q(1+n)/(2+n))y_t$$

(35)

Equations (21), (34) and (35) combined reveal that the saving-investment balance (24) is maintained. By considering the inter-temporal budget constraint for each generation, as in equation (12)-(19), we can adjust the savings equation (20), and reproduce the recursive dynamic equation for k_t as in (25):

$$(1+n)k_{t+1} = [(1-\alpha)/(2+\rho) + (1+n)q/(2+\rho)(2+n)]k_t^\alpha + \pi(1-\alpha)$$

$$- [(1+n)(1+\rho)/(2+\rho)(2+n)\alpha]qk_{t+1}$$

(36)

We set $k_{t+1} = k_t$ in order to calculate the steady-state value of capital per capita. This provides us with the equivalent of (27):

$$k^* = \left[\frac{(1-\alpha)(2+n)\alpha + (1+n)\alpha q}{(1+n)(2+\rho)\alpha(2+n) + (1+\rho)(1+n)q}\right]^{1/(1-\alpha)(1-\pi)}$$

(37)
For $q=0$, the two equations (27) and (37) produce the same steady state capital stock k^*. Under the scenario of equal distribution of resource rents, however, resource revenues have smaller effect on the capital stock, dk^*/dq has decreased. Thus, an equal distribution of resource rents is less harmful to investments than the social security scheme.
REFERENCES

Aghion, Philippe, and Howitt, Peter, “A Model of Growth through Creative Destruction.”

NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI
Fondazione Eni Enrico Mattei Working Paper Series

Our Note di Lavoro are available on the Internet at the following addresses:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.html

NOTE DI LAVORO PUBLISHED IN 2003

PRIV 2.2003 Ibolya SCHINDELLE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Elisssatos PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. CAPARRÓS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio BRUNETTO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003 Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLi (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 14.2003 Maddy JANSSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories
KNOW 15.2003 Tuzin BAYCAN LEVENT, Ennio MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community
KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World Coalition Theory Network
PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David ETTINGER (lxs): Bidding among Friends and Enemies
PRIV 24.2003 Hanna VARTIJAINE (lxs): Auction Design without Commitment
PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lxs): Rationing in IPOs
PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lxs): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lxs): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lxs): Auctions with Financial Externalities
ETA 31.2003 Michael FINUS and Bianca RUNDSHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
ETA 35.2003 Alessandra DEL BOCA, Marzio GALEOTTI and Paolo ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
GG 36.2003 Matthieu GLACHANT: Voluntary Agreements under Endogenous Legislative Threats

PRIV 37.2003 Najess BOUBAKRI, Jean-Claude COSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

CLIM 38.2003 Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers

KNOW 39.2003 Silin BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

CTN 40.2003 Carlo CARRARO and Carmen MARCHIORI: Endogenous Strategic Issue Linkage in International Negotiations

KNOW 42.2003 Tino GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies

CLIM 44.2003 Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness

PRIV 45.2003 Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization

ETA 47.2003 Jens HORbach: Employment and Innovations in the Environmental Sector: Determinants and Econometrical Results for Germany

CLIM 48.2003 Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing

CLIM 49.2003 Lori SNYDER, Robert STAVINS and Alexander F. WAGNER: Private Options to Use Public Goods: Exploiting Revealed Preferences to Estimate Environmental Benefits

CTN 50.2003 László A. KOCZY and Luc LAUWERS (lxi): The Minimal Dominant Set is a Non-Empty Core-Extension

CTN 51.2003 Matthew O. JACKSON (lx): Allocation Rules for Network Games

CTN 52.2003 Ana MAULEON and Vincent VANNELSTOSCH (lxi): Farsightedness and Cautiousness in Coalition Formation

CTN 54.2003 Matthew HAAG and Roger LAGUNOFF (lxi): On the Size and Structure of Group Cooperation

CTN 55.2003 Taiji FURUSAWA and Hideo KONISHI (lxi): Free Trade Networks

CTN 56.2003 Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization

CTN 57.2003 Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements

KNOW 58.2003 Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

KNOW 59.2003 Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change

ETA 60.2003 Ronnie SCHÖB: The Double Dividend Hypothesis of Environmental Taxes: A Survey

CLIM 61.2003 Michael FINUS, Eiko van IERLAND and Robert DELMI: Stability of Climate Coalitions in a Cartel Formation Game

SIEV 63.2003 Alberto PETRUCCI: Taxing Land Rent in an Open Economy

CLIM 64.2003 Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures

SIEV 65.2003 Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

SIEV 66.2003 Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment

SIEV 67.2003 Paolo A.L.D. NUNES, Luca ROSSETTO, Arianne DE BLAEIJ (lxi): The Beginning of Organic Fish Farming in Italy

CLIM 68.2003 ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target

KNOW 69.2003 David FRANTZ (lx): Lorenzo Market between Diversity and Mutation

KNOW 70.2003 Ercole SORI (lx): Mapping Diversity in Social History

KNOW 71.2003 Liljana DERU SIMIC (lxii): What is Specific about Art/Cultural Projects?

KNOW 72.2003 Natalya V. TARAHOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

KNOW 73.2003 Krystine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

KNOW 74.2003 Kazuma MATOBA (lxii): Global Dialogue- Transformation through Transcultural Communication

KNOW 75.2003 Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

KNOW 76.2003 Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems

KNOW 77.2003 Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities

KNOW 78.2003 Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas

KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change

ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation
IEM 81.2003 Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets

CLIM 82.2003 Y. Rosseim FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation

CLIM 83.2003 Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

CLIM 84.2003 Reger GERLAGH and Wietse LISE: Induced Technological Change Under Carbon Taxes

NRM 85.2003 Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence

KNOW 86.2003 Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

SIEV 87.2003 Lucas BRETSCHGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

CLIM 89.2003 Marzio GALEOTTI: Economic Development and Environmental Protection

CLIM 90.2003 Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

CLIM 91.2003 Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries

ETA 93.2003 Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

CTN 94.2003 Parakash CHANDER: The r-Core and Coalition Formation

IEM 95.2003 Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

IEM 96.2003 Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices

KNOW 98.2003 John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities

KNOW 100.2003 Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

KNOW 101.2003 David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

KNOW 102.2003 Sébastien ARCAND, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii) : Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

CLIM 103.2003 Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

CLIM 104.2003 Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

CLIM 105.2003 Atil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy

NRM 106.2003 Anne Sophie CRÉPIN (lxiv): Management Challenges for Multiple-Species Boreal Forests

NRM 107.2003 Anne Sophie CRÉPIN (lxiv): Threshold Effects in Coral Reef Fisheries

SIEV 108.2003 Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example

NRM 110.2003 Anastasios XEPAPADEAS and Catarina ROSETA-PALMA(lxiv): Instabilities and Robust Control in Fisheries

NRM 111.2003 Charles PERRINGS and Brian WALKER (lxiv): Conservation and Optimal Use of Rangelands

CTN 113.2003 Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

CTN 114.2003 Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching

CTN 115.2003 Hideo KONISHI and M. Utsu UNIVER: Credible Group Stability in Multi-Partner Matching Problems

CTN 116.2003 Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem

CTN 117.2003 Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem

CTN 118.2003 Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty

CTN 119.2003 Edward CARTWRIGHT and Myrna WOODERS: Social Conformity and Bounded Rationality in Arbitrary Games with Incomplete Information: Some First Results

CTN 120.2003 Gianluigi VERNASCA: Dynamic Price Competition with Price Adjustment Costs and Product Differentiation

CTN 121.2003 Myrna WOODERS, Edward CARTWRIGHT and Reinhard SELTEN: Social Conformity in Games with Many Players

CTN 122.2003 Edward CARTWRIGHT and Myrna WOODERS: On Equilibrium in Pure Strategies in Games with Many Players

CTN 123.2003 Edward CARTWRIGHT and Myrna WOODERS: Conformity and Bounded Rationality in Games with Many Players

1000 Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (Ixxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (Ixxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (Ixxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarte BRENDSTRUP and Harry J. PAARSCH (Ixxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (Ixxv): Equilibrium in the Two Player, k-Doubling Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (Ixxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (Ixxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (Ixxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Marcin STRYZSOWSKA (Ixxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Stijn BOSCHUSSE: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angelo ANTOCCI, Simone BORGESI and Paolo RUSSU (Ixxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Erasmo in the Lagoon of Venice

NRM 21.2004 Jacqueline M. HAMILTON (Ixxvi): Climate and the Destination Choice of German Tourists

NRM 23.2004 Pius ODUNGA and Henk FOLMER (Ixxvi): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya

NRM 26.2004 Juan Luis EUGENIO-MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (Ixxvi): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (Ixxvi): Impact of Tourism Consumption on GDP. The Role of Imports

NRM 29.2004 Marian WEBER (Ixxvi): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada’s Boreal Mixedwood Forest

NRM 30.2004 Trend BJØRNDAL, Phoebe KOUNDOURI and Sean PASCOE (Ixxvi): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution

ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Micheal FINUS (Ixxv): International Cooperation to Resolve International Pollution Problems
Francesco CRESPi: Notes on the Determinants of Innovation: A Multi-Perspective Analysis

Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies

Marc ESCRİHIUŁA-VİLLAR: Cartel Sustainability and Cartel Stability

Sebastian BERVOETS and Nicolas GRAVEL: (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach

Signe ANTHON and Bo JELLESMARK THORSEN: (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits

Ekin BIROL, Ágnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy

Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme, Allowance Prices, Trade Flows, Competitiveness Effects

Scott BARRETT and Michael HOEL: Optimal Disease Eradication

Dinko DIMITROV, Peter BORM, Raúd HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games

Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory

Anna ALBERINI, Maureen CROPPER, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

Ingo BRAUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renatured Streams

Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices

Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance

Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households

Koen SMEKENS and Bob VAN DER ZWAAN: Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

Valentina BOSETTI, Mariaester CASSINELLI and Alessandro LANZA (lxvii): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management

Timo GOESCHL and Danilo CAMARGO IGLIORI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon

Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol

Elissaios PAPYRAKIS and Reyer GERLAGH: Resource-Abundance and Economic Growth in the U.S.

Györgyi BELA, György PATALK, Alan KRUPNICK and Nathalie B. SIMON: Willingness to Pay for Mortality Risk Reductions: Does Latency Matter?

E.C.M. RUIGROK and E.E.M. NILLESEN (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands

Gianni VARDAS and Anastasios XEPAPADEAS: Uncertainty Aversion, Robust Control and Asset Holdings

Anastasios XEPAPADEAS and Costadina PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach

Michael FINUS: Modesty Pays: Sometimes!

Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications

Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents

Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERA: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants

Alessandro LANZA, Matteo MANERA and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns

Margarita GENIUS and Elisabetta STRAZZERA: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests

Rob DELLINK and Ekkø van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment

Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach

Salvador BARBERA and Matthew O. JACKSON (lxx): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union

Álex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERÀ and Fernando VEGA-REDONDO (lxx): Optimal Information Transmission in Organizations: Search and Congestion

Francis BLOCH and Armando GOMES (lxx): Contracting with Externalities and Outside Options
Rabah Amir, Effrosyni Diamantoudi and Licun Xue (Ixx): Merger Performance under Uncertain Efficiency Gains

Francis Bloch and Matthew O. Jackson (Ixx): The Formation of Networks with Transfers among Players

Daniel Diermeier, Hülya Eraslan and Antonio Merlo (Ixx): Bicameralism and Government Formation

Rod Garratt, James E. Parco, Cheng-Zhong Qin and Amnon Rapoport (Ixx): Potential Maximization and Coalition Government Formation

Kfir Eliaz, Debraj Ray and Ronny Razin (Ixx): Group Decision-Making in the Shadow of Disagreement

Sanjeev Goyal, Marco van der Leij and José Luis Moraga-González (Ixx): Economics: An Emerging Small World?

Edward Cartwright (Ixx): Learning to Play Approximate Nash Equilibria in Games with Many Players

Finn R. Forsund and Michael Hoel: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

Elissaios Papyrkis and Reyer Gerlagh: Natural Resources, Investment and Long-Term Income
2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>(Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>(Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>(Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>(Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>(Editor: Anil Markandya)</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>(Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>(Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>(Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>(Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>(Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>(Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>(Editor: Anil Markandya)</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>(Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>(Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>